JPS60234326A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60234326A
JPS60234326A JP59090415A JP9041584A JPS60234326A JP S60234326 A JPS60234326 A JP S60234326A JP 59090415 A JP59090415 A JP 59090415A JP 9041584 A JP9041584 A JP 9041584A JP S60234326 A JPS60234326 A JP S60234326A
Authority
JP
Japan
Prior art keywords
oxide film
insulating film
pattern
etching
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59090415A
Other languages
Japanese (ja)
Inventor
Shunji Yokogawa
横川 俊次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59090415A priority Critical patent/JPS60234326A/en
Publication of JPS60234326A publication Critical patent/JPS60234326A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent disconnection of leadout wirings at stepped portion and realize high packing density of elements by remaining a third insulation film only at the side wall of insulation film pattern through etch-back by reactive etching and forming an element region and element isolation region by removing the remaining insulation film by the etching. CONSTITUTION:After a silicon oxide film 25' is remained by the etch-back using RIE at the side wall of an oxide pattern 23' formed on a silicon substrate 21 through a thermal oxide film 22, the heat precessing is carried out. Thereby, molecular density of pattern 23' and remaining oxide film 25' can be made high and at the time of etching by ammonium fluoride solution, the respective etching rates of pattern 23' and oxide film 25' can be set almost equal to that of a thermal oxide film 22. Therefore, the pattern 23' in such a form that the oxide film 25' corresponding to 2,000Angstrom of the width LW at the side wall of pattern 23' and the element isolation region 26 consisting of thermal oxide film can be formed.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置の製造方法に関し、特に素子間分離
に改良を加えた半導体装置の製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device with improved isolation between elements.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如く、素子間分離技術としては、一般に選択酸化
法が知られている。しかし、この方法では、形成される
フィールド酸化膜の端部にいわゆるバーズビークが発生
するため、ホトマスク上の素子領域のパターン寸法と実
際に形成される素子領域の寸法との間の寸法変換差が大
きく、素子の高集積化の障害となっている。このような
ことから、最近、今後の素子の高集積化に対して寸法変
換差の小さい素子分離技術が要望されている。従来、半
導体装置は、例えば第1図(a)〜(C)に示すように
製造されている。
As is well known, selective oxidation is generally known as an element isolation technique. However, with this method, so-called bird's beaks occur at the edges of the field oxide film that is formed, resulting in a large dimensional conversion difference between the pattern dimensions of the device region on the photomask and the dimensions of the device region actually formed. , which is an obstacle to higher integration of devices. For these reasons, there has recently been a demand for element isolation technology with small dimensional conversion differences for future higher integration of elements. Conventionally, semiconductor devices have been manufactured, for example, as shown in FIGS. 1(a) to 1(C).

まず、例えばP型のシリコン基板1上に厚さ約8000
人の熱酸化膜2を形成した(第1図(a)図示)。つづ
いて、この熱酸化膜2上に素子領域形成予定部に対応す
る部分が開口したレジストパターン3を形成した。次い
で、このレジストパターン3をマスクとして前記熱酸化
膜2を反応性エツチング(RIE)により選択的にエツ
チング除去して酸化膜パターン(素子分離領域)2′を
形成し、素子領域4a、4bを夫々形成したく第1図(
b)図示)。以下、常法により、素子領域4a、4b上
にゲートN極5a、5bをゲート絶縁膜6a、6bを介
して形成し、更に前記ゲート電極5a、5bをマスクと
して基板1にn型不純物を導入してN+型のソース、ド
レイン領域7a、7b、8a、8bを形成し、しかる後
全面に層間絶縁膜9を形成し、ひきつづきこれに適宜コ
ンタクトホール10・・・、取出し配線11・・・を形
成して半導体装置を製造する(第1図(C)図示)。
First, for example, on a P-type silicon substrate 1, a film with a thickness of about 8000
A thermal oxide film 2 was formed (as shown in FIG. 1(a)). Subsequently, a resist pattern 3 was formed on the thermal oxide film 2, with openings corresponding to the portions where the element regions were to be formed. Next, using this resist pattern 3 as a mask, the thermal oxide film 2 is selectively etched away by reactive etching (RIE) to form an oxide film pattern (element isolation region) 2', and the element regions 4a and 4b are etched, respectively. Figure 1 (
b) As shown). Thereafter, gate N electrodes 5a and 5b are formed on the element regions 4a and 4b via gate insulating films 6a and 6b by a conventional method, and n-type impurities are introduced into the substrate 1 using the gate electrodes 5a and 5b as masks. Then, N+ type source and drain regions 7a, 7b, 8a, 8b are formed, and then an interlayer insulating film 9 is formed on the entire surface. A semiconductor device is manufactured by forming a semiconductor device (as shown in FIG. 1(C)).

