JP2009054632A - 電界効果トランジスタ - Google Patents

電界効果トランジスタ Download PDF

Info

Publication number
JP2009054632A
JP2009054632A JP2007217254A JP2007217254A JP2009054632A JP 2009054632 A JP2009054632 A JP 2009054632A JP 2007217254 A JP2007217254 A JP 2007217254A JP 2007217254 A JP2007217254 A JP 2007217254A JP 2009054632 A JP2009054632 A JP 2009054632A
Authority
JP
Japan
Prior art keywords
gate
drain
ohmic contact
source
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007217254A
Other languages
English (en)
Inventor
Satoru Masuda
哲 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007217254A priority Critical patent/JP2009054632A/ja
Priority to DE102008033234.8A priority patent/DE102008033234B4/de
Priority to US12/192,187 priority patent/US7952117B2/en
Publication of JP2009054632A publication Critical patent/JP2009054632A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】 歩留まりの低下を抑制し、かつ良好な高周波特性を維持することが可能な電界効果トランジスタを提供する。
【解決手段】 活性領域と交差するように、少なくとも2つのドレインオーミック接触部が配置されている。ドレインオーミック接触部の間に、ソースオーミック接触部が配置されている。素子分離領域上のドレイン連結部が、ドレインオーミック接触部の同じ側の端部同士を接続する。ドレインオーミック接触部とソースオーミック接触部との間に、ゲートフィンガが配置されている。素子分離領域上のゲート給電配線が、ゲートフィンガ同士を、ドレイ連結部が配置された側とは反対側の端部において接続する。ゲート先端連結部が、ソースオーミック接触部を挟んで隣り合う2つのゲートフィンガ同士を、ドレイン連結部が配置された側の端部において接続する。ゲート先端連結部は、ドレイオーミック接触部及びドレイン連結部のいずれとも交差しない。
【選択図】 図1

