JPH0457724B2 - - Google Patents

Info

Publication number
JPH0457724B2
JPH0457724B2 JP59182574A JP18257484A JPH0457724B2 JP H0457724 B2 JPH0457724 B2 JP H0457724B2 JP 59182574 A JP59182574 A JP 59182574A JP 18257484 A JP18257484 A JP 18257484A JP H0457724 B2 JPH0457724 B2 JP H0457724B2
Authority
JP
Japan
Prior art keywords
rare earth
powder
alloy
alloy powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59182574A
Other languages
English (en)
Other versions
JPS6160809A (ja
Inventor
Naoyuki Ishigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59182574A priority Critical patent/JPS6160809A/ja
Publication of JPS6160809A publication Critical patent/JPS6160809A/ja
Publication of JPH0457724B2 publication Critical patent/JPH0457724B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】
[産業上の利用分野] 本発明は希土類磁石材料用重希土類合金粉末、
特にFeBR系(とりわけFeBR1R2系)高性能希土
類磁石の製造に用いる重希土類合金粉末の製造に
関する。 [従来の技術] FeBR系磁石は、Nd,Pr等に代表される希土
類元素Rを用いた新規な高性能永久磁石として注
目されており、本出願人の出願に係る特開昭59−
46008号に開示の通り従来の高性能磁石SmCoに
匹敵する特性を有すると共に高価かつ資源的に希
少なSmをRとして必須とせず高価かつ資源的に
不安定なCoを必ずしも使用する必要がないとい
う優れた利点を有する。特にNdは従来利用価値
のないものとされており、Ndを中心元素として
用いることができることは工業的に極めて有利で
ある。 [本発明が解決しようとする問題点] 本発明は、このFeBR1R2系磁石に一層高い磁
気特性を付与し、併せて一層安価に製造可能とす
ることを基本目的とする。 この課題を解決する磁石として、本出願人はR
としてNd,Prを主体としGd,Tb,Dy,Ho,
Er,Tm,Yb(以下R1と称する)を部分的に用い
た高性能磁石を開発し先に出願した(特願昭58−
140590)。 本発明はさらに詳しくはR1−R2−Fe−B系
(ここでR1はGd,Tb,Dy,Ho,Er,Tm,Yb
内の1種以上、R2はNdとPrの合計が80%以上で
残りがR1以外のYを含む希土類元素の少なくと
も1種を含む)の高性能希土類磁石に使用する希
土類合金粉末の製造方法に係わり、工業的量産規
模において安価にR1希土類合金粉末を提供しよ
うとするものである。 最近サラリウム−コバルト系希土類磁石に代つ
て新しく注目されているNd−Fe−B系あるいは
Nd−Fe−Co−B系希土類磁石において、Ndや
Prなどの軽希土類成分をGd,Tb,Dy,Ho,
Er,Tm,Ybの少なくとも1種以上の重希土類
元素で5%以下置換することによつて(BH)
max=20MGOe以上の高エネルギー積を有した
まま、保磁石(iHc)を10kOe以上に飛躍的に向
上し、室温以上の100〜150℃の高温度環境におい
ても使用可能なR1−R2−Fe−B系希土類磁石
(ここでR1はGd,Tb,Dy,Ho,Er,Tm,Yb
の重希土類元素のうち1種以上、R2はNdとPrの
