JPH03284849A - Semiconductor and manufacture thereof - Google Patents

Semiconductor and manufacture thereof

Info

Publication number
JPH03284849A
JPH03284849A JP8622990A JP8622990A JPH03284849A JP H03284849 A JPH03284849 A JP H03284849A JP 8622990 A JP8622990 A JP 8622990A JP 8622990 A JP8622990 A JP 8622990A JP H03284849 A JPH03284849 A JP H03284849A
Authority
JP
Japan
Prior art keywords
base
collector
polysilicon
region
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8622990A
Other languages
Japanese (ja)
Inventor
Katsunobu Ueno
上野 勝信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8622990A priority Critical patent/JPH03284849A/en
Publication of JPH03284849A publication Critical patent/JPH03284849A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the collector-to-base distance for reduction in chip size by providing an insulator in a semiconductor substrate that is in contact with part of conducting films formed on base and collector regions. CONSTITUTION:First polysilicon layers 4 and 13a are formed on a base region 5 and a collector region 10 in a silicon substrate, respectively. These polysilicon layers each are in contact on one end with an insulator 22 having a depth of (d) in the substrate. A second polysilicon layer 7 for an emitter electrode is self-aligned with the first polysilicon layers. The depth (d) of the insulator is preferably 300-700nm. Since the respective polysilicon layers 4 and 13a of base and emitter are self-aligned in contact with the isolation insulator, no positioning allowance is required. Therefore, the space between the base and collector becomes narrow, and thus the total space requirement is reduced.

Description

【発明の詳細な説明】 [概要] 2層ポリシリコンを利用してベースとエミッタを自己整
合で作る半導体装置ならびにその製造方法に関し、 コレクタ・ベース間隔を狭めることにより、素子サイズ
を小さくし、ひいてはチップサイズを小さくすることが
できる半導体素子の構造およびその製造法を提供するこ
とを目的とし、 ベース電極とエミッタ電極が自己整合的に形成されてな
る半導体装置において、半導体基板のベース領域とコレ
クタ領域上に導電膜が存在し、前記ベース領域とコレク
タ領域の中間において一部が前記半導体基板内に突出す
る絶縁物に前記導電膜の端部が接するように構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a semiconductor device in which a base and an emitter are self-aligned using two-layer polysilicon, and a method for manufacturing the same, which reduces the element size by narrowing the collector-base spacing. The purpose of the present invention is to provide a structure of a semiconductor element that can reduce the chip size and a method for manufacturing the same.In a semiconductor device in which a base electrode and an emitter electrode are formed in a self-aligned manner, a base region and a collector region of a semiconductor substrate are provided. A conductive film is provided thereon, and an end portion of the conductive film is in contact with an insulator that partially protrudes into the semiconductor substrate between the base region and the collector region.

[産業上の利用分野] 本発明は、半導体装置に関するものであり、さらに詳し
く述べるならば、2層ポリシリコンを利用してベースと
エミッタを自己整合で作る半導体装置、ならびにその製
造方法に関するものである。
[Field of Industrial Application] The present invention relates to a semiconductor device, and more specifically, to a semiconductor device in which a base and an emitter are self-aligned using two-layer polysilicon, and a method for manufacturing the same. be.

