JPH0654764B2 - 半絶縁性ガリウムヒ素形成方法 - Google Patents

半絶縁性ガリウムヒ素形成方法

Info

Publication number
JPH0654764B2
JPH0654764B2 JP2309018A JP30901890A JPH0654764B2 JP H0654764 B2 JPH0654764 B2 JP H0654764B2 JP 2309018 A JP2309018 A JP 2309018A JP 30901890 A JP30901890 A JP 30901890A JP H0654764 B2 JPH0654764 B2 JP H0654764B2
Authority
JP
Japan
Prior art keywords
gallium arsenide
semi
reaction gas
forming
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2309018A
Other languages
English (en)
Other versions
JPH03203228A (ja
Inventor
トーマス・フランシス・クーチ
マイケル・アルバート・テイシユラー
Original Assignee
インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン filed Critical インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン
Publication of JPH03203228A publication Critical patent/JPH03203228A/ja
Publication of JPH0654764B2 publication Critical patent/JPH0654764B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半絶縁性のガリウムヒ素層の付着方法、具体
的には、基板に酸素をドーピングしたガリウムヒ素を付
着するための有機金属気相エピタキシ・プロセスに関す
るものである。
[従来の技術] 半絶縁性ガリウムヒ素のエピタキシヤル層の形成は、M
ESFETS等の多くのデバイスの応用に強く望まれて
いる。バルクのガリウムヒ素における半絶縁性は、負の
欠陥、EL2又はクロム等の深い準位の不純物のいずれ
かの導入によつて得られる。しかしながら、高品質の半
絶縁性ガリウムヒ素のバルク基板は高価である。さら
に、半導体デバイス物質の形成に用いられるのと同じ基
本的な薄膜技術又はエピタキシヤル技術を用いることに
よつて半絶縁性の層を形成することも望まれる。
ガリウムヒ素のエピタキシヤル層の成長に遷移元素を導
入する場合にのみ半絶縁性が得られる。秋山らは「結晶
成長(J.Crystal Growth,68(1984))において、有機金属
気相エピタキシ装置でクロム及びバナジウムを混合させ
て半絶縁性ガリウムヒ素を形成することを開示してい
る。しかしながら、遷移元素は素早くガリウムヒ素の中
に拡散しやすいので、好ましくない不純物再分布となつ
てしまう。秋山らが用いたバナジウムの源はトリエトキ
シバナジル(TEV:VO(OC2H5)3)であり、化合物中の
酸素も深い準位の形成に寄与すると推測された。
酸素がガリウムヒ素中で深い準位を生むことはこの技術
分野では周知である。LagowskiらはAppl.Phys.
Left.44(3)1984、の中で、ブリツジマン型(Bridgeman-T
ype)の装置にGa2O3を導入することによつて酸素をドー
ピングしたガリウムヒ素を形成し、EL2準位に近い酸
素の深い準位を形成することを開示している。しかしな
がら、エピタキシヤルのガリウムヒ素に酸素の深い準位
を形成する試みは失敗してきた。例えば、Rubyらの
J.Appl.Phys.58(2)1985、はAsCl3気相エピタキシ装置に
純酸素を導入したが酸素の深い準位は得られなかつたと
報告している。また、WallisのInst.Phys.Conf.Ser.No.
