JPS59208851A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59208851A
JPS59208851A JP58082654A JP8265483A JPS59208851A JP S59208851 A JPS59208851 A JP S59208851A JP 58082654 A JP58082654 A JP 58082654A JP 8265483 A JP8265483 A JP 8265483A JP S59208851 A JPS59208851 A JP S59208851A
Authority
JP
Japan
Prior art keywords
semiconductor
insulating film
substrate
mask
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58082654A
Other languages
Japanese (ja)
Inventor
Toru Inaba
稲葉 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58082654A priority Critical patent/JPS59208851A/en
Publication of JPS59208851A publication Critical patent/JPS59208851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Abstract

PURPOSE:To improve the density of integration by forming an insulating film on a side surface section isolating elements through the implantation of impurity ions and obtaining an isolation in an extremely narrow region. CONSTITUTION:A semiconductor substrate 1 is prepared, and an insulating film 13 consisting of SiO2 or Si3N4 obtained by combining O2 or N2 and Si is formed in predetermined depth by implanting impurity ions such as O2 or N2 to the whole surface on one main surface of the substrate and controlling the energy of the implantation. An impurity implantation control mask 2 is formed on the surface of a semiconductor substrate 1b. The impurity implantation control mask has an inclined section in its side surface, and impurity ions are implanted through the mask 2 to form insulating films 3a, 3b for isolating elements surrounding the bottoms and side surfaces of one semiconductor regions. Si gates 6, n<+> type sources-drains 10 and p<+> type sources-drains 8 are each shaped to the surfaces of each region in a self-alignment manner through selective diffusion.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体集積回路装置における絶縁膜による素子
分離技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to element isolation technology using an insulating film in a semiconductor integrated circuit device.

〔背景技術〕[Background technology]

10、LSI等とよばれる半導体集積回路装置において
は半導体基体表面に形成された複数の半導体素子を電気
的に分離する必要があり、その分離手段(アイソレーシ
ョン)としてpn接合による分離方法や絶縁膜による分
離方法が採用されている。
10. In semiconductor integrated circuit devices called LSIs, it is necessary to electrically isolate multiple semiconductor elements formed on the surface of a semiconductor substrate, and isolation methods using pn junctions and insulating films are used as isolation means (isolation). A separation method is used.

しかしpn接合による分離の場合、半導体基体表面の一
部に基体と導電型の異なる仮数領域を形成するため横方
向への拡散によって分離領域の面積が大きくなること、
pn接合容量による寄生トランジスタ効果等を生じるこ
となどの欠点があり、又、絶縁膜による分離では素子の
形成される領域の側面に絶縁膜を形成することが困難で
あり、例えば半導体基板の一部をエツチングした凹陥部
内面に半導体酸化による絶縁膜の形成も提案されている
が、工数が多(なること、分離領域の面積が大きくなる
こと等の欠点をさけることができない。
However, in the case of isolation using a pn junction, since a mantissa region with a conductivity type different from that of the substrate is formed on a part of the surface of the semiconductor substrate, the area of the separation region increases due to lateral diffusion.
There are drawbacks such as the generation of parasitic transistor effects due to pn junction capacitance, and isolation using an insulating film makes it difficult to form an insulating film on the sides of the region where the element is formed. It has also been proposed to form an insulating film by semiconductor oxidation on the inner surface of the etched recess, but this method cannot avoid disadvantages such as a large number of steps and an increase in the area of the isolation region.

殊に超高集積度を要求される最近のLSIにおいて在米
の分離技術ではその要求に充分に応えることができなく
なった。
Particularly in the recent LSIs that require ultra-high integration, the separation technology available in the United States is no longer able to adequately meet the demands.

〔発明の目的] 本発明の目的は超高集積LSIに適合する不純物イオン
打込みを制した絶縁膜による素子分離技術を提供するこ
とにある。
[Object of the Invention] An object of the present invention is to provide an element isolation technique using an insulating film that suppresses impurity ion implantation and is suitable for ultra-highly integrated LSI.