合計が80%以上で残りがR1以外のYを含む希土
類元素の少なくとも1種以上である)が提供され
ている(特願昭58−140590号)。 このR1−R2−Fe−B系希土類磁石を製造する
出発原料は電解法あるいは熱還元法によつて作ら
れた純度99.5%以上の希土類金属、純度99.9%以
上の電解鉄などの不純物の少ない高価な金属塊が
もつぱら使用される。したがつていずれの原料も
あらかじめ鉱石から精製された不純物の少ない高
品質のもので、これらを用いた場合には、Nd,
Pr等を用いることによる低価格化が図られるに
もかかわらずなお製品磁石価格はそうとう高価と
なる。 とくに希土類原料の中で保磁力向上に対して有
効なGd,Tb,Dy,Ho,Er,Tm,Ybなどの重
希土類金属(R1)の含有量は、希土類鉱石中の
Nd含有量約15%に比べ、7%以下でさらに少な
い。またそれぞれの重希土類金属の生産には高度
な分離精製技術を要し、その生産効率も悪いので
その価格は一般にきわめて高いのが現状である。 そのためR1−R2−Fe−B系永久磁石はiHcが
高く高性能を有し実用永久磁石材料として非常に
有用ではあるが、その価格は相当高くなつてしま
う。 本発明は上述の諸問題点を解消し、R1元素を
含有して安価でしかも品質のすぐれた希土類磁石
材料用重希土類合金粉末、特にFeBR1R2系高性
能希土類磁石を製造するための原料として使用さ
れる重希土類合金粉末、を量産規模で製造し得る
方法を提供することを具体的課題とする。 [問題点を解決するための手段および作用効果] すなわち本発明は生成合金が、 R1:15〜50原子%、 Fe:35〜83原子%、 B : 2〜15原子%、 (ここでR1は重希土類元素Gd,Tb,Dy,
Ho,Er,Tm,Ybのうちの1種以上)を主成分
とする組成になるように該希土類(R1)酸化物
の1種以上、鉄粉、及び純ボロン粉、フエロボロ
ン粉及びB2O3粉末のうち少なくとも1種以上を
配合してなる原料混合粉末に上記希土類酸化物お
よびFe粉などの粉末中に含まれる酸素量に対し
て還元に要する化学量論的必要量の1.2〜3.5倍
(重量比)の金属カルシウムと希土類酸化物の1
〜15重量%の塩化カルシウムとを混合し、圧縮成
型した後アルゴン雰囲気中において1000〜1200℃
の温度で還元・拡散を行い、えられた反応生成物
を8mesh以下に粉砕後水中に入れスラリー状態と
し、該スラリーを水によつて処理して該合金粉末
を採取することを特徴とする希土類磁石材料用重
希土類合金粉末の製造方法である。 本発明製法によるR1−Fe−B合金粉末を原料
の一つとして用いることにもつて(BH)
max20MGOe以上、iHc10kOe以上の磁石特性を
維持したままで室温以上の高温度において十分に
安定して使用できるR1−R2−Fe−B系希土類磁
石を安価に提供することを可能にするものであ
る。 本発明による希土類磁石材料用重希土類合金粉
末は、希土類金属を製造する前段階の中間原料と
して存在している価格の安いHo2O3やTb3O4など
の重希土類酸化物とFe粉および純ボロン粉末、
Fe−B粉末またはB2O3粉末を出発原料とし、還
元剤として金属カルシウム(Ca)、還元・拡散反
応生成物の崩壊を容易にするための塩化カルシウ
ム(CaCl2)を用いて製造されるため、R1−R2
Fe−B系磁石のR1原料となる安価に品質のすぐ
れたR1含有の合金粉末が工業的量産規模におい
て容易にえられるため、R1希土類金属塊を原料
として用いるよりもはるかに高率がよくその経済
的効果は大きい。 ここでR1の希土類酸化物とFe粉やFe−B粉末
などの金属粉末との混合粉末を出発原料にして金
属Caによつて還元・拡散反応させると還元温度
において溶融状態の希土類金属がただちにFe粉
やFe−B粉末ときわめて容易にしかも均質に合
金化して、R1希土類酸化物からR1希土類合金粉
末が歩留りよく回収されR1希土類酸化物が有効
に利用できる。 また原料粉末中のB(ボロン)成分の含有はR1
−Fe−B合金粉末を還元・拡散反応によつて生