56:Chapt.1(1981)は金属−有機物の気相エピタキシ装
置へ水蒸気による酸素を導入したが、酸素はガリウムヒ
素の成長に全く関与しなかつたと報告している。これら
の試みは、酸素の混入を示唆していない。なぜなら、ガ
リウム又はヒ素の酸化物のいずれかを高温の典型的な有
機金属気相エピタキシでかつ水素キヤリアガス中で形成
するので熱力学的に不都合なのである(Kuechらの
J.Appl.Phys.62(1987)を参照)。しかしながら米国特許
第4,253,887号は、水蒸気の導入によるAsH3/G
aCl3の気相エピタキシ装置における酸素をドーピングし
たガリウムヒ素の形成を開示しているが、前述のRub
yらの教示から考えても明らかにAsH3/GaCl3に限定され
る。
酸素をドーピングした半絶縁性アルミニウムガリウムヒ
素の形成の成功もある。寺尾らの結晶成長誌68(19
84)は、トリメチルガリウム、トリメチルアルミニウ
ム及びヒ素によつてガリウムヒ素を成長させる有機金属
気相エピタキシ反応槽の中にH2O又はO2を導入するとガ
リウムヒ素の成長に酸素が関与するであろうと開示して
いる。しかしながら、なお有機金属気相エピタキシ装置
での酸素をドーピングしたガリウムヒ素の形成方法に対
する要求はある。
[発明が解決しようとする課題] 本発明の目的は、有機金属気相エピタキシ技術を用いた
エピタキシヤル成長中のガリウムヒ素への制御可能な酸
素導入方法を提供することである。
[課題を解決するための手段] 本発明の方法に従うと、分子の部分として酸素を含むア
ルミニウム有機金属化合物を、周知のガリウム及びヒ素
の反応ガスと共に有機金属気相エピタキシ反応チヤンバ
に導入する。反応の結果として、成長したガリウムヒ素
層の中に深い準位の酸素不純物が形成される。さらに、
少量のアルミニウムもガリウムヒ素に混入される。しか
しながら、アルミニウムは低い準位であるのでガリウム
ヒ素層の特性に影響を与えることはない。アルミニウム
及び酸素を含む有機金属化合物の反応ガスは、次式のア
ルミニウムアルコキシドである。
式: R2AlOR′ ここで、Rは有機物の配位子であり、R′はRと同一又
は異なる有機物の配位子である。R及びR′は、CH3、C
2H5、又はC3H7のような一般的な一価炭化水素配位子で
ある。ガリウムヒ素の成長中に前述のアルコキシドを導
入すると、その成長している層への酸素の導入が制御さ
れ、結果として酸素をドーピングした半絶縁性ガリウム
ヒ素のエピタキシヤル層が得られる。
[実施例] 本発明の半絶縁性ガリウムヒ素付着方法は、Kuech
が材料科学報告(Materials Science Reports)、2、(1)19
87において記述した化合物半導体の有機金属気相エピタ
キシの技術を用いる。この技術の代表的な具体例では、
Ga(CH3)3及びGa(C2H5)3のような金属アルキルの反応性
有機金属化合物をAsH3のような非金属種の水素化合物と
反応させる。III族の有機金属化合物は、代表的には高
い蒸気圧の液体又は固体であり、V族の水素化合物は非
常に有毒なガスである。反応器内の成長の雰囲気は、H2
又はN2等のキヤリアガス中で有機金属前駆体及び水素化
学物を注意深く制御した混合物からなる。代表的なガリ
ウム源は、トリメチルガリウム(TMG)及びトリエチ
ルガリウム(TEG)等である。代表的なヒ素源は、ア
ルシン(AsH3)及びアルシンの置換化合物、例えば第三
ブチルアルシン、イソブチルアルシン及びフエノールア
ルシン等である。反応チヤンバ内のガスがガリウム及び
ヒ素に分解する温度まで反応ガス混合物を加熱すると、
ガリウムヒ素として化合し、基板に付着する。
本発明に従つて半絶縁性ガリウムヒ素を付着させるため
に、アルミニウム及び酸素を含む有機金属の反応ガスも
有機金属気相エピタキシ反応チヤンバ内に導入する。ア
ルミニウムアルコキシドを追加することによつて、深い
準位の不純物を生むガリウムヒ素の成長に酸素を組み込
むことができる。こうして、付着されるガリウムヒ素層
に酸素がドーピングされて半絶縁性となる。
図を参照すると、第1図は反応チヤンバ10を示す図で
ある。この中で支持体12は基板14を支えており、基
板14の上に半絶縁性ガリウムヒ素が付着される。注入
