JPS61182267A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61182267A
JPS61182267A JP2185785A JP2185785A JPS61182267A JP S61182267 A JPS61182267 A JP S61182267A JP 2185785 A JP2185785 A JP 2185785A JP 2185785 A JP2185785 A JP 2185785A JP S61182267 A JPS61182267 A JP S61182267A
Authority
JP
Japan
Prior art keywords
film
thin
oxide film
substrate
gate oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2185785A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
佐藤 佳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2185785A priority Critical patent/JPS61182267A/en
Publication of JPS61182267A publication Critical patent/JPS61182267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling

Abstract

PURPOSE:To obtain an EEPROM having high reliability by forming a gate oxide film partially having a thin-film section onto a semiconductor substrate and shaping a diffusion layer under the thin-film section. CONSTITUTION:An SiO2 film in thickness of approximately 500Angstrom is formed into a region, in which the surface of a P-type Si substrate 21 is partitioned by a field insulating film 22, through oxidation treatment. An opening 24 is bored to one part, and an SiO2 film 25 in thickness of approximately 100Angstrom is shaped onto the exposed substrate 21 through second oxidation treatment. When the ions of an N-type impurity are implanted while selecting acceleration voltage at approximately 30keV, an N layer 27 is acquired only under the thin-film 25. According to the constitution, the Si substrate is oxidized directly and the gate oxide thin-film 25 is formed, thus improving the control of the thickness of the thin-film. When an EEPROM is manufactured by utilizing a thin-film section 6 and an N layer 5 under the thin-film section through the same process as a conventional method, thus obtaining a cell having high reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体装置、特に半導体基板表面部内の拡散
層上に位置して局所的に薄膜部を有するゲート酸化膜が
前記半導体基板上に形成されたEEPROMセルを製造
する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor device, and particularly to a semiconductor device in which a gate oxide film having a locally thin film portion located on a diffusion layer in a surface portion of a semiconductor substrate is formed on the semiconductor substrate. The present invention relates to a method of manufacturing an EEPROM cell.

(従来の技術) 上記E E P ROM (Electrically
 ErasableProgrammable Rea
d 0nly Memory)セルの従来の製造方法を
第2図を参照して説明する。
(Prior art) The above EEPROM (Electrically
ErasableProgrammable Rea
A conventional method for manufacturing a dOnly Memory) cell will be explained with reference to FIG.

第2図(,1において、1はP型シリコン単結晶基板で
あり、まず、この基板1の表面部に通常のLOCO3法
によりフィールド酸化膜2を選択的に形成することによ
り、基板面をフィールド領域とアクティブ領域に分ける
。次に、アクティブ領域の基板1表面に酸化処理により
シリコン酸化膜3を形成する。
In FIG. 2 (, 1), 1 is a P-type silicon single crystal substrate. First, a field oxide film 2 is selectively formed on the surface of the substrate 1 by the usual LOCO3 method. Next, a silicon oxide film 3 is formed on the surface of the substrate 1 in the active region by oxidation treatment.

次に、第2図fb)に示すように、シリコン酸化膜3の
一部にホトリソグラフィ技術により開口部4を形成する
。そして、この開口部4に対応する部分の基板1表面部
内にイオンインプランテーション技術により第1のN型
拡散層5を形成する。
Next, as shown in FIG. 2fb), an opening 4 is formed in a part of the silicon oxide film 3 by photolithography. Then, a first N-type diffusion layer 5 is formed in a surface portion of the substrate 1 corresponding to this opening 4 by ion implantation technology.

その後、酸化処理を施すことにより、第1のN型拡散層
5上に第1図(c)に示すように100人厚程度の非常
に薄いシリコン酸化膜6を形成する。
Thereafter, by performing an oxidation treatment, a very thin silicon oxide film 6 having a thickness of about 100 layers is formed on the first N-type diffusion layer 5, as shown in FIG. 1(c).