し発明の概要] 本願に分いて開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記の通りである。
Outline of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、半導体基体の一生表面に底面及び側面が絶縁
膜で囲まれた第1の半導体領域と、第1の半導体領域と
その側面の絶縁膜を介して接する第2の半導体領域とを
有し、これら半導体領域内に互いに電気的に分離されて
半導体素子が形成されている半導体装置であって、上記
半導体領域の底面及び側面を取り囲む絶縁膜は半導体基
体表面より半導体基体内にイオン打込み技術により選択
的に導入された不純物による半導体窒化物又は半導体窒
化物より成るものであり、これにより、集積密度を向上
した半導体装置を提供できる。
That is, it has a first semiconductor region whose bottom and side surfaces are surrounded by an insulating film on the entire surface of a semiconductor substrate, and a second semiconductor region which is in contact with the first semiconductor region through an insulating film on the side surfaces thereof, A semiconductor device in which semiconductor elements are formed electrically isolated from each other in these semiconductor regions, and an insulating film surrounding the bottom and side surfaces of the semiconductor regions is selected from the surface of the semiconductor substrate into the semiconductor substrate by ion implantation technology. The semiconductor nitride is made of a semiconductor nitride or a semiconductor nitride with impurities introduced into the semiconductor nitride, thereby making it possible to provide a semiconductor device with improved integration density.

〔実施例〕〔Example〕

第1図〜第8図は本発明による絶縁分離方式を用い1こ
相補形M OS F E Tを有する半導体装置の一実
施例をその製造プロセスの工程断面図で示1−ものであ
る。以下各工程に従って詳述する。
FIGS. 1 to 8 are cross-sectional views of a manufacturing process of an embodiment of a semiconductor device having one complementary MOSFET using the insulation isolation method according to the present invention. Each step will be explained in detail below.

(1)第1図に示すように半導体基板1、例えばn型S
i 結晶ウェハを用意し、その−主義表面上にホトレジ
スト(感光耐食膜)又はホトレジストを用いて選択エツ
チングにより形成した5int膜よりなる不純物打込み
制御マスク2を形成する。この不純物打込み制御マスク
2ばその側面部が基板面上の垂直面に対しである傾斜角
θ<0<θ〈90°)を有するものである。
(1) As shown in FIG. 1, a semiconductor substrate 1, for example, an n-type S
i. A crystal wafer is prepared, and an impurity implantation control mask 2 made of a 5-inch film formed by selective etching using photoresist (photoresist) or photoresist is formed on the surface of the crystal wafer. The side surfaces of this impurity implantation control mask 2 have an inclination angle θ<0<θ<90° with respect to a vertical plane on the substrate surface.

(2)上記不純物打込み制御マスク2を通してSi基板
1内にO7又はN2等の不純物イオン打込みを行ない、
81基板1内に第2図に示すように素子分離用の絶縁膜
3を形成する。この絶縁膜はイオン打込みにより基板内
に導入され02 、N2 と81との結合物であるSi
n、あるいはSi、N4であり、一つの半導体領域の底
面及び側面を取り囲むように形成される。
(2) Implanting impurity ions such as O7 or N2 into the Si substrate 1 through the impurity implantation control mask 2,
81 An insulating film 3 for element isolation is formed in the substrate 1 as shown in FIG. This insulating film is introduced into the substrate by ion implantation, and Si, which is a combination of N2 and 81, is introduced into the substrate by ion implantation.
n, Si, or N4, and is formed to surround the bottom and side surfaces of one semiconductor region.

