JPH01117365A - Manufacture of semiconductor memory device - Google Patents

Manufacture of semiconductor memory device

Info

Publication number
JPH01117365A
JPH01117365A JP27621287A JP27621287A JPH01117365A JP H01117365 A JPH01117365 A JP H01117365A JP 27621287 A JP27621287 A JP 27621287A JP 27621287 A JP27621287 A JP 27621287A JP H01117365 A JPH01117365 A JP H01117365A
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
film
insulating film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27621287A
Other languages
Japanese (ja)
Other versions
JP2672530B2 (en
Inventor
Kazuo Sato
和夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP62276212A priority Critical patent/JP2672530B2/en
Publication of JPH01117365A publication Critical patent/JPH01117365A/en
Application granted granted Critical
Publication of JP2672530B2 publication Critical patent/JP2672530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable the unrestricted and high-precision control of tunneling insulating film thickness and diffusion layer impurity concentration by a method wherein a diffusion layer is formed after the formation of a thin silicon oxide film capable of serving as a tunneling medium. CONSTITUTION:After the formation of a field oxide film 4, a silicon nitride film 3 and a silicon oxide film 2 thereunder are in that order removed by etching, and then a second thermal oxidation process is accomplished for the formation of a silicon oxide film 5 on the primary surface of a P-type silicon substrate 1. A prescribed part is removed by selective etching from the silicon oxide film 5, where a thin silicon oxide film 6 is formed to serve as a tunneling insulating film. Next, with a photoresist 7 serving as a mask, phosphorus ions 8 are implanted, which results in N-type diffusion layers 9 and 10. A process follows wherein the photoresist 7 is removed and, on the silicon oxide film 5 and the thin silicon oxide film 6, a phosphorus-doped polycrystalline silicon film is formed by vapor deposition. A photoetching process follows, whereby a floating gate electrode 11 is built, composed of a polycrystalline silicon film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、フローティングゲート型の電界効果トランジ
スタからなる半導体記憶装置の書き込み消去特性の向上
をはかることができる製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a manufacturing method capable of improving the write/erase characteristics of a semiconductor memory device comprising a floating gate field effect transistor.

従来の技術 従来、電気的書き込み消去が可能なROM(EEPRO
M;Electrically Erasable a
ndProgramable ROM)の1つとして、
トンネリング注入により書き込み消去を行うフローティ
ングゲート構造の半導体記憶装置がよく知られている。
Conventional technology Conventionally, electrically programmable and erasable ROM (EEPRO)
M;Electrically Erasable a
As one of the ndProgrammable ROM),
2. Description of the Related Art A semiconductor memory device having a floating gate structure in which writing and erasing is performed by tunneling injection is well known.

このフローティングゲート型の半導体記憶装置は、拡散
層上に形成した薄い絶縁膜を介して電荷のトンネリング
を行い、絶縁膜上にさらに形成したフローティングゲー
ト電極に電荷を蓄積させ、トランジスタのしきい値電圧
を変化させて情報を記憶させるものである。
This floating gate type semiconductor memory device tunnels charges through a thin insulating film formed on a diffusion layer, accumulates charges in a floating gate electrode further formed on the insulating film, and raises the threshold voltage of the transistor. It is used to store information by changing the

このようなフローティングゲート型の半導体記憶装置を
製造するにあたシ、従来は、半導体基板の表面層に基板
とは反対導電型の拡散層を形成した後、前記の拡散層上
を酸化することによってトンネリング媒体となりうる薄
い(100人程0)酸化シリコン膜(以下トンネリング
絶縁膜と記す)を形成し、さらにこの上にフローティン
グゲート電極を形成する方法が採用されていた。また、
拡散層上に形成する100人程0)薄いトンネリング絶
縁膜を制御よく、しかも、安定に形成するために、拡散
層の不純物濃度を比較的低い濃度(1017〜1o18
cIR−3程度)に抑えていた。
To manufacture such a floating gate type semiconductor memory device, conventionally, a diffusion layer of a conductivity type opposite to that of the substrate is formed on the surface layer of a semiconductor substrate, and then the above diffusion layer is oxidized. A method of forming a thin silicon oxide film (hereinafter referred to as a tunneling insulating film) (hereinafter referred to as a tunneling insulating film) that can be used as a tunneling medium, and then forming a floating gate electrode on this film has been adopted. Also,
In order to form a thin tunneling insulating film on the diffusion layer with good control and stability, the impurity concentration of the diffusion layer is set to a relatively low concentration (1017 to 1018).
cIR-3).