この時、シリコン酸化膜3は500人厚程度となり、こ
のシリコン酸化膜3と前記シリコン酸化膜6とにより局
所的に薄膜部を有する第1のゲート酸化膜7が製造され
る。
At this time, the silicon oxide film 3 has a thickness of about 500 nm, and the silicon oxide film 3 and the silicon oxide film 6 form a first gate oxide film 7 having locally thin film portions.

次に、第2図(d)に示す第1のポリシリコン層8゜第
2のゲート酸化膜9および第2のポリシリコン層10(
第1および第2のポリシリコン層8,10には不純物が
高濃度にドープされる)を順次全面に形成した後、これ
らと前記第1のゲート酸化膜7をホトリソグラフィ技術
によりパターニングすることにより、それらを第2図(
d)に示すようにゲート領域にのみ残す。
Next, as shown in FIG. 2(d), the first polysilicon layer 8, the second gate oxide film 9 and the second polysilicon layer 10 (
The first and second polysilicon layers 8 and 10 are doped with impurities at a high concentration) are sequentially formed over the entire surface, and then these and the first gate oxide film 7 are patterned by photolithography. , they are shown in Figure 2 (
It is left only in the gate region as shown in d).

その後、前記パターニングにより露出した基板1の表面
部にソース・ドレイン領域となる第2のN型拡散層11
a、llbを自己整合技術により前記第2図(d)に示
すように形成する。この時、前記第1のN型拡散層5が
ドレイン領域としての一方の第2のN型拡散層11bと
接触し電気的に導通した状態となり、第1のN型拡散層
5はドレイン領域の一部となる。・ しかる後、第2図+e)に示すように全面にPSGなど
の中間絶縁膜12を形成し、これにホトリソグラフィ技
術によりコンタクト穴13 a、 13 b。
After that, a second N-type diffusion layer 11 which becomes a source/drain region is formed on the surface of the substrate 1 exposed by the patterning.
A, llb are formed by self-alignment technique as shown in FIG. 2(d). At this time, the first N-type diffusion layer 5 contacts one of the second N-type diffusion layers 11b serving as the drain region and becomes electrically conductive, and the first N-type diffusion layer 5 is in contact with the second N-type diffusion layer 11b serving as the drain region. Become a part. - Thereafter, as shown in FIG. 2+e), an intermediate insulating film 12 such as PSG is formed on the entire surface, and contact holes 13a and 13b are formed in this by photolithography.

13cを開ける。さらに、このコンタクト穴13a。Open 13c. Furthermore, this contact hole 13a.

13b、13cを介して第2のN型拡散層11a。A second N-type diffusion layer 11a via 13b and 13c.

11bおよび第2のポリシリコン層10に接続されるア
ルミ配線14a、14b、14cを形成し、最後に図示
しない保護膜を形成する。
Aluminum wirings 14a, 14b, and 14c connected to 11b and the second polysilicon layer 10 are formed, and finally a protective film (not shown) is formed.

なお、このようにして製造されたEEPROMセルの平
面図を第3図に示す。
Incidentally, a plan view of the EEPROM cell manufactured in this manner is shown in FIG.

(発明が解決しようとする問題点) 以上のEEPROMセルにおいては、シリコン酸化膜6
により、第1のゲート酸化膜の拡散層上の局所的な薄膜
部(100人厚程度)が構成される。しかるに、上記従
来の方法では、その薄膜部を、拡散層5の形成後に形成
するため、増速酸化といった問題があり、膜厚の制御が
難しかった。
(Problems to be Solved by the Invention) In the above EEPROM cell, the silicon oxide film 6
As a result, a local thin film portion (approximately 100 mm thick) on the diffusion layer of the first gate oxide film is formed. However, in the conventional method described above, since the thin film portion is formed after the formation of the diffusion layer 5, there is a problem of accelerated oxidation, and it is difficult to control the film thickness.