こうした方法(以下、MOAT法と呼ぶ)によれば、前
述した選択酸化法に比べ、バーズビークの発生をなくし
、素子の高集積化を達成できる。
According to this method (hereinafter referred to as MOAT method), compared to the aforementioned selective oxidation method, the occurrence of bird's beaks can be eliminated and higher integration of elements can be achieved.

しかしながら、MOAT法では、第1図(b)の工程で
、熱酸化膜2をRIEによりエツチング除去するため、
エツチング後の加工形状が切立った段差構造となり、第
2図に示す如くコンタクトホール10付近の層間絶縁膜
9上の取出し配線11に段切れ12が生じるという問題
があった。
However, in the MOAT method, in the step shown in FIG. 1(b), the thermal oxide film 2 is etched away by RIE.
There was a problem in that the processed shape after etching became a steep step structure, and as shown in FIG. 2, a step break 12 was generated in the lead-out wiring 11 on the interlayer insulating film 9 near the contact hole 10.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に鑑みてなされたもので、取出し配
線の段切れを回避するとともに、変換差を小さくして素
子の高集積化をなしえる半導体装置の製造方法を提供す
ることを目的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can avoid step breaks in the lead-out wiring, reduce conversion differences, and achieve high integration of elements. It is something to do.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上に直接あるいは第1の絶縁膜を
介して第2の絶縁膜を堆積した後、この第2の絶縁膜を
パターニングして素子領域形成予定部に対応する部分が
開口した絶縁膜パターンを形成し、更に全面に第3の絶
縁膜を形成し、しかる後この第3の絶縁膜を反応性エツ
チングによりエッチバックして該第3の絶縁膜を前記絶
縁膜パターンの側壁にのみ残存させ、ひきつづき弗酸系
のエツチング液で残存する絶縁膜及び絶縁膜パターンを
エツチング除去して素子領域及び素子分離領域を形成す
ることによって、取出し配線の段切れの防止及び素子の
高集積化を図ったものである。
In the present invention, a second insulating film is deposited directly or via a first insulating film on a semiconductor substrate, and then this second insulating film is patterned to form an opening in a portion corresponding to a portion where an element region is to be formed. An insulating film pattern is formed, a third insulating film is further formed on the entire surface, and then this third insulating film is etched back by reactive etching to form the third insulating film on the sidewalls of the insulating film pattern. By etching away the remaining insulating film and insulating film pattern using a hydrofluoric acid-based etching solution to form an element region and an element isolation region, it is possible to prevent disconnection of the lead wiring and increase the integration of the element. The aim is to

〔発明の実施例) 以下、本発明の〜実施例を第3図(a)〜(丁)を参照
して説明する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to FIGS.