Description

本発明は、複数のゲートフィンガを持つ電界効果トランジスタに関する。
図10Aに、下記の特許文献1に開示された電界効果トランジスタの概略平面図を示す。櫛型形状のドレイン10とソース20とが、相互に噛み合うように配置されている。ドレイン10は、複数のドレインオーミック接触部10Aと、複数のドレインオーミック接触部10Aの一端(図10Aにおいて右端)を相互に接続するドレイン連結部10Bとにより構成される。同様に、ソース15も、複数のソースオーミック接触部15Aと、複数のソースオーミック接触部15Aの一端(図10Aにおいて左端)を相互に接続するソース連結部15Bとにより構成される。
ドレインオーミック接触部10Aとソースオーミック接触部15Aとの間の各領域に、ゲートフィンガ20Aが配置されている。ゲート給電配線20Bが、複数のゲートフィンガ20Aの一端(図10Aにおいて左端)を相互に接続する。ゲート給電配線20Bは、ソース15と交差する。交差箇所において両者は相互に絶縁されている。
トランジスタのゲート幅(ゲートフィンガ長)を大きくすることにより、またはゲートフィンガ数を多くすることにより、高出力化を図ることができる。
マイクロパイプ等の結晶欠陥が生じている半導体基板の上に、ゲートフィンガを持つトランジスタを形成すると、ゲートフィンガとマイクロパイプとが交差する位置においてゲートフィンガの断線が生じやすい。特に、マイクロパイプが生じやすい単結晶SiC基板を用いる場合、ゲートフィンガの断線の発生確率が高くなる。ゲートフィンガの断線が発生すると、ゲート幅当たりの電流量にばらつきが生じ、歩留まりの低下につながる。特に、高出力化を図るためにゲートフィンガ数を多くすると、ゲートフィンガの断線確率が高くなり、歩留まりが急激に低下してしまう。
図10Bに、下記の特許文献2に開示されたマイクロ波スイッチ素子の平面図を示す。2本のオーミック接触部を持つドレイン10と、2本のオーミック接触部を持つソース15とが、相互に噛み合っている。ドレイン10のオーミック接触部とソース15のオーミック接触部との間の各々に、ゲートフィンガ20Aが1本ずつ配置されている。すなわち、ゲートフィンガ20Aの総数は3本になる。
3本のゲートフィンガ20Aの一方の端部を、第1のゲート給電線路20Xが相互に接続し、他方の端部を、第2のゲート給電線路20Yが相互に接続する。第1のゲート給電線路20Xは、ソース15と交差し、第2のゲート給電線路20Yは、ドレイン10と交差する。ゲートフィンガ20A、ソース15、ドレイン10、第1のゲート給電線路20X,及び第2のゲート給電線路20Yが、点対称であるように配置されている。このような配置にすることにより、対称なスイッチ特性を有するマイクロ波スイッチ素子が得られる。
図10Cに、図10Bのゲートフィンガ接続構造を図10Aの電界効果トランジスタに適用した場合の平面パターンを示す。各ゲートフィンガ20Aの、ドレイン連結部10B側の端部(図10Cにおいて右端)が、第2のゲート給電線路20Yで接続される。ゲート給電配線20Bが、第1のゲート給電線路20Xに対応する。第2のゲート給電線路20Yは、ドレイン10と交差する。
図10Cの構造では、1本のゲートフィンガ20Aが一箇所で断線したとしても、断線箇所よりもドレイン10側の部分に、第2のゲート給電線路20Yを経由してゲート電圧が印加される。このため、所望のトランジスタ特性を維持することができる。
特開2007−115894号公報 特開平10−284508号公報
図10Cに示した電界効果トランジスタにおいては、ゲート給電線路20Yがドレインと交差する。このため、ゲート−ドレイン間の寄生容量が増大し、良好な高周波特性を維持することが困難である。
本発明の目的は、歩留まりの低下を抑制し、かつ良好な高周波特性を維持することが可能な電界効果トランジスタを提供することである。
本発明の一観点によると、
表層部に、活性領域と、該活性領域を取り囲む素子分離領域とが画定された半導体基板と、
前記半導体基板の上に、該活性領域と交差するように配置された少なくとも2つのドレインオーミック接触部と、
相互に隣り合う2つのドレインオーミック接触部の間の前記半導体基板上に、前記活性領域と交差するように配置されたソースオーミック接触部と、
前記半導体基板の前記素子分離領域上に配置され、前記ドレインオーミック接触部の同じ側の端部同士を接続するドレイン連結部と、
前記ドレインオーミック接触部とソースオーミック接触部との間の各領域の前記半導体基板上に、前記活性領域と交差するように配置されたゲートフィンガと、
前記半導体基板の素子分離領域上に配置され、前記ゲートフィンガ同士を、前記ドレイ連結部が配置された側とは反対側の端部において接続し、該ゲートフィンガにゲート電圧を供給するゲート給電配線と、
