JPH0584064B2 - - Google Patents

Info

Publication number
JPH0584064B2
JPH0584064B2 JP59178651A JP17865184A JPH0584064B2 JP H0584064 B2 JPH0584064 B2 JP H0584064B2 JP 59178651 A JP59178651 A JP 59178651A JP 17865184 A JP17865184 A JP 17865184A JP H0584064 B2 JPH0584064 B2 JP H0584064B2
Authority
JP
Japan
Prior art keywords
film
conductivity type
impurity
region
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59178651A
Other languages
Japanese (ja)
Other versions
JPS6156448A (en
Inventor
Satoru Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59178651A priority Critical patent/JPS6156448A/en
Priority to EP85110792A priority patent/EP0173953B1/en
Priority to US06/770,179 priority patent/US4642878A/en
Priority to DE8585110792T priority patent/DE3583472D1/en
Publication of JPS6156448A publication Critical patent/JPS6156448A/en
Publication of JPH0584064B2 publication Critical patent/JPH0584064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、相補型半導体装置の製造方法に関
し、特にnチヤンネル、pチヤンネルトランジス
タのソース、ドレイン領域の形成工程を改良した
相補型半導体装置の製造方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a complementary semiconductor device, and in particular to a method for manufacturing a complementary semiconductor device in which the process for forming source and drain regions of n-channel and p-channel transistors is improved. It concerns the method.

〔発明の技術的背景〕[Technical background of the invention]

周知の如く、相補型MOS半導体装置(以下
CMOSと略す)は同一基板上にnチヤンネルト
ランジスタとpチヤンネルトランジスタが形成さ
れたものである。最近のCMOSは、急速に微細
化技術が確立され、これに伴つて高性能化、高集
積化が達成されている。具体的には、チヤンネル
長が1μm以下のCMOSが開発されつつある。こ
うした微細なCMOSでは、ソース、ドレイン領
域間の電界(特にnチヤンネルトランジスタにお
けるソース、ドレイン領域間の電界)が非常に大
きくなり、この高電界中で生成される電子・正孔
に起因する問題が発生する。例えば、ゲート酸化
膜中に注入された電子による閾値電圧の変動(上
昇)と、半導体基板中に注入される正孔による基
板電流の異常な増加が挙げられる。
As is well known, complementary MOS semiconductor devices (hereinafter referred to as
CMOS (abbreviated as CMOS) is a device in which an n-channel transistor and a p-channel transistor are formed on the same substrate. Recently, miniaturization technology for CMOS has been rapidly established, and along with this, higher performance and higher integration have been achieved. Specifically, CMOS with a channel length of 1 μm or less is being developed. In such fine CMOS, the electric field between the source and drain regions (especially the electric field between the source and drain regions in n-channel transistors) becomes extremely large, and problems arise due to electrons and holes generated in this high electric field. Occur. For example, there is a fluctuation (increase) in the threshold voltage due to electrons injected into the gate oxide film, and an abnormal increase in substrate current due to holes injected into the semiconductor substrate.

このようなことから、従来、ソース、ドレイン
領域間の高電界を緩和した構造のCMOSの製造
方法が提案されている。これを第2図a〜gを参
照して以下に説明する。
For this reason, conventional methods for manufacturing CMOS having a structure that alleviates the high electric field between the source and drain regions have been proposed. This will be explained below with reference to FIGS. 2a-g.

まず、結晶方位(100)のn型シリコン基板1
にp型半導体層(p−ウエル)2を選択的に形成
する。つづいて、前記基板1及びp−ウエル2に
素子分離領域としてのフイールド酸化膜3を形成
した後、該フイールド酸化膜3で分離された基板
1及びpウエル2の島状の素子領域に酸化膜を形
成する。ひきつづき、全面に例えばリンドープ多
結晶シリコン膜を堆積し、これをパターニングし
て前記各素子領域の酸化膜上にゲート電極4,5
を夫々形成し、該ゲート電極4,5をマスクとし
て酸化膜を選択的のエツチング除去してゲート酸
化膜6,7を形成する(第1図a図示)。
First, an n-type silicon substrate 1 with crystal orientation (100)
A p-type semiconductor layer (p-well) 2 is selectively formed therein. Subsequently, after forming a field oxide film 3 as an element isolation region on the substrate 1 and the p-well 2, an oxide film is formed on the island-shaped element region of the substrate 1 and the p-well 2 separated by the field oxide film 3. form. Subsequently, a phosphorus-doped polycrystalline silicon film, for example, is deposited on the entire surface and patterned to form gate electrodes 4 and 5 on the oxide film in each element region.
are formed, respectively, and the oxide films are selectively etched away using the gate electrodes 4 and 5 as masks to form gate oxide films 6 and 7 (as shown in FIG. 1A).

