JPH1014889A - 生体信号検出装置 - Google Patents

生体信号検出装置

Info

Publication number
JPH1014889A
JPH1014889A JP8174723A JP17472396A JPH1014889A JP H1014889 A JPH1014889 A JP H1014889A JP 8174723 A JP8174723 A JP 8174723A JP 17472396 A JP17472396 A JP 17472396A JP H1014889 A JPH1014889 A JP H1014889A
Authority
JP
Japan
Prior art keywords
measuring means
pressure
living body
signal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8174723A
Other languages
English (en)
Other versions
JP3564878B2 (ja
Inventor
Takuo Shimada
拓生 嶋田
Shiro Takeshita
志郎 竹下
Yoshiyuki Kawai
美幸 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17472396A priority Critical patent/JP3564878B2/ja
Publication of JPH1014889A publication Critical patent/JPH1014889A/ja
Application granted granted Critical
Publication of JP3564878B2 publication Critical patent/JP3564878B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

(57)【要約】 【課題】 本発明は体重、心拍数、呼吸数、体動などの
生体信号を無侵襲・無拘束に検出する装置に関するもの
であり、生体には無意識のまま自動的に精度よく検出で
きる装置を提供することである。 【解決手段】 共用化した電極19を用いた一体型セン
サシート16に接続された生体振動に基づく動的信号を
検出する体動測定手段21と、生体15の体圧に基づく
静的信号を検出する体圧測定手段22とを設け、両者の
出力を合成することで、体重、心拍、呼吸、活動量、生
命状態等の生体信号を誤判定なく高精度に得ることがで
きる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は体重、心拍数、呼吸
数、体動などの生体信号を無侵襲・無拘束に検出または
表示・記録・報知する装置に関する。
【0002】
【従来の技術】従来のこの種の生体信号検出装置は、例
えば特開昭62−164435号公報に記載されている
ものが一般的であった。この装置は図19に示されてい
るように、ベッド1上にFET2を用いて構成したピア
ス型発振回路3のホットライン側に電極4が接続され、
またアースライン側に電極4と直交した電極5が接続さ
れるもので、水晶振動子6を用いた発振回路における付
加的な容量による発振周波数の変化を検出する構成とな
っている。さらに生体の変移に基づく周波数の変化の包
絡線を検出・検波器7で抽出した後、フィルタ8でノイ
ズ等の不要な周波数信号を除去し、記録装置9に記録し
たり、生体の動きが停止した時に警報を発生するもので
あった。
【0003】他の従来例としては、特開昭63−238
502号公報に記載されているようなものがある。この
装置は図20に示されているように感圧導電ゴム10の
両面に電極11、12を配設し、電極11、電極12を
静電容量測定装置13および抵抗測定装置14に接続す
るものであった。つまりこれは感圧導電ゴム10が可変
コンデンサと可変抵抗からなる素子であるとみなしたも
のである。
【0004】
【発明が解決しようとする課題】しかしながら従来の生
体信号検出装置では、生体に近接する電極構成や検出方
式にまつわる様々な課題を有していた。
【0005】電極間に生じた静電容量の変化しか検出し
てないので、直流ないし直流に近い低周波信号が生体の
動きに基づくものかどうか判別しにくい。
【0006】また出力信号が温湿度環境に非常に左右さ
れやすい。また電極3、4がリード線の形状なので、寝
具上で簡単に位置ずれを起こしてしまい、静電容量の変
化から生体の動きを再現性よく検出できない。
【0007】また寝具の折り目や電極の交差点で、断線
しやすく、商用電源を用いている場合、万一生体と接触
すると感電する危険性がある。
【0008】また電極3、4の機械的強度を持たせよう
とすれば、リード線径を相当太くしなければいけない
が、そうするとベッド上の就寝者(生体)の寝心地感を
損なうばかりか、電極交差点に集中して体圧がかかり、
床ずれを起こす危険性がある。
【0009】また現在ベッド上に生体が存在しているの
かいないのかがはっきりしない。特にベッド上から生体
が離れた場合とベッド上で生体が死亡した場合との見分
けがつかない。
【0010】また体重を検出することができない。また
電極の配置構成が複雑なので、量産化時に性能ばらつき
が生じやすい。
【0011】電極は等間隔で離散的にしか配置されてな
いので、寝姿勢により信号検出性能に差が生じる。
【0012】出力信号の基線が動揺しやすく使用前に必
ず信号レベルの初期化を必要とするという課題を有して
いた。
【0013】あるいは電極がリード線の場合、アンテナ
となって外来電磁波ノイズを非常に受けやすいという課
題を有していた。位置ずれも起こしやすく、生体以外の
外来振動ノイズの影響を受けやすいという課題も有して
いた。
【0014】生体信号を検出するセンサ構成のうち、一
般に静電容量型センサは温度特性が悪く、直流に近い低
周波域で信号が変動する。また感圧特性を持つ導電ゴム
やカーボンの感圧型センサは、クリープ特性などを有
し、応答速度が遅い。つまり絶対圧の測定精度が悪く、
動的な高周波信号を捉えることが出来ない。感圧型セン
サとしてひずみ抵抗素子を用いる方法もあるが、設置条
件や温度などの環境によって出力信号が大きく左右され
る。結果的にこれまで生体信号センサは、使用者自らが
測定開始の都度ゼロ点調節やゲイン調節をするか、セン
サの設置環境を安定させるための保護装置を別途設ける
か、オンオフスイッチとしてのみ使うなどの制約を受け
るという課題を有していた。
【0015】体圧によって再現性よく安定した抵抗値を
出力させようと思うと低インピーダンスな導電体を用い
なければならない。抵抗要素とコンデンサ要素の並列接
続を考えた場合、その合成インピーダンスは抵抗値が小
さい場合はほとんど抵抗値そのものになってしまうの
で、同じ素子で静電容量素子を併用しても、体動の測定
は精度よく測定できないことになる。
【0016】
【課題を解決するための手段】本発明は上記課題を解決
するために、第1の電極と生体間に形成される第1の静
電容量と、第2の電極と前記生体間に形成される第2の
静電容量との直列接続静電容量に基づき生体の振動信号
を測定する体動測定手段と、第1または第2の電極と第
3の電極により生体の自重に伴う体圧信号を測定する体
圧測定手段とを備え、さらに体動測定手段および体圧測
定手段の出力によって生体の体重、心拍数、呼吸数、活
動量、生命状態などの特徴量を算出する算出手段を備え
たものである。
【0017】上記発明によれば、共用化した電極を用い
た一体型センサによって、生体振動に基づく動的信号を
静電容量や発生電荷の変化で捉え、同時に生体の自重つ
まり体圧に基づく静的信号を抵抗値や電圧値のレベルと
して捉えることになる。共用化した第1または第2の電
極は信号の基準電圧点(または面)であり、回路構成の
簡素化が図れるとともに外来電磁波・振動ノイズを受け
にくくなる。この生体信号検出装置では、生体の体動と
体圧を同時に測定しているので、不在時に生体信号を算
出するといった誤判定をなくすことができる。体圧測定
手段と体動測定手段の片方からだけでは精度よく得られ
なかった体重、心拍、呼吸、活動量、生命状態等各種の
生体信号を高精度に得ることができる。また寝具やカー