発明が解決しようとする問題点 近年、半導体集積回路の高機能化、高性能化に伴い、E
EFROMにおいても、書き込み消去スピードの向上の
要求が高まりつつあり、これを実現するにはトンネリン
グ絶縁膜下の拡散層の不純物濃度を10〜10 α 程
度の高い濃度としてトンネリング注入効率を高める方法
が考えられる。
Problems to be Solved by the Invention In recent years, with the increasing functionality and performance of semiconductor integrated circuits,
In EFROM as well, there is a growing demand for improved write/erase speed, and one way to achieve this is to increase the tunneling injection efficiency by increasing the impurity concentration in the diffusion layer under the tunneling insulating film to a high concentration of about 10 to 10 α. It will be done.

しかしながら、トンネリング絶縁膜下の拡散層の不純物
濃度を高くすると、トンネリング絶縁膜を形成する酸化
工程で増殖酸化が起こり、膜厚を制御性よく、しかも、
安定して形成することが困難となる。さらに、膜質が劣
化する問題も発生する。
However, when the impurity concentration of the diffusion layer under the tunneling insulating film is increased, propagated oxidation occurs in the oxidation process to form the tunneling insulating film, and the film thickness can be controlled with good control.
It becomes difficult to form it stably. Furthermore, the problem of deterioration of film quality also occurs.

本発明の目的は、不純物濃度の高い拡散層上に薄いトン
ネリング絶縁膜を制御性よく、しかも、安定に形成する
ことができる製造方法を提供することにある。
An object of the present invention is to provide a manufacturing method that can stably form a thin tunneling insulating film on a diffusion layer with high impurity concentration with good controllability.

問題点を解決するだめの手段 上記の目的を達成することができる本発明の製造方法は
一導電型半導体基板表面の所定域にトンネリング媒体と
なる絶縁膜を形成したのち、同絶縁膜下に一部が位置す
る関係を成立せた反対導電凰の第1領域およびこれから
離間する反対導型の第2領域を形成し、こののち、前記
トンネリング絶縁膜上にフローティングゲート電極を形
成する工程を少なくとも備えたことを特徴とするもので
ある。
Means for Solving the Problems The manufacturing method of the present invention, which can achieve the above objects, involves forming an insulating film to serve as a tunneling medium in a predetermined area on the surface of a semiconductor substrate of one conductivity type, and then forming a film under the insulating film. forming a first region of an opposite conductivity type and a second region of an opposite conductivity type separated therefrom, and then forming a floating gate electrode on the tunneling insulating film. It is characterized by:

作  用 本発明の製造方法では、トンネリング注入領域となる高
い不純物濃度の拡散層を形成する以前、すなわち、不純
物濃度の低い半導体基板面に薄いトンネリング絶縁膜が
形成されるため、トンネリング絶縁膜の膜厚の制御性が
高くなる。こののち、高不純物濃度の拡散層が形成され
るため、高濃度の拡散上であっても薄いトンネリング絶
縁膜を安定して形成することができ、書き込み消去特性
の向上をはかることが可能となる。
Function: In the manufacturing method of the present invention, a thin tunneling insulating film is formed on the semiconductor substrate surface with a low impurity concentration before forming a diffusion layer with a high impurity concentration that becomes a tunneling implantation region. Thickness can be controlled more easily. After this, a diffusion layer with a high impurity concentration is formed, so a thin tunneling insulating film can be stably formed even on a high concentration diffusion layer, making it possible to improve write/erase characteristics. .

実施例 本発明の具体的な実施例を図面を用いて説明する。Example Specific embodiments of the present invention will be described with reference to the drawings.

第1図A、Fは、本発明の一実施例を示した工程順断面
図である。
FIGS. 1A and 1F are cross-sectional views showing an embodiment of the present invention in the order of steps.

まず、第1図Aに示すように、P型シリコン基板1の全
面に、酸化シリコン膜2を500人の厚さに形成し、さ
らに窒化シリコン膜3を1oOO人程度の厚さに形成し
た後、素子分離領域を形成すべき所定の部分に周知のフ
ォトエツチング処理を施すことによってこの部分の酸化
シリコン膜と窒化シリコン膜を除去する。
First, as shown in FIG. 1A, a silicon oxide film 2 is formed on the entire surface of a P-type silicon substrate 1 to a thickness of about 500 nm, and a silicon nitride film 3 is further formed to a thickness of about 100 nm. Then, a well-known photoetching process is performed on a predetermined portion where an element isolation region is to be formed, thereby removing the silicon oxide film and silicon nitride film in this portion.