第3図は例えば02のイオン打込みによってSi内部に
Sin、膜が形成される場合の原理を拡大断面図によっ
て示すものである。すなわち、Si基板表面でマスク2
のないところからイオン打込みされたO7は同図に矢印
A、  Bで示すように打込みのさいのエネルギによっ
て決定される一定の深さd(例えば0.1〜0.3μm
)でSi基板内に導入され、SlとO3とが結合して5
in2膜(厚さt、=0.1〜02μm)3aを形成す
る。−万、マスク2の側面傾斜部2aに打込まれたO、
イオンは、同図に矢印0.  Dで示すように打込みエ
ネルギがマスクによって減退し、マスクの薄いところ(
0)では深い部分に、マスクの厚いところ(D)では浅
い部分にそれぞれ02が達しマスク側面の傾斜に対応し
た部位に傾斜面に倣って5in2膜3b(厚さt2””
0.1〜0.2μm )を形成することになる。上記5
in2膜のうち、側面部分3bの厚さはマスク側面の傾
斜角(垂直面となす角θ)が小さいほど薄く、θが大き
い(<90’″ )はど厚くなってθが90°に達する
と側面部分の厚さは底面部分3aの厚さに近づく。
FIG. 3 is an enlarged cross-sectional view showing the principle of forming a Si film inside Si by, for example, 02 ion implantation. In other words, mask 2 is formed on the surface of the Si substrate.
The O7 ion implanted from a place where there is no
) is introduced into the Si substrate, and Sl and O3 combine to form 5
An in2 film (thickness t, = 0.1 to 02 μm) 3a is formed. - 10,000, O driven into the side slope part 2a of the mask 2,
Ions are indicated by arrows 0. As shown in D, the implant energy is attenuated by the mask, and the area where the mask is thin (
0) reaches the deep part, and 02 reaches the shallow part in the thick part of the mask (D), respectively.A 5in2 film 3b (thickness t2'') follows the slope at the part corresponding to the slope of the mask side surface.
0.1 to 0.2 μm). Above 5
The thickness of the side surface portion 3b of the in2 film becomes thinner as the inclination angle of the mask side surface (angle θ with the vertical plane) is smaller, and becomes thicker as θ is larger (<90''') until θ reaches 90°. Then, the thickness of the side surface portion approaches the thickness of the bottom surface portion 3a.

(3)  このあと、上記イオン打込み制御マスク2を
付した状態でn型基板と反対の導電型をつくる不純物、
例えばB(ボロン)不純物をイオン打込み、第4図に示
すように絶縁物3a、3bによって囲まれた半導体領域
内にp壁領域を形成する。
(3) After this, with the ion implantation control mask 2 attached, an impurity that creates a conductivity type opposite to that of the n-type substrate,
For example, B (boron) impurities are ion-implanted to form a p-wall region in the semiconductor region surrounded by insulators 3a and 3b as shown in FIG.

(4)次いで前記不純物打込み制御マスク2を取り除き
、全表面を熱醒化ゲート酸化膜5を形成[2、そのうえ
にSiをデポジットし次いでホトレジストによるバター
ニングして第5図に示すようにポリS1ゲ−トロを形成
する。
(4) Next, the impurity implantation control mask 2 is removed and a thermally cured gate oxide film 5 is formed on the entire surface [2, Si is deposited thereon and then patterned with photoresist to form a poly-S1 gate oxide film as shown in FIG. - Form a toro.

(5)p型半導体領域4上にホトレジスト等によるマス
ク7で覆いp型ソース・ドレイン形成のためのB(ボロ
ン)不純物をイオン打込み・拡散してマスク7に覆われ
ていないn型基板表面に第6図に示すようにp+型ソー
ス・ドレイン領域8を形成する。この場合、ソース・ド
レインはポリSiゲート6によって拡散部位がセルファ
ライン(自己整合)される。
(5) Cover the p-type semiconductor region 4 with a mask 7 made of photoresist or the like, and ion implant and diffuse B (boron) impurities for forming a p-type source/drain to the n-type substrate surface not covered with the mask 7. As shown in FIG. 6, p+ type source/drain regions 8 are formed. In this case, the source/drain diffusion regions are self-aligned (self-aligned) by the poly-Si gate 6.

(6)マスクを取り除き、第7図に示すようにp型領域
4以外の基板表面を新たなマスク9で覆い、n型ソース
・ドレイン形成のためのAs  (ヒ素)等のイオン打
込みを行ない、p型領域4表面にn′″型ソース・ドレ
イン領域10を形成する。この場合ソース・ドレインは
ポリ3i ゲート6によつ1その拡散部位を自己整合さ
れる。
(6) Remove the mask, cover the substrate surface other than the p-type region 4 with a new mask 9 as shown in FIG. 7, and implant ions such as As (arsenic) to form an n-type source/drain. An n''' type source/drain region 10 is formed on the surface of the p type region 4. In this case, the source/drain is self-aligned at its diffusion site by the poly 3i gate 6.

