JPH0240921A - Manufacture of bipolar transistor - Google Patents

Manufacture of bipolar transistor

Info

Publication number
JPH0240921A
JPH0240921A JP19162688A JP19162688A JPH0240921A JP H0240921 A JPH0240921 A JP H0240921A JP 19162688 A JP19162688 A JP 19162688A JP 19162688 A JP19162688 A JP 19162688A JP H0240921 A JPH0240921 A JP H0240921A
Authority
JP
Japan
Prior art keywords
film
region
insulating film
polycrystalline silicon
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19162688A
Other languages
Japanese (ja)
Other versions
JPH0691101B2 (en
Inventor
Tsutomu Akashi
勉 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19162688A priority Critical patent/JPH0691101B2/en
Publication of JPH0240921A publication Critical patent/JPH0240921A/en
Publication of JPH0691101B2 publication Critical patent/JPH0691101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dimension finner than a dimension, which is restricted by a lithography technique, and to reduce a junction capacitance by a method wherein an eroded part is formed utilizing a first sidewall provided on the inner side of an opening in an insulating film and with graft base regions provided by diffusing an impurity through this eroded part, a base region and an emitter region are formed utilizing a second sidewall. CONSTITUTION:An n<+> buried layer 2, is formed in a P-type Si substrate 1, an n-type layer 3 is epitaxially grown on the whole surface including this layer 2 and the layer 3 is partitioned by an SiO2 film 4 to use here as an element formation region. Then, an insulating film 5, a poly Si film 6, an n<+> collector lead-out layer 7 and insulating layers 8 and 9 are laminated on the whole surface of this element formation region, an opening is pored to expose the element formation region and here is covered with an insulating film 11. After that, an etching is performed to remove both end parts of the film 11 and at the same time, an eroded part 8a is made to generate in the sidewall of the opening and an impurity is diffused through this part 8a to form graft base regions 12 under the end parts of the lower surface of the film 11. Then, a treatment identical with the above treatment is performed, a P-type emitter region 19 is formed between the regions 12 and an n<+> active base region 16, which is positioned on the surface layer part of this region 19, is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明はバイポーラトランジスタの製造方法に関し、特
に高周波特性を改善したバイポーラトランジスタの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a bipolar transistor, and particularly to a method for manufacturing a bipolar transistor with improved high frequency characteristics.

〔従来の技術〕[Conventional technology]

従来から、ベース抵抗及びその接合容量を低減して高速
のトランジスタを実現するために、ベース電極の多結晶
シリコン膜を拡散源としてグラフトベースを自己整合的
に形成した構造が知られている。例えば、第2図は従来
のこの種のバイポーラトランジスタの断面図である。
Conventionally, in order to realize a high-speed transistor by reducing base resistance and its junction capacitance, a structure in which a graft base is formed in a self-aligned manner using a polycrystalline silicon film of a base electrode as a diffusion source has been known. For example, FIG. 2 is a cross-sectional view of a conventional bipolar transistor of this type.

この構造を製造するためには、先ず、p型シリコンから
なる半導体基板31上にn゛型埋込層32を形成し、こ
の上にn型エピタキシャル層33を成長した後、Sin
、からなる厚い絶縁領域34で素子形成領域を絶縁分離
し、かつ素子形成領域に薄い絶縁膜35を形成する。
In order to manufacture this structure, first, an n-type buried layer 32 is formed on a semiconductor substrate 31 made of p-type silicon, an n-type epitaxial layer 33 is grown on this, and then a Si
The element forming region is insulated and isolated by a thick insulating region 34 consisting of , and a thin insulating film 35 is formed in the element forming region.

そして、p型の不純物を含有した多結晶シリコン膜36
及び絶縁膜37を順次形成した後に絶縁膜37に窓を開
口し、この絶縁膜37をマスクとして多結晶シリコン膜
36と絶縁膜35とをエツチングしてより広い窓を開口
する。
Then, a polycrystalline silicon film 36 containing p-type impurities
After sequentially forming the insulating film 37 and the insulating film 37, a window is opened in the insulating film 37, and using the insulating film 37 as a mask, the polycrystalline silicon film 36 and the insulating film 35 are etched to open a wider window.

更に、p型の不純物を含有した多結晶シリコン膜38を
絶縁膜37の庇の下に形成し、この多結晶シリコン膜3
8を拡散源として自己整合的にエピタキシャル層33の
表面にグラフトベース領域39を形成する。
Furthermore, a polycrystalline silicon film 38 containing p-type impurities is formed under the eaves of the insulating film 37.
A graft base region 39 is formed on the surface of the epitaxial layer 33 in a self-aligned manner using 8 as a diffusion source.