次いで、写真蝕刻法により基板1の素子領域側
を覆うレジストパターン8を形成した後、該レジ
ストパターン8、ゲート電極4及びフイールド酸
化膜3をマスクとしてn型不純物、例えばリンを
加速電圧20keV、ドーズ量1×1013cm-2の条件で
イオン注入して低濃度のリンイオン注入層91
2を形成する(同図b図示)。つづいて、前記レ
ジストパターン8を除去し、再度、写真蝕刻法に
よりn−ウエル2側を覆うレジストパターン10
を形成した後、該レジストパターン10、ゲート
電極5及びフイールド酸化膜3をマスクとしてp
型不純物、例えばボロンを加速電圧40keV、ドー
ズ量1×1015cm-2の条件でイオン注入してボロン
イオン注入層111,112を形成する(同図c図
示)。
Next, after forming a resist pattern 8 covering the element region side of the substrate 1 by photolithography, using the resist pattern 8, gate electrode 4, and field oxide film 3 as masks, an n-type impurity, such as phosphorus, is applied at an accelerating voltage of 20 keV and at a dose. A low concentration phosphorus ion implantation layer 9 1 is formed by implanting ions at an amount of 1×10 13 cm −2 ,
9 2 (as shown in Figure b). Subsequently, the resist pattern 8 is removed, and a resist pattern 10 covering the n-well 2 side is again formed by photolithography.
After forming the resist pattern 10, the gate electrode 5, and the field oxide film 3 as masks, p
Boron ion-implanted layers 11 1 and 11 2 are formed by ion-implanting a type impurity, for example, boron, at an acceleration voltage of 40 keV and a dose of 1×10 15 cm -2 (as shown in FIG. 3C).

次いで、レジストパターン10を除去した後、
全面に例えば厚さ4000ÅのCVD−SiO2膜12を
堆積した後、例えば900℃の窒素雰囲気中で30分
間熱処理する。これにより、同図dに示すように
前記リンイオン注入層91,92が活性化されて低
濃度のn-型拡散層131,132が形成され、かつ
前記ボロンイオン注入層111,112が活性化さ
れてp+型のソース、ドレイン領域14,15が
形成される。つづいて、CVD−SiO2膜12をリ
アクテイブイオンエツチング法(RIE法)により
該CVD−SiO2膜12の膜厚程度エツチング除去
してゲート電極4及び、ート酸化膜6間門の側面
と、ゲート電極5及びゲート酸化膜7の側面に
夫々SiO2膜12を残存させて壁体16を形成す
る(同図e図示)。
Next, after removing the resist pattern 10,
After a CVD-SiO 2 film 12 having a thickness of, for example, 4000 Å is deposited on the entire surface, heat treatment is performed in a nitrogen atmosphere at, for example, 900° C. for 30 minutes. As a result, the phosphorus ion implantation layers 9 1 , 9 2 are activated to form low concentration n - type diffusion layers 13 1 , 13 2 as shown in FIG . 11 2 is activated to form p + type source and drain regions 14 and 15. Subsequently, the CVD-SiO 2 film 12 is removed by etching to the extent of the film thickness of the CVD-SiO 2 film 12 using a reactive ion etching method (RIE method), and the side surfaces of the gate between the gate electrode 4 and the gate oxide film 6 are removed. , a wall body 16 is formed by leaving the SiO 2 film 12 on the side surfaces of the gate electrode 5 and the gate oxide film 7, respectively (as shown in the figure e).

次いで、写真蝕刻法により再度、基板1の素子
領域側を覆うレジストパターン(図示せず)を形
成した後、該レジストパターン、ゲート電極4、
壁体16及びフイールド酸化膜3をマスクとして
n型不純物、例えば砒素を加速電圧40keV、ドー
ズ量3×1015cm-2の条件でイオン注入する。この
後、レジストパターンを除去し、900℃の窒素雰
囲気中で熱処理を施して前記砒素イオン注入層を
活性化して高濃度のn+型拡散層171,172を形
成する。これにより、n-型拡散層131及びn+
拡散層171からなるソース領域18が形成され
ると共に、前記n-型拡散層132及びn+型拡散層
172からなるドレイン領域19が形成される。
つづいて、全面にSiO2膜20を堆積し、コンタ
クトホール21を開孔し、該SiO2膜20上にAl
膜を蒸着し、これをパターニングして前記n型の
ソース領域18とコンタクトホール21を通して
接続するAl配線22、前記ドレイン領域15,
19とコンタクトホール21,21を通して共通
に接続されたAl配線23及び前記p+型ソース領
域14とコンタクトホールを通して接続された
Al配線24を夫々形成してCMOSを製造する
(同図g図示)。
Next, a resist pattern (not shown) covering the element region side of the substrate 1 is again formed by photolithography, and then the resist pattern, the gate electrode 4,
Using the wall body 16 and the field oxide film 3 as a mask, an n-type impurity such as arsenic is ion-implanted at an acceleration voltage of 40 keV and a dose of 3×10 15 cm −2 . Thereafter, the resist pattern is removed, and heat treatment is performed in a nitrogen atmosphere at 900° C. to activate the arsenic ion implantation layer and form high concentration n + type diffusion layers 17 1 and 17 2 . As a result, a source region 18 consisting of the n - type diffusion layer 13 1 and the n + type diffusion layer 17 1 is formed, and a drain region 19 consisting of the n - type diffusion layer 13 2 and the n + type diffusion layer 17 2 is formed. is formed.
Next, an SiO 2 film 20 is deposited on the entire surface, a contact hole 21 is opened, and an Al layer is deposited on the SiO 2 film 20.
A film is deposited and patterned to form an Al wiring 22 connected to the n-type source region 18 through a contact hole 21, the drain region 15,
19 and the Al wiring 23 commonly connected through the contact holes 21, 21, and the p + type source region 14 connected through the contact hole.
CMOS is manufactured by forming Al interconnections 24 (as shown in g in the same figure).