(7)第8図に示すように全面にPSG(リン・シリケ
ートガラス)等の絶縁膜11で覆い、コンタクトホトエ
ッチの後、AJ (アルミニウム)を蒸着、パターニン
グすることにより、各領域にコンタクトするAIt極Q
3S、G、D・・・を形成する。これにより、絶縁膜3
a、3bにより相互に分離(アイソレーション)された
nチャネルMO8FET、pチャネルMO8FETを含
むIOが完成する。
(7) As shown in Fig. 8, the entire surface is covered with an insulating film 11 such as PSG (phosphorus silicate glass), and after contact photoetching, AJ (aluminum) is evaporated and patterned to contact each area. AItKoku Q
Form 3S, G, D... As a result, the insulating film 3
An IO including an n-channel MO8FET and a p-channel MO8FET isolated from each other by a and 3b is completed.

第9図〜第11図は本発明による絶縁分離方式を用いた
相補形のMOSFETを有する半導体装置の一実施例を
その製造プロセスの一部工程断面図で示すものである。
FIGS. 9 to 11 are partial cross-sectional views of a manufacturing process of an embodiment of a semiconductor device having complementary MOSFETs using the insulation isolation method according to the present invention.

(1)第9図に示すように半導体基板1を用意し、その
−上表面上に全面に0.又はN7等の不純物イオン打込
みを行ないその打込みエネルギを制御することで一定の
深さに02又はN、と81とを結合させたSin、又は
Si、N4よりなる絶縁膜13を形成する。なお、上記
半導体基板1は全体が一つの同じ導電摩(p型又はn 
8!りのSi結晶基板であってもよいし、あるいはp型
S!基板1aの上にn型Si lbをエピタキシャル成
長させたものであってもよく、その場合にはSin、又
はSi、N4からなる絶縁膜13はn型SiJ合lb内
又はp型Si基板1aとn型Si層1bとの界面に設け
るようにする。
(1) As shown in FIG. 9, a semiconductor substrate 1 is prepared, and a 0.000.degree. Alternatively, by implanting impurity ions such as N7 and controlling the implantation energy, an insulating film 13 made of Sin, Si, or N4 in which 02 or N and 81 are combined is formed at a constant depth. Note that the semiconductor substrate 1 is entirely made of one and the same conductive layer (p-type or n-type).
8! It may be a Si crystal substrate, or it may be a p-type S! An n-type Si lb may be epitaxially grown on the substrate 1a, and in that case, the insulating film 13 made of Sin, Si, or N4 is formed within the n-type SiJ alloy lb or between the p-type Si substrate 1a and n. It is provided at the interface with the type Si layer 1b.

(2)上記半導体基板(1b)の表面に不純物打込み制
御マスク2を形成する。この不純物打込み制御マスクは
第10図に示すようにその側面に傾斜断面を有するもの
であり、このマスク2を通して不純物イオン打込みを行
な〜−一つの半導体領域の底面及び側面を取り囲む素子
分離用絶縁膜3a。
(2) An impurity implantation control mask 2 is formed on the surface of the semiconductor substrate (1b). This impurity implantation control mask has a sloped cross section on its side surface as shown in FIG. 10, and impurity ions are implanted through this mask 2. Membrane 3a.