続いて、前記開口内にエミッタ・ベース電極分離用の絶
縁膜40を形成し、エピタキシャル層330開孔部表面
にイオン注入法等によりp型不純物を導入してベース領
域41を形成する。また、開口上に多結晶シリコン42
を成長し、n型不純物をイオン注入法により導入してエ
ミッタ領域43を形成する。
Subsequently, an insulating film 40 for separating the emitter and base electrodes is formed in the opening, and a p-type impurity is introduced into the surface of the opening of the epitaxial layer 330 by ion implantation or the like to form a base region 41. Also, polycrystalline silicon 42 is placed over the opening.
is grown, and an n-type impurity is introduced by ion implantation to form an emitter region 43.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のバイポーラトランジスタの製造方法は、
自己整合的にグラフトベース領域39を形成しているた
め、ベース抵抗及びコレクタ接合容量の低減が可能であ
るが、このグラフトベース領域39を形成するための多
結晶シリコン膜38が絶縁膜37の開口の外側に形成さ
れるので、グラフトベース領域39を含むベース領域全
体の面積がリソグラフィ技術上可能な最小寸法の開口よ
りも広くなる。このため、ベース領域の抵抗を一層低減
して接合容量の低減と遮断周波数等の高周波特性を改善
するためには限度が生じている。
The conventional method for manufacturing the bipolar transistor described above is as follows:
Since the graft base region 39 is formed in a self-aligned manner, the base resistance and collector junction capacitance can be reduced, but the polycrystalline silicon film 38 for forming the graft base region 39 is Since the area of the entire base region including the graft base region 39 is larger than the minimum dimension of the opening possible with lithography technology. For this reason, there is a limit to further reducing the resistance of the base region to reduce junction capacitance and improve high frequency characteristics such as cutoff frequency.

また、エミッタ領域43を形成すべく開口上に成長され
た多結晶シリコン42を除去する際に、下地のエピタキ
シャル層33との選択比を考慮してエツチングを制御し
なければならず、この制御が難しいという問題もある。
Furthermore, when removing the polycrystalline silicon 42 grown on the opening to form the emitter region 43, the etching must be controlled taking into account the selectivity with respect to the underlying epitaxial layer 33. There is also the problem of difficulty.

本発明は接合容量を低減し、かつ高周波特性に優れたバ
イポーラトランジスタを容易に得ることができるバイポ
ーラトランジスタの製造方法を提供することを目的とし
ている。
An object of the present invention is to provide a method for manufacturing a bipolar transistor that can easily obtain a bipolar transistor with reduced junction capacitance and excellent high frequency characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のバイポーラトランジスタの製造方法は、絶縁膜
の開口の内側に設けた第1の側壁を利用して浸食部を形
成し、この浸食部を通してグラフトベース領域を形成す
るとともに、開口内側に設けた第2の側壁を利用してベ
ース領域及びエミッタ領域を順次形成している。
In the method for manufacturing a bipolar transistor of the present invention, an eroded portion is formed using a first side wall provided inside an opening in an insulating film, a graft base region is formed through this eroded portion, and a graft base region is formed inside the opening. A base region and an emitter region are sequentially formed using the second sidewall.

〔作用〕[Effect]

上述した製造方法では、開口内の浸食部を利用すること
により開口内にグラフトベース領域を形成し、更にこの
内側にベース領域及びエミッタ領域を形成し、これらの
領域をリソグラフィ技術で制約されるよりも微細寸法に
形成する。
In the above-mentioned manufacturing method, a graft base region is formed within the opening by utilizing the eroded portion within the opening, and a base region and an emitter region are further formed inside this region, and these regions are made to be free from the constraints of lithography technology. It is also formed into minute dimensions.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)乃至第1図(i)は本発明の一実施例を工
程順に示す縦断面図である。
FIGS. 1(a) to 1(i) are vertical sectional views showing an embodiment of the present invention in the order of steps.