ペット、浴槽、便座など生体が接する生活用品に組み込
むことで生体自身に何ら違和感を与えることなく健康状
態の判定を行える。設置環境に対する制約が少ないの
で、新築住宅のみならず既築住宅の設備に後から簡単に
取り付けることも可能である。
【0018】
【発明の実施の形態】本発明は、第1の電極と生体間に
形成される第1の静電容量と、第2の電極と生体間に形
成される第2の静電容量との直列接続静電容量に基づき
生体の振動信号を測定する体動測定手段と、第1または
第2の電極と第3の電極間の間に感圧素子より生体の自
重に伴う体圧信号を測定する体圧測定手段とを備え、さ
らに体動測定手段および体圧測定手段の出力によって生
体の特徴量を算出する算出手段を備えたものである。
【0019】そして同一の電極を用いて、生体の体動お
よび体圧を測定しているので、構成の簡素化が図れると
ともに外来電磁波ノイズを受けにくくなる。また不在時
に生体信号を算出するといった誤判定をなくすことがで
きる。体圧測定手段と体動測定手段の両者の出力から生
体の健康状態を判定するので、片方からだけでは精度よ
く得られなかった体重、心拍、呼吸、活動量、生命状態
等各種の特徴量を高精度に得ることができる。
【0020】また第1の電極と第2の電極の間に圧電体
を形成し、生体の振動によって発生した電荷を測定する
体動測定手段と、第1または第2の電極と第3の電極の
間の感圧素子により生体の自重に伴う体圧信号を測定す
る体圧測定手段とを備え、さらに体動測定手段および体
圧測定手段の出力によって生体の特徴量を算出する算出
手段を備えたものである。
【0021】そして圧電体に加えられたひずみに対応し
た電荷を測定することで生体が発生する振動レベルを定
量的に検出できる。圧電体は高インピーダンス材料であ
り、生体への悪影響は一切ない。万一圧電体が生体に触
れても、感電等の恐れはない。当然、生体にとって無拘
束、無意識的な測定が可能である。
【0022】また第1、第2、第3の電極は少なくとも
3層の導電層と各導電層に接続され、第1の導電層と第
2の導電層間または第2の導電層と第3の導電層間に生
体の体動または体圧を測定するための第1または第2検
知媒体層を形成したものである。
【0023】そして体動を測定するための電極と体圧を
測定するための第1または第2の電極が面状体の導電層
に接続されているので外来電磁波ノイズの影響を受けに
くくなる。各導電層上のどの位置も等電圧なので生体が
導電層上のどこにいても検出性能は同じである。検知媒
体層は面状なので生体の動きによる位置ずれは起きにく
く、断線や故障の危険性も少ない。生体に違和感を与え
ることもない。さらに電極の配置構成が単純なので、量
産化時に性能ばらつきが生じにくい。
【0024】また第1の検知媒体層は生体の体動を測定
し、第2の検知媒体層は生体の体圧を測定し、第1、第
2の検知媒体層を密着させ、第1の検知媒体層の両側面
に接続された電極の一方と第2の検知媒体層の両側面に
接続された電極の一方を共通化したものである。
【0025】そして構造がより簡単になり、同じ位置の
生体の体動と体圧を同時に検出することができる。
【0026】また第1、第2導電層および検知媒体層は
それぞれ可撓性を有し、一体成形した面状体のセンサシ
ートを構成してなるものである。
【0027】そしてこのセンサシートは可撓性を有して
いるので、寝具やカーペット、浴槽、便座など生体が接
する生活用品に容易に組み込むことが可能である。そし
て生体自身に何ら違和感を与えることなく無意識のうち
に健康状態の判定を行える。加工もしやすく、設置環境
に対する制約が少ないので、新築住宅のみならず既築住
宅の設備に後から簡単に取り付けることができる。特に
測定対象となる生体が、寝たきり高齢者、痴呆高齢者、
身体障害者あるいは乳幼児やペット動物などの場合に
も、その生体の自然な生活動作を何ら邪魔することなく
長期間の生体信号検出が連続的に実施できる。
【0028】またセンサシートは、複数の通気孔を有す
ることを特徴とするものである。そして通気孔を有する
ことで、センサシートを寝具などに埋設した場合でも生
体の発汗・呼吸などの代謝を妨げることはない。
【0029】また通気孔の内側に防水膜を密着させたこ
とを特徴とするものである。そして防水膜を構成するこ
とによって、通気孔からセンサシート内部に水分が浸透
し、体動や体圧の検出感度が経時劣化しにくくなり、高
寿命化を図ることができる。
【0030】また複数の体圧測定手段の出力に応じて当
該体動測定手段の出力を合成する合成手段を備えたもの
である。
【0031】これによりセンサシート上に生体が乗って
いるエリアの出力信号だけを生体の体動信号として抽出
し、合成するので不要な振動信号が除去される。つまり
S/N比が飛躍的に向上する。
【0032】また第1の導電層と第2の導電層間には圧
力によって厚みが変化する弾性絶縁層を備えたものであ
る。
【0033】そして生体が第1および第2の導電層上に
乗ると、安静状態でも発生する生体振動によって弾性絶
縁層の厚みが時間変化する。第1および第2の導電層の
面積や弾性絶縁層の比誘電率は一定なので、第1の導電
層と第2の導電層間で測定できる静電容量は生体の体動
に対応した値となる。
【0034】また第2の導電層と第3の導電層間は圧力
によって電気的に接続する多孔つき弾性絶縁層を備えた
ものである。
【0035】そして生体が第2および第3の導電層上に
乗ると、第2の導電層と第3の導電層間の抵抗値は低イ
ンピーダンス(導通)となる。逆に生体が第2および第
3の導電層上から離れると、第2の導電層と第3の導電
層間の抵抗値は高インピーダンス(断線)となる。これ
により生体の自重に見合う圧力がかかっているかどうか
で体圧の有無を判定できる。
【0036】また第2の導電層と第3の導電層間は導電
ゴム、導電カーボンなど圧力によって抵抗値が変化する
感圧抵抗層を備えたものである。
【0037】そして感圧抵抗層により生体の体圧は2値
化されたオンオフ信号ではなく、体重に対応した連続値
として得ることができる。
【0038】また体圧測定手段の出力信号または出力変
化速度が所定値以下の場合、体動測定手段の出力を初期
化する体動信号校正手段を備えたものである。
【0039】そして体動信号校正手段により、生体が不
在の場合でも経時変化や温湿度環境によって変動する体
動測定手段の出力が安定し、より精度よく生体の体動信
号を測定できる。
【0040】また体圧測定手段の出力信号が所定値以下
の継続時間を計時するタイマー手段と、タイマー手段に
より継続時間が所定時間以上経過した場合、体圧測定手
段の出力を初期化する体圧信号校正手段を備えたもので
ある。
【0041】そして体圧信号校正手段により、あらかじ
め生体が不在の場合にも存在する残差圧力分を自動的に
差し引いておくことで生体の真の体圧信号を測定でき
る。
【0042】また体動測定手段および体圧測定手段の出
力信号を周波数領域で合成する信号合成手段と、信号合
成手段の出力から体重、心拍数、呼吸数、活動量などの
生体信号を算出する算出手段を備えたものである。
【0043】そこで所定周波数以上で高精度な出力特性
を持つ体動測定手段の出力と、直流または直流に近い低
周波域で高精度な出力特性を持つ体圧測定手段の出力を
周波数領域で合成することによって生体信号の算出誤差
を低減することができる。
【0044】また信号合成手段は、所定周波数における
体圧測定手段のパワー値に基づき体動測定手段の出力信
号のパワースペクトルを補正あるいは所定周波数におけ
る体動測定手段のパワー値に基づき体圧測定手段のパワ
ースペクトルを補正するものである。
【0045】そこで生体の活動や心拍動、呼吸運動など
生体振動の加速度(または変位、速度)レベルが各周波
数ごとのパワー値として精度よく検出できる。
【0046】以下本発明の第1の実施例について図面を
用いて説明する。 (実施例1)図1は本発明の実施例1の生体信号検出装
置のブロック図である。また図2は同装置の外観図であ
る。図3は同装置の要部断面図である。図4は同装置の
センサ入力回路図である。
【0047】図1において15は生体であり、16は生
体15が接するセンサシート、17は信号処理装置であ
る。センサシート16には第1の電極18、第2の電極
19、第3の電極20が取りつけられている。生体15