[従来の技術] 従来、高速バイポーラ素子の製造に関して、2層ポリシ
リコンを利用してエミッタとベースを自己整合で作成す
ることが行われている。第5図は2層ポリシリコンバイ
ポーラトランジスタ(以下、素子という)の構造を示し
、図中、1はN+埋め込み層、2はLOCOS、4は第
1層のポリシリコン層でベース電極、5aはベースコン
タクト領域、5bは真正ベース領域、6はエミッタ領域
、7は第2層のポリシリコン層でエミッタ電極、8は5
iftなどの眉間絶縁膜、10はコレクタコンタクト領
域、11はAI2配線である。この構造では1層目のポ
リシリコン層によりベース電極をバターニングし、この
パターンによりエミツタ窓も自己整合的に形成している
。この構造によりベース・コレクタ容量は格段と小さく
なり、高速性が実現された。
[Prior Art] Conventionally, in the manufacture of high-speed bipolar devices, emitters and bases are formed in self-alignment using two-layer polysilicon. Figure 5 shows the structure of a two-layer polysilicon bipolar transistor (hereinafter referred to as a device). In the figure, 1 is an N+ buried layer, 2 is a LOCOS, 4 is the first polysilicon layer and the base electrode, and 5a is the base. Contact region, 5b is the real base region, 6 is the emitter region, 7 is the second polysilicon layer and emitter electrode, 8 is the 5
10 is a collector contact region, and 11 is an AI2 wiring. In this structure, the base electrode is patterned using the first polysilicon layer, and the emitter window is also formed in a self-aligned manner using this pattern. This structure significantly reduced the base-collector capacitance and achieved high speed.

[発明が解決しようとする課題] 従来の素子では、エミッタとベースは自己整合されるが
、ベース(4)とコレクタ(10,11)はプロセス初
期に形成されるLOCOS2により分離されているので
、LOCOS2に対する1層目のポリシリコンの位置合
わせが必要であり、この位置合わせの余裕を取るために
ベース・コレクタ間隔は大きくなっていた。
[Problems to be Solved by the Invention] In conventional elements, the emitter and base are self-aligned, but the base (4) and collector (10, 11) are separated by the LOCOS 2 formed at the beginning of the process. It is necessary to align the first layer of polysilicon with respect to LOCOS 2, and the base-collector interval has been increased to provide a margin for this alignment.

したがって従来の素子ではベース電極とコレクタ電極の
占有面積は通常の素子と変わらない。すなわち、2層ポ
リシリコン素子でも素子面積は従来の素子とほとんど変
わらず、チップ面積もほとんど変わらない。
Therefore, in the conventional element, the area occupied by the base electrode and the collector electrode is the same as in a normal element. That is, even with a two-layer polysilicon element, the element area is almost the same as that of a conventional element, and the chip area is also almost the same.

現在の半導体装置のように、集積度が上がると回路にお
ける性能は配線が占める割合が大きくなる。したがって
、本発明はコレクタ・ベース間隔を狭めることにより、
素子サイズを小さくし、配線距離を短くし、ひいてはチ
ップサイズを小さくすることができる半導体素子の構造
およびその製造法を提供することを目的とする。
As in the case of current semiconductor devices, as the degree of integration increases, the proportion of wiring that contributes to the performance of the circuit increases. Therefore, by narrowing the collector-base spacing, the present invention
It is an object of the present invention to provide a structure of a semiconductor element and a method for manufacturing the same, which can reduce the element size, shorten the wiring distance, and ultimately reduce the chip size.

[課題を解決するための手段] 本発明は、ベース電極とエミッタ電極が自己整合的に形
成される素子を含む半導体装置において、 半導体基板のベース領域とコレクタ領域上に導電膜が存
在し、前記ベース領域とコレクタ領域の間において一部
が前記半導体基板内に突出する絶縁物に前記導電膜の端
部が接する構造を有することを特徴とする半導体装置を
提供する。
[Means for Solving the Problems] The present invention provides a semiconductor device including an element in which a base electrode and an emitter electrode are formed in a self-aligned manner, in which a conductive film is present on a base region and a collector region of a semiconductor substrate, and A semiconductor device is provided, characterized in that the end portion of the conductive film contacts an insulator that partially protrudes into the semiconductor substrate between a base region and a collector region.