先ず、第1図(a)に示すように、シリコンからなるp
型半導体基板1の表面にn゛型埋込層2を形成し、この
上に0.5〜1.0μmの厚さにn型エピタキシャル層
3を形成する。更に、SiO□から・なる絶縁領域4と
図外のpn接合とで絶縁分離した素子形成領域を区画す
る。そして、素子形成領域にSiO□からなる第1の絶
縁膜5と、p型の不純物を含有する第1の多結晶シリコ
ン膜6とを順次堆積し、素子形成領域上を含む所定領域
に残すにように選択的に第1の多結晶シリコン膜6を除
去する。なお、エピタキシャル層3の一部にはn型の不
純物を高濃度に導入してn型コレクタ引き出し拡散層7
を形成しておく。
First, as shown in FIG. 1(a), a p
An n-type buried layer 2 is formed on the surface of a type semiconductor substrate 1, and an n-type epitaxial layer 3 is formed thereon to a thickness of 0.5 to 1.0 μm. Further, an insulating region 4 made of SiO□ and a pn junction (not shown) define an element formation region insulated and isolated. Then, a first insulating film 5 made of SiO□ and a first polycrystalline silicon film 6 containing p-type impurities are sequentially deposited on the element formation region, and are left in predetermined regions including over the element formation region. The first polycrystalline silicon film 6 is selectively removed as shown in FIG. Note that a part of the epitaxial layer 3 is doped with n-type impurities at a high concentration to form an n-type collector extraction diffusion layer 7.
Form it.

続いて、第2の絶縁膜8として耐酸化性被膜である窒化
シリコン膜を、第3の絶縁膜9として酸化シリコン膜を
順次堆積し、エミッタ形成領域の第3の絶縁膜9.第2
の絶縁膜8.第1の多結晶シリコン膜6.及び第1の絶
縁膜5を順次選択的に異方性エツチングして開口を形成
する。
Subsequently, a silicon nitride film, which is an oxidation-resistant film, is deposited as the second insulating film 8, and a silicon oxide film is deposited as the third insulating film 9, in order. Second
Insulating film 8. First polycrystalline silicon film 6. Then, the first insulating film 5 is sequentially and selectively anisotropically etched to form an opening.

次に、第1図(b)に示すように、第2の絶縁膜8と同
一の窒化シリコン膜を厚さ1500〜3000人堆積し
、かつ反応性イオンエツチング(以下RIEと称す)で
垂直側壁部を除いてエツチングすることにより第1の側
壁10を形成する。このようなRIE技術は公知であり
、例えば米国特許第4234362号に開示されている
。その後、露出されたn型エピタキシャル層3表面を1
000〜2000人酸化し、酸化シリコン膜からなる第
4の絶縁膜11を形成する。この時、エミッタ形成領域
の開口の側面は第1の側壁10により保護され、内部の
第1の多結晶シリコン膜6の酸化を防ぐ役目をしている
Next, as shown in FIG. 1(b), a silicon nitride film, which is the same as the second insulating film 8, is deposited to a thickness of 1,500 to 3,000 layers, and the vertical side walls are etched by reactive ion etching (hereinafter referred to as RIE). The first side wall 10 is formed by etching excluding the portion. Such RIE techniques are known and are disclosed, for example, in US Pat. No. 4,234,362. After that, the surface of the exposed n-type epitaxial layer 3 is
A fourth insulating film 11 made of a silicon oxide film is formed by oxidizing the silicon oxide film for 000 to 2000 times. At this time, the side surface of the opening in the emitter formation region is protected by the first sidewall 10, which serves to prevent the first polycrystalline silicon film 6 inside from being oxidized.

次いで、第1図(C)に示すように、第1の側壁10を
熱リン酸によりエンチングして除去する。
Next, as shown in FIG. 1(C), the first side wall 10 is removed by etching with hot phosphoric acid.

この時、その近傍の第2の絶縁膜8を2000〜300
0人サイドエツチングして浸食部8aを形成する。
At this time, the second insulating film 8 in the vicinity is
A zero-person side etching is performed to form the eroded portion 8a.

そして、浸食部8aの形成により露呈された側壁跡の開
口部からp型不純物を熱拡散あるいはイオン注入法によ
りn型エピタキシャル層3へ導入し、p型のグラフトベ
ース領域12を形成する。
Then, a p-type impurity is introduced into the n-type epitaxial layer 3 by thermal diffusion or ion implantation through the opening of the sidewall trace exposed by the formation of the eroded portion 8a, thereby forming a p-type graft base region 12.