上述した従来の方法によれば、nチヤンネルト
ランジスタにはゲート電極4近傍に位置する低濃
度のn−型拡散層131と同電極4から遠ざかる
部分に高濃度のn+型拡散層171とからなるソー
ス領域18、並びにゲート電極4近傍に位置する
低濃度のn-型拡散層132と同電極4から遠ざか
る部分に高濃度のn+型拡散層172とからなるド
レイン領域19が形成されているため、いわゆる
LDD構造をなし、前述したソース、ドレイン領
域間への高電界の発生を抑制できる。
According to the conventional method described above, the n-channel transistor has a low concentration n-type diffusion layer 13 1 located near the gate electrode 4 and a high concentration n + type diffusion layer 17 1 located away from the gate electrode 4. A source region 18 consisting of a low concentration n - type diffusion layer 13 2 located near the gate electrode 4 and a drain region 19 consisting of a high concentration n + type diffusion layer 17 2 located away from the gate electrode 4 are formed. Therefore, the so-called
It has an LDD structure and can suppress the generation of a high electric field between the source and drain regions described above.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上述した従来法にあつては以下
に列挙する種々の問題があつた。
However, the conventional method described above has various problems listed below.

(イ) 前記第2図dの工程において、CVD−SiO2
膜12をRIE法によりその膜厚程度エツチング
してゲート電極4,5の側面に壁体16を形成
する際、フイールド酸化膜3がオーバーエツチ
ングされて膜減りを生じる。その結果、第3図
に示すようにCMOS間を分離するフイールド
酸化膜3の幅が減少し、これに伴つてn+層25
−n+層25間の距離がRIE法の処理前の長さL
から長さLeに減少し、耐圧低下を招く。
(a) In the step of FIG. 2 d, CVD-SiO 2
When the film 12 is etched to the same thickness using the RIE method to form the wall bodies 16 on the side surfaces of the gate electrodes 4 and 5, the field oxide film 3 is overetched and thinned. As a result, as shown in FIG. 3, the width of the field oxide film 3 separating the CMOS is reduced, and the n
−n + The distance between layers 25 is the length L before RIE method processing
The length Le decreases from 0 to 1, resulting in a decrease in pressure resistance.

(ロ) 壁体16を形成をRIE法により行なうため、
その形成時にソース、ドレイン領域が作られる
シリコン基板1やpウエル2の表面がイオンに
より損傷を受け、素子特性を著しく低下させ
る。
(b) Since the wall 16 is formed by the RIE method,
At the time of formation, the surfaces of the silicon substrate 1 and the p-well 2 where the source and drain regions are formed are damaged by ions, significantly deteriorating the device characteristics.

(ハ) ゲート電極4,5をマスクとして酸化膜を選
択的にエツチングしてゲート酸化膜6,7を形
成する際、ゲート酸化膜にアンダーカツトが生
じ、ゲート電極とソース、ドレイン領域間の耐
圧が低下し、信頼性上、問題となる。
(c) When forming the gate oxide films 6 and 7 by selectively etching the oxide films using the gate electrodes 4 and 5 as masks, undercuts occur in the gate oxide films, and the withstand voltage between the gate electrodes and the source and drain regions increases. decreases, causing problems in terms of reliability.

(ニ) 上記方法では、pチヤンネルトランジスタの
ソース、ドレイン領域14,15のオフセツト
化を回避するため、該ソース、ドレイン領域1
4,15をゲート電極4,5の側面に壁体16
を形成する前に形成している。このため、p+
型のソース、ドレイン領域14,15を形成し
た後においても、n+型拡散層171,172を形
成するための高温熱処理を受けるので、該ソー
ス、ドレイン領域が再拡散して接合深さが深く
なり、pチヤンネルトランジスタのシヨートチ
ヤンネル効果が顕著となり、閾値電圧の変動等
を招く。なお、前記p+型のソース、ドレイン
領域14,15の再拡散を防止するために、
CVD−SiO2かならる壁体16を除去した後、
p型不純物をイオン注入してp+型のソース、
ドレイン領域を形成する方法も考えられる。し
かしながら、かかる方法ではCVD−SiO2の壁
体16を除去する際にフイールド酸化膜3がエ
ツチングされて膜減りを生じ、前記(イ)と同様な
問題が起こる。
(d) In the above method, in order to avoid offset of the source and drain regions 14 and 15 of the p-channel transistor, the source and drain regions 14 and 15 of the p-channel transistor are
4 and 15 on the side surfaces of the gate electrodes 4 and 5.
is formed before it is formed. For this reason, p +
Even after forming the type source and drain regions 14 and 15, the source and drain regions are re-diffused and the junction depth is reduced because they undergo high-temperature heat treatment to form the n + type diffusion layers 17 1 and 17 2 . becomes deeper, and the short channel effect of the p-channel transistor becomes significant, leading to fluctuations in threshold voltage and the like. Note that in order to prevent re-diffusion of the p + type source and drain regions 14 and 15,
After removing the wall 16 made of CVD- SiO2 ,
A p + type source is created by ion-implanting p - type impurities,
A method of forming a drain region is also considered. However, in this method, when the CVD-SiO 2 wall 16 is removed, the field oxide film 3 is etched and the film is thinned, causing the same problem as in (a) above.