がこのセンサシート16の上に乗った場合、生体15と
第1の電極18との間に静電容量C00が形成されまた生
体15と第2の電極との間に静電容量C01が形成され
る。つまり第1の電極18と第2の電極19との間には
生体15の存在に伴う合成静電容量C0が発生する。さ
らに生体15が存在しなくても第1の電極18と第2の
電極19との間に静電容量C02が形成されている場合、
合成静電容量C0は、
【0048】
【数1】
【0049】となる。また第2の電極19と第3の電極
20との間に感圧スイッチSW0を埋設し、生体15が
このセンサシート16上に乗ればON、離れればOFF
するように構成してある。信号処理装置17は、体動測
定手段21、体圧測定手段22および算出手段23から
なる。センサシート16に接続された第1の電極18お
よび第2の電極19は体動測定手段21に接続され、第
2の電極19と第3の電極20は体圧測定手段22に接
続されている。体動測定手段21は静電容量C0の時間
変化から生体15の振動信号を測定し、体圧測定手段2
2は生体15の体圧有無を判定する。体動測定手段21
および体圧測定手段22は、算出手段23に接続されて
いる。算出手段23は、体圧測定手段22の出力からセ
ンサシート16上に体圧があると判定した場合、体動測
定手段21の出力に基づく振動加速度の実効値を生体1
5の活動量として算出するものである。
【0050】図2、図3を用いてセンサシート16の構
成を説明する。第1の電極18、第2の電極19、第3
の電極20はそれぞれ第1の導電層24、第2の導電層
26、第3の導電層28に接続されている。第1の導電
層24と第2の導電層26の間には誘電性を有するゴ
ム、ウレタンなどの弾性絶縁層25が挿入されている。
また第2の導電層26と第3の導電層28の間には絶縁
スペーサー27がドット状に配置されている。絶縁スペ
ーサー27が配置されてない箇所は空隙部を形成してい
る。第2の導電層26と第3の導電層28の間は、例え
ば1000[N/m2]以上といった所定圧力がかかって
いないときは電気的に絶縁されているが、所定圧力がか
かっているときは電気的に導通する感圧スイッチ構成で
ある。センサシート16中の第1の導電層24、弾性絶
縁層25、第2の導電層26、絶縁スペーサー27、第
3の導電層28は一体に形成され可撓性を有している。
また厚みは2mm程度であり、寝具等の下にこのセンサシ
ート16を敷いておくだけで、生体15に何ら悪影響を
与えることなく無意識のまま生体信号を検出することが
できる。また既存のいろいろなタイプのベッドに後から
取りつけることも可能である。
【0051】次に図4を用いて信号処理装置17の中に
あるセンサシート16の入力回路構成を説明する。体動
測定手段21と体圧測定手段22の共通電極である第2
の電極19には基準電圧としてE0を供給している。体
動測定手段21にはオペアンプOP1、固定抵抗器R1、
コンデンサC1が設けられている。生体15の体動によ
り合成静電容量C0(t)が変化すると、第1の電極1
8と第2の電極19間に発生する電荷Q(t)は、
【0052】
【数2】
【0053】という時間関数となるので流れる電流I
(t)は、
【0054】
【数3】
【0055】ここでV1(t)はオペアンプOP1の出力
電圧である。ゆえに、
【0056】
【数4】
【0057】であるが、R1が非常に大きければ、左辺
第2項は無視できるので、
【0058】
【数5】
【0059】のように変形できる。つまり静電容量C0
(t)に比例した電圧出力V1(t)を得ることにな
る。このオペアンプOP1には、増幅部21a、A/D
変換部21bが接続されており、電圧出力V1(t)の
信号を増幅部21aでアナログ増幅後、A/D変換部2
1bでデジタル値に変換される。一方体圧測定手段22
において、第2の電極19と第3の電極20間には体圧
の有無によってオンオフする感圧スイッチはSW0が、
固定抵抗器R2と直列接続されている。つまり第2の電
極19は常時E0[V]であるのに対し第3の電極20
は感圧スイッチSW0オンでほぼE0[V]に、感圧スイ
ッチSW1オフでほぼ0[V]になる。これを固定抵抗
器R3とR4で分割された比較電圧E0・R4/(R3+R
4)と比較して第3の電極20における電圧の方が高け
ればロー、低ければハイとなるようにコンパレーターO
P2が接続されている。コンパレーターOP2の出力は計
数部22a、体圧有無判定部22cに接続され、所定時
間分のハイまたはローの総数で体圧の有無を判定する。
クロック22bは計数部22aおよびA/D変換部21
bに接続され、例えば10msごとに発生するパルスに
よって体圧信号の計数および体動信号のA/D変換を同
時に行う基準クロックを生成している。
【0060】尚、ここでは説明簡単化のため基準電圧E
0や入力信号に重畳するノイズを除去したり、インピー
ダンス変換や閾値変換により入力信号を安定化する回路
構成は図示しなかった。静電容量C0(t)を測定する
には従来例のように発振回路を構成して測定しても構わ
ない。生体15の存在する時の静電容量C0(t)の変
化を測定するために体圧のない時のC0の値を保持して
おき、体圧がある時の静電容量C0(t)との偏差だけ
を差動増幅する構成を備えてもよい。また基準電圧E0
を交流電圧源としてもよい。直流に近い低周波信号を検
出しないよう、ハイパスフィルターを構成したり、直流
分をカットして交流信号だけを増幅する構成を備えても
よい。さらに第1の導電層24、弾性絶縁層25、第2
の導電層26、絶縁スペーサー27、第3の導電層28
をフィルム状シートとして説明したが、例えばこれを可
撓性の同軸ケーブル状に一体成形し、検出したい領域に
配置しても構わない。
【0061】(実施例2)図5は、本発明の実施例2の
生体信号検出装置の要部断面図である。図6は同装置の
センサ入力回路図である。実施例1と同じ機能を有する
構成要素は同一番号を付与し、説明を省略する。図5に
おいて実施例1と異なる点は、第2の導電層26と第3
の導電層28の間に絶縁スペーサー27ではなく導電性
ゴムなどの均一の厚みを持った感圧抵抗層29が挿入さ
れている点にある。図6において感圧抵抗層29は体圧
によって抵抗値が連続的に変化する可変抵抗R0で表せ
る。第3の電極20には、
【0062】
【数6】
【0063】なる体圧に応じた電圧V2が生じている。
22dは第2のA/D変換部であり、クロック22bで
与えられる10msごとのパルスによってアナログ電圧
信号をデジタル化する。
【0064】尚、生体15の体圧を測定するのに、感圧
抵抗層29の代わりに可撓性を持った空気袋を設けこの
空気の圧力をダイヤフラム式の圧力センサで測定しても
よい。
【0065】(実施例3)図7は、本発明の実施例3の
生体信号検出装置の要部断面図である。図7において実
施例2と異なる点は、センサシート16上面をPETフ
ィルム等の防水材30でコーティングしていることと、
第2の電極26や第3の電極28をセンサシート16全
体に敷き詰めるのではなく両端部に配置したことにあ
る。
【0066】これによりセンサシート16の腐食等によ
る性能劣化がなくなるとともに構成の簡素化が図れる。
【0067】(実施例4)図8は、本発明の実施例4の
生体信号検出装置の要部断面図である。図8において実
施例3と異なる点は、センサシート16全体をPETフ
ィルム等の防水材30でコーティングしていることと、
多数の通気孔31を設けたことにある。これによりセン
サシート16両側面の通気が図れるとともに各導電層の
腐食がなくなる。センサシート16を寝具などに埋設し
た場合でも生体15の発汗・呼吸などの代謝を妨げるこ
とはない。
【0068】(実施例5)図9は、本発明の実施例5の
生体信号検出装置の要部構造図である。図10は同装置
のブロック図である。図9において実施例4と異なる点
は、センサシート16中に2次元アレイ状に独立配置し
た18枚のエリア別センサシート(16a、16b、1
6c、・・・)を設けたことにある。ここで第2の電極
19(19a、19b、19c)は全て等しい基準電圧
E0に接続してある。各エリア別センサシートの感圧抵
抗層29の出力は等価的に可変抵抗R0(R01、R02、
R03、・・・)で表せるがこの出力に応じ各体圧スイッ
チ32(32a、32b、32c、・・・)で所定圧力