次に、第1図(d)に示すように、少なくとも側壁跡を
覆うように厚< 2000〜4000人の第2の多結晶
シリコン膜13を全面に形成する。この第2の多結晶シ
リコン膜13にはp型不純物を添加しており、ここから
p型不純物を前記グラフトベース領域12に拡散するこ
とにより該グラフトベース領域12の濃度を一層高める
ことになる。この場合、第2の多結晶シリコン膜13に
p型不純物を含ませなくても、第1の多結晶シリコン膜
6にp型不純物が存在しているため、この不純物が第2
の多結晶シリコン膜13を通ってグラフトベース領域1
2へ拡散することも可能である。
Next, as shown in FIG. 1(d), a second polycrystalline silicon film 13 having a thickness of <2,000 to 4,000 thick is formed over the entire surface so as to cover at least the side wall traces. This second polycrystalline silicon film 13 is doped with p-type impurities, and by diffusing the p-type impurities from there into the graft base region 12, the concentration of the graft base region 12 is further increased. In this case, even if the second polycrystalline silicon film 13 does not contain p-type impurities, since the first polycrystalline silicon film 6 contains p-type impurities, this impurity
The graft base region 1 is passed through the polycrystalline silicon film 13 of
It is also possible to spread to 2.

次に、第1図(e)に示すように、耐酸化性被膜である
窒化シリコン膜あるいはアルミナ膜等の絶縁膜を100
0〜2000人成長し、かつこれをRIE法でエツチン
グすることにより、第2の多結晶シリコン膜13の内側
面に第2の側壁14を形成する。
Next, as shown in FIG. 1(e), an insulating film such as a silicon nitride film or an alumina film, which is an oxidation-resistant film, is
A second sidewall 14 is formed on the inner surface of the second polycrystalline silicon film 13 by growing a layer of 0 to 2,000 layers and etching it by RIE.

次に、第1図(f)に示すように、第2の多結晶シリコ
ン膜13をRIEを用いてエツチングする。エツチング
量としては、30〜100%オーバーエツチングを行う
が、このとき第2の側壁14の外側位置において第2の
多結晶シリコン膜13の一部が第2の側壁14に対して
2000〜2500人の深さにえぐられて凹みが形成さ
れるようにする。その後、露出した第2の多結晶シリコ
ン膜13の表面を900’Cの温度で約500人酸化し
て酸化シリコン膜15とする。この酸化シリコン膜15
には凹み15aが形成される。この後、開口を通してp
型不純物をイオン注入し、活性ベース領域16を形成す
る。
Next, as shown in FIG. 1(f), the second polycrystalline silicon film 13 is etched using RIE. The amount of etching is 30 to 100% over-etching, but at this time, a part of the second polycrystalline silicon film 13 at a position outside the second side wall 14 is etched by 2,000 to 2,500 percent of the second side wall 14. Make sure that a hollow is formed at the depth of the hole. Thereafter, the exposed surface of the second polycrystalline silicon film 13 is oxidized for approximately 500 minutes at a temperature of 900'C to form a silicon oxide film 15. This silicon oxide film 15
A recess 15a is formed in. After this, p
A type impurity is ion-implanted to form an active base region 16.

次に、第1図(g)に示すように、第2の側壁14と同
じ窒化シリコン膜あるいはアルミナ膜等からなる第5の
絶縁膜17を減圧CVD法で段差被覆性よく成長する。
Next, as shown in FIG. 1(g), a fifth insulating film 17 made of the same silicon nitride film or alumina film as the second sidewall 14 is grown by low pressure CVD with good step coverage.

この時の膜厚は第2の多結晶シリコン膜13の膜厚20
00〜4000人の少なくとも1/2以上の膜厚を成長
して凹み15aを埋戻す。
The film thickness at this time is the film thickness 20 of the second polycrystalline silicon film 13.
The recess 15a is backfilled by growing the film to a thickness of at least 1/2 or more of that of 00 to 4000.

次に、第1図(h)に示すように、第5の絶縁膜17を
RIEにより異方性エツチングし、引き続いて第4の絶
縁膜11も同様に異方性エツチングし、活性ベース領域
16を露出する。
Next, as shown in FIG. 1(h), the fifth insulating film 17 is anisotropically etched by RIE, and subsequently the fourth insulating film 11 is also anisotropically etched, and the active base region 16 is anisotropically etched. to expose.

次に、第1図(i)に示すように、第3の多結晶シリコ
ン膜゛18を成長し、ヒ素のイオン注入及び900〜9
50″Cの熱処理により活性ベース領域16にヒ素を拡
散してエミッタ領域19を形成する。
Next, as shown in FIG. 1(i), a third polycrystalline silicon film 18 is grown, and arsenic ions are implanted and
Arsenic is diffused into active base region 16 by heat treatment at 50''C to form emitter region 19.