〔発明の目的〕[Purpose of the invention]

本発明は、nチヤンネルトランジスタがLDD
構造をなすと共に、n+−n+型高濃度不純物層間
の耐圧低下、ゲート電極とソース、ドレイン領域
間の耐圧低下、及び半導体基板表面のイオンによ
る損傷を解消し、更にpチヤンネルトランジスタ
の閾値電圧の変動乃至低下を防止した高性能、高
信頼性の相補型半導体装置の製造方法を提供しよ
うとするものである。
In the present invention, the n-channel transistor is an LDD.
In addition to eliminating the breakdown voltage drop between the n + -n + type high-concentration impurity layer, the breakdown voltage drop between the gate electrode and the source and drain regions, and the damage caused by ions on the semiconductor substrate surface, the threshold voltage of the p-channel transistor is improved. It is an object of the present invention to provide a method for manufacturing a high-performance, highly reliable complementary semiconductor device that prevents fluctuations or decreases in .

〔発明の概要〕[Summary of the invention]

本発明は、一導電型の半導体基板に、該基板と
反対導電型の半導体層を選択的に形成する工程
と、前記半導体基板と前記半導体層とに素子分離
領域を形成する工程と、前記素子分離領域で分離
された前記半導体基板および前記半導体層の島状
の素子領域表面に絶縁膜を形成する工程と、前記
各素子領域表面の前記絶縁膜上にゲート電極をそ
れぞれ選択的に形成する工程と、第1導電型の不
純物を前記各ゲート電極および前記素子分離領域
をマスクとして前記各素子領域にドーピングする
工程と、全面に被酸化性膜および被膜を順次堆積
する工程と、前記被膜を前記各ゲート電極側面に
選択的に残存させる工程と、第1導電型の不純物
を前記残存被膜、ゲート電極および素子分離領域
をマスクとして前記不純物と反対導電型の素子領
域に選択的にドービングする工程と、前記残存被
膜を除去する工程と、前記被酸化性膜を酸化膜に
変換する工程と、第2導電型の不純物を少なくと
もゲート電極および素子分離領域をマスクとして
前記不純物と反対導電型の素子領域に選択的にド
ービングする工程とを具備したことを特徴とする
ものである。かかる本発明方法によれば、既述の
如くnチヤンネルトランジスタがLDD構造をな
すと共に、n+−n+型高濃度不純物層間の耐圧低
下、ゲート電極とソース、ドレイン領域間の耐圧
低下、及び半導体基板表面のイオンによる損傷を
解消し、更にpチヤンネルトランジスタの閾値電
圧の変動乃至低下を防止した高性能、高信頼性の
相補型半導体装置を得ることができるものであ
る。
The present invention includes a step of selectively forming a semiconductor layer of a conductivity type opposite to that of the substrate on a semiconductor substrate of one conductivity type, a step of forming an element isolation region between the semiconductor substrate and the semiconductor layer, and a step of forming an element isolation region between the semiconductor substrate and the semiconductor layer. a step of forming an insulating film on the surfaces of the island-shaped element regions of the semiconductor substrate and the semiconductor layer separated by an isolation region; and a step of selectively forming gate electrodes on the insulating films on the surfaces of each of the element regions. a step of doping impurities of a first conductivity type into each of the device regions using each of the gate electrodes and the device isolation region as a mask; a step of sequentially depositing an oxidizable film and a coating on the entire surface; a step of selectively leaving an impurity of a first conductivity type on a side surface of each gate electrode; and a step of selectively doping an impurity of a first conductivity type into an element region of a conductivity type opposite to that of the impurity using the remaining film, the gate electrode, and the element isolation region as a mask. , a step of removing the remaining film, a step of converting the oxidizable film into an oxide film, and adding an impurity of a second conductivity type to an element region of an opposite conductivity type to that of the impurity using at least the gate electrode and the element isolation region as a mask. The present invention is characterized by comprising a step of selectively doping. According to the method of the present invention, as described above, the n-channel transistor has an LDD structure, and there is also a reduction in breakdown voltage between the n + −n + type high concentration impurity layer, a reduction in breakdown voltage between the gate electrode and the source and drain regions, and a reduction in the breakdown voltage between the gate electrode and the source and drain regions. It is possible to obtain a high-performance, highly reliable complementary semiconductor device that eliminates damage caused by ions on the substrate surface and also prevents fluctuations or decreases in the threshold voltage of the p-channel transistor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1a〜hを参照して
詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to Nos. 1a to 1h.

