JPH0536397B2 - - Google Patents

Info

Publication number
JPH0536397B2
JPH0536397B2 JP59185832A JP18583284A JPH0536397B2 JP H0536397 B2 JPH0536397 B2 JP H0536397B2 JP 59185832 A JP59185832 A JP 59185832A JP 18583284 A JP18583284 A JP 18583284A JP H0536397 B2 JPH0536397 B2 JP H0536397B2
Authority
JP
Japan
Prior art keywords
group
hydride
gas
hydride gas
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59185832A
Other languages
English (en)
Other versions
JPS6163599A (ja
Inventor
Juzaburo Ban
Nobuyasu Hase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18583284A priority Critical patent/JPS6163599A/ja
Publication of JPS6163599A publication Critical patent/JPS6163599A/ja
Publication of JPH0536397B2 publication Critical patent/JPH0536397B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】
産業上の利用分野 本発明は化合物半導体等を基板上に薄膜上に結
晶成長する場合に用いる気相結晶成長装置に関す
るものである。 従来例の構成とその問題点 近年、−族および−族化合物半導体の
気相エピタキシヤル成長法、特に有機金属熱分解
法(MOCVD、Metal Organic Chemical
Vapor Depostion法)、ハイライド気相エピタキ
シヤル成長法、クロライド気相エピタキシヤル成
長法が大面積エピタキシヤル、量産性、膜厚や組
成の制御性等の点から注目を集め、各所で研究開
発が活発に行なわれている。その−族化合物
半導体の気相結晶成長の場合にはn型不純物ソー
ス材料として、−族化合物半導体の気相結晶
成長の場合には族リース材料として族水素化
物ガスが用いられている。 以下に従来の族水素化物ガスを用いる気相成
長装置、特にその一例として有機金属熱分解法の
場合について説明する。 第1図は従来の有機金属熱分解法による気相成
長装置のガス系統図であり、1は結晶成長室、2
は族あるいは族有機金属ボンベ、3は有機金
属ボンベへ供給するキヤリアガスの流量調整用マ
スフローコントローラー、4は族あるいは族
水素化物ガスボンベ、5は族あるいは族水素
化物ガスの流量調整用マスフローコントローラ
ー、6は族あるいは族水素化物ガスをボンベ
から結晶成長室内へ導くステンレス製パイプ、7
はカーボン製サセプター、8は高周波コイル、9
は熱電対、10は基板、11は圧力計、12はロ
ータリーポンプ、13は排ガス処理装置である。
第1図に示すように、従来の族水素化物ガスを
用いる気相成長装置では、族水素化物ガスをそ
のボンベから結晶成長室へ導くステンレス製パイ
プは、そのボンベ4と結晶成長室1の間で他の水
素化物ガスを結晶成長室へ導くステンレス製パイ
プと共に1本に統合され、最終的にはすべての水
素化物ガスを導くパイプとして1本のステンレス
製パイプが結晶成長室に接続されていた。 しかしながら上記のような構造では、種々の水
素化物ボンベ4から供給される種々の水素化物ガ
スが同一のステンレス製パイプ6内を通過するこ
とになり、ステンレス製パイプ中を通過する際、
その内壁にその一部が吸着されるという性質があ
る族水素化物ガスは、ステンレス製パイプ内に
吸着してしまう、そして例えば族水素化物ガス
の供給を必要としない場合においてもステンレス
製パイプ内壁に付着していた族水素化物がパイ
プ内壁から蒸発して、他の水素化物ガスと共に結
晶成長室内へ導かれ、所望の成長結晶が得られな
いという問題点を有していた。この問題点は特に
混晶成長の場合の組成制御、不純物ドーピングの
場合の不純物濃度制御、多層薄膜構造作成の場合
の界面急峻性の制御等を非常に困難なものにして
いた。 なお、以上述べた従来例としては、有機金属熱
分解法について説明したが、ハイドライド気相エ
ピタキシヤル成長法やクロライド気相エピタキシ
ヤル成長法についても、上記した構成と問題点を
有している。 発明の目的 本発明は、上記従来の問題点を解消するもので
結晶成長時の必要な時に必要とする族水素化物
だけが結晶成長室内に供給され、不必要な族水
素化物は結晶成長室内に一切混入することがなく
所望の結晶を再現性よく成長できる族水素化物
を用いる気相成長装置を提供することを目的とす
る。 発明の構成 本発明にかかる族水素化物ガスを原料材料と
して用いる化合物半導体の気相成長装置は、族
水素化物ガスをそのボンベから結晶成長室内まで
導く管が、族水素化物ガスボンベごとにそれぞ
れ独立に備えられ、かつその管と結晶成長室との
接続部にそれぞれ開閉弁が備えられたものであ
る。従つて、結晶成長時には、その原料材料とな
る族水素化物ガスが必要とされる時のみ、結晶