また、本発明は、半導体基板のベース領域とコレクタ領
域を含む連続した領域に導電膜を被覆する工程と、前記
ベース領域と前記コレクタ領域の藺で前記導電膜と前記
半導体基板をエツチングして導電膜を除去する工程と、
エツチングにより表比された半導体基板の部分に絶縁物
よりなる分離領域を形成する工程を含む半導体装置の製
造方法を提供する。導電膜の物質はポリシリコン以外の
導電物質であってもよいが、以下の説明ではポリシリコ
ンが導電膜を構成する例を説明する。
The present invention also includes a step of coating a continuous region including a base region and a collector region of a semiconductor substrate with a conductive film, and etching the conductive film and the semiconductor substrate along the base region and the collector region to make the semiconductor substrate conductive. a step of removing the film;
A method of manufacturing a semiconductor device is provided, which includes a step of forming an isolation region made of an insulator in a portion of a semiconductor substrate whose surface has been etched. Although the material of the conductive film may be a conductive material other than polysilicon, in the following description, an example in which the conductive film is made of polysilicon will be described.

[作用] 本発明の原理を第1図を参照として説明する。[Effect] The principle of the present invention will be explained with reference to FIG.

第1図に模式的に示すように、シリコン基板のベース領
域5とコレクタ領域10上にポリシリコン膜4.13a
が1層目ポリシリコンとして存在し、ベース領域とコレ
クタ領域の間において一部がシリコン基板内に深さdで
突出する絶縁物22にポリシリコン膜4.13aが端部
を接する構造を本発明は提供する。図中7はエミッタ電
極となる2層目ポリシリコンであり、1層目ポリシリコ
ンと自己整合的に形成されている。
As schematically shown in FIG. 1, a polysilicon film 4.13a is formed on the base region 5 and collector region 10 of the silicon substrate.
The present invention has a structure in which the polysilicon film 4.13a is in contact with the end portion of the insulator 22, which exists as the first layer of polysilicon and partially protrudes into the silicon substrate at a depth d between the base region and the collector region. provides. In the figure, 7 is a second layer of polysilicon that becomes an emitter electrode, and is formed in self-alignment with the first layer of polysilicon.

上記構造が従来のダブルポリシリコン構造と相違する点
は以下のとおりである。
The above structure differs from the conventional double polysilicon structure in the following points.

■本発明の構造はWalled base構造になって
いる。すなわちエミッタ6の熱処理の時のベース5の広
がりが分離用絶縁膜22により制限されている。Wal
led base構造はベース面積を小さ(する効果を
もつ。なお、上記絶縁膜の深さdは一般には300〜7
00nmが好ましい。
■The structure of the present invention is a walled base structure. That is, the expansion of the base 5 during heat treatment of the emitter 6 is restricted by the isolation insulating film 22. Wal
The LED base structure has the effect of reducing the base area. Note that the depth d of the insulating film is generally 300 to 7
00 nm is preferred.

■エミッタ・ベース用ポリシリコン4.13aは分離用
絶縁膜22に端部を接している。これに対して、従来の
構造(第2図参照)ではベース用ポリシリコン4(第5
図)がコレクタとの境界でLOGO32の絶縁膜の上に
盛り上がって延在しているために、ポリシリコン4とL
OGOSパターンとの位置合わせ余裕を取らなければな
らない。本発明の構造では、エミッタ・ベース用ポリシ
リコン4.13aは分離用絶縁膜22に端部を接して自
己整合的に形成されるので、位置合わせ余裕が不要にな
り、ベース・コレクタ間隔が狭められる。上記した構造
上の相違により素子面積を通常素子に比べて著しく少な
くすることが可能になる。これを通常素子のパターンを
示す第2図と、本発明の素子のパターンを示す第3図に
より説明する。図中、点線は1層目のポリシリコンのパ
ターンであり、実線がLOGOSOのパターンであり、
−点鎖線がエミツタ窓のパターンである。従来の素子で
は、2つのポリシリコンのパターンの間の間隔と、2つ
のLOGOSパターン間の間隔との位置合わせ余裕を見
てAの間隔が必要であったが、本発明によれば2つのポ
リシリコンパターンの間隔のみを考慮したAoが必要で
あり、A’ <Aであるので、素子寸法の大幅減少が可
能になる。
(2) The ends of the emitter/base polysilicon 4.13a are in contact with the isolation insulating film 22. On the other hand, in the conventional structure (see Fig. 2), the base polysilicon 4 (the fifth
) is raised and extends on the insulating film of LOGO32 at the boundary with the collector, so polysilicon 4 and L
It is necessary to provide a margin for alignment with the OGOS pattern. In the structure of the present invention, since the emitter/base polysilicon 4.13a is formed in a self-aligned manner with its end in contact with the isolation insulating film 22, alignment margin is not required and the base/collector distance is narrowed. It will be done. Due to the above-mentioned structural differences, the device area can be significantly reduced compared to a normal device. This will be explained with reference to FIG. 2, which shows the pattern of a normal element, and FIG. 3, which shows the pattern of the element of the present invention. In the figure, the dotted line is the first layer polysilicon pattern, the solid line is the LOGOSO pattern,
- The dotted chain line is the emitter window pattern. In conventional elements, a spacing of A was required considering the alignment margin between the spacing between two polysilicon patterns and the spacing between two LOGOS patterns, but according to the present invention, the spacing between two polysilicon patterns is Since Ao is required considering only the spacing between the silicon patterns, and A'<A, it is possible to significantly reduce the device size.