まず、結晶方位(100)ノn型シリコン基板1
01に熱拡散等によりp−ウエル102を選択的
に形成した後、前記基板101及びp−1ウエル
102に選択酸化法等により素子分離領域として
のフイールド酸化膜103を形成した。つづい
て、該フイールド酸化膜103で分離された基板
101及びp−ウエル102の島状の素子領域に
酸化膜104を形成した後、全面に例えばリンド
ープ多結晶シリコン膜105を堆積した(第1図
a図示)。
First, crystal orientation (100) non-n type silicon substrate 1
After a p-well 102 was selectively formed on the substrate 101 and the p-1 well 102 by thermal diffusion or the like, a field oxide film 103 as an element isolation region was formed on the substrate 101 and the p-1 well 102 by a selective oxidation method or the like. Subsequently, after forming an oxide film 104 on the island-shaped device region of the substrate 101 and the p-well 102 separated by the field oxide film 103, a phosphorus-doped polycrystalline silicon film 105, for example, is deposited on the entire surface (see FIG. a).

次いで、前記多結晶シリコン膜105をパター
ニングして前記各素子領域の酸化膜104上にゲ
ート電極106,107を夫々形成した後、前記
各ゲート電極106,107をマスクとして酸化
膜104を選択的のエツチング除去してゲート酸
化膜108,109を形成した。つづいて、各ゲ
ート電極106,107及びフイールド酸化膜1
03をマスクとしてn型不純物、例えばリンを加
速電圧20keV、ドーズ量1×1013cm-2の条件でイ
オン注入して低濃度のリンイオン注入層1101
1102,1103,1104を形成した(同図b
図示)。ひきつづき、全面に例えば厚さ300Åの多
結晶シリコン膜111、及び例えば厚さ4000Åの
CVD−SiO2膜112を順次堆積した後、例えば
900℃の窒素雰囲気中で30分間処理する。これに
より、同図cに示すように前記リンイオン注入層
1101〜1104が活性化されて低濃度のn-型拡
散層1131〜1134が形成された。この後、前
記CVD−SiO2膜112をリアクテイブイオンエ
ツチング法(RIE法)により該CVD−SiO2膜1
12の膜厚程度エツチング除去してゲート電極1
06及びゲート酸化膜108の側面と、ゲート電
極107及びゲート酸化膜109の側面に夫々
SiO2膜を残存させて壁体114を形成した(同
図d図示)。
Next, after patterning the polycrystalline silicon film 105 to form gate electrodes 106 and 107 on the oxide film 104 in each element region, the oxide film 104 is selectively patterned using the gate electrodes 106 and 107 as a mask. Gate oxide films 108 and 109 were formed by etching and removing. Next, each gate electrode 106, 107 and the field oxide film 1
03 as a mask, an n-type impurity such as phosphorus is ion-implanted under conditions of an acceleration voltage of 20 keV and a dose of 1×10 13 cm -2 to form a low-concentration phosphorus ion-implanted layer 110 1 ,
110 2 , 110 3 , 110 4 were formed (see figure b
(Illustrated). Subsequently, a polycrystalline silicon film 111 with a thickness of, for example, 300 Å is formed on the entire surface, and a polycrystalline silicon film 111 with a thickness of, eg, 4000 Å is formed on the entire surface.
After sequentially depositing CVD-SiO 2 films 112, for example
Treat for 30 minutes in a nitrogen atmosphere at 900°C. As a result, the phosphorus ion implantation layers 110 1 to 110 4 were activated to form low concentration n - type diffusion layers 113 1 to 113 4 as shown in FIG. After that, the CVD-SiO 2 film 112 is etched by a reactive ion etching method ( RIE method).
Gate electrode 1 is removed by etching to a thickness of about 12.
06 and the side surfaces of the gate oxide film 108 and the side surfaces of the gate electrode 107 and the gate oxide film 109, respectively.
A wall 114 was formed by leaving the SiO 2 film (as shown in d in the figure).

次いで、写真蝕刻法により基板101の素子領
域側を覆うレジストパターン(図示せず)を形成
した後、該レジストパターン、p−ウエル102
側のゲート電極106、壁体114及びフイール
ド酸化膜103をマスクとしてn型不純物、例え
ば砒素を加速電圧40keV、ドーズ量3×1015cm-2
の条件でイオン注入した。この後、レジストパタ
ーンを除去し、900℃の窒素雰囲気中で熱処理を
施して前記砒素イオン注入層を活性化して高濃度
のn+型拡散層1151,1152を形成した。これ
により、同図eに示すようにn-型拡散層1131
及びn+型拡散層1151からなるソース領域11
6が形成されると共に、前記n-型拡散層1132
及びn+型拡散層1152からなるドレイン領域1
17が形成された。
Next, after forming a resist pattern (not shown) covering the element region side of the substrate 101 by photolithography, the resist pattern covers the p-well 102.
Using the side gate electrode 106, wall 114 and field oxide film 103 as masks, an n-type impurity, for example arsenic, is applied at an acceleration voltage of 40 keV and a dose of 3×10 15 cm -2
Ion implantation was performed under the following conditions. Thereafter, the resist pattern was removed, and heat treatment was performed in a nitrogen atmosphere at 900° C. to activate the arsenic ion implantation layer and form high concentration n + -type diffusion layers 115 1 and 115 2 . As a result, as shown in the figure e, the n - type diffusion layer 113 1
and a source region 11 consisting of an n + type diffusion layer 115 1
6 is formed, and the n - type diffusion layer 113 2
and a drain region 1 consisting of an n + type diffusion layer 115 2
17 were formed.