次いで、第1図Bに示すように、通常の熱酸化処理を施
すことによって、露出するP型シリコン基板部分を選択
的に酸化して厚さが1μm程度のフィールド酸化膜4を
形成する。
Next, as shown in FIG. 1B, a conventional thermal oxidation process is performed to selectively oxidize the exposed portion of the P-type silicon substrate to form a field oxide film 4 having a thickness of about 1 μm.

次に、窒化シリコン膜3とこの下の酸化シリコン膜2を
順次エツチングして取り除いた後、再度熱酸化処理を施
してP型シリコン基板1の主面に酸化シリコン膜6を5
00人の厚さに形成し、さらに、酸化シリコン膜6の所
定の部分を選択的にエツチングして取り除き、この部分
にトンネリング絶縁膜となる薄い酸化シリコン膜6を形
成することによって第1図Cで示す構造が得られる。本
実施例では、薄い酸化シリコン膜6を温度eoo℃、ア
ルゴン希釈下のドライ酸化により形成し、その膜厚を1
00人とした。
Next, the silicon nitride film 3 and the underlying silicon oxide film 2 are sequentially etched and removed, and then thermal oxidation treatment is performed again to form a silicon oxide film 6 on the main surface of the P-type silicon substrate 1.
By selectively etching and removing a predetermined portion of the silicon oxide film 6, and forming a thin silicon oxide film 6 that will serve as a tunneling insulating film in this portion, the silicon oxide film 6 is formed to have a thickness of 0.00 mm. The structure shown is obtained. In this example, a thin silicon oxide film 6 is formed by dry oxidation at a temperature of eoo°C under argon dilution, and the film thickness is 1
00 people.

次に、第1図りに示すように、フォトレジスト7をマス
クとして用いて、リンイオン8を注入し、N型拡散層9
,1oを形成する。本実施例では、酸化シリコン膜6、
および酸化シリコン膜6の下の半導体基板内にもリンイ
オンが注入されるように、加速電圧100KeV 、 
 ドーズ量2X10−15の−2の注入条件のもとで実
施した。この処理ののち、フォトレジストアを除去する
Next, as shown in the first diagram, using the photoresist 7 as a mask, phosphorus ions 8 are implanted into the N-type diffusion layer 9.
, 1o. In this embodiment, the silicon oxide film 6,
and an acceleration voltage of 100 KeV so that phosphorus ions are also implanted into the semiconductor substrate below the silicon oxide film 6.
The implantation was carried out under -2 implantation conditions with a dose of 2.times.10.sup.-15. After this treatment, the photoresist is removed.

次に、第1図Eに示すように酸化シリコン膜6および薄
い酸化シリコン膜6の上に、リンをドープしたポリシリ
コン膜を気相成長法により約5000人の厚さに形成し
、その後周知のフォトエツチング処理を施すことにより
ポリシリコン膜よりなるフローティングゲート電極11
を形成する。次いで、通常の熱酸化処理により、酸化シ
リコン膜12をフローティングゲート電極上で厚さが約
700人となるように形成する。その後、リンをドープ
したポリシリコン膜を気相成長法により約4000人の
厚さに形成し、さらに、フォトエツチング処理を施すこ
とによりポリシリコン膜よりなるコントロール電極13
を形成する。
Next, as shown in FIG. 1E, a phosphorus-doped polysilicon film is formed on the silicon oxide film 6 and the thin silicon oxide film 6 to a thickness of about 5000 nm by vapor phase epitaxy. A floating gate electrode 11 made of a polysilicon film is formed by photoetching.
form. Next, a silicon oxide film 12 is formed on the floating gate electrode to a thickness of approximately 700 nm by a normal thermal oxidation process. Thereafter, a polysilicon film doped with phosphorus is formed to a thickness of about 4,000 wafers by vapor phase growth, and a control electrode 13 made of the polysilicon film is formed by photo-etching.
form.

次いで、第1図Fに示すように、気相成長法により、酸
化シリコン膜14を全面に被着したのち、N型拡散層9
.10の押し込みと、酸化シリコン膜14の緻密化のた
めに、N2雰囲気中で1oo。
Next, as shown in FIG.
.. 10 in an N2 atmosphere to densify the silicon oxide film 14.

℃の温度の熱処理を行う。最後に、酸化シリコン膜14
にコンタクト孔を形成し、この部分にアルミニウム電極
15を形成する。以上の過程を経ることによって、本発
明の製造方法によるフローティングゲート型の半導体記
憶装置が完成する。
Perform heat treatment at a temperature of ℃. Finally, the silicon oxide film 14
A contact hole is formed in this portion, and an aluminum electrode 15 is formed in this portion. Through the above steps, a floating gate type semiconductor memory device manufactured by the manufacturing method of the present invention is completed.