成する際の反応温度の低下に有効で、本系合金の
還元・拡散反応を容易にする。 したがつて安価な重希土類酸化物から工業的規
模において大量にR1−R2−Fe−B系磁石用のR1
重希土類原料をうるためにはこの磁石の主成分を
構成して今日大量に生産され安価なFeとBとの
合金粉末として製造することが最も有効であると
して、本発明の特定組成範囲のR1−Fe−B系合
金粉末の製造方法を発明するに至つたものであ
る。 本発明製法において希土類合金粉末は以下の工
程によつて製造されR1−R2−Fe−B系永久磁石
合金を製造するための原料の一つとして使用され
る。Ho酸化物(Ho2O3)、Tb酸化物(Tb4O7
などの種々の重希土類酸化物の少なくとも1種
と、鉄粉および純ボロン粉、フエロボロン(Fe
−B)粉、三酸化ボロン(B2O3)粉のうち少な
くとも1種の原料粉末を R1:15〜50原子%、 Fe:35〜83原子%、 B : 2〜15原子%、 (ここでR1はGd,Tb,Dy,Ho,Er,Tm,
Ybのうちの1種以上)の合金組成となるように
配合し、原料混合粉末とする。また重希土類酸化
物の還元剤として金属Caを使用し、さらに還元
後の反応生成物(ブリケツト)の崩壊を促進する
ためにCaCl2粉末を添加する。Caの必要量は原料
混合粉末中に含まれる酸素を還元するのに必要な
化学量論的必要量の1.2〜3.5倍(重量比)とし、
CaCl2の量は希土類酸化物原料の1〜15%(重量
比)とする。 以上の重希土類酸化物粉末、Fe粉末、フエロ
ボロン粉末などの各原料粉末およびCa還元剤な
どからなる混合粉末の圧縮体をアルゴン不活性ガ
ス雰囲気中において1000〜1200℃(好ましくは
1000〜1100℃)の温度範囲で1〜5時間還元・拡
散処理を行い、室温まで冷却して還元反応生成物
をえる。もつとも、より低温例えば900℃程度で
も多少量産性は低下するが、所望の還元反応生成
物を得ることはできる。これを8mesh(2.4mm)以
下に粉砕して水中に投入すると反応生成物中の酸
化カルシウム(CaO)、CaO・2CaCl2および過剰
なカルシウムは水酸化カルシウム(Ca(OH)2
などとなり、反応物は崩壊して水との混合スラリ
ーとなる。このスラリーを水を用いてCa分を十
分に除去して凡その粉末粒径20μm〜1mmの重希
土類合金粉末をえる。また本発明製法によつて得
られる希土類永久磁石材料用重希土類合金粉末の
好ましい粒径は後続の磁石化工程における作業性
及び磁石特性の点で50μm〜500μmである。 さらに還元反応生成物を8mesh以下に粉砕せず
にそのままあるいは8meshより大として水中に投
入すると上述の崩壊反応が著しく遅くなつて工業
的生産に不適となり、また崩壊反応熱が還元生成
物内部に蓄積され高温となつてえられた希土類合
金粉末中の酸素量が7000ppmをこえその後の磁石
化工程に用いることができない。また、35mesh
より小となると反応が激しすぎて燃焼が発生す
る。ここで使用する水としてイオン交換水や蒸留
水によればこの合金粉末中の含有酸素量が少なく
なり後述の磁石化工程の歩留りや磁石特性の点か
ら好ましい。 上述のようにしてえられた磁石材料用合金粉末
は、 R1:15〜50原子%、 Fe:35〜83原子%、 B : 2〜15原子%、 (ここでR1は重希土類元素Gd,Tb,Dy,
Ho,Er,Tm,Ybのうちの1種以上)からなり
酸素含有量7000ppm以下、炭素含有量1000ppm以
下を特徴とし、この重希土類合金粉末を原料の一
つとして用いて以下に記述するようにしてR1
R2−Fe−B系永久磁石を製造することができる。 本発明製法によつて得られる重希土類合金粉末
の好ましい組成範囲は、 R1:25〜40原子%、 Fe:50〜71原子%、 B : 4〜10原子%、 から成る組成である。 この組成とすると、合金粉末中の酸素含有量が
4000ppm以下炭素含有量が600ppm以下となつて、
この合金粉末を用いてR1−R2−Fe−B磁石合金
を溶製する場合に合金化が容易となり、かつスラ
グの発生が少なくなつて溶製合金の歩留りも向上