以上が検出できれば、体動を測定するための合成静電容
量C0(C01、C02、C03、・・・)の出力信号を取り
出す第1の電極18(18a、18b、18c、・・
・)を接続し、そうでなければ接続しない構成である。
各体圧スイッチ32(32a、32b、32c、・・
・)の出力は体重測定手段33で加算され、生体15の
体重に相当するデジタル値として算出手段23に伝えら
れる。一方、第1の電極18(18a、18b、18
c、・・・)のうち体圧スイッチ32によって接続され
たもののみ体動測定手段21に並列接続されて入力され
る。つまり体動測定手段21に接続される静電容量C0a
ctは、
【0069】
【数7】
【0070】
【数8】
【0071】で表せる。生体15がセンサシート16に
乗っても寝姿勢や寝位置により、個々のエリア別センサ
シート(16a、16b、16c、・・・)全て均等に
体圧や体動が加わる訳ではない。また生体15の形状自
体にも凹凸があり、一般に体圧がかかっているエリアか
ら体動が有効に検出できる。なぜなら体圧がかかってい
ないエリアは生体15とセンサシート16の距離が離れ
ているので、体動による静電容量の変化もわずかであ
る。体動測定手段21で生体15の体動をするのに全て
の第1の電極を接続してしまうと、元々の合成静電容量
C0が大きいために同じ体動でもC0の変化の比率が相対
的に小さくなる。これに対し、体圧がかかっているエリ
アのみの合成静電容量Cactの変化を体動として検出す
れば体動信号の分解能ひいてはS/N比を向上させるこ
とができる。
【0072】尚、ここでは縦6行横3列としたが、空間
分解能はこれに限るものではない。また1次元配列にし
ても構わない。
【0073】(実施例6)図11は、本発明の実施例6
の生体信号検出装置のブロック図である。図12は圧電
体の出力周波数特性図である。図11において実施例5
と異なる点は、第1の導電層24と第2の導電層26の
間に誘電性を有するゴム、ウレタンなどの弾性絶縁層2
5が挿入されているのではなく、ポリフッ化ビニリデン
などのフィルム状の圧電体層が挿入されている点にあ
る。圧電体層は加えられた歪みに応じ電気的分極(電
荷)を発生する素子で、機械振動といった動的運動を測
定するために用いられる。図11が図10と異なるのは
第1の電極18(18a、18b、18c、・・・)と
第2の電極19(19a、19b、19c、・・・)の
間にコンデンサではなく圧電体層を等価的に示した振動
発振子X01、X02、X03、・・・を備えた点と、体圧の
かかっているエリアの圧電体層の出力を合成後、信号増
幅する増幅手段34を備えた点にある。増幅手段34は
出力インピーダンスが高い圧電体の信号を有効に取り出
すためFETでインピーダンス変換し、また増幅後の出
力電圧が飽和しないように自動増幅率制御(AGC)機
構を備え、常に最適なダイナミックレンジが得られるよ
うになっている。圧電体は一定温度以下では安定した出
力特性を持つが、図12に示すように材質、形状、検出
回路の入力インピーダンスなどの影響で直流に近い低周
波成分の出力ゲインが低下する微分型の特性を持った素
子である。尚、増幅手段34には微小振動検出に有利な
チャージアンプを用いてもよい。
【0074】上記構成により体圧のかかってないエリア
に生じた外来の振動ノイズ(例えば自動車、電車あるい
は無感地震、風など)を除外することができるので体動
信号のS/N比を向上させることができる。
【0075】(実施例7)図13は、本発明の実施例7
の生体信号検出装置のブロック図である。図14は感圧
抵抗層29の抵抗値と体圧、増幅率を示すグラフであ
る。図13において実施例6と異なる点は、各エリアご
とに体圧の大きさを測定する体圧測定手段35a、35
b、35c、・・・を設け、各エリアごとの体圧の大き
さに応じ連続的に増幅率を変える増幅手段36a、36
b、36c、・・・を設けている点である。感圧抵抗層
29の抵抗値R0i[Ω](i=1〜18)は素子の特性
に応じ、図14(a)のように体圧Pi[N/m2]に変
換され、さらに図14(b)のように増幅率Giに非線
形変換される。さらに各増幅手段36a、36b、36
c、・・・には絶対値化手段37a、37b、37c、
・・・が接続される。体動測定手段には絶対値化された
信号が加算される。
【0076】上記構成により全てのエリアの圧電体層か
らの信号は、実施例5のように所定体圧以上なら接続、
未満なら断線というのではなく、体圧に応じたなめらか
で連続的な体圧の関数としてエリアごとに重みづけされ
ているので、生体15がほんの少し移動しただけで出力
信号が不連続に大きく変化してしまう不都合がなくな
る。
【0077】また各エリアごとの体動信号を一旦絶対値
化してから合成しているので、信号を大きくすることが
できる。生体15が安静にしている場合、心拍動、血流
などによる周期的な生体振動が生体表面から生じている
が、生体部位別に時間差つまり位相ずれがあり、単純に
合成すると信号同士が打ち消しあう場合があるがこのよ
うな絶対値化手段37a、37b、37c、・・・を設
けることで得られる信号のS/N比を大きく保つことが
できる。
【0078】(実施例8)図15は、本発明の実施例8
の生体信号検出装置のブロック図である。図15が実施
例1と異なる点は、体圧測定手段22の出力が体動信号
校正手段38とタイマー手段39に接続され、さらにタ
イマー手段39が体圧信号校正手段40を介して体圧測
定手段22にあるいは体動信号校正38が体動測定手段
21に接続されている点である。体動信号校正手段38
は、例えば体圧測定手段22からの出力が1000[N
/m2]以下であれば生体15が存在しないと見なし、体
動測定手段21からの出力が最も小さくなるようにバイ
アスをかけてゼロ点調整する。同様にタイマー手段39
では、例えば体圧測定手段22からの出力が1000
[N/m2]以下であれば生体15が存在しないと見な
し、同一体圧の継続時間を計時する。この状態が例えば
10分間継続すれば、体圧信号校正手段40によって体
圧測定手段22の出力が0.0[N/m2]になるように
バイアスをかけてゼロ点調節する。タイマー手段39
は、10分間以内に体圧の値が変動すれば、計時をクリ
アするし、体圧が1000[N/m2]以上では計時自体
を禁止する構成である。体圧測定手段22のセンサ感度
にも依存するが、生体15は生命活動をしている限り完
全に静止しているとは考えられない。よって体圧測定手
段22の出力をゼロ点調整する体圧信号校正手段40を
設けることで、はじめからセンサシート16上に乗って
いた敷き布団、枕などの不要物の重量をキャンセルする
ことができる。感圧抵抗素子のクリープ特性などにより
同一重量でも出力抵抗値が異なっている場合でも、体圧
信号を不在状態から在状態に変化した時の差として確実
に捉えることができる。これは生体15の体重などを精
度よく測定するのに好都合である。また体動測定手段2
1の出力をゼロ点調整する体動信号校正手段38を設け
ることで、生体15が存在しないのに継続的に発生して
いる暗振動や温湿度環境の変化等によって生じる基線の
同様を自動的に打ち消すことができる。これにより生体
15が不在から在に変わった瞬間から生体15の体動信
号だけを有効に検出してくることが可能になる。
【0079】(実施例9)図16は、本発明の実施例9
の生体信号検出装置のブロック図である。図17は生体
15がセンサシート16上に安静仰臥位でいる場合に得
られるパワースペクトル、図18は体動測定手段21と
体圧測定手段22の合成比を示した図である。図16が
実施例1と異なる点は、体動測定手段21の出力が第1
の周波数変換手段41で周波数軸上のパワースペクトル
として、また体圧測定手段22の出力が第2の周波数変
換手段42で周波数軸上のパワースペクトルとして表現
され、両者がパワースペクトル合成手段43で1つのパ
ワースペクトルとして合成される点である。パワースペ
クトル合成手段43は心拍数算出手段44、呼吸数算出
手段45、活動量算出手段46に接続され、さらに体圧
測定手段22に接続された体重測定手段33とともに表
示手段47に接続されている。表示手段47では現在の
生体15の心拍数、呼吸数、活動量、体重を表示・蓄積
する。第1の周波数変換手段41や第2の周波数変換手
段42からは図17に示すようなパワースペクトルのグ