本実施例では、トンネリング注入領域となる拡散層の形
成法として、トンネリング絶縁膜を形成した直後に、酸
化シリコン膜の上から、フォトレジストをマスクとして
不純物イオンを注入する方法を示したが、たとえば、第
2図Aに示すように、ポリシリコン膜よりなるフローテ
ィングゲート電極11を形成した後に、フローティング
ゲート電極11とフィールド酸化膜4をマスクとしてリ
ンイオン8を自己整合的に打ち込み、その後、第2図B
に示すように、N型拡散層9が、薄い酸化シリコン膜6
の下部に位置するまで横方向への拡散が進行するように
熱処理を施す方法を用いることもできる。
In this example, as a method for forming a diffusion layer that will become a tunneling implantation region, a method is shown in which impurity ions are implanted from above a silicon oxide film using a photoresist as a mask immediately after forming a tunneling insulating film. As shown in FIG. 2A, after forming a floating gate electrode 11 made of a polysilicon film, phosphorous ions 8 are implanted in a self-aligned manner using the floating gate electrode 11 and field oxide film 4 as masks, and then, as shown in FIG. B
As shown in FIG.
It is also possible to use a method in which heat treatment is performed so that the diffusion in the lateral direction progresses until it is located at the bottom of the .

発明の詳細 な説明したところから明らかなように、本発明の製造方
法によれば、トンネリング媒体となりうる薄い酸化シリ
コン膜の形成後に拡散層が形成されるため、トンネリン
グ絶縁膜の膜厚および拡散層の不純物濃度を自由に、し
かも、高い精度で制御することが可能となる。従って、
高不純物濃度の拡散層の上に、膜厚が高い精度で制御さ
れた非常に薄い酸化シリコン膜を安定に形成することが
可能となり、トンネリング注入効率を高めることが容易
になる。このことによって70−ティングゲート型の半
導体記憶装置の書き込み消去特性の向上に大きく寄与す
る効果が奏される。
As is clear from the detailed description of the invention, according to the manufacturing method of the present invention, the diffusion layer is formed after the formation of a thin silicon oxide film that can serve as a tunneling medium. It becomes possible to control the impurity concentration freely and with high precision. Therefore,
It becomes possible to stably form a very thin silicon oxide film whose film thickness is controlled with high precision on a diffusion layer with a high impurity concentration, and it becomes easy to increase tunneling injection efficiency. This brings about an effect that greatly contributes to improving the write/erase characteristics of the 70-gate type semiconductor memory device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の一実施例を説明するための
工程順断面図、第2図は本発明の別の実施例を説明する
ための工程順断面図である。 1・・・・・・P型シリコン基板、2,5,12.14
・・・・・・酸化シリコン膜、3・・・・・・窒化シリ
コン膜、4・・・・・・フィールド酸化膜、6・・・・
・・薄い酸化シリコン朕(トンネリング絶縁膜)、7・
・・・・・フォトレジスト、8・・・・・・リンイオン
、9,1o・・・・・・N型拡散層、11・・・・・・
フローティングゲート電極、13・・・・・・コントロ
ール電極、16・・・・・・アルミニウム電極。。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ql、sl。 /−F 堅シリコン基本女2  7− フォトレジスト
z、 /2. t+−Mll化シリボン  (5−”ソ
ンイオン3− 菫化シリコン’!l    9,1θ・
・−N裂狐双贋4゛−フィールド四疑イヒa    U
−−−70−チイングゲートlt木i5−゛厚いi!2
(t:、シリコン膜  13−“−コントロール電湘i
6−・薄い耐ピしシリコン秩  15−−−アルミニウ
ム宅才i。 第1図 /−P翌シリコン」艮零更 4−一一フイールド酸イヒ膜 、5−Xい酸化シリコン膜 6°−薄い酸化シリコン膜 9、 tθ−N型4ム裟層 第 。、J          //−−−70一テイ
ングゲート叱石i門   番   +   番   ◆
   ◆V  65     lθ
FIG. 1 is a step-by-step sectional view for explaining one embodiment of the manufacturing method of the present invention, and FIG. 2 is a step-by-step sectional view for explaining another embodiment of the present invention. 1...P-type silicon substrate, 2, 5, 12.14
...Silicon oxide film, 3...Silicon nitride film, 4...Field oxide film, 6...
・・Thin silicon oxide film (tunneling insulating film), 7・
...Photoresist, 8...Phosphorus ion, 9,1o...N-type diffusion layer, 11...
Floating gate electrode, 13... control electrode, 16... aluminum electrode. . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ql, sl. /-F Hard silicon basic woman 2 7- Photoresist z, /2. t+-Mllified silicon (5-"son ion 3- fluorinated silicon'!l 9,1θ・
・-N split fox double counterfeit 4゛-field four doubts a U
---70-Chinging gate lt tree i5-゛Thick i! 2
(t:, silicon film 13-“-control electricity
6--Thin resistant silicone 15--Aluminum base material i. Figure 1/-P next silicon layer 4-11 field oxide film, 5-X silicon oxide film 6°-thin silicon oxide film 9, tθ-N type 4th layer. , J //---701 Teing Gate Sakiishi Gate Number + Number ◆
◆V 65 lθ