して本発明製法によつて得られる重希土類合金粉
末を希土類磁石合金を製造するための原料として
有効に利用することができる。また合金粉末のま
ま微粉砕工程で添加して使用する場合には永久磁
石中の酸化物・炭化物の量が少なくなつて保磁力
の高いすぐれた磁石特性を有するR1−R2−Fe−
B系永久磁石がえられる。 さらに還元温度は1000〜1100℃となつて工業的
規模における生産が容易となる。 本発明製法によつて得られる重希土類合金粉末
は、R1−R2−Fe−B磁石合金を溶製する場合に
おいて溶解する際に圧縮成形体や焼結体にして所
要量添加して使用する方法、あるいは別途準備し
たR2−Fe−B合金粉末を微粉砕する際にR1−Fe
−B合金粉末のまま所要量を添加してR1−R2
Fe−B混合合金粉末にして利用する方法によつ
て希土類磁石合金を製造するための原料として用
いることができる。いずれの方法を用いても重希
土類金属塊を原料として希土類永久磁石特にR1
−R2−Fe−B永久磁石を製造する場合よりも磁
石の製造工程の短縮が可能となりかつ安い出発原
料となるため製品磁石価格が安価となるという利
点を有し、実用永久磁石材料を量産規模において
容易に作りうる点からも経済的効果も大きい。 本発明の製造によつて得られる希土類磁石材料
用重希土類合金粉末に含まれる酸素は最も酸化し
やすい希土類元素と結合して希土類酸化物を形成
するので、酸素含有量が7000ppmを越えるとその
後のR1−R2−Fe−B磁石合金の溶製時に溶融が
むつかしく合金化しなかつたり、多量のスラグの
発生や溶製合金の保留りの悪化を生じて本系合金
粉末として有効に利用できない。含有炭素量が
1000ppmを越えると永久磁石にした場合に炭化物
として残留して磁石特性、とくに保磁力の低下を
招くので好ましくない。 また合金粉末のまま微粉砕時に添加して利用す
る場合には酸素含有量7000ppm、炭素含有量
1000ppmを越えるといずれも永久磁石中に酸化
物・炭化物として残留することによりいちぢるし
い保磁力の低下を生ずる。 本発明において重希土類酸化物の還元剤として
のCa量が化学量論的必要量の3.5倍より多い場合
には還元・拡散反応時に急激な化学反応を生じ、
著しい発熱と還元性の強いCaによる還元・拡散
用の容器の消耗が激しくて工業的に安定な生産が
不可能となる。また還元によつてできた合金粉末
中の残留Ca量も多くなつて、後続の磁石化にお
ける熱処理時にCa蒸気を多量に発生し熱処理炉
体を損耗したり、でき上がつた磁石中のCa量も
多く磁石特性の劣化を生ずる。 一方Ca量が1.2倍より少ない場合には還元・拡
散反応が不完全で未還元物が多量に残り、本発明
に係る所定の希土類合金粉末をうることができな
い。 CaCl2量は15%(重量%)を越えると還元・拡
散反応を水で処理する際にその水中のCl−(塩素
イオン)が著しく増大して生成した希土類合金粉
末と反応して粉末の酸素量が7000ppmを越えR1
−R2−Fe−B磁石用原料として利用できない。
また1重量%未満の場合には還元・拡散反応物を
水中に入れても崩壊を生ぜず水によつて処理する
ことが不可能となつてしまう。 本願発明の製法によつて得られる希土類磁石材
料用重希土類合金粉末の成分範囲の限定理由は以
下による。本発明製法によつて得られる重希土類
合金粉末を原料として用いることによつて製造さ
れる希土類磁石特にR1−R2−Fe−B系希土類磁
石の保磁力(iHc)を向上させるのに必須元素の
R1元素(Gd,Tb,Dy,Ho,Er,Tm,Ybの内
の1種以上)が15原子%未満ではFe量が多くな
つてえられる合金粉末中の酸素量が7000ppmを越
え、R1−R2−Fe−B系磁石合金の溶製時の溶融
が困難になり、合金化しなかつたりスラグ発生が
多くなり、溶製合金の歩留低下を招来する。 また50原子%を越えると還元用原料の希土類酸
化物の量が多すぎて還元が不十分となつたり、希
土類酸化物が残留したりして合金粉末中の酸素量
が7000ppmをこえ、前記と同様磁石合金の合金化
が困難且つ溶製合金の歩留低下を招く。 またFe量は重希土類酸化物から金属Caによつ