(問題点を解決するための手段) この発明は上記問題点を解決するため、局所的に薄膜部
を有するゲート酸化膜を半導体基板上に形成し、その後
、前記薄膜部下の拡散層を半導体基板に形成する。
(Means for Solving the Problems) In order to solve the above problems, the present invention forms a gate oxide film having a locally thin film portion on a semiconductor substrate, and then spreads a diffusion layer under the thin film onto the semiconductor substrate. to form.

(作 用) このようにすると、半導体基板を直接酸化してゲート酸
化膜の薄膜部を形成するようになるので、薄膜部の膜厚
を高精度に制御できる。
(Function) In this way, the thin film portion of the gate oxide film is formed by directly oxidizing the semiconductor substrate, so that the thickness of the thin film portion can be controlled with high precision.

(実施例) 以下この発明の実施例を図面を参照して説明する。まず
、第1の実施例について第1図を参照して説明する。
(Example) Examples of the present invention will be described below with reference to the drawings. First, a first embodiment will be described with reference to FIG.

第1図体)において、21はP型シリコン単結晶基板(
半導体基板)であり、まず、この基板21の表面部に通
常のLOCO8法によりフィールド酸化膜22を選択的
に形成することにより、基板面をフィールド領域とアク
ティブ領域に分ける。
In the first figure), 21 is a P-type silicon single crystal substrate (
First, a field oxide film 22 is selectively formed on the surface of the substrate 21 by the usual LOCO8 method, thereby dividing the substrate surface into a field region and an active region.

次に、アクティブ領域の基板21表面に酸化処理により
シリコン酸化膜23を500人厚程度に形成する。次い
でシリコン酸化膜23の一部にホトリソグラフィ技術に
より開口部24を形成し、その後、再び酸化処理を実施
することにより、前記開口部24により露出した基板2
1の表面に100人厚程度にシリコン酸化膜25を形成
する。これにより、アクティブ領域の基板21上には、
シリコン酸化膜23とシリコン酸化膜25によって、局
所的に薄膜部を有する第1のゲート酸化膜26が形成さ
れたことになる。
Next, a silicon oxide film 23 is formed to a thickness of about 500 nm on the surface of the substrate 21 in the active region by oxidation treatment. Next, an opening 24 is formed in a part of the silicon oxide film 23 by photolithography, and then oxidation treatment is performed again to remove the substrate 2 exposed through the opening 24.
A silicon oxide film 25 is formed on the surface of the silicon oxide film 25 to a thickness of about 100 nm. As a result, on the substrate 21 in the active area,
A first gate oxide film 26 having locally thin film portions is formed by the silicon oxide film 23 and the silicon oxide film 25.

しかる後、イオンインブラン′チージョン技術によりP
またはAsなどのN型不純物を第1のゲート酸化膜26
を介して基板21に導入する。この時、イオンインプラ
ンテーションの加速電圧を30KeV程度に設定すれば
、第1のゲート酸化膜26の薄膜部(シリコン酸化膜2
5)を介して、この薄膜部の下のみにN型不純物が導入
され、この部分に第1図(b)に示すように第1のN型
拡散層27が形成される。
After that, P
Alternatively, N-type impurities such as As may be added to the first gate oxide film 26.
is introduced into the substrate 21 via. At this time, if the acceleration voltage of ion implantation is set to about 30 KeV, the thin film portion of the first gate oxide film 26 (silicon oxide film 2
5), an N-type impurity is introduced only under this thin film portion, and a first N-type diffusion layer 27 is formed in this portion as shown in FIG. 1(b).

以上により従来の第2図(C1と同一の構造が得られた
ことになる。その後は従来の方法と同一の工程(ここで
は説明を省略する)を行い、第2図(e)に示したよう
なEEPROMセルを完成させる。
As a result, the same structure as the conventional method shown in FIG. Complete an EEPROM cell like this.

第4図はこの発明の第2の実施例を示す。この第2の実
施例では、第1のゲート酸化膜26上に形成される第1
のポリシリコン層28からの不純物拡散により第1のN
型拡散層27を形成する。
FIG. 4 shows a second embodiment of the invention. In this second embodiment, the first gate oxide film 26 is formed on the first gate oxide film 26.
The first N
A mold diffusion layer 27 is formed.