(1)、まず、P型のシリコン基板21上に第1の絶縁
膜としての厚さ約2000人の熱酸化膜22を形成した
後、この上に第2の絶縁膜としての厚さ約4000人の
第1のCVDシリコン酸化膜23を体積した(第3図(
a)図示)。つづいて、素子領域形成予定部に対応する
部分が開口した小トレジストパターン24により、前記
シリコン酸化膜23をRIEにより、エツチング除去し
、酸化膜パターン23′を形成したく第3図<b)図示
)。次いで、ホトレジストパターン24を除去した後、
全面に第3の絶縁膜としての厚さ2000人の第2のC
VDシリコン酸化膜25を体積したく第3図(C)図示
)。しかる後、RrEにより、このシリコン酸化膜25
をエッチバックし、該シリコン酸化膜25′を前記酸化
膜パターン23′の側壁に幅(、L ”AI )が20
00人程度8なるように残存さゼた(第3図(C)図示
)。更に、熱処理を施し、前記酸化膜パターン23′及
び残存するシリコン醇化膜25′の分子密度を密にした
(第3図((j)図示)。この熱処理により、後記弗化
アンモニア液によるエツチングの際のjff化膜パター
ン、シリコン酸化膜の夫々のエツチング速度と熱酸化膜
のそれを略同−にすることができる。
(1) First, a thermal oxide film 22 with a thickness of about 2000 mm as a first insulating film is formed on a P-type silicon substrate 21, and then a thermal oxide film 22 with a thickness of about 4000 mm as a second insulating film is formed on this. A first CVD silicon oxide film 23 was deposited (see Fig. 3).
a) As shown). Next, the silicon oxide film 23 is etched away by RIE using a small resist pattern 24 which has an opening in a portion corresponding to a portion where an element region is to be formed, to form an oxide film pattern 23' (FIG. 3<b). (Illustrated). Next, after removing the photoresist pattern 24,
A second C layer with a thickness of 2000 as a third insulating film is applied to the entire surface.
The VD silicon oxide film 25 is deposited (as shown in FIG. 3C). After that, this silicon oxide film 25 is removed by RrE.
is etched back, and the silicon oxide film 25' is formed on the side wall of the oxide film pattern 23' with a width (L"AI) of 20
About 8,000 people remained (as shown in Figure 3 (C)). Further, a heat treatment was performed to increase the molecular density of the oxide film pattern 23' and the remaining silicon fused film 25' (as shown in FIG. 3 (J)).This heat treatment made it possible to reduce the etching process using the ammonium fluoride solution described later. The etching rate of the actual JFF film pattern and the silicon oxide film can be made approximately the same as that of the thermal oxide film.

(2)9次に、前記酸化膜パターン23′ 、残存する
シリコン酸化膜25′及び熱酸化膜22を弗化アンモ、
−ア液で基板表面が露出するまでエツチングした。これ
により、酸化膜パターン23′、シリコン酸化1!!I
25’及び熱酸化膜22を等方向にエツチングでき、第
3図(e)に示すように醇化膜パターン23′と残存す
る熱酸化1! 22からなる膜厚4000人の素子分離
領域26、この領域26に囲まれた素子領域27a、2
7bが夫々形成された。なお、前記エツチングにより、
第3図(d)の幅(LW)が2000人相当分のシリコ
ン酸化膜25′がエツチングされた。つづいて、常法に
より、前記素子領域27a、27b上にゲート電極28
a、28bをゲート絶縁膜29a、29bを介して形成
した後、ゲート電極28a、28 bをマスクとして基
板21の素子領域27に例えばヒ素を導入してN1型の
ソース、ドレイン領1t30a、30b、31a、31
bを夫々形成し、更に全面に層間絶縁膜32を形成し、
しかる後、前記ソース、ドレイン領域30a、30b、
31a、31bに夫々対応する層間絶縁膜32にコンタ
クトホール33・・・を開口し、これらコンタクトホー
ル33・・・に取出し配置34・・・を形成して半導体
装置を製造した(第3図(f)図示)。
(2) 9 Next, the oxide film pattern 23', the remaining silicon oxide film 25' and the thermal oxide film 22 are treated with ammonium fluoride.
- Etching was performed using a solution until the surface of the substrate was exposed. As a result, the oxide film pattern 23', silicon oxide 1! ! I
25' and the thermal oxide film 22 can be etched in the same direction, and as shown in FIG. 3(e), the fused film pattern 23' and the remaining thermal oxide film 1! An element isolation region 26 with a film thickness of 4000 consisting of
7b were formed respectively. Furthermore, due to the etching,
A silicon oxide film 25' whose width (LW) in FIG. 3(d) corresponds to 2000 people was etched. Next, gate electrodes 28 are formed on the element regions 27a and 27b by a conventional method.
After forming the gate electrodes 28a, 28b via the gate insulating films 29a, 29b, for example, arsenic is introduced into the element region 27 of the substrate 21 using the gate electrodes 28a, 28b as a mask to form N1 type source and drain regions 1t30a, 30b, 31a, 31
b, and further form an interlayer insulating film 32 on the entire surface,
After that, the source and drain regions 30a, 30b,
Contact holes 33 were opened in the interlayer insulating film 32 corresponding to the contact holes 31a and 31b, and lead-out arrangements 34 were formed in these contact holes 33 to manufacture a semiconductor device (see FIG. 3). f) As shown).