て還元したR1希土類元素がただちに拡散して直
接品質のすぐれた安価な本発明の製法による希土
類磁石用重希土類合金粉末をうるために必須元素
であつて35原子%未満または83原子%を越えると
合金粉末中の酸素量が7000ppmを越え、炭素量も
1000ppmを越え磁石合金の磁石化が困難かつ溶製
合金の歩留低下を来し、磁石合金を製造するため
に用いることができない。B(ボロン)量は本製
法において還元・拡散温度を低下させるのに必須
の原子で2原子%以下では1200℃以上の還元温度
となり還元性の極めて高いCaを用いるため工業
的規模の生産設備の利用が容易でなくなる。また
15原子%を越えるとボロンが酸化しやすい元素で
あるために得られる希土類合金粉末中の酸素含有
量が7000ppmを越え前記同様磁石合金の磁石化が
困難かつ溶製合金の歩留低下を来し磁石材料用合
金粉末として有効でない。また、得られる希土類
磁石用重希土類合金粉末は工業的に入手可能な範
囲の原料からと製造工程上不可避な不純物Al,
Si,C,P,Mg,Cu,S,Nb,Ni,Ta,V,
Mo,Mn,W,Cr,Hf,Coなどを2wt%以下含
有しても差支えない。 [実施例] 以下に各種の希土類磁石用重希土類合金粉末の
製造方法についての実施例を示す。 実施例 1 Tb4O7粉末:75.2gr、 Fe粉末:35.1gr、 フエロボロン粉末(19.5wt%B−Fe合金粉
末):2.2gr、 金属Ca:72.4gr(化学量論比の2.5倍)、 CaCl2:3.8gr(希土類酸化物原料の5.1wt%) の原料粉末合計188.7grを用い、35%Tb−61%Fe
−4%B(原子%)(61.72wt%Tb−37.80Fe−
0.48B)組成合金狙いにしてV型混合機を用いて
混合した。ついでこの混合原料をステンレス製容
器に充填し、マツフル炉中に装入後容器内をアル
ゴンガス流気中において昇温した。1075×3hrの
恒温保持後室温まで炉冷した。えられた還元反応
生成物を8meshスルーに粗粉砕後10リツトルのイ
オン交換水中に投入し、反応生成物中の酸化カル
シウム(CaO),CaO・2CaCl2、未反応の残留カ
ルシウムを水酸化カルシウム(Ca(OH)2)にし
て反応生成物を崩壊させスラリー状にした。1時
間撹拌した後、30分間静置して水酸化カルシウム
懸濁液をすて、再び注水し、撹拌・静置・懸濁液
除去の工程を複数回くり返した。このようにして
分離・採取されたTb−Fe−B系合金粉末を真空
中で乾燥し、20〜300μmの希土類磁石材料用重希
土類合金粉末76grをえた。成分分析の結果、下記
の通り Tb:60.11wt%、 Fe:39.45wt%、 B : 0.37wt%、 Ca: 0.08wt%、 O2:1900ppm、 C: 250ppm の所望の合金粉末が得られた。 14Nd−1.5Tb−77.5Fe−7B(原子%)組成磁石
合金を溶製するために、溶解時にこの合金粉末を
1150℃−2時間処理した焼結体をTb原料として
さらにあらかじめ準備した金属Nd、フエロボロ
ン合金およびFe原料とともに溶解した。えられ
た溶製合金塊を粉砕し、平均粒径2.70μmの粉末
にして1.5t/cm2の圧力で10kOeの磁界中におい
て圧縮成形体にした。その後1120℃−2時間の焼
結と600℃−1時間の時効処理を行い、永久磁石
試料を作成した。 Br=11.5kG、 iHc=19kOe、 (BH)max=31.3MGOe のすぐれた磁石特性がえられた。 実施例 2 Tb4O7:22.9gr、 Dy2O3: 5.9gr、 Ho2O3:16.3gr、 Fe粉末:42.6gr、 フエボロン粉末(20.4wt%B−Fe合金粉末):
8.0gr、 金属Ca:26.6gr(化学量論比の1.5倍) CaCl2:2.7gr(希土類酸化物原料の5.9wt%) の原料粉末合計122.3grを用い、8%Tb−5.0%
Ho−2.0%Dy−73%Fe−12B(原子%)(19。18%
Tb−12.44%Ho−4.90Dy−61.51%Fe−1.96%B)