ラフを得ることができるが、直流または低周波で高精度
な信号を得られる第1の周波数変換手段41のパワース
ペクトルと所定周波数より高周波域で高精度な信号を得
られる第2の周波数変換手段42のパワースペクトルは
図18に示すような合成比で1つのパワースペクトルに
まとめる構成である。図17において0.2Hz近傍のピ
ークfrespは呼吸周波数、1Hz近傍のピークfhrは心拍
周波数を示している。また活動量は0.1Hzから10Hz
におけるパワー積算値(面積)で定義するものとする。
心拍数算出手段44や呼吸数算出手段45で心拍数や呼
吸数を算出するには、それぞれ所定周波数帯(例えば心
拍数は0.5Hz〜2.0Hz、呼吸数は0.05Hz〜0.
4Hz)におけるピーク点を発見することで心拍数や呼吸
数に換算する。さらに表示手段47には異常報知手段4
8が接続されている。生体15の体圧がある状態で、生
命活動が停止または活動量が所定レベル以下になった場
合や、心拍数や呼吸数が所定範囲を逸脱した場合に警報
音を発して緊急事態を報知する構成である。異常報知手
段48はタイマーと組み合わせ長期的なトレンド変化か
ら体調や健康状態の異変を判定し、警告を発するように
してもよい。心拍数や呼吸数の値だけでなく、心拍動や
呼吸運動の強さを当該ピーク周波数点におけるパワー値
として蓄積・表示してもよい。また心拍数、呼吸数の算
出に関して、心拍動や呼吸運動に伴う波形は理想的な正
弦波ではないため基本周波数の高調波が立つことが多
い。誤算出を防ぐためにさらにケプストラム変換して、
基本波だけを抽出してもよいしピーク点の候補の中から
2倍周波数点を削除する方法を用いてもよい。ここで第
1の周波数変換手段41ないし第2の周波数変換手段4
2は、例えばサンプリング周波数200Hzでサンプリン
グされた1分間分の時系列信号を5秒毎に順次ずらしな
がら周波数変換するものである。安静状態の時は、心拍
数や呼吸数が2倍以上や1/2以下に急変することは考
えにくいので心拍数や呼吸数の算出周波数帯(可動範
囲)を前回の算出結果に基づいて、適応的に規定しても
よい。比較的急峻なパルス状のR波成分を含む心拍動と
呼吸運動を分離するためにはあらかじめフィルターをか
けておいてもよい。周波数軸状で合成した後に時間軸状
に戻してから心拍数や呼吸数、活動量などを算出しても
よい。
【0080】また2つのパワースペクトラムを合成する
には特定周波数例えば1Hzにおけるパワー値の平均値を
基準点とし、それ以上の周波数帯は第1の周波数変換手
段41のパワースペクトル、それ未満の周波数帯は第2
の周波数変換手段42のパワースペクトルを元にスライ
ドあるいは線形変換によって合成してもよい。
【0081】これにより同一のセンサシート16に内蔵
された2種類のセンサの利点を活かしあった生体信号検
出が可能になり、温湿度環境や暗振動、電磁波などの外
来ノイズに対する影響を低減することができる。
【0082】
【発明の効果】以上の説明から明らかなように本発明の
生体信号検出装置によれば、次の効果が得られる。
【0083】(1)体動測定と体圧測定のための電極を
共用化しているので、構成の簡素化が図れるとともに外
来電磁波・振動ノイズを受けにくくなる。また2種類の
センサ出力結果から生体信号を検出しているので不在時
に生体信号を算出するといった誤判定をなくし、体重、
心拍、呼吸、活動量、生命状態等各種の生体信号を高精
度に得ることができる。
【0084】(2)体動測定に圧電体を用いているので
生体への悪影響は一切なく、無意識的な測定が可能であ
る。万一圧電体が生体に触れても、感電等の恐れはな
い。当然、生体にとって無拘束、無意識的な測定が可能
である。
【0085】(3)各電極が面状体の導電層に接続され
ているので、生体が導電層上のどこにいても検出性能は
同じである。生体の動きによる位置ずれは起きにくく、
故障の危険性も少ない。電極の配置構成が単純なので、
量産化時に性能ばらつきが生じにくい。
【0086】(4)導電層なしで2種類の検知媒体層を
密着させて検出しているので、構造がより簡単になり、
同じ位置の生体の体動と体圧を同時に検出することがで
きる。
【0087】(5)可撓性のセンサシートを設けたの
で、寝具やカーペット、浴槽、便座など生体が接する生
活用品に容易に組み込むことが可能である。加工もしや
すく、設置環境に対する制約が少ないので、新築住宅の
みならず既築住宅の設備に後から簡単に取り付けること
ができる。特に測定対象となる生体が、寝たきり高齢
者、痴呆高齢者、身体障害者あるいは乳幼児やペット動
物などの場合にも、その生体の自然な生活動作を何ら邪
魔することなく長期間の生体信号検出が連続的に実施で
きる。
【0088】(6)複数の通気孔を有するので、センサ
シートを寝具などに埋設した場合でも生体の発汗・呼吸
などの代謝を妨げることはない。
【0089】(7)防水膜を設けたので、検出感度が経
時劣化しにくくなり、高寿命化を図ることができる。
【0090】(8)複数のセンサシートを設け、生体が
存在するエリアの有効な生体信号を選択的に取り出せる
ので、不要な振動信号が除去され、S/N比が飛躍的に
向上する。
【0091】(9)弾性絶縁体により、生体の体動に対
応した静電容量を得ることができる。
【0092】(10)多孔つき弾性絶縁体により、生体
の自重に見合う体圧の有無を判定できる。
【0093】(11)感圧抵抗層により、生体の体圧は
体重に対応した連続値として得ることができる。
【0094】(12)体動信号校正手段により、経時変
化や温湿度環境に対しても精度よく測定できる。
【0095】(13)体圧信号校正手段により、生体の
真の体圧信号を測定できる。 (14)体動測定手段の出力と体圧測定手段の出力を周
波数領域で合成することにより、生体信号の算出誤差を
低減することができる。
【0096】(15)体動測定手段のパワースペクトル
および体圧測定手段のパワースペクトルを補正すること
により、生体の周期的振動が各周波数ごとのパワー値と
して精度よく検出できる。
【図面の簡単な説明】
【図1】本発明の実施例1の生体信号検出装置のブロッ
ク図
【図2】同実施例の生体信号検出装置の外観図
【図3】同実施例の生体信号検出装置の要部断面図
【図4】同実施例の生体信号検出装置のセンサ入力回路
【図5】本発明の実施例2の生体信号検出装置の要部断
面図
【図6】同実施例の生体信号検出装置のセンサ入力回路
【図7】本発明の実施例3の生体信号検出装置の要部断
面図
【図8】本発明の実施例4の生体信号検出装置の要部断
面図
【図9】本発明の実施例5の生体信号検出装置の要部構
造図
【図10】同実施例の生体信号検出装置のブロック図
【図11】本発明の実施例6の生体信号検出装置のブロ
ック図
【図12】同実施例の圧電体の出力周波数特性図
【図13】本発明の実施例7の生体信号検出装置のブロ
ック図
【図14】(a)同実施例において感圧抵抗層29の抵
抗値と体圧を示すグラフ (b)同実施例において感圧抵抗層29の増幅率と体圧
を示すグラフ
【図15】本発明の実施例8の生体信号検出装置のブロ
ック図
【図16】本発明の実施例9の生体信号検出装置のブロ
ック図
【図17】同実施例の生体信号のパワースペクトルを示
す図
【図18】体動測定手段21と体圧測定手段22の合成
比を示した図
【図19】従来の静電容量型の生体信号検出装置を示す
【図20】従来の静電容量型と感圧型を併用した他の生
体信号検出装置を示す図
【符号の説明】
15 生体 16 センサシート 17 信号処理装置 18 第1の電極 19 第2の電極 20 第3の電極 21 体動測定手段 22 体圧測定手段 23 算出手段 24 第1の導電層 25 弾性絶縁層 26 第2の導電層 27 絶縁スペーサー 28 第3の導電層 29 感圧抵抗層 30 防水材 31 通気孔 32 体圧スイッチ 33 体重測定手段 35 体圧測定手段 38 体動信号校正手段 39 タイマー手段 40 体圧信号校正手段 41 第1の周波数変換手段 42 第2の周波数変換手段 43 パワースペクトル合成手段 44 心拍数算出手段 45 呼吸数算出手段 46 活動量算出手段
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61B 5/11 0277−2J A61B 5/10 310Z