次いで、同図fに示すように壁体114を除去
した後、熱酸化処理を施して前記多結晶シリコン
膜111を酸化膜118に変換した。つづいて、
写真蝕刻法によりp−ウエル102側を覆うレジ
ストパターン(図示せず)を形成した後、該レジ
ストパターン、ゲート電極107及びフイールド
酸化膜103をマスクしてp型不純物、例えばボ
ロンを加速電圧40keV、ドーズ量1×1015cm-2
条件で該基板101のn-型拡散層1133,11
4にイオン注入した。この後、レジストパター
ンを除去し、例えば900℃で熱処理を施してボロ
ンイオン注入層を活性化して基板101の素子領
域にp+型のソース、ドレイン領域119,12
0を形成した(同図g図示)。
Next, as shown in FIG. 5F, after removing the wall 114, thermal oxidation treatment was performed to convert the polycrystalline silicon film 111 into an oxide film 118. Continuing,
After forming a resist pattern (not shown) covering the p-well 102 side by photolithography, the resist pattern, the gate electrode 107 and the field oxide film 103 are masked, and a p-type impurity, for example, boron, is applied at an accelerating voltage of 40 keV. The n - type diffused layers 113 3 , 11 of the substrate 101 at a dose of 1×10 15 cm −2
Ion implantation was performed on 3-4 . Thereafter, the resist pattern is removed, heat treatment is performed at, for example, 900° C. to activate the boron ion implantation layer, and the p + type source and drain regions 119 and 12 are formed in the element region of the substrate 101.
0 was formed (as shown in g in the same figure).

次いで、全面にSiO2膜121を堆積し、コン
タクトホール122を開孔し、該SiO2膜121
上にAl膜を蒸着し、これをパターニングして前
記n型のソース領域116とコンタクトホール1
22を通して接続するAl配線123、前記ドレ
イン領域117,120とコンタクトホール12
2,122を通して共通に接続されたAl配線1
24及び前記p+型ソース領域119とコンタク
トホール122を通して接続されたAl配線12
5を夫々形成してCMOSを製造する(同図h図
示)。
Next, a SiO 2 film 121 is deposited on the entire surface, a contact hole 122 is opened, and the SiO 2 film 121 is
An Al film is deposited on top and patterned to form the n-type source region 116 and contact hole 1.
Al wiring 123 connected through 22, the drain regions 117 and 120 and the contact hole 12
Al wiring 1 commonly connected through 2,122
24 and the Al wiring 12 connected to the p + type source region 119 through the contact hole 122
A CMOS is manufactured by forming 5, respectively (shown in h of the same figure).

しかして、本発明によればCVD−SiO2膜11
2をRIE法によりエツチングし、ゲート電極10
6,107の側面にCVD−SiO2を残存させて壁
体114を形成する際、CVD−SiO2膜112の
下に多結晶シリコン膜111を形成している。そ
の結果、該多結晶シリコン膜111がストツパと
して作用するため、フイールド酸化膜103の膜
減りを防止できると共に、RIE法でのイオンによ
る基板101及びp−ウエル102表面の損傷を
防止でき、高信頼性のCMOSを得ることができ
る。
Therefore, according to the present invention, the CVD-SiO 2 film 11
2 by RIE method to form the gate electrode 10.
When forming the wall body 114 by leaving CVD-SiO 2 on the side surfaces of 6 and 107, a polycrystalline silicon film 111 is formed under the CVD-SiO 2 film 112. As a result, since the polycrystalline silicon film 111 acts as a stopper, it is possible to prevent the field oxide film 103 from thinning, and also to prevent the surfaces of the substrate 101 and p-well 102 from being damaged by ions in the RIE method, resulting in high reliability. You can get the same CMOS.

また、ゲート電極106,107をマスクとし
て酸化膜104をエツチングする際に生じたゲー
ト酸化膜108,109のアンダーカツトは、多
結晶シリコン膜111を熱酸化して変換された酸
化膜118によつて埋められる。その結果、ゲー
ト電極106,107とソース、ドレイン領域1
16,119,117,120との間の耐圧低下
を防止できる。
Furthermore, undercuts in the gate oxide films 108 and 109 that occur when etching the oxide film 104 using the gate electrodes 106 and 107 as masks are caused by the oxide film 118 converted by thermally oxidizing the polycrystalline silicon film 111. Buried. As a result, gate electrodes 106 and 107 and source and drain regions 1
16, 119, 117, and 120 can be prevented from decreasing.

更に、第1図e、fに示すように壁体114に
除去に際し、フイールド酸化膜103上には多結
晶シリコン膜111が被覆されているため、フイ
ールド酸化膜103の脱減りを防止できる。その
結果、第1図gに示すように該壁体114の除去
工程後、つまりnチヤンネルトランジスタのソー
ス、ドレイン領域116,117の形成のための
高温熱処理後に、オフセツトのないpチヤンネル
トランジスタのp+型ソース、ドレイン領域11
9,120を形成できる。従つて、p+型ソース、
ドレイン領域119,120の再拡散を解消して
接合深さが深くなることによる閾値電圧の変動を
防止でき、高性能のCMOSを得ることができる。
Furthermore, as shown in FIGS. 1e and 1f, when the wall 114 is removed, the field oxide film 103 is covered with the polycrystalline silicon film 111, so that the field oxide film 103 can be prevented from being removed. As a result, as shown in FIG. 1g, after the wall 114 is removed, that is, after high-temperature heat treatment for forming the source and drain regions 116 and 117 of the n-channel transistor, the p + Type source and drain region 11
9,120 can be formed. Therefore, a p + type source,
Rediffusion of the drain regions 119 and 120 can be eliminated to prevent fluctuations in threshold voltage due to deepening of the junction depth, and a high-performance CMOS can be obtained.