組成合金狙いにして実施例1と同様にして50〜
500μmの86grの希土類磁石材料用重希土類合金粉
末をえた。 成分分析の結果 Tb:19.74wt%、 Dy: 4.23wt%、 Fe:60.73wt%、 Ho:13.28wt%、 B: 1.86wt%、 Ca: 0.16wt%、 O2:5500ppm、 C: 750ppm の所望の合金粉末がえられた。 14Nd−0.2Tb−0.15Ho−0.05Dy−78.6Fe−7B
(原子%)組成磁石合金を溶製するために、溶解
時にこの合金粉末を2t/cm2の圧力でプレスした
圧縮成型体をTb−Ho−Dy原料とし、さらに金
属Nd、フエロボロン合金およびFe原料とともに
溶解した。えられた溶製合金塊を粉砕し平均粒径
2.67μmの粉末にして1.5t/cm2の圧力で10kOeの
磁界中で圧縮成型体とした。その後1120℃−2時
間の焼結と600℃−1時間の時効処理を施して永
久磁石とした。 Br:12.4kG、 iHc:11.5kOe、 (BH)max:35.8MGOe のすぐれた磁石特性がえられた。 実施例 3 混合重希土類酸化物:91.4gr Dy2O3:80wt%、 Tb4O7:10wt%、 Ho2O3:3wt%、 Er2O3:<0.5wt%、 Tm2O3:<0.5wt%、 Gd2O3:6wt%、 Yb2O3:<0.5% Fe粉末:22.1gr フエロボロン粉(20.0wt%B−Fe合金粉):
1.8gr、 金属Ca:97.3gr(化学量論比の3.3倍)、 CaCl2:11.0gr(希土類酸化物原料の12.0wt%) の原料粉末合計223.6grを用い、50%R1−46%Fe
−4%B(原子%)(75.7wt%R1−23.9%Fe−0.4
%B)組成合金狙いにして実施例1と同様にして
10〜650μmの約73grの希土類磁石材料用重希土類
合金粉末を得た。 成分分析の結果 Dy:65.9wt%、Tb: 4.0wt%、 Gd: 4.6wt%、Ho: 1.2wt%、 Er: 0.2wt%、Tm: 0.2wt%、 Yb: 0.1wt%、Fe:23.4wt%、 B: 0.35wt%、Ca:0.05wt%、 O2:3300ppm、C:650ppm の所望の合金粉末がえられた。500μm以下(−
35mesh)のこの合金粉末と、あらかじめ溶解後
35mesh以下にしたNd−Fe−B合金粉末とを
14Nd−1.5R1−77.5Fe−7B(原子%)組成狙いに
して混合後、3.5時間ボールミル粉砕を施し平均
粒径2.75μmの微粉砕にした。 この粉末を用いて実施例1と同様にして永久磁
石試料を製造したところ、 Br: 11.4kG、 iHc:17.5kOe、 (BH)max:30.9MGOe のすぐれた磁石特性がえられた。
【特許請求の範囲】
1 スクラツプを高炉溶銑に配合して、転炉で酸
素吹錬する方法において、購入スクラツプの如き
一般スクラツプを予じめ加炭溶解して、C含有量
が3%以上のスクラツプ溶解物を得、このスクラ
ツプ溶解物の成分分析を行ない、この分析値に応
じてスクラツプ溶解物の上記高炉溶銑への配合量
を調整して、高炉溶銑とスクラツプ溶解物との混
合物中の酸素吹錬で除去困難な不純物元素の量
を、鋼板製造可能な値以下まで稀釈し、この混合
物を酸素吹錬することにより、購入スクラツプ等
の一般スクラツプより高品質の鋼を製造すること
を特徴とする転炉製鋼方法。
JP59182574A 1984-09-03 1984-09-03 希土類磁石材料用重希土類合金粉末の製造方法 Granted JPS6160809A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182574A JPS6160809A (ja) 1984-09-03 1984-09-03 希土類磁石材料用重希土類合金粉末の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182574A JPS6160809A (ja) 1984-09-03 1984-09-03 希土類磁石材料用重希土類合金粉末の製造方法