ライン16、18及び20は反応ガスを導入するために
与えられ、排出ライン34は未反応ガスを排出するため
に与えられる。ライン16は例えばTMG又はTEG等
のガリウムを含む反応ガスを導入するために使用され、
ライン18はAsH3等のヒ素を含む反応ガスを導入するた
めに使用される。ライン20はアルミニウムアルコキシ
ド反応ガスを導入するために使用する。バルブ22、2
4及び26は、各ガス源28、30及び32からの反応
ガスの流量を制御する。
基板14に半絶縁性ガリウムヒ素の層を付着するために
第1図に示される有機気相エピタキシ装置を用いる際、
ガス状TMG又はTEGをライン16で導入し、ガス状
AsH3をライン18で導入し、ガス状アルミニウムアルコ
キシドをライン20で導入する。アルミニウムアルコキ
シドは次式で表わされる。
式: R2AlOR′ ここでRは有機物の配位子であり、R′はRと同一又は
異なる有機物の配位子である。本発明の方法に用いるに
適する有機物の配位子は、例えばCH3、C2H5及びC3H7
ような一般的な炭化水素配位子である。ガリウムの反応
ガスのモル分率は約10-5ないし10-4の範囲であり、
ヒ素のモル分率は約10-4ないし10-3の範囲である。
アルミニウムアルコキシドのモル分率は、約10-9ない
し10-4の範囲である。反応チヤンバ内の温度は、約5
00℃ないし800℃の範囲であり、圧力は約1Tor
rないし760Torrの範囲である。
反応ガスの混合物を反応チヤンバ内で加熱して分解し、
ガリウムヒ素層のエピタキシヤル成長を与え、層に深い
準位の酸素を混入させる。低い準位のアルミニウムも成
長するガリウムヒ素の結晶に混入される。しなしながら
結晶中の少量のアルミニウムは、ガリウムヒ素層の性能
又は特性に影響を与えない。なぜならアルミニウムは、
ガリウムヒ素と共に完全な固溶液を形成する同数の電子
を持つた不純物なのである。ガリウムヒ素層にドーピン
グする酸素の濃度は、約1014cm-3ないし1018cm
-3の範囲にある。ガリウムヒ素層のアルミニウムの濃度
は酸素の含有量に比例し、一般的には約1016cm-3
いし1020cm-3の範囲である。深い準位の酸素不純物
が半絶縁性のガリウムヒ素層を与える。
有機金属気相エピタキシ装置において、ガリウムヒ素基
板に半絶縁性のガリウムヒ素層をエピタキシヤル付着し
た。ガリウムを含む反応ガスは、モル分率が2×10-4
のTMGであつた。ヒ素を含む反応ガスは、モル分率が
8×10-3のAsH3であつた。アルミニウムアルコキシド
は、モル分率が5×10-8の(CH3)2AlOCH3であつた。T
MGの流量は1.5sccmであり、AsH3の流量は60
sccmであり、(CH3)2AlCH3の流量は3.7×10-4
sccmであつた。反応器の圧力は78Torrであつ
た。温度は600℃から800℃まで段階的に変化させ
た。反応ガスの混合物は分解し、深い準位の酸素及び少
量のアルミニウムを含んだガリウムヒ素を形成した。4
0分間付着させて、1.8μmの厚さの酸素をドーピン
グした半絶縁性ガリウムヒ素層が得られた。第2図は、
様々な温度ステツプにおけるガリウムヒ素層の厚さの関
数として、酸素及びアルミニウムの濃度を示している。
緩衝層は1.2μmの厚さのガリウムヒ素であつた(酸
素は含まれていない)。酸素及びアルミニウムの濃度
は、2次イオン質量分析によつて測定された。酸素の深
い準位の存在は、例えばDTLS(Deep Level Transie
nt Spectroscopy)のような電気的試験によつて確認さ
れた。
[発明の効果] 本発明の方法は、半絶縁性である酸素をドーピングした
ガリウムヒ素のエピタキシヤル層を与えることができ
る。
【図面の簡単な説明】 第1図は、本発明の方法を実施するに適する有機金属気
相エピタキシ反応チヤンバを示す図である。 第2図は、ガリウムヒ素層及び基板内の距離の関数とし
てプロツトした酸素及びアルミニウムの濃度を示す図で
ある。 10……反応チヤンバ、12……支持体、14……基
板、16、18、20……注入ライン、22、24、2
6……バルブ、28、30、32……ガス源、34……
排出ライン。