すなわち、第1の実施例と同様にしてフィールド酸化膜
22および第1のゲート酸化膜26を形成した後、この
第1のゲート酸化膜26上を含む全面にN型不純物を高
濃度に含む第1のポリシリコン層28を形成する。その
後、熱処理を行うもので、すると、第1のゲート酸化膜
26の薄膜部(シリコン酸化膜25)を介して、薄膜部
下の基板21部分にのみN型不純物が第1のポリシリコ
ン層28から拡散され、その部分に第1のN型拡散層2
7が形成される。その後は、従来の方法と同様に第2の
ゲート酸化膜の形成、第2のポリシリコン層の形成、パ
ターニング・・・と続き、最終的に第2図(e)に示し
たEEPROMセルを完成させる。
That is, after forming a field oxide film 22 and a first gate oxide film 26 in the same manner as in the first embodiment, a first gate oxide film 22 containing a high concentration of N-type impurities is formed on the entire surface including the first gate oxide film 26. 1 polysilicon layer 28 is formed. After that, heat treatment is performed, and N-type impurities are transferred from the first polysilicon layer 28 only to the substrate 21 portion under the thin film through the thin film portion (silicon oxide film 25) of the first gate oxide film 26. is diffused, and a first N-type diffusion layer 2 is formed in that part.
7 is formed. After that, as in the conventional method, the formation of the second gate oxide film, the formation of the second polysilicon layer, patterning, etc. continued, and finally the EEPROM cell shown in Figure 2(e) was completed. let

(発明の効果) 以上詳述したように、この発明の方法では、局所的に薄
膜部を有するゲート酸化膜を半導体基板上に形成した後
、前記薄膜部下の拡散層を形成するもので、したがって
、半導体基板を直接酸化してゲート酸化膜の薄膜部を形
成するようになるので、薄膜部の膜厚制御が良好となり
、信頼性の高いEEPROMセルを得ることができる。
(Effects of the Invention) As detailed above, in the method of the present invention, after a gate oxide film having a locally thin film portion is formed on a semiconductor substrate, a diffusion layer is formed under the thin film. Since the thin film portion of the gate oxide film is formed by directly oxidizing the semiconductor substrate, the thickness of the thin film portion can be well controlled and a highly reliable EEPROM cell can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体装置の製造方法の第1の実施
例を示す断面図、第2図は従来のEEPROMセルの製
造方法を示す断面図、第3図は完成したEEPROMセ
ルの平面図、第4図はこの発明の第2の実施例を示す断
面図である。 21・・P型シリコン単結晶基板、23・・・シリコン
酸化膜、25・・・シリコン酸化膜、26・・・第1の
ゲート酸化膜、27・・・第1のN型拡散層。 =7− 第1図 第2図 第2図 第3図
FIG. 1 is a sectional view showing a first embodiment of the semiconductor device manufacturing method of the present invention, FIG. 2 is a sectional view showing a conventional EEPROM cell manufacturing method, and FIG. 3 is a plan view of the completed EEPROM cell. , FIG. 4 is a sectional view showing a second embodiment of the invention. 21... P-type silicon single crystal substrate, 23... silicon oxide film, 25... silicon oxide film, 26... first gate oxide film, 27... first N-type diffusion layer. =7- Figure 1 Figure 2 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  半導体基板表面部内の拡散層上に位置して局所的に薄
膜部を有するゲート酸化膜が前記半導体基板上に形成さ
れたEEPROMセルにおいて、局所的に薄膜部を有す
るゲート酸化膜を半導体基板上に形成する工程と、その
後、前記薄膜部下の拡散層を半導体基板に形成する工程
とを具備することを特徴とする半導体装置の製造方法。
In an EEPROM cell in which a gate oxide film having a locally thin film portion located on a diffusion layer in a surface portion of the semiconductor substrate is formed on the semiconductor substrate, the gate oxide film having a locally thin film portion is formed on the semiconductor substrate. A method for manufacturing a semiconductor device, comprising the steps of forming a diffusion layer under the thin film, and then forming a diffusion layer under the thin film on a semiconductor substrate.
JP2185785A 1985-02-08 1985-02-08 Manufacture of semiconductor device Pending JPS61182267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185785A JPS61182267A (en) 1985-02-08 1985-02-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185785A JPS61182267A (en) 1985-02-08 1985-02-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61182267A true JPS61182267A (en) 1986-08-14