Publications (2)

Publication Number Publication Date
JPS6160809A JPS6160809A (ja) 1986-03-28
JPH0457724B2 true JPH0457724B2 (ja) 1992-09-14

Family

ID=16120656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182574A Granted JPS6160809A (ja) 1984-09-03 1984-09-03 希土類磁石材料用重希土類合金粉末の製造方法

Country Status (1)

Country Link
JP (1) JPS6160809A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245505A (ja) * 1985-04-23 1986-10-31 Seiko Instr & Electronics Ltd 希土類鉄系磁石の製造方法
JPS61295308A (ja) * 1985-06-24 1986-12-26 Sumitomo Metal Mining Co Ltd 希土類金属を含む合金粉末の製造方法
JPS63105909A (ja) * 1986-04-30 1988-05-11 Sumitomo Metal Mining Co Ltd 光磁気記録媒体製造に用いるスパッタリング用焼結合金製ターゲットの製造方法
JPH0765083B2 (ja) * 1986-05-07 1995-07-12 日立金属株式会社 永久磁石合金用合金粉末の製造方法

Also Published As

Publication number Publication date
JPS6160809A (ja) 1986-03-28

Similar Documents

Publication Publication Date Title
EP0184722B1 (en) Rare earth alloy powders and process of producing same
US4769063A (en) Method for producing rare earth alloy
US6149861A (en) Methods for manufacturing R-Fe-B type magnet raw material powder and R-Fe-B type magnet
JPH0362764B2 (ja)
JPH06340902A (ja) 希土類焼結永久磁石の製造方法
JPS6063304A (ja) 希土類・ボロン・鉄系永久磁石用合金粉末の製造方法
CA1333531C (en) Method for producing dysprosium-iron-boron alloy powder
US4898613A (en) Rare earth alloy powder used in production of permanent magnets
JPH0457724B2 (ja)
JPS6160801A (ja) 重希土類合金粉末
JP3151959B2 (ja) R−tm−b系永久磁石用原料粉末の製造方法
JPH0582442B2 (ja)
JPH10280002A (ja) 磁石用合金粉末の製造方法
JPS61270304A (ja) 希土類含有合金粉末
JPH0582443B2 (ja)
CN1326164C (zh) 用磁性能低的稀土—铁—硼废磁体制造永磁体
JPH08176756A (ja) R−Fe−B系合金粉末の製造方法
JPH0526858B2 (ja)
JPS62188772A (ja) 希土類−鉄−ボロン磁石の製造方法
JPS624806A (ja) 希土類磁石用合金粉末の製造方法
JPS61270303A (ja) 希土類含有合金粉末
JPH0653909B2 (ja) 永久磁石材料の製造方法
JPH076025B2 (ja) 永久磁石材料の製造方法
JPH0653910B2 (ja) 永久磁石材料の製造方法
JPH04202612A (ja) 希土類金属及びホウ素を含む合金粉末の製造方法

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term