しかして、本発明によれば、シリコン基板21上に熱酸
化11!22を介して酸化膜パターン23′を形成する
とともに、このパターン23′の側壁にRIEを用いて
シリコン酸化膜25′をエッチバックにより残存させた
後、熱処理を施すため、前記酸化膜パターン23′及び
残存するシリコン酸化膜25′の分子密度を密にでき、
弗化アンモニア液によるエツチングの際、酸化膜パター
ン23′、シリコン酸化It! 25 ’ の夫々のエ
ツチング速度を熱酸化膜22のそれと略同−にできる。
According to the present invention, an oxide film pattern 23' is formed on the silicon substrate 21 through thermal oxidation 11!22, and a silicon oxide film 25' is etched on the sidewall of this pattern 23' using RIE. Since the oxide film pattern 23' and the remaining silicon oxide film 25' are left behind by backing and then subjected to heat treatment, the molecular density of the oxide film pattern 23' and the remaining silicon oxide film 25' can be made dense.
During etching with ammonia fluoride solution, the oxide film pattern 23', silicon oxide It! The etching rate of each of the layers 25' can be made approximately the same as that of the thermal oxide film 22.

従って、第3図(e)に示す如く、酸化膜パターン23
′の側壁の幅(LW)が2000人相当分のシリコン酸
化膜25′がエツチングされた形状の酸化膜パターン2
3′と熱酸化膜22からなる素子分離領域26を形成す
ることができ、素子の高集積化を向上できる。
Therefore, as shown in FIG. 3(e), the oxide film pattern 23
Oxide film pattern 2 in which a silicon oxide film 25' whose side wall width (LW) is equivalent to 2000 people is etched.
3' and the thermal oxide film 22 can be formed, and the high degree of integration of the elements can be improved.

また、前述したように第3図(d)の熱処理工程で、酸
化膜パターン23′及びシリコン酸化膜25′のエツチ
ング速度を熱酸化膜22のそれと略同−にできるため、
熱酸化膜22、酸化膜パターン23′からなる素子分離
領域26の側壁を緩やかに傾斜した形状にできる。従っ
て、第3図(f)の工程て、層間絶縁膜32のコンタク
トホール33・・・に形成する取出し配線34・・・の
段切れを回避できる。
Furthermore, as described above, in the heat treatment step of FIG. 3(d), the etching rate of the oxide film pattern 23' and the silicon oxide film 25' can be made approximately the same as that of the thermal oxide film 22.
The sidewalls of the element isolation region 26 made up of the thermal oxide film 22 and the oxide film pattern 23' can be formed into a gently sloped shape. Therefore, in the process shown in FIG. 3(f), it is possible to avoid disconnection of the lead-out wirings 34 formed in the contact holes 33 of the interlayer insulating film 32.

なお、上記実施例では、酸化膜パターン23′の側壁に
シリコン酸化111! 25 ’ を残存させた後、熱
処理を行なったが、これに限らず、第3図(C)で全面
にシリコン酸化膜25を形成した後、熱処理を行なって
も、上記実施例と同様な効果が得られる。
In the above embodiment, silicon oxide 111! is formed on the side wall of the oxide film pattern 23'. Although the heat treatment was performed after leaving the silicon oxide film 25', the same effect as in the above embodiment can be obtained even if the heat treatment is performed after forming the silicon oxide film 25 on the entire surface as shown in FIG. 3(C). is obtained.

上記実施例では、熱酸化膜22と、酸化膜パターン23
’の側壁に残存させたシリコン酸化膜25′の夫々の膜
厚を同一したが、これに限定されるものではない。
In the above embodiment, the thermal oxide film 22 and the oxide film pattern 23 are
Although the thickness of each silicon oxide film 25' left on the side wall of ' is the same, the thickness is not limited to this.