3bを形成する。この素子分離用絶縁膜3bの生成原理
は前記した実施例(第3図)において説明したものと同
様である。この例においては底面に形成する絶縁膜3a
は第9図の工程の場合と同じイオン打込エネルギを使用
することにより絶縁膜13と一致または重なることにな
る。つづいて上記不純物打込み制御用マスク2を利用し
て例えばB(ボロン)イオン打込み拡散を行なうことに
より絶縁膜3a、3bにより囲まれた領域内にp型ウェ
ル4を形成する。
3b is formed. The principle of production of this element isolation insulating film 3b is the same as that explained in the above embodiment (FIG. 3). In this example, an insulating film 3a formed on the bottom surface
By using the same ion implantation energy as in the process shown in FIG. 9, the insulating film 13 coincides with or overlaps with the insulating film 13. Subsequently, using the impurity implantation control mask 2, for example, B (boron) ions are implanted and diffused to form a p-type well 4 in a region surrounded by the insulating films 3a and 3b.

(3)このあと、前記実施例(第4図〜第7図)で示し
た工程と同様の選択拡散を行なうことにより各領域表面
にSiゲート6を設けるとともに、p型(ウェル)領域
4にn+型ソース・ドレインlOをn型領域1 bVc
p+型ソース・ドレイン8をそれぞれ自己整合的に形成
する。この後、図示されないが表面にPSG等の絶縁膜
を形成、コンタクトホトエッチ、AA’蒸着、パターニ
ングの各工程を経て電極、配線を形成し、絶縁膜による
完全素子分離されたMO8IOを完成する。
(3) After this, Si gates 6 are provided on the surface of each region by performing selective diffusion similar to the process shown in the above embodiment (FIGS. 4 to 7), and the p-type (well) region 4 is n+ type source/drain lO to n type region 1 bVc
P+ type source/drain 8 are formed in a self-aligned manner. Thereafter, although not shown, an insulating film such as PSG is formed on the surface, and electrodes and wiring are formed through the steps of contact photoetching, AA' vapor deposition, and patterning, to complete MO8IO with complete element isolation by the insulating film.

〔効果〕〔effect〕

以上実施例に従ってのべた本発明によれば下記の効果を
有する。
The present invention described in accordance with the above embodiments has the following effects.

(1)素子間を分離する側面部の絶縁膜を不純物イオン
打込みにより形成するため極めて狭い領域でのアイソレ
ーション(分離)が得られる。
(1) Since the insulating film on the side surface that separates the elements is formed by implanting impurity ions, isolation can be obtained in an extremely narrow region.

(21MOSFET及びバイポーラトランジスタの拡散
深さが浅い場合(例えば0.1〜0,5μm)に浅い0
2.N2イオン打込みによる絶縁膜の形成が有利となる
(21 When the diffusion depth of MOSFET and bipolar transistor is shallow (for example, 0.1 to 0.5 μm),
2. Formation of the insulating film by N2 ion implantation is advantageous.

(3)不純物イオン打込み制御マスクの側面部の傾斜断
面を利用し、その傾斜角を変えることにより素子間分離
用側面部の絶縁膜の厚さを任意に選ぶことかできる。
(3) By utilizing the sloped cross section of the side surface of the impurity ion implantation control mask and changing the slope angle, the thickness of the insulating film on the side surface for element isolation can be arbitrarily selected.

(4)狭い面積の絶縁分離を行なうことができるから、
従来フィールド等不活性領域として用いていた場所を素
子領域として利用することかで穴石。
(4) Because it is possible to perform insulation separation in a narrow area,
It is possible to use places that were conventionally used as inactive areas such as fields as element areas.

集積密度の向上により、分離絶縁膜による分離部分を含
めた素子領域の寸法を15〜2μmまでに縮小すること
が可能となった。
The improvement in integration density has made it possible to reduce the dimensions of the element region including the isolation portion by the isolation insulating film to 15 to 2 μm.

(5)絶縁膜による完全分離により従来MO8FETを
有するICで問題となっていた素子間の相互寄生効果(
ラッチアンプ効果)を完全に防止できろ。
(5) Mutual parasitic effects between elements, which was a problem with ICs with conventional MO8FETs, due to complete isolation by insulating films (
latch amplifier effect) can be completely prevented.

以」二本発明によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではtC<、その要旨を逸脱しない範囲で種々に変
更可能であることはいうまでもない。
Hereinafter, the invention made by the present invention has been specifically explained based on Examples. However, the present invention is not limited to the above-mentioned Examples, and may be modified in various ways without departing from the gist thereof. Needless to say.