[実施例] 以下、第4図(A)〜(0)を参照して本発明の詳細な
説明する。
[Example] Hereinafter, the present invention will be described in detail with reference to FIGS. 4(A) to 4(0).

(A)P−シリコン基板1とN−エピタキシャル層3(
厚み約1.5μm)の中間にN゛埋込層2を設けた基板
の表面に厚みが30〜1100nの酸化(SiO□)膜
24を熱酸化で形成し、その上に厚みが100〜200
nmの窒化(SiN)膜25をCVDで形成し、さらに
その上にPSG膜26を厚みが約1μmに成長させる(
第4図(A)参照)。
(A) P-silicon substrate 1 and N-epitaxial layer 3 (
An oxide (SiO□) film 24 with a thickness of 30 to 1100 nm is formed by thermal oxidation on the surface of the substrate on which a N buried layer 2 is provided in the middle of the N buried layer 2 (with a thickness of approximately 1.5 μm).
A nitride (SiN) film 25 with a thickness of about 1 μm is formed by CVD, and a PSG film 26 is grown on it to a thickness of about 1 μm (
(See Figure 4(A)).

(B)レジスト27を被覆し、レジスト27に窓27°
を設けた後レジスト27をマスクにしPSG膜26、窒
化膜25および酸化膜24をエツチングする(第4図(
B)参照)。
(B) Cover the resist 27, and window 27° in the resist 27.
After that, the PSG film 26, nitride film 25 and oxide film 24 are etched using the resist 27 as a mask (see FIG. 4).
See B).

(C)レジスト27を除去した後、PSG膜26をマス
クにして異方性エツチングによりN−エピタキシャル層
3およびP−シリコン基板1にトレンチ溝28を設ける
(第4図(C)参照)。
(C) After removing the resist 27, trenches 28 are formed in the N-epitaxial layer 3 and the P-silicon substrate 1 by anisotropic etching using the PSG film 26 as a mask (see FIG. 4(C)).

(D)PSG膜26を除去し、窒化膜25をマスクにし
、トレンチ溝内面の酸化を行い、厚みが50〜300n
mの酸化(SiOa)膜30を形成し、次にCVDによ
りトレンチ溝の中にポリシリコン29を堆積させる(第
4図(D)参照)。ポリシリコン9をエッチバックして
トレンチ溝内に埋込む。
(D) Remove the PSG film 26, use the nitride film 25 as a mask, and oxidize the inner surface of the trench to a thickness of 50 to 300 nm.
Then, polysilicon 29 is deposited in the trench by CVD (see FIG. 4(D)). Polysilicon 9 is etched back and filled into the trench groove.

(E)続いて、素子形成領域にのみ窒化膜32を残し、
窒化膜32をマスクにしてポリシリコン29の酸化と、
フィールド酸化膜31の形成を行う(第4図(E)参照
)。
(E) Subsequently, leaving the nitride film 32 only in the element formation region,
Oxidizing the polysilicon 29 using the nitride film 32 as a mask,
A field oxide film 31 is formed (see FIG. 4(E)).