成長室内に供給され、その他不必要な時は一切結
晶成長室内に混入することがないため、混晶成長
の場合の組成、不純物ドーピングの場合の不純物
濃度、多層薄膜構造作成の場合の界面急峻性等を
再現性よく容易に制御することのできるものであ
る。 実施例の説明 本発明による族水素化物ガスを用いる化合物
半導体の気相成長装置の具体的なガス系統図を第
2図に示す。第2図において、第1図と同一部分
には同一番号を付す。図に示すように、この場合
は水素化物ガスボンベは全部で3個設置すること
ができそのうち1個が族水素化物ガスボンベ1
4である。そしてそのボンベ14から結晶成長室
1まで族水素化物ガスを導くステンレス製パイ
プ15は他の水素化物ガスをそれらのボンベから
結晶成長室1まで導くステンレス製パイプ6と独
立に備えられている。そのステンレス製パイプ1
5と結晶成長室1との接続部に空気作動式開閉弁
16を備えた。またそのステンレス製パイプ15
の途中にキヤリアガスを流入させるためのステン
レス製パイプ17が接続され、かつそのキヤリア
ガスの流量を調節するためのマスフローコントロ
ーラー18を備えた。他の部分は従来の族水素
化物ガスを用いる気相成長装置と同じ構造であ
る。 この本発明による気相成長装置を用いて、1.3μ
m帯半導体レーザーの一構造であるZnドープ
InP/InGaAsP/SeドープInP/n型InP基板と
いうダブルヘテロ構造作成の場合について以下に
述べる。 この場合、In、Ga、Znのソース材料としてそ
れぞれ、In(C2H53、Ga(C2H53、Zn(C2H52
を、またAs、D、Seのリース材料としてそれぞ
れAsH3、PH3、H2Seを、またキヤリアガスとし
てH2を用いた、最初、結晶成長室1内のカーボ
ン製サセプター7上に設置されたn型InP基板1
0の温度を成長温度600℃まで上昇させる。なお
この際、InP基板表面のサーマルダメージを防ぐ
ためにPH3を4c.c./min供給した。そしてその後
下の表に示す成長条件により順次成長を行なつ
た。
【表】 なお上記の表の中でIn(C2H53、Ga(C2H53
Zn(C2H53の供給量については、それぞれ45℃に
保温したIn(C2H53ボンベ2に供給するH2の流
量、0℃に保温したGa(C2H53ボンベ2に供給
するH2の流量、0℃に保温したZn(C2H52ボン
ベ2に供給するH2の流量を表わしている。また
全流量としては5/min、成長時の結晶成長室
内圧としては760〜10mmHgである。またステンレ
ス製パイプ15へは500c.c./minのキヤリアガ
ス;H2をステンレス製パイプ17を通して供給
した。 以上のような本実施例によれば、H2Seの結晶
成長室1への供給は、空気作動式開閉弁16の開
閉によつて瞬時に行なうことができて、またそれ
を結晶成長室まで導くステンレス製パイプ15が
他の水素化物ガス(AsH3、PH3)の導入ステン
レス製パイプ6と別になつているため、必要でな
い時はH2Seが結晶成長室1内へ他の水素化物ガ
ス(AsH3、PH3)と共に混入することはなく、
またそのステンレス製パイプ15へは、キヤリア
ガスが供給されるので、H2Seがステンレス製パ
イプ中を通過する速度が増加して、ステンレス製
パイプ15の内壁に吸着するH2Seの量が減少す
る。この結果、InGaAsP成長、およびInP;Zn成
長の場合に、その前のInP;Se成長時に供給され
ていたH2Seの混入は一切なく、Se不純物濃度制
御も再現性よく行なえた。 以上述べた実施例においてはInP−InGaAsP系
の結晶成長について説明したが、本発明による気
相成長装置は、GaAs−GaAsAs系、AlGaInP−
GaAs系の他の−族半導体結晶の成長に用い
ることができるばりでなく、更にZnSeやZnSeS
等の−族化合物半導体結晶や混晶、−族
と−族の混晶等の成長に用いることが可能で
ある。また以上述べた実施例は、族水素化物ガ
スがH2Se1種類の場合であつたが、族水素化物
ガスの数や種類に制限はない。さらに、以上述べ
た実施例は有機金属熱分解法の場合であつたが、
ハイドライド気相エピタキシヤル成長法やクロラ
イド気相エピタキシヤル成長法等の他の化合物半
導体の気相エピタキシヤル成長法の場合にも用い
ることが可能である。 発明の効果 本発明にかかる族水素化物ガスを用いる化合
物半導体の気相成長装置は、族水素化物ガスを
そのボンベから結晶成長室内まで導く管を、族
水素化物ガスボンベごとにそれぞれ独立に設け、
かつその管と結晶成長室との接続部に開閉弁を設
けることにより、混晶成長の場合の組成制御、不
純物ドーピングの場合の不純物濃度制御、多層薄
膜構造作成の場合の界面峻性の制御等を精密に再
現性よく行なうことが可能になり、この結果、例
えば超格子構造等の作成やモジユレーシヨンドー
ピング成長が容易となつて、非常にその実用的効
果は大きい。
【図面の簡単な説明】
第1図は従来の族水素化物ガスを用いる気相
成長装置のガス系統図、第2図は本発明の実施例
における族水素化物ガスを用いる気相成長装置
のガス系統図である。 1……結晶成長室、2……族あるいは族有
機金属ボンベ、4……族あるいは族水素化物
ガスボンベ、6……族あるいは族水素化物ガ
スをそのボンベから結晶成長室まで導く管、7…
…カーボン製サセプター、10……基板、14…
…族水素化物ガスボンベ、15……族水素化
物ガスをそのボンベから結晶成長室まで導く管、
16……開閉弁、17……キヤリアガスをステン
レス製パイプ中へ導く管。