Family

ID=12066785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185785A Pending JPS61182267A (en) 1985-02-08 1985-02-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61182267A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437876A (en) * 1987-08-03 1989-02-08 Fujitsu Ltd Manufacture of semiconductor device
JPH0196963A (en) * 1987-10-09 1989-04-14 Toshiba Corp Manufacture of semiconductor nonvolatile memory
JPH01117365A (en) * 1987-10-30 1989-05-10 Matsushita Electron Corp Manufacture of semiconductor memory device
JPH01129466A (en) * 1987-11-16 1989-05-22 Nippon Denso Co Ltd Manufacture of nonvolatile memory cell
JPH01289282A (en) * 1988-05-17 1989-11-21 Ricoh Co Ltd Semiconductor memory device
US6686622B2 (en) 2001-08-31 2004-02-03 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device and manufacturing method thereof
WO2014109175A1 (en) * 2013-01-10 2014-07-17 セイコーインスツル株式会社 Semiconductor nonvolatile memory and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437876A (en) * 1987-08-03 1989-02-08 Fujitsu Ltd Manufacture of semiconductor device
JPH0196963A (en) * 1987-10-09 1989-04-14 Toshiba Corp Manufacture of semiconductor nonvolatile memory
JPH01117365A (en) * 1987-10-30 1989-05-10 Matsushita Electron Corp Manufacture of semiconductor memory device
JPH01129466A (en) * 1987-11-16 1989-05-22 Nippon Denso Co Ltd Manufacture of nonvolatile memory cell
JPH01289282A (en) * 1988-05-17 1989-11-21 Ricoh Co Ltd Semiconductor memory device
US6686622B2 (en) 2001-08-31 2004-02-03 Matsushita Electric Industrial Co., Ltd. Semiconductor memory device and manufacturing method thereof
WO2014109175A1 (en) * 2013-01-10 2014-07-17 セイコーインスツル株式会社 Semiconductor nonvolatile memory and method for manufacturing same
JP2014150241A (en) * 2013-01-10 2014-08-21 Seiko Instruments Inc Semiconductor nonvolatile memory and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP2509706B2 (en) Mask ROM manufacturing method
GB2053565A (en) Production of integrated mos circuits
JPH08255846A (en) Semiconductor device and manufacture thereof
JP3252795B2 (en) Method for manufacturing semiconductor device
JPS61182267A (en) Manufacture of semiconductor device
JPS6272171A (en) Semiconductor memory
JPS6315749B2 (en)
JPH05251711A (en) Semiconductor integrated circuit and its manufacture
JP2870131B2 (en) Method for manufacturing semiconductor device
JPS6329969A (en) Manufacture of floating gate type non-volatile semiconductor storage device
JPH0567634A (en) Manufacture of mis type semiconductor device
JPS62171141A (en) Semiconductor device
JPH05343419A (en) Semiconductor device
JPS6316672A (en) Manufacture of semiconductor element
JPH0212012B2 (en)
JP2753849B2 (en) Semiconductor device
JPH0475346A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH02209767A (en) Manufacture of semiconductor device
JPS6126223B2 (en)
JPH01278773A (en) Manufacture of semiconductor integrated circuit
JPH065679B2 (en) Method for manufacturing MOS semiconductor device
JPH0685267A (en) Manufacture of power mosfet
JPH02192125A (en) Manufacture of vertical mosfet
JPS60788B2 (en) Manufacturing method of silicon gate MIS semiconductor device