(F)(E)の工程で形成された窒化膜32をりん酸ボ
イルにより除去し、酸化膜24をぶつ酸系エツチング液
により除去し、ポリシリコン層33、酸化膜34および
窒化膜35を成長させる。
(F) The nitride film 32 formed in step (E) is removed using phosphoric acid boiling, the oxide film 24 is removed using a phosphoric acid etching solution, and a polysilicon layer 33, an oxide film 34 and a nitride film 35 are grown. let

それぞれの厚みは、33−0.2〜0.5μm、34−
約50 nm、 35−約60〜20Qnmである。
The respective thicknesses are 33-0.2 to 0.5 μm, 34-
about 50 nm, 35-about 60-20 Q nm.

(G)(F)で形成された窒化膜32、酸化膜34およ
びポリシリコン層33をコレクタ電極およびベース電極
を含むベース領域にのみ残す(第4図(F)?照)。こ
の時、溝36を異方性エツチングで作り、その底部でN
−エピタキシャル層3を約200nm除去する。なお、
?1136はコレクタとベースの分離に役立てられる。
(G) The nitride film 32, oxide film 34 and polysilicon layer 33 formed in (F) are left only in the base region including the collector electrode and the base electrode (see FIG. 4(F)). At this time, a groove 36 is created by anisotropic etching, and the bottom of the groove 36 is made of N.
- Remove about 200 nm of epitaxial layer 3. In addition,
? 1136 is useful for separating the collector and base.

ベースの深さが1100n以下の場合には、この溝は形
成しな(でも良い。
If the depth of the base is 1100 nm or less, this groove may not be formed.

(H)窒化膜37を全面に厚み約30nmに成長させ、
RIEを行い、コレクタ・ベース分離溝36の側面にの
み窒化膜37を残す(第4図(H)参照)。
(H) A nitride film 37 is grown to a thickness of about 30 nm over the entire surface,
RIE is performed to leave the nitride film 37 only on the side surfaces of the collector/base isolation trench 36 (see FIG. 4(H)).

(I)窒化膜35.37をマスクとして上記溝36内で
表出されたシリコンの酸化を行い、酸化膜22を厚みが
約400nmに成長させる(第4図(I)参照)。
(I) Using the nitride films 35 and 37 as a mask, the silicon exposed in the trench 36 is oxidized to grow the oxide film 22 to a thickness of about 400 nm (see FIG. 4(I)).

(J)続いて、レジストパターンを用いてN型不純物(
P)をポリシリコン層13aがら注入エネルギー100
keVと400keVで濃度が10”cm−’になるよ
うにイオン注入し、900℃程度でアニールし、NIコ
レクタコンタクト41を作成し、次にコレクタコンタク
ト21の上方をレジストパターンでマスクして、ポリシ
リコン層13bからベース領域へのP型不純物(B)の
イオン注入を行う(第4図(J)参照)。
(J) Next, using a resist pattern, N-type impurities (
P) was implanted into the polysilicon layer 13a with an energy of 100
keV and 400 keV to a concentration of 10"cm-', annealed at about 900°C to create an NI collector contact 41, and then masking the upper part of the collector contact 21 with a resist pattern and forming a polyimide. P-type impurity (B) ions are implanted from the silicon layer 13b into the base region (see FIG. 4(J)).

(K)酸化膜40をCVDにより厚み0.3〜0.4μ
mに成長させる(第4図(J)参照)。
(K) The oxide film 40 is formed by CVD to a thickness of 0.3 to 0.4μ.
m (see Figure 4 (J)).

(L)エミツタ窓21を形成する(第4図(K)参照)
(L) Forming the emitter window 21 (see Fig. 4 (K))
.