その後、第3の多結晶シリコン膜18を選択的にエツチ
ングし、コレクタコンタクト開口20及びベースコンタ
クト開口21等を設ける。
Thereafter, the third polycrystalline silicon film 18 is selectively etched to form a collector contact opening 20, a base contact opening 21, and the like.

以下の工程は図示していないが、アルミニウム膜等によ
る電極配線形成等の通常の電極形成を行うことによりバ
イポーラトランジスタが完成される。
Although the following steps are not shown, the bipolar transistor is completed by performing normal electrode formation such as electrode wiring formation using an aluminum film or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、絶縁膜の開口の内側に設
けた第1の側壁を利用して浸食部を形成し、この浸食部
を通してグラフトベース領域を形成するとともに、開口
内側に設けた第2の側壁を利用してベース領域及びエミ
ッタ領域を順次形成しているので、ベース領域及びエミ
ッタ領域をリソグラフィ技術で制約されるよりも微細寸
法に形成でき、接合容量を低減し、ベース抵抗を低減し
、かつ遮断周波数等の高周波特性を改善したバイポーラ
トランジスタの製造が実現できる。
As explained above, the present invention forms an eroded part using the first side wall provided inside the opening of the insulating film, forms a graft base region through this eroded part, and forms the first side wall provided inside the opening. Since the base region and emitter region are sequentially formed using the sidewalls of 2, the base region and emitter region can be formed with finer dimensions than are limited by lithography technology, reducing junction capacitance and base resistance. In addition, it is possible to manufacture a bipolar transistor with improved high frequency characteristics such as cut-off frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至第1図(i)は本発明の一実施例を工
程順に示す断面図、第2図は従来構造の断面図である。 1・・・p型半導体基板、2・・・n゛型埋込層、3・
・・n型エピタキシャル層、4・・・絶縁領域、5・・
・第1の絶縁膜、6・・・第1の多結晶シリコン膜、7
・・・n゛型コレクタ引き出し拡散層、8・・・第2の
絶縁膜、8a・・・浸食部、9・・・第3の絶縁膜、1
0・・・第1の側壁、11・・・第4の絶縁膜、12・
・・グラフトベース領域、13・・・第2の多結晶シリ
コン膜、14・・・第2の側壁、15・・・酸化膜、1
5a・・・凹み、16・・・活性ベース領域、17・・
・第5の絶縁膜、18・・・第3の多結晶シリコン膜、
19・・・エミッタ領域、20.21・・・コンタクト
開口、31・・・半導体基板、32・・・n°型埋込層
、33・・・n型エピタキシャル層、34・・・絶縁領
域、35・・・薄い絶縁膜、36・・・多結晶シリコン
膜、37・・・絶縁膜、38・・・多結晶シリコン膜、
39・・・グラフトベース領域、40・・・絶縁膜、4
1・・・ベース領域、42・・・多結晶シリコン、43
・・・エミッタ領域。 第 図
FIGS. 1(a) to 1(i) are cross-sectional views showing an embodiment of the present invention in the order of steps, and FIG. 2 is a cross-sectional view of a conventional structure. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 2...n-type buried layer, 3...
... n-type epitaxial layer, 4... insulating region, 5...
・First insulating film, 6... First polycrystalline silicon film, 7
. . . n-type collector extraction diffusion layer, 8 . . . second insulating film, 8a . . . eroded portion, 9 . . . third insulating film, 1
0... First side wall, 11... Fourth insulating film, 12...
... Graft base region, 13... Second polycrystalline silicon film, 14... Second sidewall, 15... Oxide film, 1
5a... recess, 16... active base region, 17...
・Fifth insulating film, 18... third polycrystalline silicon film,
19... Emitter region, 20.21... Contact opening, 31... Semiconductor substrate, 32... N° type buried layer, 33... N type epitaxial layer, 34... Insulating region, 35... Thin insulating film, 36... Polycrystalline silicon film, 37... Insulating film, 38... Polycrystalline silicon film,
39... Graft base region, 40... Insulating film, 4
1... Base region, 42... Polycrystalline silicon, 43
...Emitter area. Diagram

Claims (1)