Claims (15)

    【特許請求の範囲】
  1. 【請求項1】第1の電極と生体間に形成される第1の静
    電容量と、第2の電極と前記生体間に形成される第2の
    静電容量との直列接続静電容量に基づき前記生体の振動
    信号を測定する体動測定手段と、前記第1または第2の
    電極と第3の電極の間の感圧素子により前記生体の自重
    に伴う体圧を測定する体圧測定手段とを備え、さらに前
    記体動測定手段および前記体圧測定手段の出力によって
    前記生体の特徴量を算出する算出手段を備えた生体信号
    検出装置。
  2. 【請求項2】第1の電極と第2の電極の間に圧電体を形
    成し、生体の振動によって発生した電荷を測定する体動
    測定手段と、前記第1または第2の電極と第3の電極の
    間の感圧素子により前記生体の自重に伴う体圧信号を測
    定する体圧測定手段とを備え、さらに前記体動測定手段
    および前記体圧測定手段の出力によって前記生体の特徴
    量を算出する算出手段を備えた生体信号検出装置。
  3. 【請求項3】第1、第2、第3の電極は少なくとも3層
    の導電層と前記各導電層に接続され、第1の導電層と第
    2の導電層間または第2の導電層と第3の導電層間に生
    体の体動または体圧を測定するための第1または第2検
    知媒体層を形成した請求項1または2記載の生体信号検
    出装置。
  4. 【請求項4】第1の検知媒体層は生体の体動を測定し、
    第2の検知媒体層は前記生体の体圧を測定し、第1、第
    2の検知媒体層を密着させ、前記第1の検知媒体層の両
    側面に接続された電極の一方と前記第2の検知媒体層の
    両側面に接続された電極の一方を共通化した請求項3記
    載の生体信号検出装置。
  5. 【請求項5】第1、第2導電層および検知媒体層はそれ
    ぞれ可撓性を有し、一体成形した面状体のセンサシート
    を構成してなる請求項3または4記載の生体信号検出装
    置。
  6. 【請求項6】センサシートは複数の通気孔を有すること
    を特徴とする請求項5記載の生体信号検出装置。
  7. 【請求項7】通気孔の内側に防水膜を密着させたことを
    特徴とする請求項6記載の生体信号検出装置。
  8. 【請求項8】複数の体圧測定手段の出力に応じて当該体
    動測定手段の出力を合成する合成手段を備えた請求項5
    記載の生体信号検出装置。
  9. 【請求項9】第1の導電層と第2の導電層間には圧力に
    よって厚みが変化する弾性絶縁層を備えた請求項3記載
    の生体信号検出装置。
  10. 【請求項10】第2の導電層と第3の導電層間は圧力に
    よって電気的に接続する多孔つき弾性絶縁層を備えた請
    求項3記載の生体信号検出装置。
  11. 【請求項11】第2の導電層と第3の導電層間は導電ゴ
    ム、導電カーボンなど圧力によって抵抗値が変化する感
    圧抵抗層を備えた請求項3記載の生体信号検出装置。
  12. 【請求項12】体圧測定手段の出力信号または出力変化
    速度が所定値以下の場合、体動測定手段の出力を初期化
    する体動信号校正手段を備えた請求項1ないし11のい
    ずれか1項記載の生体信号検出装置。
  13. 【請求項13】体圧測定手段の出力信号が所定値以下の
    継続時間を計時するタイマー手段と、前記タイマー手段
    により前記継続時間が所定時間以上経過した場合、前記
    体圧測定手段の出力を初期化する体圧信号校正手段を備
    えた請求項1ないし12のいずれか1項記載の生体信号
    検出装置。
  14. 【請求項14】体動測定手段および体圧測定手段の出力
    信号を周波数領域で合成する信号合成手段と、前記信号
    合成手段の出力特長量を算出する算出手段を備えた請求
    項1ないし13のいずれか1項記載の生体信号検出装
    置。
  15. 【請求項15】信号合成手段は所定周波数における体圧
    測定手段のパワー値に基づき体動測定手段の出力信号の
    パワースペクトルを補正あるいは所定周波数における体
    動測定手段のパワー値に基づき体圧測定手段のパワース
    ペクトルを補正することを特徴とする請求項14記載の
    生体信号検出装置。
JP17472396A 1996-07-04 1996-07-04 生体信号検出装置 Expired - Fee Related JP3564878B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17472396A JP3564878B2 (ja) 1996-07-04 1996-07-04 生体信号検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17472396A JP3564878B2 (ja) 1996-07-04 1996-07-04 生体信号検出装置