(M)エミツタ窓21内に表出されたポリシリコン層1
3およびエピシリコンを薄(酸化して酸化膜43を形成
する(第4図(M)参照)、続いて内部ベース56を作
るためのP型不純物の30keV以下の低エネルギーで
イオン注入を酸化膜43を貫通して行う。
(M) Polysilicon layer 1 exposed in emitter window 21
3 and epitaxial silicon is oxidized to form an oxide film 43 (see FIG. 4 (M)), followed by ion implantation of P-type impurities at low energy of 30 keV or less to form the oxide film to form the internal base 56. 43.

(N)エミツタ窓21の側壁に酸化膜45を形成し、エ
ミッタ6形成のための第2のポリシリコン層7を厚み2
00〜300μmに形成しN型不純物のイオン濃度が1
0”cm””以上になるようにイオン注入を行う(第4
図(N)参照)。
(N) An oxide film 45 is formed on the side wall of the emitter window 21, and a second polysilicon layer 7 is formed to a thickness of 2 to form an emitter 6.
00 to 300 μm, and the ion concentration of N-type impurity is 1.
Ion implantation is performed so that the thickness is 0 cm or more (4th
(See figure (N)).

この際、ポリシリコン成長時に不純物を混入させても良
い。
At this time, impurities may be mixed during polysilicon growth.

(0)前記第2のポリシリコンをエミッタを極として残
し、コレクタコンタクト窓45、ベースコンタクト窓4
6を作成する(第4図(0)参照)。
(0) The second polysilicon is left with the emitter as a pole, the collector contact window 45 and the base contact window 4.
6 (see Figure 4 (0)).

[発明の効果] 本発明によれば、コレクタ・ベース間距離が減少するこ
とにより、同−設計基準ならば素子面積は60%まで減
少することができる。したがって、本発明によれば、高
密度装置が提供でき、チップサイズの減少や配線の負荷
低減が可能になる。さらに、素子の寄生抵抗であるコレ
クタ抵抗やベースの寄生容量の低減が可能になる。
[Effects of the Invention] According to the present invention, by reducing the distance between the collector and the base, the element area can be reduced by up to 60% under the same design standard. Therefore, according to the present invention, a high-density device can be provided, and chip size and wiring load can be reduced. Furthermore, it is possible to reduce the collector resistance and the parasitic capacitance of the base, which are the parasitic resistances of the element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は従来のダブルポリシリコン素子のパターンの説
明図、 第3図は本発明のダブルポリシリコン素子のパターンの
説明図、 第4図(A)〜(0)は本発明方法の実施例を示す工程
図であって、 第4図(A)はシリコン基板に酸化膜と窒化膜を形成す
る工程、 第4図(B)はPSG、窒化膜、酸化膜のエツチング工
程、 第4図(C)はトレンチ溝形成工程、 第4図(D)はトレンチ溝を埋め込む工程、第4図(E
)は酸化工程、 第4図(F)はポリシリコン、酸化膜、窒化膜の形成工
程、 第4図(G)はコレクタ・ベース分離溝形成工程、 第4図(H)はコレクタ・ベース分離溝の側面に窒化膜
を形成する工程、 第4図(I)はコレクタ・ベース間絶縁用酸化膜の形成
工程、 第4図(J)はイオン注入工程、 第4図(K)は酸化膜形成工程、 第4図(L)はエミツタ窓形成工程、 第4図(M)はエミツタ窓形成工程、 第4図(N)はエミッタイオン注入工程、第4図(0)
は2層目ポリシリコン成長およびコレクタ、ベースコン
タクト窓形成工程にそれぞれ該当し、 第5図は従来のダブルポリシリコン素子の構造を示す図
面である。
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an explanatory diagram of a pattern of a conventional double polysilicon element, Fig. 3 is an explanatory diagram of a pattern of a double polysilicon element of the present invention, and Fig. 4 (A). -(0) are process diagrams showing an embodiment of the method of the present invention, in which FIG. 4(A) is a step of forming an oxide film and a nitride film on a silicon substrate, and FIG. 4(B) is a step of forming an oxide film and a nitride film on a silicon substrate. , oxide film etching step, FIG. 4(C) is the trench groove forming step, FIG. 4(D) is the trench burying step, FIG. 4(E)
) is the oxidation process, Figure 4 (F) is the formation process of polysilicon, oxide film, and nitride film, Figure 4 (G) is the collector/base isolation trench formation process, and Figure 4 (H) is the collector/base isolation process. The process of forming a nitride film on the side surface of the trench, Figure 4 (I) is the process of forming an oxide film for collector-base insulation, Figure 4 (J) is the ion implantation process, and Figure 4 (K) is the process of forming the oxide film. Formation process, Figure 4 (L) shows emitter window formation process, Figure 4 (M) emitter window formation process, Figure 4 (N) shows emitter ion implantation process, Figure 4 (0)
5 corresponds to the second layer polysilicon growth and the collector and base contact window forming steps, respectively. FIG. 5 is a drawing showing the structure of a conventional double polysilicon element.