上記実施例では、素子弁In域の膜厚を4000人とし
たが、これに限定されるものではない。
In the above embodiment, the film thickness of the element valve In region was set to 4000, but it is not limited to this.

上記実施例では、第3図(e)で弗酸系のエツチング液
による処理をおこなったか、酸化膜パターン23′の側
壁に残存するシリコン酸化膜の幅(LW)程度許容でき
る構造の半導体装置の製造においては、前記エツチング
処理を工程を省略しても、酸化膜パターン23′の側壁
のシリコン酸化膜25′の存在により取出し配線の段切
れを回避できる。
In the above embodiment, the process using a hydrofluoric acid-based etching solution as shown in FIG. In manufacturing, even if the etching process is omitted, the presence of the silicon oxide film 25' on the side wall of the oxide film pattern 23' makes it possible to avoid disconnection of the lead-out wiring.

上記実施例では、第1の絶縁膜として熱酸化膜を、第2
、第3の絶縁膜としてCVDシリコン酸化膜を夫々用い
たが、これに限定されるものではない。
In the above embodiment, a thermal oxide film is used as the first insulating film, and a thermal oxide film is used as the second insulating film.
, a CVD silicon oxide film is used as the third insulating film, but the present invention is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、取出し配線の段切れ
を回避するとともに、素子の高集積化をなしえる半導体
装置の製造方法を提供できるものである。
As described in detail above, according to the present invention, it is possible to provide a method of manufacturing a semiconductor device that avoids disconnection of the lead wiring and allows high integration of elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は従来の半導体装置の製造方法を
工程順に示す断面図、第2図は従来の半導体装置の取出
し配線の段切れを説明するための断面図、第3図(a)
〜(f)は本発明の一実施例に係る半導体装置の製造方
法を工程順に示すための断面図である。 21・・・P型のシリコン基板、22・・・熱酸化膜(
第1の絶縁膜)、23.25.25′・・・シリコン酸
化膜、23′・・・n!i化膜パターン、24・・・ホ
トレジストパターン、2G・・・素子分離領域、27a
27b・・・素子領域、28a、28b・・・ゲート電
極29a、29 b−・・グー1〜絶縁膜、30a、3
1a・・・N+型のソース領域、30a、31b・・・
ドレイン領域、32・・・層間絶縁膜、33・・・コン
タクトホール、34・・・取出し配線。 出願人代理人 弁理士 鈴江武彦 第1図 ^ ^ ^ Q ”0 の
FIGS. 1(a) to (C) are cross-sectional views showing a conventional semiconductor device manufacturing method in the order of steps; FIG. 2 is a cross-sectional view illustrating the break in the lead wiring of a conventional semiconductor device; FIG. (a)
-(f) are cross-sectional views for sequentially showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. 21...P-type silicon substrate, 22...thermal oxide film (
first insulating film), 23.25.25'...silicon oxide film, 23'...n! i-oxide film pattern, 24... photoresist pattern, 2G... element isolation region, 27a
27b...Element region, 28a, 28b...Gate electrode 29a, 29b-...Goo 1~Insulating film, 30a, 3
1a...N+ type source region, 30a, 31b...
Drain region, 32... interlayer insulating film, 33... contact hole, 34... lead-out wiring. Applicant's agent Patent attorney Takehiko Suzue Figure 1 ^ ^ ^ Q "0"

Claims (1)