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】ガリウムを含む反応ガス、ヒ素を含む反応
    ガス及びアルミニウムアルコキシドの反応ガスを有機金
    属気相エピタキシ反応チヤンバに導入する工程と、 基板に酸素をドーピングしたガリウムヒ素のエピタキシ
    ヤル層を付着するために前記ガスを反応させる工程とを
    含む基板への半絶縁性ガリウムヒ素形成方法。
  2. 【請求項2】前記アルミニウムアルコキシドが 式: R2AlOR′ (ここでRは有機物の配位子、R′はRと同一又は異な
    る有機物の配位子)である請求項1記載の半絶縁性ガリ
    ウムヒ素形成方法。
  3. 【請求項3】前記R及びR′がCH3、C2H5及びC3H7から
    なる群から選択される請求項2記載の半絶縁性ガリウム
    ヒ素形成方法。
  4. 【請求項4】前記ガリウムを含む反応ガス及びヒ素を含
    む反応ガスがトリメチルガリウム及びアルシンである請
    求項1記載の半絶縁性ガリウムヒ素形成方法。
  5. 【請求項5】前記ガリウムを含む反応ガス及びヒ素を含
    む反応ガスがトリエチルガリウム及びアルシンである請
    求項1記載の半絶縁性ガリウムヒ素形成方法。
  6. 【請求項6】前記ドーピングする酸素の濃度が約1014
    cm-3ないし1018cm-3の範囲である請求項4記載の
    半絶縁性ガリウムヒ素形成方法。
  7. 【請求項7】前記アルミニウムアルコキシド反応ガスの
    モル分率が約10-9ないし10-4の範囲である請求項6
    記載の半絶縁性ガリウムヒ素形成方法。
  8. 【請求項8】前記反応チヤンバの温度が約500℃ない
    し800℃の範囲である請求項7記載の半絶縁性ガリウ
    ムヒ素形成方法。
  9. 【請求項9】前記反応チヤンバの圧力が約1Torrな
    いし760Torrの範囲である請求項8記載の半絶縁
    性ガリウムヒ素形成方法。
  10. 【請求項10】ガリウムを含む反応ガス、ヒ素を含む反
    応ガス並びにアルミニウム及び酸素を含む有機金属の反
    応ガスを有機金属気相エピタキシ反応チヤンバに導入す
    る工程と、 基板に半絶縁性のガリウムヒ素層を与えるために前記ガ
    スを反応させて深い準位の酸素不純物を有するガリウム
    ヒ素のエピタキシヤル層を付着する工程とを含む基板へ
    の半絶縁性ガリウムヒ素形成方法。
  11. 【請求項11】前記有機金属の反応ガスが 式: R2AlOR′ (ここでRは有機物の配位子、R′はRと同一又は異な
    る有機物の配位子)のアルミニウムアルコキシドである
    請求項10記載の半絶縁性ガリウムヒ素形成方法。
  12. 【請求項12】前記R及びR′がCH3、C2H5及びC3H7
    らなる群から選択される請求項11記載の半絶縁性ガリ
    ウムヒ素形成方法。
JP2309018A 1989-12-22 1990-11-16 半絶縁性ガリウムヒ素形成方法 Expired - Lifetime JPH0654764B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US455695 1983-01-05
US07/455,695 US5098857A (en) 1989-12-22 1989-12-22 Method of making semi-insulating gallium arsenide by oxygen doping in metal-organic vapor phase epitaxy