Claims (1)

  1. 【特許請求の範囲】 1 化合物半導体結晶を成長させるための半導体
    基板を設置する結晶成長室1と、 前記化合物半導体結晶の不純物原料となる6族
    元素を含む水素化物ガス原料を入れるための水素
    化物ガスボンベ14と、 すべての前記6族の水素化物ガスボンベ14の
    各々に、前記6族の水素化物ガスボンベ14と前
    記結晶成長室1とを直接つなぐ、前記6族の水素
    化物ガスボンベ14と同数の6族水素化物ガス専
    用供給管15と、 すべての前記6族の水素化合物ガス専用供給管
    15に1つずつ、キヤリアガスの流量を調整する
    マスフローコントローラー18を介して接続さ
    れ、前記キヤリアガスを供給するために設けられ
    た前記6族の水素化物ガスボンベ14と同数のキ
    ヤリアガス供給管17と、 前記6族水素化物ガス専用供給管15の前記結
    晶成長室1近傍に設けた6族水素化物ガス開閉弁
    16とを備え、 すべての前記6族水素化物ボンベ14に接続さ
    れた前記6族水素化物ガス専用供給管15はそれ
    ぞれ独立に前記結晶成長室1につながつており、
    すべての前記6族水素化物ガスボンベ14から供
    給される6族水素化物ガスは、前記キヤリアガス
    供給管17からマスフローコントローラー18を
    介して供給されるキヤリアガスと前記6族水素化
    物ガス専用供給管15内で混合され、他の6族水
    素化物ボンベ14から供給される6族水素化物ガ
    スと混じることなく前記結晶成長室1に供給さ
    れ、前記結晶成長室1ではじめて前記各々の6族
    水素化物ガスが混合されることを特徴とする気相
    成長装置。 2 化合物半導体結晶を成長させるための半導体
    基板を設置する結晶成長室1と、 前記化合物半導体結晶の原料となる6族元素を
    含む水素化物ガス原料を入れるための水素化物ガ
    スボンベ14と、 前記化合物半導体結晶の原料となる2族元素を
    含む原料ガスを入れるための2族有機化合物ボン
    ベ2を少なくとも1つ含む2族ガスボンベ群と、 すべての前記6族の水素化物ガスボンベ14の
    各々に、前記6族の水素化物ガスボンベ14と前
    記結晶成長室1とを直接つなぐ、前記6族の水素
    化物ガスボンベ14と同数の6族水素化物ガス専
    用供給管15と、 すべての前記6族の水素化合物ガス専用供給管
    15に1つずつ、キヤリアガスの流量を調整する
    マスフローコントローラー18を介して接続さ
    れ、前記キヤリアガスを供給するために設けられ
    た前記6族の水素化物ガスボンベ14と同数のキ
    ヤリアガス供給管17と、 前記6族水素化物ガス専用供給管15の前記結
    晶成長室1近傍に設けた6族水素化物ガス開閉弁
    16と、 前記2族有機化合物ボンベ2と前記結晶成長室
    1とをつなぐ2族有機化合物専用供給管と、 前記ガス専用供給管の前記結晶成長室1近傍に
    設けた2族有機化合物開閉弁とを備え、 すべての前記6族水素化物ボンベ14に接続さ
    れた前記6族水素化物ガス専用供給管15はそれ
    ぞれ独立に前記結晶成長室1につながつており、
    すべての前記6族水素化物ガスボンベ14から供
    給される6族水素化物ガスは、前記キヤリアガス
    供給管17からマスフローコントローラー18を
    介して供給されるキヤリアガスと前記6族水素化
    物ガス専用供給管15内で混合され、他の6族水
    素化物ボンベ14から供給される6族水素化物ガ
    スと混じることなく前記結晶成長室1に供給さ
    れ、前記結晶成長室1ではじめて前記各々の6族
    水素化物ガスが混合されることを特徴とする気相
    成長装置。
JP18583284A 1984-09-05 1984-09-05 気相成長装置 Granted JPS6163599A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18583284A JPS6163599A (ja) 1984-09-05 1984-09-05 気相成長装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18583284A JPS6163599A (ja) 1984-09-05 1984-09-05 気相成長装置