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板の表面上の所定域にトンネリング
媒体となる絶縁膜を形成したのち、同絶縁膜下に一部が
位置する位置関係で反対導電型の第1領域を、同第1領
域から離間する位置関係で反対導電型の第2領域を作り
込み、さらに、前記絶縁物上にフローティングゲート電
極を形成する工程を備えることを特徴とする半導体記憶
装置の製造方法。
After forming an insulating film to serve as a tunneling medium in a predetermined area on the surface of a semiconductor substrate of one conductivity type, a first region of an opposite conductivity type is formed from the same first region in a positional relationship in which a portion of the insulating film is located under the same insulating film. 1. A method of manufacturing a semiconductor memory device, comprising the steps of forming second regions of opposite conductivity type in a spaced-apart relationship, and further forming a floating gate electrode on the insulator.
JP62276212A 1987-10-30 1987-10-30 Method for manufacturing semiconductor memory device Expired - Lifetime JP2672530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276212A JP2672530B2 (en) 1987-10-30 1987-10-30 Method for manufacturing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276212A JP2672530B2 (en) 1987-10-30 1987-10-30 Method for manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH01117365A true JPH01117365A (en) 1989-05-10
JP2672530B2 JP2672530B2 (en) 1997-11-05

Family

ID=17566243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276212A Expired - Lifetime JP2672530B2 (en) 1987-10-30 1987-10-30 Method for manufacturing semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2672530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511370A1 (en) * 1990-11-21 1992-11-04 Atmel Corporation Method of making an MOS EEPROM floating gate transistor cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182267A (en) * 1985-02-08 1986-08-14 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS61294870A (en) * 1985-06-21 1986-12-25 Nec Corp Non-volatile semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182267A (en) * 1985-02-08 1986-08-14 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS61294870A (en) * 1985-06-21 1986-12-25 Nec Corp Non-volatile semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0511370A1 (en) * 1990-11-21 1992-11-04 Atmel Corporation Method of making an MOS EEPROM floating gate transistor cell

Also Published As

Publication number Publication date
JP2672530B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
US4822750A (en) MOS floating gate memory cell containing tunneling diffusion region in contact with drain and extending under edges of field oxide
US4701776A (en) MOS floating gate memory cell and process for fabricating same
EP0055182B1 (en) High speed nonvolatile electrically erasable memory cell and system
JPH0640582B2 (en) Method for manufacturing insulating gate field effect transistor
JPS62271474A (en) Electrically programmable read-only memory device
JPS62203380A (en) Semiconductor device and manufacture of the same
EP0160003B1 (en) Mos floating gate memory cell and process for fabricating same
GB2080024A (en) Semiconductor Device and Method for Fabricating the Same
JPS63219152A (en) Manufacture of mos integrated circuit
JPS62104051A (en) Isolation structure of integrated circuit and formation of the same
JPH01117365A (en) Manufacture of semiconductor memory device
JPS6272171A (en) Semiconductor memory
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH03136348A (en) Manufacture of non-volatile memory element
JP3141520B2 (en) Method for manufacturing nonvolatile memory element
JPS603157A (en) Manufacture of semiconductor device
JPS643070B2 (en)
JPH0487374A (en) Manufacture of nonvolatile memory element
JPS60134473A (en) Manufacture of semiconductor device
JPH05343703A (en) Manufacture of nonvolatile memory
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device
KR950012550B1 (en) Method of manufacturing a nor type memory cell for vlsi
JPS59132649A (en) Semiconductor fixed memory and manufacture thereof
JPS6315748B2 (en)
JPS59210659A (en) Manufacture of metal oxide semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11