〔利用分野〕[Application field]

本発明は実施例で説明したMOSFETを含む■0以外
にバイポーラ−MO8IOあるいはlMolt以上の超
高集積M、08LSIに適用して有効である。
The present invention is effective when applied to bipolar MO8IO or ultra-highly integrated M and 08LSIs of 1 Molt or more, in addition to 10 including the MOSFETs described in the embodiments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明による絶縁分離方式を用いた半
導体装置の一実施例を示す製造プロセスの主要工程断面
図である。 第9図〜第11図は本発明による絶縁分離方式を用いた
半導体装置の他の実施例を示1“・傅造プロセスの一部
工程断面図である。 1・・・半導体基板−2・・・不純物打込み制御マスク
、3(3a−3b)・・・素子分離用絶縁膜、4・・・
p型(ウェル)領域、5・・・ゲート絶縁膜、6・・・
ボ1ノSi  ゲー ト、7・・・マスク、8・・・p
+型ノース、ドレイン、9・・・マスク、10・・・n
中型ソース、1・゛レイン、11 ・・・?FIH(P
 S G )、12−Aelit、13・・・半導体基
板、14・・・絶縁膜。 代理人 弁理士  高 橋 明 夫 ′第  1  図 第  2  図 第  3  図 第  4  図 ぬ 第  5  図 第  7  図 第  9 図 第10図 第11図
1 to 8 are cross-sectional views of main steps in a manufacturing process showing an embodiment of a semiconductor device using the insulation isolation method according to the present invention. 9 to 11 show other embodiments of a semiconductor device using the insulation isolation method according to the present invention, and are cross-sectional views of a part of the manufacturing process. 1.Semiconductor substrate-2. ... Impurity implantation control mask, 3 (3a-3b)... Insulating film for element isolation, 4...
p-type (well) region, 5... gate insulating film, 6...
Bo1 Si gate, 7...mask, 8...p
+ type north, drain, 9...mask, 10...n
Medium size sauce, 1・Rain, 11...? FIH(P
SG), 12-Aelit, 13... semiconductor substrate, 14... insulating film. Agent Patent Attorney Akio Takahashi 'Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1、半導体基体の一生表面に底面及び側面が絶縁膜で囲
まれた第1の半導体領域と、第1の半導体領域とその側
面の絶縁膜を介して接する第2の半導体領域とを有し、
これら半導体領域内に互いに電気的に分離されて半導体
素子が形成されている半導体装置であって、上記絶縁膜
は半導体基板表面より半導体基体内に選択的に導入され
た不純物と結合した半導体酸化物又は半導体窒化物より
成ることを特徴とする半導体装置。 2、シリコン半導体基体の表面に部分的に形成した不純
物イオン打込み制御膜をマスクとして不純物イオン打込
みを行ない基体内に半導体酸化物又は半導体窒化物から
なる素子分離用絶縁膜を形成するにあたって、上記不純
物イオン打込み制御マスクの側面部の傾斜断面を利用す
ることによっ又その傾斜断面に倣った絶縁物側面を有す
る素子分離用絶縁膜を形成することを特徴とする半導体
装置の製造法。
[Claims] 1. A first semiconductor region whose bottom and side surfaces are surrounded by an insulating film on the entire surface of a semiconductor substrate, and a second semiconductor which is in contact with the first semiconductor region through an insulating film on its side surfaces. has a region,
A semiconductor device in which semiconductor elements are formed electrically isolated from each other in these semiconductor regions, wherein the insulating film is a semiconductor oxide bonded to impurities selectively introduced into the semiconductor substrate from the surface of the semiconductor substrate. Or a semiconductor device characterized by being made of semiconductor nitride. 2. When implanting impurity ions using the impurity ion implantation control film partially formed on the surface of the silicon semiconductor substrate as a mask to form an insulating film for element isolation made of semiconductor oxide or semiconductor nitride in the substrate, the above impurity 1. A method of manufacturing a semiconductor device, which comprises using an inclined cross section of a side surface of an ion implantation control mask to form an insulating film for element isolation having an insulator side surface that follows the inclined cross section.
JP58082654A 1983-05-13 1983-05-13 Semiconductor device and manufacture thereof Pending JPS59208851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082654A JPS59208851A (en) 1983-05-13 1983-05-13 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082654A JPS59208851A (en) 1983-05-13 1983-05-13 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59208851A true JPS59208851A (en) 1984-11-27