Publications (2)

Publication Number Publication Date
JPS6163599A JPS6163599A (ja) 1986-04-01
JPH0536397B2 true JPH0536397B2 (ja) 1993-05-28

Family

ID=16177656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18583284A Granted JPS6163599A (ja) 1984-09-05 1984-09-05 気相成長装置

Country Status (1)

Country Link
JP (1) JPS6163599A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027663A1 (ja) * 2009-09-04 2011-03-10 大陽日酸株式会社 太陽電池用セレン化水素混合ガスの供給方法及び供給装置
JP5873231B2 (ja) * 2009-10-23 2016-03-01 大陽日酸株式会社 太陽電池用セレン化水素混合ガスの供給装置及び供給方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988395A (ja) * 1982-11-08 1984-05-22 Agency Of Ind Science & Technol 化合物半導体結晶気相成長装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988395A (ja) * 1982-11-08 1984-05-22 Agency Of Ind Science & Technol 化合物半導体結晶気相成長装置

Also Published As

Publication number Publication date
JPS6163599A (ja) 1986-04-01

Similar Documents

Publication Publication Date Title
EP0853137A1 (en) High pressure MOCVD reactor system
JPH0536397B2 (ja)
JPH0321516B2 (ja)
JP2736655B2 (ja) 化合物半導体結晶成長方法
JPS6016898A (ja) 気相成長装置
JP2687371B2 (ja) 化合物半導体の気相成長法
JPS6060714A (ja) I−v族化合物半導体の気相エピタキシャル成長方法
JPH0323624A (ja) 気相成長方法およびその装置
JPS63227007A (ja) 気相成長方法
JP2743970B2 (ja) 化合物半導体の分子線エピタキシャル成長法
JP2700210B2 (ja) 化合物半導体の気相エピタキシャル成長法
JPH02126632A (ja) 化合物半導体結晶層の気相成長方法及びそれに用いる反応管
JP2714824B2 (ja) 分子線エピタキシャル成長方法及びそれを実施する装置
JP2753832B2 (ja) 第▲iii▼・v族化合物半導体の気相成長法
JPS59170000A (ja) 結晶成長装置
JPH03119721A (ja) 結晶成長方法
JPH01286991A (ja) 分子線エピタキシャル成長方法及び分子線エピタキシー装置
JPS625634A (ja) 化合物半導体気相成長方法
JPH02116120A (ja) 結晶成長方法
JPS61187226A (ja) 気相成長装置
JPH0594949A (ja) 半導体気相成長装置
JPH03224215A (ja) 有機金属気相成長装置
JPH11214316A (ja) 半導体の製造方法
JPH0788276B2 (ja) 気相エピタキシヤル成長方法
JPS6290925A (ja) 気相成長方法