Claims (1)

【特許請求の範囲】 1、ベース電極とエミッタ電極が自己整合的に形成され
る素子を含む半導体装置において、半導体基板のベース
領域とコレクタ領域上に導電膜が存在し、前記ベース領
域とコレクタ領域の中間において一部が前記半導体基板
内に突出する絶縁物に前記導電膜の端部が接する構造を
有することを特徴とする半導体装置。 2、半導体基板のベース領域とコレクタ領域を含む連続
した領域に導電膜を被覆する工程と、前記ベース領域と
前記コレクタ領域の間で前記導電膜と前記半導体基板を
エッチングして前記導電膜を除去する工程と、エッチン
グにより表出された半導体基板の部分に絶縁物よりなる
分離領域を形成する工程を含む半導体装置の製造方法。
[Claims] 1. In a semiconductor device including an element in which a base electrode and an emitter electrode are formed in a self-aligned manner, a conductive film exists on a base region and a collector region of a semiconductor substrate, and the base region and the collector region A semiconductor device having a structure in which an end portion of the conductive film contacts an insulator that partially protrudes into the semiconductor substrate in the middle of the semiconductor substrate. 2. A step of coating a continuous region including a base region and a collector region of a semiconductor substrate with a conductive film, and etching the conductive film and the semiconductor substrate between the base region and the collector region to remove the conductive film. and forming an isolation region made of an insulator in a portion of the semiconductor substrate exposed by etching.
JP8622990A 1990-03-30 1990-03-30 Semiconductor and manufacture thereof Pending JPH03284849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8622990A JPH03284849A (en) 1990-03-30 1990-03-30 Semiconductor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8622990A JPH03284849A (en) 1990-03-30 1990-03-30 Semiconductor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03284849A true JPH03284849A (en) 1991-12-16

Family

ID=13880964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8622990A Pending JPH03284849A (en) 1990-03-30 1990-03-30 Semiconductor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03284849A (en)

Similar Documents

Publication Publication Date Title
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
US4615746A (en) Method of forming isolated island regions in a semiconductor substrate by selective etching and oxidation and devices formed therefrom
JPH0241170B2 (en)
JPH0557741B2 (en)
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JPH04102335A (en) Manufacturing process of bipolar transistor having self-alignment contact
JPH03284849A (en) Semiconductor and manufacture thereof
JPS61172346A (en) Semiconductor integrated circuit device
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JPH0136710B2 (en)
JPH0128507B2 (en)
JPS5915494B2 (en) Manufacturing method of semiconductor device
JPS627704B2 (en)
JPS63146466A (en) Bipolar transistor with polycrystalline silicon vertical base contact
JPH0778833A (en) Bipolar transistor and its manufacture
JP2531680B2 (en) Semiconductor device and manufacturing method thereof
JP2574453B2 (en) Method for manufacturing semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS6150385B2 (en)
JPS641933B2 (en)
JPS63114261A (en) Self-aligning base shunt for transistor
JPS63266878A (en) Semiconductor integrated circuit device
JPH0136709B2 (en)
JPH0240921A (en) Manufacture of bipolar transistor
JPS61117870A (en) Manufacture of semiconductor ic device