【特許請求の範囲】 (1)、半導体基板上に直接あるいは第1の絶縁膜を介
して第2の絶縁膜を形成する工程と、この第2の絶縁膜
をパターニングして素子領域形成予定部に対応する部分
が開口した絶縁膜パターンを形成する工程と、全面に第
3の絶縁膜を形成する工程と、この第3の絶縁膜を反応
性イオンエツチングによりエッチバックして該第3の絶
縁膜を前記絶縁膜パターンの側壁にのみ残存させる工程
と、弗酸系のエツチング液で残存する絶縁膜及び絶縁膜
パターンをエツチング除去して素子領域と素子分離領域
を形成する工程とを具備することを特徴とする半導体装
置の製造方法。 (21,弗酸系のエツチング液で残存する絶縁膜及び絶
縁膜パターンをエツチング除去する前に、熱処理を施す
ことを特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。 (3)、第1の絶縁膜の膜厚と、絶縁膜パターンの側壁
に残存させた第3の絶縁膜の幅を夫々周一にしたことを
特徴とする特許請求の範囲第1項記載の半導体装置の製
造方法。
[Claims] (1) A step of forming a second insulating film directly or via the first insulating film on the semiconductor substrate, and patterning the second insulating film to form a portion where an element region is to be formed. a step of forming an insulating film pattern with openings corresponding to the pattern, a step of forming a third insulating film on the entire surface, and a step of etching back the third insulating film by reactive ion etching to form the third insulating film. A step of leaving the film only on the side wall of the insulating film pattern, and a step of etching away the remaining insulating film and the insulating film pattern using a hydrofluoric acid-based etching solution to form an element region and an element isolation region. A method for manufacturing a semiconductor device, characterized by: (21. The method for manufacturing a semiconductor device according to claim 1, characterized in that heat treatment is performed before etching away the remaining insulating film and insulating film pattern with a hydrofluoric acid-based etching solution. (3 ), the semiconductor device according to claim 1, characterized in that the thickness of the first insulating film and the width of the third insulating film left on the side wall of the insulating film pattern are made equal to each other. Production method.
JP59090415A 1984-05-07 1984-05-07 Manufacture of semiconductor device Pending JPS60234326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090415A JPS60234326A (en) 1984-05-07 1984-05-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090415A JPS60234326A (en) 1984-05-07 1984-05-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60234326A true JPS60234326A (en) 1985-11-21

Family

ID=13997959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090415A Pending JPS60234326A (en) 1984-05-07 1984-05-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60234326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291166A (en) * 1989-05-01 1990-11-30 Takehide Shirato Semiconductor device
US5023197A (en) * 1989-08-16 1991-06-11 French State Represented By The Minister Of Post, Telecommunications And Space Manufacturing process of mesa SOI MOS transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291166A (en) * 1989-05-01 1990-11-30 Takehide Shirato Semiconductor device
JP2608470B2 (en) * 1989-05-01 1997-05-07 猛英 白土 Semiconductor device and manufacturing method thereof
US5023197A (en) * 1989-08-16 1991-06-11 French State Represented By The Minister Of Post, Telecommunications And Space Manufacturing process of mesa SOI MOS transistor

Similar Documents

Publication Publication Date Title
JPH04317358A (en) Manufacture of semiconductor device
JPH02222160A (en) Manufacture of semiconductor device
JPS60234326A (en) Manufacture of semiconductor device
JP2001176983A (en) Semiconductor device and producing method therefor
JP2971085B2 (en) Method for manufacturing semiconductor device
JPH0426162A (en) Floating gate semiconductor memory and manufacture thereof
JPH09321233A (en) Manufacturing semiconductor device
JP2741964B2 (en) Method for manufacturing semiconductor device
JPS59112656A (en) Semiconductor device and manufacture thereof
JPH01235269A (en) Semiconductor device
JPH0210729A (en) Formation of field insulating film
JPS62219960A (en) Manufacture of thin film mos structure semiconductor device
JPS5974623A (en) Manufacture of semiconductor integrated circuit
JPS6345865A (en) Floating gate type mos semiconductor device
JPH01162358A (en) Formation of laminar-structure mis semiconductor device
JPH04159725A (en) Manufacture of semiconductor device
JPH0429318A (en) Manufacture of semiconductor device
JPH08236608A (en) Fabrication of semiconductor device
JPS61107747A (en) Manufacture of semiconductor device
JPH05198571A (en) Semiconductor device and its manufacture
JPH0370144A (en) Manufacture of semiconductor device
JPS63252483A (en) Manufacture of semiconductor device
JPH0458538A (en) Manufacture of semiconductor device
JPS5944842A (en) Manufacture of semiconductor device
JPH04107950A (en) Semiconductor device