なお、上記実施例では被酸化性膜として、多結
晶シリコン膜を用いたが、この代わりに非晶質シ
リコン膜、金属シリコン膜を使用してもよい。
In the above embodiment, a polycrystalline silicon film is used as the oxidizable film, but an amorphous silicon film or a metal silicon film may be used instead.

上記実施例では、被膜としてCVD−SiO2膜を
用いたが、この代わりにリン珪化ガラス膜
(PSG膜)、窒化膜を使用してもよい。
In the above embodiment, a CVD-SiO 2 film was used as the coating, but a phosphosilicate glass film (PSG film) or a nitride film may be used instead.

上記実施例では、多結晶シリコン膜を酸化膜に
変換後に高濃度のp型拡散層を形成したが、酸化
膜に変換前に該高濃度のp型拡散層を形成しても
よい。
In the above embodiments, the high concentration p-type diffusion layer was formed after converting the polycrystalline silicon film into an oxide film, but the high concentration p-type diffusion layer may be formed before converting the polycrystalline silicon film into an oxide film.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればnチヤンネ
ルトランジスタがLDD構造をなすと共に、n+
n+型高濃度不純物層間の耐圧低下、ゲート電極
とソース、ドレイン領域間の耐圧低下、及び半導
体基板表面のイオンによる損傷を解消し、更にp
チヤンネルトランジスタの閾値電圧の変動乃至低
下を防止した高性能、高信頼性の相補型半導体装
置の製造方法を提供できる。
As described in detail above, according to the present invention, the n-channel transistor has an LDD structure, and the n +
This eliminates the reduction in breakdown voltage between the n + type high concentration impurity layer, the reduction in breakdown voltage between the gate electrode and the source and drain regions, and the damage caused by ions on the semiconductor substrate surface.
It is possible to provide a method for manufacturing a high-performance, highly reliable complementary semiconductor device in which fluctuation or reduction in the threshold voltage of a channel transistor is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜hは本発明の実施例における
CMOSの製造工程を示す断面図、第2図a〜g
は従来のCMOSの製造工程を示す断面図、第3
図は従来法により得られたCMOSの問題点を説
明するための断面図である。 101……n型シリコン基板、102……p−
ウエル、103……フイールド酸化膜(素子分離
領域)、106,107……ゲート電極、108,
109……ゲート酸化膜、111……多結晶シリ
コン膜(被酸化性膜)、112……CVD−SiO2
(被膜)、1131〜1134……n-型拡散層、11
4……壁体、1151,1152……n+型拡散層、
116……ソース領域、117……ドレイン領
域、118……酸化膜、119……p+型ソース
領域、120……p+型ドレイン領域、121…
…SiO2膜、123〜125……Al配線。
Figures 1a to 1h show examples of the present invention.
Cross-sectional diagram showing the manufacturing process of CMOS, Figure 2 a-g
3 is a cross-sectional view showing the conventional CMOS manufacturing process.
The figure is a cross-sectional view for explaining the problems of CMOS obtained by the conventional method. 101...n-type silicon substrate, 102...p-
Well, 103... Field oxide film (element isolation region), 106, 107... Gate electrode, 108,
109... Gate oxide film, 111... Polycrystalline silicon film (oxidizable film), 112... CVD-SiO 2 film (film), 113 1 to 113 4 ... n - type diffusion layer, 11
4... Wall body, 115 1 , 115 2 ... n + type diffusion layer,
116... Source region, 117... Drain region, 118... Oxide film, 119... P + type source region, 120... P + type drain region, 121...
...SiO 2 film, 123-125...Al wiring.

Claims (1)