Publications (2)

Publication Number Publication Date
JPH03203228A JPH03203228A (ja) 1991-09-04
JPH0654764B2 true JPH0654764B2 (ja) 1994-07-20

Family

ID=23809899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309018A Expired - Lifetime JPH0654764B2 (ja) 1989-12-22 1990-11-16 半絶縁性ガリウムヒ素形成方法

Country Status (3)

Country Link
US (1) US5098857A (ja)
EP (1) EP0433548A1 (ja)
JP (1) JPH0654764B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167099A (ja) * 2003-12-04 2005-06-23 Shigeya Narizuka 半導体素子及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480833A (en) * 1991-02-19 1996-01-02 Fujitsu Limited Semiconductor device having an isolation region enriched in oxygen and a fabrication process thereof
JP3326704B2 (ja) * 1993-09-28 2002-09-24 富士通株式会社 Iii/v系化合物半導体装置の製造方法
JP3395318B2 (ja) * 1994-01-07 2003-04-14 住友化学工業株式会社 3−5族化合物半導体結晶の成長方法
IT1271233B (it) * 1994-09-30 1997-05-27 Lpe Reattore epitassiale munito di suscettore discoidale piano ed avente flusso di gas parallelo ai substrati
KR20000049201A (ko) * 1996-10-16 2000-07-25 조이스 브린톤 산화알루미늄의 화학 증착법
CN1628662A (zh) * 2004-09-03 2005-06-22 成都芝芝药业有限公司 具有镇痛作用的药物
JP2009190936A (ja) * 2008-02-14 2009-08-27 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511703A (en) * 1963-09-20 1970-05-12 Motorola Inc Method for depositing mixed oxide films containing aluminum oxide
US3698071A (en) * 1968-02-19 1972-10-17 Texas Instruments Inc Method and device employing high resistivity aluminum oxide film
DE1812455C3 (de) * 1968-12-03 1980-03-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zum Herstellen einer aus einem Metalloxyd bestehenden isolierenden Schutzschicht an der Oberfläche eines Halbleiterkristalls
US4216036A (en) * 1978-08-28 1980-08-05 Bell Telephone Laboratories, Incorporated Self-terminating thermal oxidation of Al-containing group III-V compound layers
US4297783A (en) * 1979-01-30 1981-11-03 Bell Telephone Laboratories, Incorporated Method of fabricating GaAs devices utilizing a semi-insulating layer of AlGaAs in combination with an overlying masking layer
US4253887A (en) * 1979-08-27 1981-03-03 Rca Corporation Method of depositing layers of semi-insulating gallium arsenide
US4286373A (en) * 1980-01-08 1981-09-01 The United States Of America As Represented By The Secretary Of The Army Method of making negative electron affinity photocathode
US4448797A (en) * 1981-02-04 1984-05-15 Xerox Corporation Masking techniques in chemical vapor deposition
US4421576A (en) * 1981-09-14 1983-12-20 Rca Corporation Method for forming an epitaxial compound semiconductor layer on a semi-insulating substrate
DE3375590D1 (en) * 1982-06-22 1988-03-10 Hughes Aircraft Co Low temperature process for depositing epitaxial layers
US4592793A (en) * 1985-03-15 1986-06-03 International Business Machines Corporation Process for diffusing impurities into a semiconductor body vapor phase diffusion of III-V semiconductor substrates
US4939043A (en) * 1987-02-13 1990-07-03 Northrop Corporation Optically transparent electrically conductive semiconductor windows
JP2754213B2 (ja) * 1988-07-08 1998-05-20 マツダ株式会社 4輪駆動車のトルク配分制御装置
JPH0261818A (ja) * 1988-08-25 1990-03-01 Ricoh Co Ltd 磁気記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167099A (ja) * 2003-12-04 2005-06-23 Shigeya Narizuka 半導体素子及びその製造方法

Also Published As

Publication number Publication date
EP0433548A1 (en) 1991-06-26
US5098857A (en) 1992-03-24
JPH03203228A (ja) 1991-09-04

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
US4368098A (en) Epitaxial composite and method of making
JPS6134928A (ja) 元素半導体単結晶薄膜の成長法
JPH0688871B2 (ja) 化学ビ−ム堆積法
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
US4801557A (en) Vapor-phase epitaxy of indium phosphide and other compounds using flow-rate modulation
JPH0654764B2 (ja) 半絶縁性ガリウムヒ素形成方法
US4935381A (en) Process for growing GaAs epitaxial layers
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JP2736655B2 (ja) 化合物半導体結晶成長方法
JPS6129915B2 (ja)
Tsang Chemical beam epitaxy of InGaAs
JPS58223317A (ja) 化合物半導体結晶成長法及びその装置
JPH0666280B2 (ja) 化学的気相成長法
JP2821563B2 (ja) 化合物結晶のエピタキシャル成長方法及びそのドーピング方法
JP2587624B2 (ja) 化合物半導体のエピタキシヤル結晶成長方法
EP0141561B1 (en) A process for producing devices having semi-insulating indium phosphide based compositions
JP2924072B2 (ja) 有機金属分子線エピタキシャル成長方法及びその成長装置
JPS6021518A (ja) 3−5族化合物半導体の気相成長方法
JP2743970B2 (ja) 化合物半導体の分子線エピタキシャル成長法
JP3006776B2 (ja) 気相成長方法
JPS63227007A (ja) 気相成長方法
JP2736417B2 (ja) 半導体素子の製法
JP2753832B2 (ja) 第▲iii▼・v族化合物半導体の気相成長法
JPS647487B2 (ja)