Publications (2)

Publication Number Publication Date
JPH1014889A true JPH1014889A (ja) 1998-01-20
JP3564878B2 JP3564878B2 (ja) 2004-09-15

Family

ID=15983535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17472396A Expired - Fee Related JP3564878B2 (ja) 1996-07-04 1996-07-04 生体信号検出装置

Country Status (1)

Country Link
JP (1) JP3564878B2 (ja)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010477A (ja) * 1999-06-24 2001-01-16 Akebono Brake Ind Co Ltd マスターシリンダ内液圧検出装置
JP2001070256A (ja) * 1998-07-29 2001-03-21 Denso Corp 生体モニタ装置
JP2001128948A (ja) * 1999-11-02 2001-05-15 Amenitex Inc 生命徴候検知及びトイレ異常判断を行う装置
JP2001134864A (ja) * 1999-11-02 2001-05-18 Amenitex Inc 生命徴候検知及び浴室異常判断を行う装置
JP2001134863A (ja) * 1999-11-02 2001-05-18 Amenitex Inc 生命徴候検知及び浴室異常判断を行う装置
JP2001149185A (ja) * 1999-10-19 2001-06-05 Thomas Hilfen Hilbeg Gmbh & Co Kg 横臥している人体からの値を測定する装置および方法、および圧力センサー
JP2001340318A (ja) * 2000-05-31 2001-12-11 Secom Co Ltd 静電容量型計測装置及び呼吸計測装置
WO2003000126A1 (fr) * 2001-06-25 2003-01-03 Advanced Medical Inc. Detecteur biophysiologique
JP2003339652A (ja) * 2002-03-19 2003-12-02 Sanyo Electric Co Ltd 心拍/呼吸計測装置及びこれに用いるシート状センサー
US7048697B1 (en) * 1999-11-24 2006-05-23 M-I-Laboratories Corporation Biological information collecting device comprising closed pneumatic sound sensor
JP2008051660A (ja) * 2006-08-24 2008-03-06 Yaskawa Electric Corp 微小圧力検出装置
JP2008125595A (ja) * 2006-11-17 2008-06-05 Matsushita Electric Works Ltd 生体情報検出装置、睡眠環境制御システムおよび生体情報検出方法
JP2008541977A (ja) * 2005-06-07 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 患者モニタリングシステム及び方法
WO2011080191A1 (en) 2009-12-28 2011-07-07 Gambro Lundia Ab Monitoring blood pressure
US8123685B2 (en) 2005-10-11 2012-02-28 Koninklijke Philips Electronics N.V. System for monitoring a number of different parameters of a patient in a bed
JP2012112664A (ja) * 2010-11-19 2012-06-14 Panasonic Corp 目覚まし装置
JP2012254210A (ja) * 2011-06-09 2012-12-27 Yuan Ze Univ 非察知式活動検知装置及びその方法
JP2013514853A (ja) * 2009-12-21 2013-05-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ センサシステム
JP2013090806A (ja) * 2011-10-26 2013-05-16 Seric Ltd 体動・離床複合センサ
JP2013220232A (ja) * 2012-04-17 2013-10-28 Sanwa Newtec Co Ltd 生体センサー
JP2013226881A (ja) * 2012-04-24 2013-11-07 Autoliv Development Ab センサベルト装置
WO2014185397A1 (ja) * 2013-05-13 2014-11-20 ヘルスセンシング株式会社 人の健康状態検出方法及び健康状態検出装置
JP2015020015A (ja) * 2013-07-23 2015-02-02 積水化学工業株式会社 生体信号センサ及びこれを用いた生体信号センサシステム
JP2015154926A (ja) * 2014-01-17 2015-08-27 積水化学工業株式会社 生体検出システム
JP2015157048A (ja) * 2014-02-25 2015-09-03 積水化学工業株式会社 生体検出システム
JP2016014684A (ja) * 2015-09-24 2016-01-28 シャンミン ヤン 感知装置
WO2016034147A1 (zh) * 2014-09-05 2016-03-10 胡琨 采集人体生理信号的方法、弹簧床垫及系统
WO2016034146A1 (zh) * 2014-09-05 2016-03-10 杨松 采集人体生理信号的方法、垫子及系统
US20160375210A1 (en) * 2013-03-14 2016-12-29 Carefusion 2200, Inc. Resuscitation device with onboard processor
JP2017169881A (ja) * 2016-03-24 2017-09-28 拓夫 高井 離床センサおよび離床状態判定装置
JP2017196286A (ja) * 2016-04-28 2017-11-02 株式会社タニタ 離床判定装置、離床判定システム、及び離床判定プログラム
JP2018102710A (ja) * 2016-12-27 2018-07-05 株式会社豊田中央研究所 心電計測装置、方法及びプログラム
CN108498083A (zh) * 2017-02-24 2018-09-07 深圳市迈迪加科技发展有限公司 一种生理信息监测装置以及方法
WO2019107012A1 (ja) * 2017-11-30 2019-06-06 パラマウントベッド株式会社 異常報知装置、記録媒体及び異常報知方法
JP2019097829A (ja) * 2017-11-30 2019-06-24 パラマウントベッド株式会社 異常報知装置及びプログラム
JP2020115943A (ja) * 2019-01-18 2020-08-06 国立大学法人大阪大学 情報処理装置、情報処理システム、およびセンサ装置
EP3769674A1 (en) * 2019-07-23 2021-01-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Heart monitoring system and method
JP2021096202A (ja) * 2019-12-19 2021-06-24 東洋インキScホールディングス株式会社 センサシステム
CN113491415A (zh) * 2020-04-07 2021-10-12 Lg电子株式会社 床的控制方法
JP2022008947A (ja) * 2016-04-28 2022-01-14 株式会社タニタ 離床判定装置、離床判定システム、及び離床判定プログラム
CN114680860A (zh) * 2022-03-31 2022-07-01 慕思健康睡眠股份有限公司 一种生理体征监测系统及方法
KR20230029339A (ko) * 2021-08-24 2023-03-03 (주)허니냅스 생체신호 모니터링 장치 및 그 동작방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974905B1 (ko) * 2017-06-16 2019-05-03 전남대학교산학협력단 무구속적 생체신호 측정센서 및 이를 포함하는 생체신호 측정시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164435A (ja) * 1986-01-14 1987-07-21 斉藤 元章 生体情報検出装置
JPS63238502A (ja) * 1987-03-27 1988-10-04 Yokohama Rubber Co Ltd:The 近接覚・触覚センサ
JPH0248252B2 (ja) * 1979-03-13 1990-10-24 Instrumentarium Oy
JPH0731592A (ja) * 1993-07-26 1995-02-03 Matsushita Electric Ind Co Ltd 就寝装置
JPH08131407A (ja) * 1994-11-04 1996-05-28 Matsushita Electric Ind Co Ltd 在床検知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0248252B2 (ja) * 1979-03-13 1990-10-24 Instrumentarium Oy
JPS62164435A (ja) * 1986-01-14 1987-07-21 斉藤 元章 生体情報検出装置
JPS63238502A (ja) * 1987-03-27 1988-10-04 Yokohama Rubber Co Ltd:The 近接覚・触覚センサ
JPH0731592A (ja) * 1993-07-26 1995-02-03 Matsushita Electric Ind Co Ltd 就寝装置
JPH08131407A (ja) * 1994-11-04 1996-05-28 Matsushita Electric Ind Co Ltd 在床検知装置