【特許請求の範囲】 1 一導電型の半導体基板に、該基板と反対導電
型の半導体層を選択的に形成する工程と、前記半
導体基板と前記半導体層とに素子分離領域を形成
する工程と、前記素子分離領域で分離された前記
半導体基板および前記半導体層の島状の素子領域
表面に絶縁膜を形成する工程と、前記各素子領域
表面の前記絶縁膜上にゲート電極をそれぞれ選択
的に形成する工程と、第1導電型の不純物を前記
各ゲート電極および前記素子分離領域をマスクと
して前記各素子領域にドーピングする工程と、全
面に被酸化性膜および被膜を順次堆積する工程
と、前記被膜を前記各ゲート電極側面に選択的に
残存させる工程と、第1導電型の不純物を前記残
存被膜、ゲート電極および素子分離領域をマスク
として前記不純物と反対導電型の素子領域に選択
的にドーピングする工程と、前記残存被膜を除去
する工程と、前記被酸化性膜を酸化膜に変換する
工程と、第2導電型の不純物を少なくともゲート
電極および素子分離領域をマスクとして前記不純
物と反対導電型の素子領域に選択的にドーピング
する工程とを具備したことを特徴とする相補型半
導体装置の製造方法。 2 被酸化性膜が多結晶シリコンからなることを
特徴とする特許請求の範囲第1項記載の相補型半
導体装置の製造方法。 3 被酸化性膜の膜厚は、前記絶縁膜の膜厚の1/
2より厚いことを特徴とする特許請求の範囲第1
項記載の相補型半導体装置の製造方法。 4 前記第2導電型の不純物は、前記残存被膜の
除去後にドーピングされることを特徴とする特許
請求の範囲第1項記載の相補型半導体装置の製造
方法。
[Claims] 1. A step of selectively forming a semiconductor layer of a conductivity type opposite to that of the substrate on a semiconductor substrate of one conductivity type, and a step of forming an element isolation region between the semiconductor substrate and the semiconductor layer. , forming an insulating film on the surfaces of the island-shaped element regions of the semiconductor substrate and the semiconductor layer separated by the element isolation region, and selectively forming a gate electrode on the insulating film on the surface of each element region. a step of doping impurities of a first conductivity type into each of the element regions using each of the gate electrodes and the element isolation region as a mask; a step of sequentially depositing an oxidizable film and a coating on the entire surface; A step of selectively leaving a film on the side surface of each of the gate electrodes, and selectively doping an impurity of a first conductivity type into a device region of a conductivity type opposite to that of the impurity using the remaining film, the gate electrode, and the device isolation region as a mask. a step of removing the remaining film; a step of converting the oxidizable film into an oxide film; and a step of adding an impurity of a second conductivity type to the impurity with a conductivity type opposite to that of the impurity using at least the gate electrode and the element isolation region as a mask. 1. A method for manufacturing a complementary semiconductor device, comprising the step of selectively doping an element region. 2. The method of manufacturing a complementary semiconductor device according to claim 1, wherein the oxidizable film is made of polycrystalline silicon. 3 The thickness of the oxidizable film is 1/ of the thickness of the insulating film.
Claim 1 characterized in that the thickness is greater than 2.
A method for manufacturing a complementary semiconductor device according to section 1. 4. The method of manufacturing a complementary semiconductor device according to claim 1, wherein the second conductivity type impurity is doped after the remaining film is removed.
JP59178651A 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device Granted JPS6156448A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59178651A JPS6156448A (en) 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device
EP85110792A EP0173953B1 (en) 1984-08-28 1985-08-28 Method for manufacturing a semiconductor device having a gate electrode
US06/770,179 US4642878A (en) 1984-08-28 1985-08-28 Method of making MOS device by sequentially depositing an oxidizable layer and a masking second layer over gated device regions
DE8585110792T DE3583472D1 (en) 1984-08-28 1985-08-28 METHOD FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT WITH A GATE ELECTRODE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59178651A JPS6156448A (en) 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS6156448A JPS6156448A (en) 1986-03-22
JPH0584064B2 true JPH0584064B2 (en) 1993-11-30

Family

ID=16052187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59178651A Granted JPS6156448A (en) 1984-08-28 1984-08-28 Manufacture of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPS6156448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145176A (en) * 2008-12-17 2010-07-01 Denso Corp Semiconductor device and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252461A (en) * 1987-04-09 1988-10-19 Nec Corp Manufacture of cmos type semiconductor device
JPH023242A (en) * 1988-06-17 1990-01-08 Sanyo Electric Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145176A (en) * 2008-12-17 2010-07-01 Denso Corp Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JPS6156448A (en) 1986-03-22

Similar Documents

Publication Publication Date Title
US4642878A (en) Method of making MOS device by sequentially depositing an oxidizable layer and a masking second layer over gated device regions
US4697333A (en) Method of manufacturing a semiconductor device using amorphous silicon as a mask
JP3077630B2 (en) Semiconductor device and manufacturing method thereof
EP0258396B1 (en) Fabrication process for stacked mos devices
US4891326A (en) Semiconductor device and a process for manufacturing the same
US5087582A (en) Mosfet and fabrication method
JPH11297984A (en) Structure of ldd type mos transistor and forming method
EP0276292B1 (en) Process for fabricating stacked mos structures
JPH098135A (en) Manufacture of semiconductor device
KR930005508B1 (en) Semiconductor device and manufacturing method of the same
JPH0584064B2 (en)
US20040169224A1 (en) Semiconductor device and manufacturing method therefor
JP2845186B2 (en) Semiconductor device and manufacturing method thereof
JPH10163338A (en) Semiconductor device and its manufacturing method
JP2919690B2 (en) Method for manufacturing semiconductor device
JP2575876B2 (en) Semiconductor device
US6048776A (en) Semiconductor device and a method of fabricating the same
JP3521921B2 (en) Method for manufacturing semiconductor device
JPH07254645A (en) Fabrication of semiconductor device
JP2830267B2 (en) Method for manufacturing semiconductor device
JPS61134073A (en) Manufacture of semiconductor device
JP3848782B2 (en) Manufacturing method of semiconductor device
JPH07122741A (en) Manufacture of semiconductor device
JPS641068B2 (en)
JPH0527995B2 (en)