Family

ID=13780411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082654A Pending JPS59208851A (en) 1983-05-13 1983-05-13 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59208851A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089957A (en) * 1983-10-24 1985-05-20 Nippon Telegr & Teleph Corp <Ntt> Complementary semiconductor device
JPS61164238A (en) * 1985-01-17 1986-07-24 Toshiba Corp Composite semiconductor device
JPS6242556A (en) * 1985-08-20 1987-02-24 Matsushita Electronics Corp Manufacture of semiconductor device
JPS62293637A (en) * 1986-06-12 1987-12-21 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS632372A (en) * 1986-06-20 1988-01-07 Nec Corp Manufacture of complementary mos integrated circuit
JPS6467937A (en) * 1987-09-08 1989-03-14 Mitsubishi Electric Corp Formation of high breakdown strength buried insulating film
JPH01199447A (en) * 1987-10-09 1989-08-10 American Teleph & Telegr Co <Att> Method of forming semiconductor structure
US4863878A (en) * 1987-04-06 1989-09-05 Texas Instruments Incorporated Method of making silicon on insalator material using oxygen implantation
US5080730A (en) * 1989-04-24 1992-01-14 Ibis Technology Corporation Implantation profile control with surface sputtering

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089957A (en) * 1983-10-24 1985-05-20 Nippon Telegr & Teleph Corp <Ntt> Complementary semiconductor device
JPH0530074B2 (en) * 1983-10-24 1993-05-07 Nippon Telegraph & Telephone
JPS61164238A (en) * 1985-01-17 1986-07-24 Toshiba Corp Composite semiconductor device
JPS6242556A (en) * 1985-08-20 1987-02-24 Matsushita Electronics Corp Manufacture of semiconductor device
JPS62293637A (en) * 1986-06-12 1987-12-21 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS632372A (en) * 1986-06-20 1988-01-07 Nec Corp Manufacture of complementary mos integrated circuit
US4863878A (en) * 1987-04-06 1989-09-05 Texas Instruments Incorporated Method of making silicon on insalator material using oxygen implantation
JPS6467937A (en) * 1987-09-08 1989-03-14 Mitsubishi Electric Corp Formation of high breakdown strength buried insulating film
JPH01199447A (en) * 1987-10-09 1989-08-10 American Teleph & Telegr Co <Att> Method of forming semiconductor structure
US5080730A (en) * 1989-04-24 1992-01-14 Ibis Technology Corporation Implantation profile control with surface sputtering

Similar Documents

Publication Publication Date Title
JP4066574B2 (en) Manufacturing method of semiconductor device
US4476475A (en) Stacked MOS transistor
JPH039631B2 (en)
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JP2004111900A (en) Very fine soi mos fet, and manufacturing method thereof
JP2799254B2 (en) Method for manufacturing semiconductor device
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH0193159A (en) Manufacture of bicmos element
JPH05865B2 (en)
JPS63192266A (en) Cmos integrated circuit and manufacture thereof
JPH08130309A (en) Semiconductor device and its manufacture
JPS59168675A (en) Manufacture of semiconductor device
JPH05299497A (en) Semiconductor device and manufacture of the same
JPS6247151A (en) Formation of mutual connection on substrate
JPS6336569A (en) Semiconductor device
JPS63181378A (en) Manufacture of semiconductor device
JP3097095B2 (en) Method for manufacturing semiconductor device
JPS59103380A (en) Laminated mos transistor
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH0548104A (en) Semiconductor device and its manufacture
JPS5940563A (en) Manufacture of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS59186343A (en) Manufacture of semiconductor device
JPH0779126B2 (en) Method for manufacturing semiconductor device