【特許請求の範囲】[Claims] 1、周囲と絶縁分離された素子形成領域の一導電型半導
体層の上に第1の絶縁膜、逆導電型不純物を含む第1の
多結晶シリコン膜、第2の絶縁膜及び第3の絶縁膜を順
次積層する工程と、前記各膜を異方性エッチングして前
記一導電型半導体層の表面を露呈する工程と、開口内側
に第1の側壁を形成する工程と、開口内における前記一
導電型半導体層の表面に第4の絶縁膜を形成する工程と
、少なくとも第1の側壁を除去して浸食部を形成し、こ
の浸食部を通して一導電型半導体層に逆導電型不純物を
導入してグラフトベース領域を形成する工程と、この浸
食部に第2の多結晶シリコン膜を埋込んでグラフトベー
ス領域に接続させる工程と、この第2の多結晶シリコン
膜の内側に第2の側壁を形成するとともに、第2の多結
晶シリコン膜を表面酸化しかつ第5の絶縁膜を形成する
工程と、この第2の側壁内で一導電型半導体層に逆導電
型不純物を導入して活性ベース領域を形成する工程と、
前記第2の側壁の内側で前記一導電型半導体層を露呈さ
せ、この上に第3の多結晶シリコン膜を形成する工程と
、この第3の多結晶シリコン膜を通して前記ベース領域
に一導電型不純物を導入してエミッタ領域を形成する工
程とを含むことを特徴とするバイポーラトランジスタの
製造方法。
1. A first insulating film, a first polycrystalline silicon film containing an opposite conductivity type impurity, a second insulating film, and a third insulating film on a semiconductor layer of one conductivity type in an element formation region insulated from the surroundings. a step of sequentially stacking films, a step of anisotropically etching each of the films to expose the surface of the one conductivity type semiconductor layer, a step of forming a first sidewall inside the opening, and a step of stacking the first sidewall inside the opening. forming a fourth insulating film on the surface of the conductivity type semiconductor layer, removing at least the first sidewall to form an eroded part, and introducing an opposite conductivity type impurity into the one conductivity type semiconductor layer through the eroded part; forming a graft base region, embedding a second polycrystalline silicon film in the eroded portion to connect it to the graft base region, and forming a second sidewall inside the second polycrystalline silicon film. At the same time, a process of surface oxidizing the second polycrystalline silicon film and forming a fifth insulating film, and introducing an opposite conductivity type impurity into the one conductivity type semiconductor layer within this second sidewall to form an active base. a step of forming a region;
exposing the one conductivity type semiconductor layer inside the second sidewall and forming a third polycrystalline silicon film thereon; 1. A method for manufacturing a bipolar transistor, comprising the step of introducing an impurity to form an emitter region.
JP19162688A 1988-07-30 1988-07-30 Bipolar transistor manufacturing method Expired - Lifetime JPH0691101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19162688A JPH0691101B2 (en) 1988-07-30 1988-07-30 Bipolar transistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19162688A JPH0691101B2 (en) 1988-07-30 1988-07-30 Bipolar transistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0240921A true JPH0240921A (en) 1990-02-09
JPH0691101B2 JPH0691101B2 (en) 1994-11-14

Family

ID=16277773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19162688A Expired - Lifetime JPH0691101B2 (en) 1988-07-30 1988-07-30 Bipolar transistor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0691101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290716A (en) * 1991-07-12 1994-03-01 Fujitsu Limited Method of manufacturing semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290716A (en) * 1991-07-12 1994-03-01 Fujitsu Limited Method of manufacturing semiconductor devices

Also Published As

Publication number Publication date
JPH0691101B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JPH0361337B2 (en)
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
JPS6252963A (en) Manufacture of bipolar transistor
JPH038343A (en) Bipolar transistor and manufacture thereof
JPH0241170B2 (en)
JPH0786296A (en) Manufacture of high-speed bipolar transistor
JP2565162B2 (en) Bipolar transistor and manufacturing method thereof
JPH0334541A (en) Manufacture of semiconductor device
JPS59108325A (en) Manufacture of semiconductor device
JPH0240921A (en) Manufacture of bipolar transistor
JP3456864B2 (en) Semiconductor device and manufacturing method thereof
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JP2842075B2 (en) Method for manufacturing semiconductor device
JPH0778833A (en) Bipolar transistor and its manufacture
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPH03163832A (en) Semiconductor device
JPH0669044B2 (en) Method for manufacturing semiconductor device
JP2812282B2 (en) Method for manufacturing semiconductor device
JP2002231932A (en) Bipolar semiconductor device and method of manufacturing the same
JPH0136709B2 (en)
JPH0629304A (en) Semiconductor device and manufacture thereof
JPH02304931A (en) Semiconductor device and manufacture thereof
JPS639150A (en) Manufacture of semiconductor device
JPS6346769A (en) Manufacture of semiconductor device
JPH0628262B2 (en) Method for manufacturing semiconductor device