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070256A (ja) * 1998-07-29 2001-03-21 Denso Corp 生体モニタ装置
JP2001010477A (ja) * 1999-06-24 2001-01-16 Akebono Brake Ind Co Ltd マスターシリンダ内液圧検出装置
JP2001149185A (ja) * 1999-10-19 2001-06-05 Thomas Hilfen Hilbeg Gmbh & Co Kg 横臥している人体からの値を測定する装置および方法、および圧力センサー
JP2001128948A (ja) * 1999-11-02 2001-05-15 Amenitex Inc 生命徴候検知及びトイレ異常判断を行う装置
JP2001134864A (ja) * 1999-11-02 2001-05-18 Amenitex Inc 生命徴候検知及び浴室異常判断を行う装置
JP2001134863A (ja) * 1999-11-02 2001-05-18 Amenitex Inc 生命徴候検知及び浴室異常判断を行う装置
US7048697B1 (en) * 1999-11-24 2006-05-23 M-I-Laboratories Corporation Biological information collecting device comprising closed pneumatic sound sensor
JP2001340318A (ja) * 2000-05-31 2001-12-11 Secom Co Ltd 静電容量型計測装置及び呼吸計測装置
JP2003000552A (ja) * 2001-06-25 2003-01-07 Advanced Medical Kk 生体生理検出装置
WO2003000126A1 (fr) * 2001-06-25 2003-01-03 Advanced Medical Inc. Detecteur biophysiologique
JP2003339652A (ja) * 2002-03-19 2003-12-02 Sanyo Electric Co Ltd 心拍/呼吸計測装置及びこれに用いるシート状センサー
JP2008541977A (ja) * 2005-06-07 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 患者モニタリングシステム及び方法
US9788791B2 (en) 2005-06-07 2017-10-17 Koninklijke Philips N.V. Patient monitoring system and method
US8123685B2 (en) 2005-10-11 2012-02-28 Koninklijke Philips Electronics N.V. System for monitoring a number of different parameters of a patient in a bed
JP2008051660A (ja) * 2006-08-24 2008-03-06 Yaskawa Electric Corp 微小圧力検出装置
JP2008125595A (ja) * 2006-11-17 2008-06-05 Matsushita Electric Works Ltd 生体情報検出装置、睡眠環境制御システムおよび生体情報検出方法
JP2013514853A (ja) * 2009-12-21 2013-05-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ センサシステム
WO2011080191A1 (en) 2009-12-28 2011-07-07 Gambro Lundia Ab Monitoring blood pressure
JP2012112664A (ja) * 2010-11-19 2012-06-14 Panasonic Corp 目覚まし装置
JP2012254210A (ja) * 2011-06-09 2012-12-27 Yuan Ze Univ 非察知式活動検知装置及びその方法
JP2013090806A (ja) * 2011-10-26 2013-05-16 Seric Ltd 体動・離床複合センサ
JP2013220232A (ja) * 2012-04-17 2013-10-28 Sanwa Newtec Co Ltd 生体センサー
JP2013226881A (ja) * 2012-04-24 2013-11-07 Autoliv Development Ab センサベルト装置
US11135383B2 (en) 2013-03-14 2021-10-05 Vyaire Medical Consumables Llc Resuscitation device with onboard processor
US10022513B2 (en) * 2013-03-14 2018-07-17 Vyaire Medical Consumables Llc Resuscitation device with onboard processor
US20160375210A1 (en) * 2013-03-14 2016-12-29 Carefusion 2200, Inc. Resuscitation device with onboard processor
WO2014185397A1 (ja) * 2013-05-13 2014-11-20 ヘルスセンシング株式会社 人の健康状態検出方法及び健康状態検出装置
JP2017192825A (ja) * 2013-05-13 2017-10-26 ヘルスセンシング株式会社 人の健康状態検出装置
JPWO2014185397A1 (ja) * 2013-05-13 2017-02-23 ヘルスセンシング株式会社 人の健康状態検出方法及び健康状態検出装置
JP2015020015A (ja) * 2013-07-23 2015-02-02 積水化学工業株式会社 生体信号センサ及びこれを用いた生体信号センサシステム
JP2015154926A (ja) * 2014-01-17 2015-08-27 積水化学工業株式会社 生体検出システム
JP2015157048A (ja) * 2014-02-25 2015-09-03 積水化学工業株式会社 生体検出システム
WO2016034146A1 (zh) * 2014-09-05 2016-03-10 杨松 采集人体生理信号的方法、垫子及系统
WO2016034147A1 (zh) * 2014-09-05 2016-03-10 胡琨 采集人体生理信号的方法、弹簧床垫及系统
JP2016014684A (ja) * 2015-09-24 2016-01-28 シャンミン ヤン 感知装置
JP2017169881A (ja) * 2016-03-24 2017-09-28 拓夫 高井 離床センサおよび離床状態判定装置
JP2017196286A (ja) * 2016-04-28 2017-11-02 株式会社タニタ 離床判定装置、離床判定システム、及び離床判定プログラム
WO2017188194A1 (ja) * 2016-04-28 2017-11-02 株式会社タニタ 離床判定装置、離床判定システム、及び離床判定プログラム
JP2022008947A (ja) * 2016-04-28 2022-01-14 株式会社タニタ 離床判定装置、離床判定システム、及び離床判定プログラム
JP2018102710A (ja) * 2016-12-27 2018-07-05 株式会社豊田中央研究所 心電計測装置、方法及びプログラム
CN108498083A (zh) * 2017-02-24 2018-09-07 深圳市迈迪加科技发展有限公司 一种生理信息监测装置以及方法
JP2019097828A (ja) * 2017-11-30 2019-06-24 パラマウントベッド株式会社 異常報知装置、プログラム及び異常報知方法
JP2019097829A (ja) * 2017-11-30 2019-06-24 パラマウントベッド株式会社 異常報知装置及びプログラム
WO2019107012A1 (ja) * 2017-11-30 2019-06-06 パラマウントベッド株式会社 異常報知装置、記録媒体及び異常報知方法
JP2020115943A (ja) * 2019-01-18 2020-08-06 国立大学法人大阪大学 情報処理装置、情報処理システム、およびセンサ装置
EP3769674A1 (en) * 2019-07-23 2021-01-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Heart monitoring system and method
WO2021015617A1 (en) * 2019-07-23 2021-01-28 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Heart monitoring system and method
JP2021096202A (ja) * 2019-12-19 2021-06-24 東洋インキScホールディングス株式会社 センサシステム
CN113491415A (zh) * 2020-04-07 2021-10-12 Lg电子株式会社 床的控制方法
KR20230029339A (ko) * 2021-08-24 2023-03-03 (주)허니냅스 생체신호 모니터링 장치 및 그 동작방법
CN114680860A (zh) * 2022-03-31 2022-07-01 慕思健康睡眠股份有限公司 一种生理体征监测系统及方法

Also Published As

Publication number Publication date
JP3564878B2 (ja) 2004-09-15

Similar Documents

Publication Publication Date Title
JP3564878B2 (ja) 生体信号検出装置
US20230063373A1 (en) Method and apparatus for monitoring vital signs remotely
JP6947875B2 (ja) 生体情報出力装置
US7641618B2 (en) Capacitance-type pressure sensor and heart beat / respiration measuring device using the same
US5964720A (en) Method and system for monitoring the physiological condition of a patient
US8400302B2 (en) Electric field sensing device
US11406268B2 (en) Body temperature measuring device
US5448996A (en) Patient monitor sheets
US20070149883A1 (en) Method for detecting heart beat and determining heart and respiration rate
JP2959376B2 (ja) 監視装置
US20090054792A1 (en) Heartbeat/respiration sensor and body monitor employing same
EP2432391B1 (en) Heart rate measuring device
JP2001037742A (ja) 呼吸器系疾患のモニタ装置
EP1247488A1 (en) Biological information collecting device comprising closed pneumatic sound sensor
CN104434110B (zh) 基于柔性电纺织材料的连续呼吸测量方法
JPH0630914A (ja) 生体信号検出装置
JP2000102515A (ja) 身体状態検出具
JP2803432B2 (ja) 睡眠時無呼吸モニタ
JP4012966B2 (ja) 心拍数、呼吸数又は体動を計測するシステム及びそれを搭載した枕
US10806350B2 (en) Sensor system for occupant support
Nakasho et al. Implementation of a vital signs monitoring system in combination with a bed-leaving detection system
Islam Assistive sensing technology for the elderly health monitoring
Brown The piezo solution for vital signs monitoring
JPH0775631A (ja) 体位センサ装置
JPH0779933A (ja) 就寝装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees