JPH04302149A - 電界効果型トランジスタ - Google Patents

電界効果型トランジスタ

Info

Publication number
JPH04302149A
JPH04302149A JP3066314A JP6631491A JPH04302149A JP H04302149 A JPH04302149 A JP H04302149A JP 3066314 A JP3066314 A JP 3066314A JP 6631491 A JP6631491 A JP 6631491A JP H04302149 A JPH04302149 A JP H04302149A
Authority
JP
Japan
Prior art keywords
semi
layer wiring
region
gate
insulating region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3066314A
Other languages
English (en)
Inventor
Toshimichi Ota
順道 太田
Manabu Yanagihara
学 柳原
Osamu Ishikawa
修 石川
Takahiro Yokoyama
隆弘 横山
Chinatsu Azuma
東 千夏
Masahiro Maeda
昌宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3066314A priority Critical patent/JPH04302149A/ja
Publication of JPH04302149A publication Critical patent/JPH04302149A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は半導体装置、特に電界効
果型トランジスタの構造に関するものである。
【0002】
【従来の技術】近年、電界効果型トランジスタ、特に砒
化ガリウムを用い、かつゲート電極にショットキー電極
を用いた電界効果型トランジスタ(以下、GaAsME
SFETと略す)は高効率、高利得の利点を生かし、パ
ワーデバイスとして幅広く用いられている。
【0003】以下図面を参照しながら、上記した従来の
GaAsMESFETの一例について説明する。
【0004】図8は櫛形の配置を有する従来のパワー用
GaAsMESFETの構造を示すものである。また図
9は図8のゲート電極引出し部分近傍を拡大したもので
、図10は図9におけるa−a’−a”線に沿った断面
構造を示すものである。図8において、1は導電領域、
2は半絶縁性領域であり、上記導電領域は一般に半絶縁
性のGaAs基板表面にイオン注入法等を用いて形成さ
れる。3、4はそれぞれドレイン電極およびソース電極
で、金、ゲルマニウム、ニッケル等の金属を用いて形成
され、上記導電領域1にオーミック接触する。5はゲー
ト電極で、パワー用では一般にアルミ金属を用いて形成
され、上記導電領域1にショットキー接触する。このゲ
ート電極5は周辺の上記半絶縁性領域2にまで伸長して
形成され、かつ各々のゲート電極は一体化して形成され
ている。また、ゲート電極は非常に細長く形成されるた
め、ドレイン電極やソース電極に比べて高抵抗になる。 それによって生じるゲート電極先端の電位のばらつきの
低減のために、ゲート電極先端部分の2本ずつが一つに
まとめられている。6、7は金等の金属を用いた第一層
配線で、それぞれ上記ドレイン電極3およびソース電極
4を電気的に外部に引き出す。8は金等の金属を用いた
第二層配線で、上記ゲート電極5を電気的に外部に引き
出す。9はコンタクトホールで、図10に示すように、
上記ゲート電極5と上記第二層配線8とを接続するため
に、上記ゲート電極5上の第一の層間絶縁膜11および
第二の層間絶縁膜12に形成された穴を示す。これらの
層間絶縁膜は一般に酸化シリコンや窒化シリコン等で形
成される。各電極および配線は、下層側より各電極3、
4、5、第一の層間絶縁膜11、第一層配線6、7、、
第二の層間絶縁膜12、第二層配線8の順で積み重ねら
れる。図8では、ドレイン電極3およびソース電極4と
その上の第一層配線6、7との間の第一の層間絶縁膜1
1に形成されたコンタクトホールは省略している。
【0005】
【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、図9に示すように、半絶縁性領域2上に
直接大面積のゲート電極5が接触しているので、導電領
域1と間に大きなゲートのリーク電流51が発生し、高
周波特性や効率等の諸特性劣化の原因となっていた。ま
た単にゲート電極を一本一本独立させると、ゲート電極
先端での電位がばらつき、高周波特性の不安定化の要因
となった。さらに図10に示すように、ゲート電極5の
引出し方法が、直接第二層配線8に接続される構造にな
っているので、層間の形状が単純で経路が短くなる分、
水52等の染み込みが多くなる。これによりゲート電極
5や導電領域1の表面が酸化し、種々の電気特性の劣化
やしいてはトランジスタの破壊を生じ、高い信頼性が得
られなかった。従って信頼性を保証するためには、一般
に引出し距離を長くする方法が用いられ、これによる寄
生抵抗・容量の増加やそれによる電気特性特に高周波特
性の劣化、およびトランジスタサイズの大型化という問
題点を有していた。
【0006】本発明は上記問題点に鑑み、ゲート電極先
端での電位のばらつきなくゲートのリーク電流を低減し
、かつ電気特性を劣化させることなく高い信頼性を得る
ことができる構造を有したGaAsMESFETを提供
するものである。
【0007】
【課題を解決するための手段】上記問題点を解決するた
めに本発明のGaAsMESFETは、半絶縁性領域と
、上記半絶縁性領域内に形成した導電領域と、上記導電
領域上にオーミック接触したドレイン電極およびソース
電極と、上記導電領域にショットキー接触し、かつ上記
半絶縁性領域まで伸長し、かつ上記ドレイン電極あるい
は上記ソース電極をはさんで櫛形に配置した少なくとも
2本の独立したゲート電極と、上記半絶縁性領域上にあ
る上記ゲート電極上の層間絶縁膜に形成された五角形の
コンタクトホールと、上記コンタクトホールを通して上
記ゲート電極上の一部に接触しかつ上記ゲート電極の少
なくとも2本を上記半絶縁性領域上にて接続した第一層
配線と、上記ゲート電極上の上記第一層配線上の少なく
とも一部に接触した上記半絶縁性領域上の第二層配線と
を備えたものである。
【0008】
【作用】本発明は上記した構成によって、個々の独立し
たゲート電極の接続は第一層配線によりなされ、外部へ
の引出しは第二層配線によりなされるため、半絶縁性領
域上に直接接触するゲート電極の面積は小さくなりリー
ク電流を大幅に低減する。またゲート電極の引出し経路
が、ゲート電極、第一層配線、第二層配線と複雑にかつ
長くなるため、水分等の侵入を防ぎやすい。これらの効
果によりゲートのリーク電流を低減し、かつ高い信頼性
を得ることができる。さらに、独立した2本のゲート電
極の先端は、第一層配線で接続されるため、ゲート電位
のばらつき等は低減される。またこれらのゲート電極と
第一層配線とのコンタクトホールを五角形にすることに
より、より導電領域に近づけてコンタクト領域を形成す
ることができ、ゲートの寄生抵抗・容量の低減やトラン
ジスタサイズの低減を図ることができる。さらにこの五
角形を用いることにより、拡散プロセス不良の原因とな
る鋭角なパターンを避けることができ、歩留まり向上に
も寄与する。
【0009】
【実施例】以下本発明の実施例のGaAsMESFET
について、図面を参照しながら説明する。
【0010】図1は本発明の実施例によるパワー用Ga
AsMESFETの構成を示すものである。図2は図1
のゲート電極引出し部分近傍を拡大したもので、図3は
図2におけるb−b’線に沿った断面構造を示すもので
ある。図1および図2および図3において、1は導電領
域、2は半絶縁性領域である。3、4はそれぞれドレイ
ン電極およびソース電極で、上記導電領域1にオーミッ
ク接触する。21はゲート電極で、上記導電領域1にシ
ョットキー接触する。このゲート電極21は周辺の上記
半絶縁性領域2にまで伸長して形成され、かつ各々のゲ
ート電極は一本ずつ独立して櫛形に配置されている。 6、7は第一層配線で、ドレイン電極およびソース電極
を電気的に外部に引き出す。23は第一層配線、25は
第二層配線であり、図3に示すように、22は第一の層
間絶縁膜11に形成された五角形のコンタクトホール、
24は第二の層間絶縁膜12に形成されたコンタクトホ
ールである。上記ゲート電極21は、上記半絶縁性領域
2上で上記コンタクトホール22、上記第一層配線23
を介し、さらに上記コンタクトホール24、第二層配線
25を介して電気的に外部に引き出されている。各電極
および配線は、基板側よりゲート電極21、第一の層間
絶縁膜11、第一層配線23、第二の層間絶縁膜12、
第二層配線25の順で積み重ねられる。図1では、ドレ
イン電極3およびソース電極4とその上の第一層配線6
、7との間の第一の層間絶縁膜11に形成されたコンタ
クトホールは省略している。
【0011】図4は図1のゲート電極先端部分近傍を拡
大したもので、図5は図4におけるc−c’線に沿った
断面構造を示すものである。図4および図5において、
33は第一層配線であり、32は第一の層間絶縁膜11
に形成された五角形のコンタクトホールである。ゲート
電極21の先端は、半絶縁性領域2上で上記コンタクト
ホール32を介して上記第一層配線33で電気的に接続
されている。
【0012】以上のように本実施例のよれば、まず図2
のようにゲート電極21を個々に独立させることによっ
て、半絶縁性領域2上に直接接触するゲート電極21の
面積は小さくなり、ゲートのリーク電流61は低減する
。外部への引出しは、図3のように第一層配線23上の
第二層配線25によってなされるため、経路が複雑で長
くなる分、水62等が染み込み難い。従って高い信頼性
を保証する。また図4のように2本のゲート電極21の
先端部分側が、第一層配線33で一つにまとめられてい
るので、ゲート電位のばらつき等は低減される。さらに
拡散プロセス時において、本実施例の構造は従来の場合
と同じ工程数で形成できるので、本実施例を用いること
によるプロセスの複雑化、費用の増加は生じない。
【0013】ここで、ゲート電極21と第一層配線23
、33とを接続するコンタクトホール22、32が五角
形で形成されている理由について、図6の説明図を用い
てその効果を述べる。図6において、71、81、91
はそれぞれゲート電極、72、82、92はそれぞれ上
記ゲート電極71、81、91上の層間絶縁膜に形成さ
れたコンタクトホールである。ここで上記コンタクトホ
ール72、82、92はすべて同一の面積を有するよう
に設計しており、従ってその下層のゲート電極71、8
1、91の引出し部分の面積もほぼ同等になる。一般に
引出し部分からのゲートのリーク電流は、その引出し部
分の面積と、導電領域に対面する電極端の距離とに強い
相関を持ち、上記面積が小さいほうが、また導電領域か
ら遠いほうがリーク電流が小さい。一次近似として上記
リーク電流が、電極端から導電領域までの距離の逆数の
総和に比例すると考えると、図6におけるゲートのリー
ク電流70、80、90はほぼ同じ値となる。本実施例
では、個々の独立したゲート電極のコンタクト領域とな
る引出し部分は、同図左に示すゲート電極71のような
単純な矩形ではなく、同図右に示すゲート電極91のよ
うに序々に広がる多角形で形成されている。これは、前
述の同一の面積を有しかつ同程度のリーク電流となる矩
形を用いた場合と比較すると、より導電領域1に近づけ
てコンタクトさせることが可能であることを示している
。従って同図左のゲート電極71よりも同図右のゲート
電極91のほうがゲートの寄生抵抗・容量は小さく、し
いては高周波特性も向上する。さらに同一の面積を有し
かつ同程度のリーク電流の条件下で、より導電領域1に
近づけてコンタクトさせる方法として、同図中のゲート
電極81のように片側だけ広げることも可能であるが、
同図のようにコンタクトホール82は三角形となり、そ
の内角のすくなくとも2つは鋭角となるため、トランジ
スタサイズの微細化に伴い、上記鋭角部分において拡散
プロセス時のレジスト残りやパターン形成不良を起こし
、歩留まりが低下する。本実施例のように、ゲート電極
引出し部分を序々に広げて適切な形状に設計し、さらに
その上のコンタクトホール27を、すべての内角が直角
以上の鈍角となる五角形にすることにより、拡散プロセ
ス時の不良が防がれて、歩留まりが向上する。
【0014】図7は、図1に示す本実施例のGaAsM
ESFETにおけるゲートのリーク電流と、図8に示す
従来のGaAsMESFETにおけるゲートのリーク電
流とを実測比較したもので、これらは同一のトランジス
タサイズ、同一の設計条件の下で作製されている。同図
において横軸はドレイン−ゲート電圧Vdg、縦軸はド
レイン−ゲート電流Idgであり、測定範囲はゲートの
ショットキーの耐圧方向に相当する。ショットキーの耐
圧方向測定では、導電領域におけるゲートのリーク電流
が小さいので、半絶縁性領域からのゲートのリーク電流
を観測することができる。同図に示すように、明らかに
本実施例によりリーク電流が約半分に低減されている。
【0015】なお、本実施例において、ゲート電極の引
出し方法を第一層、第二層と多層配線にする構造と、2
本の独立したゲート電極を第一層配線で接続する構造と
は、トランジスタ作製時にそれぞれ独立して用いること
ができる。また本実施例においては、ソース電極をはさ
んだ2本のゲート電極の先端部分が第一層配線で接続さ
れているが、ドレイン電極をはさんだ2本のゲート電極
の引出し部分を第一層配線で接続しさらに第二層配線で
外部に引き出すことも可能であり、接続の方法や第一層
配線の形状、第一層配線と第二層配線との接続部の形状
や位置、第二層配線の形状等の設計は、上記ゲート電極
から引出した第一層配線とドレイン電極あるいはソース
電極から引出した第一層配線とが重ならない限り自由に
行える。
【0016】
【発明の効果】以上のように本発明は、少なくとも2本
の独立したゲート電極と、上記ゲート電極の引出し部分
に接触する第一層配線と、上記第一層配線に接触する第
二層配線とを設け、またゲート電極の先端部分を接続す
る第一層配線を設け、さらにゲート電極と第一層配線と
を接触させる、五角形に形成されたコンタクトホールを
設けることにより、リーク電流の大幅な低減と、水分等
の侵入を防いだ高い信頼性を得ることを可能にし、さら
にゲート電位のばらつきを低減する。また五角形のコン
タクトホールを用いることにより、ゲートの寄生抵抗・
容量の低減やトランジスタサイズの低減や、拡散プロセ
ス不良の原因となる鋭角なパターンを避けることができ
、電気特性や歩留まり向上にも寄与する。
【図面の簡単な説明】
【図1】本発明のパワー用GaAsMESFETの平面
構成図である。
【図2】図1のゲート電極引出し部分近傍の平面構成図
である。
【図3】図2のb−b’線に沿った構成断面図である。
【図4】図1のゲート電極先端部分近傍の平面構成図で
ある。
【図5】図4のc−c’線に沿った構成断面図である。
【図6】ゲート電極の引出し形状の効果を示す説明図で
ある。
【図7】本発明の実施例と従来の構造とにおけるゲート
のリーク電流を比較した特性図である。
【図8】従来のパワー用GaAsMESFETの平面構
成図である。
【図9】図8のゲート電極引出し部分近傍の平面構成図
である。
【図10】図9のa−a’−a”線に沿った構成断面図
である。
【符号の説明】
1  導電領域 2  半絶縁性領域 3  ドレイン電極 4  ソース電極 5  ゲート電極 6  第一層配線 7  第一層配線 8  第二層配線 9   コンタクトホール 11  層間絶縁膜 12  層間絶縁膜 21  ゲート電極 22  コンタクトホール 23  第一層配線 24  コンタクトホール 25  第二層配線 32  コンタクトホール 33  第一層配線

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】  半絶縁性領域と、上記半絶縁性領域内
    に形成した導電領域と、上記導電領域上にオーミック接
    触したドレイン電極およびソース電極と、上記導電領域
    にショットキー接触し、かつ上記半絶縁性領域まで伸長
    し、かつ上記ドレイン電極あるいは上記ソース電極をは
    さんで櫛形に配置した少なくとも2本の独立したゲート
    電極と、上記半絶縁性領域上にある上記ゲート電極上の
    層間絶縁膜に形成された五角形のコンタクトホールと、
    上記コンタクトホールを通して上記ゲート電極上の一部
    に接触した第一層配線と、上記ゲート電極上の上記第一
    層配線上の少なくとも一部に接触した上記半絶縁性領域
    上の第二層配線とを備えたことを特徴とする電界効果型
    トランジスタ。
  2. 【請求項2】  半絶縁性領域と、上記半絶縁性領域内
    に形成した導電領域と、上記導電領域上にオーミック接
    触したドレイン電極およびソース電極と、上記導電領域
    にショットキー接触し、かつ上記半絶縁性領域まで伸長
    し、かつ上記ドレイン電極あるいは上記ソース電極をは
    さんで櫛形に配置した少なくとも2本の独立したゲート
    電極と、上記半絶縁性領域上にある上記ゲート電極上の
    層間絶縁膜に形成された五角形のコンタクトホールと、
    上記コンタクトホールを通して上記ゲート電極上の一部
    に接触しかつ上記ゲート電極の少なくとも2本を上記半
    絶縁性領域上にて接続した第一層配線とを備えたことを
    特徴とする電界効果型トランジスタ。
  3. 【請求項3】  半絶縁性領域と、上記半絶縁性領域内
    に形成した導電領域と、上記導電領域上にオーミック接
    触したドレイン電極およびソース電極と、上記導電領域
    にショットキー接触し、かつ上記半絶縁性領域まで伸長
    し、かつ上記ドレイン電極あるいは上記ソース電極をは
    さんで櫛形に配置した少なくとも2本の独立したゲート
    電極と、上記半絶縁性領域上にある上記ゲート電極上の
    層間絶縁膜に形成された五角形のコンタクトホールと、
    上記コンタクトホールを通して上記ゲート電極上の一部
    に接触しかつ上記ゲート電極の少なくとも2本を上記半
    絶縁性領域上にて接続した第一層配線と、上記ゲート電
    極上の上記第一層配線上の少なくとも一部に接触した上
    記半絶縁性領域上の第二層配線とを備えたことを特徴と
    するを備えたことを特徴とする電界効果型トランジスタ
JP3066314A 1991-03-29 1991-03-29 電界効果型トランジスタ Pending JPH04302149A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066314A JPH04302149A (ja) 1991-03-29 1991-03-29 電界効果型トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066314A JPH04302149A (ja) 1991-03-29 1991-03-29 電界効果型トランジスタ

Publications (1)

Publication Number Publication Date
JPH04302149A true JPH04302149A (ja) 1992-10-26

Family

ID=13312247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066314A Pending JPH04302149A (ja) 1991-03-29 1991-03-29 電界効果型トランジスタ

Country Status (1)

Country Link
JP (1) JPH04302149A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840663B1 (ko) * 2006-10-11 2008-06-24 동부일렉트로닉스 주식회사 알에프 반도체 소자 및 그 제조 방법
JP2008177511A (ja) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp 電界効果トランジスタ
JP2009054632A (ja) * 2007-08-23 2009-03-12 Fujitsu Ltd 電界効果トランジスタ
WO2010113779A1 (ja) * 2009-03-30 2010-10-07 日本電気株式会社 半導体装置
WO2011121830A1 (ja) * 2010-03-29 2011-10-06 住友電気工業株式会社 電界効果トランジスタ
JP2012023212A (ja) * 2010-07-14 2012-02-02 Sumitomo Electric Ind Ltd 半導体装置
JP2012064900A (ja) * 2010-09-17 2012-03-29 Panasonic Corp 半導体装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840663B1 (ko) * 2006-10-11 2008-06-24 동부일렉트로닉스 주식회사 알에프 반도체 소자 및 그 제조 방법
JP2008177511A (ja) * 2007-01-22 2008-07-31 Mitsubishi Electric Corp 電界効果トランジスタ
JP2009054632A (ja) * 2007-08-23 2009-03-12 Fujitsu Ltd 電界効果トランジスタ
US7952117B2 (en) 2007-08-23 2011-05-31 Fujitsu Limited Field-effect transistor
DE102008033234B4 (de) * 2007-08-23 2017-01-26 Fujitsu Limited Feldeffekttransistor
WO2010113779A1 (ja) * 2009-03-30 2010-10-07 日本電気株式会社 半導体装置
JP2011210834A (ja) * 2010-03-29 2011-10-20 Sumitomo Electric Ind Ltd 電界効果トランジスタ
CN102473646A (zh) * 2010-03-29 2012-05-23 住友电气工业株式会社 场效应晶体管
EP2555231A1 (en) * 2010-03-29 2013-02-06 Sumitomo Electric Industries, Ltd. Field effect transistor
US8624303B2 (en) 2010-03-29 2014-01-07 Sumitomo Electric Industries, Ltd. Field effect transistor
EP2555231A4 (en) * 2010-03-29 2014-04-30 Sumitomo Electric Industries FIELD EFFECT TRANSISTOR
WO2011121830A1 (ja) * 2010-03-29 2011-10-06 住友電気工業株式会社 電界効果トランジスタ
JP2012023212A (ja) * 2010-07-14 2012-02-02 Sumitomo Electric Ind Ltd 半導体装置
JP2012064900A (ja) * 2010-09-17 2012-03-29 Panasonic Corp 半導体装置

Similar Documents

Publication Publication Date Title
TWI475690B (zh) 多閘半導體裝置
US6627967B2 (en) Schottky barrier diode
US20020033508A1 (en) Semiconductor device and method for fabricating the same
JPH05259454A (ja) 改良されたブレークダウン電圧特性を有する半導体装置
US20100025737A1 (en) Field-effect transistor
TWI293510B (en) Field-plate mesfet
US20110316050A1 (en) Semiconductor device having a heterojunction biopolar transistor and a field effect transistor
JPH04302149A (ja) 電界効果型トランジスタ
JP3386789B2 (ja) 半導体装置及びその製造方法
US5019877A (en) Field effect transistor
US4584593A (en) Insulated-gate field-effect transistor (IGFET) with charge carrier injection
US4972240A (en) Vertical power MOS transistor
JPS5879773A (ja) 電界効果トランジスタ
BE1007589A3 (nl) Halfgeleiderinrichting met in mesa-structuur aangebracht halfgeleiderelement.
JPH06151863A (ja) 半導体装置
US5585655A (en) Field-effect transistor and method of manufacturing the same
JP2000340580A (ja) 半導体装置
US5270566A (en) Insulated gate semiconductor device
JP3131267B2 (ja) 電界効果トランジスタ
JPH0846198A (ja) 半導体装置
US7304329B2 (en) Field effect transistor
JPH08115924A (ja) 電界効果型トランジスタおよびその製造方法
US20210320198A1 (en) Transistor
JPH0196966A (ja) 電界効果トランジスタ
JPS63164504A (ja) 半導体装置