前記ソースオーミック接触部を挟んで隣り合う2つのゲートフィンガ同士を、前記ドレイン連結部が配置された側の端部において接続するとともに、前記ドレイオーミック接触部及びドレイン連結部のいずれとも交差しないように配置されたゲート先端連結部と
を有する電界効果トランジスタが提供される。
一方のゲートフィンガが断線しても、他方のゲートフィンガ及びゲート先端連結部を通して、断線箇所よりも先端部分にゲート電圧を供給することができる。このため、歩留まりの低下を抑制することができる。また、ゲート先端連結部がドレインと交差しないため、ゲート−ドレイン間の寄生容量の増大を抑制することができる。
図1に、第1の実施例による電界効果トランジスタの平面図を示す。半導体基板の表層部に、活性領域33Aが画定されている。素子分離領域33Bが活性領域33Aを取り囲む。また、半導体基板の表面上に、ドレイン10、ソース15、及びゲート20が形成されている。
ドレイン10は、複数(例えば5本)のドレインオーミック接触部10A、ドレイン連結部10B、及びドレイン配線10Dを含む。ドレインオーミック接触部10Aの各々は、活性領域33Aと交差しており、複数のドレインオーミック接触部10Aは、相互に平行に、かつ一定の間隔を隔てて配置されている。ドレイン連結部10Bは、素子分離領域33B上に配置され、複数のオーミック接触部10Aの同じ側の端部(図1において右側)を相互に接続している。ドレイン配線10Dは、ドレインオーミック接触部10A及びドレイン連結部10Bに重なるように配置されている。ドレインオーミック接触部10Aとドレイン連結部10Bとは、同一の導電膜により一体的に形成されている。
ソース15は、複数のソースオーミック接触部15A、ソース連結部15B、及びソース配線15Dを含む。1つのトランジスタは、2本のソースオーミック接触部15Aを有する。
ソースオーミック接触部15Aは、ドレインオーミック接触部10Aの間に配置されており、ソースオーミック接触部15Aの各々は、活性領域33Aと交差する。ソース連結部15Bは、活性領域33Aを挟んでドレイン連結部10Bとは反対側の素子分離領域33B上に配置されており、ソースオーミック接触部15Aの各々から離隔されている。ソース配線15Dは、ソースオーミック接触部15A及びソース連結部15Bに重なるように配置され、ソースオーミック接触部15Aの各々をソース連結部15Bに接続する。
図1には、2つの電界効果トランジスタが示されており、各電界効果トランジスタは、2本のソースオーミック接触部15Aを有する。なお、1つの電界効果トランジスタを、2本のドレインオーミック接触部10Aと1本のソースオーミック接触部15Aとを含むような構成としてもよいし、3本以上のソースオーミック接触部と、4本以上のドレインオーミック接触部とを含む構成としてもよい。。
ゲート20は、ゲートフィンガ20A、ゲート給電配線20B、及びゲート先端連結部20Cにより構成される。ドレインオーミック接触部10Aとソースオーミック接触部15Aとの間に、1本のゲートフィンガ20Aが配置されている。ゲートフィンガ20Aの各々は、活性領域33Aと交差する。ゲート給電配線20Bは、ソースオーミック接触部15Aとソース連結部15Bとの間の領域に配置され、複数のゲートフィンガ20Aの、ソース連結部15B側の端部を相互に接続する。ゲート給電配線20Bは、ソース配線15Dと交差する。この交差箇所において、ゲート給電配線20Bは、ソース配線15Dから絶縁されている。
ゲート先端連結部20Cは、素子分離領域33B上に配置されており、ソースオーミック接触部15Aを挟んで相互に隣り合う2本のゲートフィンガ20Aの、ドレイン連結部10B側の端部同士を接続する。ゲート先端連結部20Cは、ドレインオーミック接触部10A及びドレイン連結部10Bと重ならないように配置されている。
図2A〜図2Cに、それぞれ図1の一点鎖線2A−2A、2B−2B、及び2C−2Cにおける断面図を示す。
図2Aに示すように、SiCからなる下地基板30の上に、アンドープのGaNからなるチャネル層31、アンドープのAlGaNからなる中間層32が形成されている。中間層32の上に、AlGaNからなる電子供給層33が配置されている。活性領域33A内の電子供給層33にはn型導電性が付与されている。
電子供給層33の上に、ドレインオーミック接触部10A及びソースオーミック接触部15Aが、相互に間隔を隔てて配置されている。両者の間の電子供給層33の表面が、n型GaNからなる表面層34で覆われている。表面34の上に、ドレインオーミック接触部10A及びソースオーミック接触部15Aのいずれからも間隔を隔てて、ゲートフィンガ20Aが形成されている。ドレインオーミック接触部10A及びソースオーミック接触部15Aは、Ta膜とAl膜とがこの順番に積層された2層構造を有する。ゲートフィンガ20Aは、Ni膜とAu膜とがこの順番に積層された2層構造を有する。
ドレインオーミック接触部10A及びソースオーミック接触部15Aは、電子供給層33及び中間層32を介して、それらの直下のチャネル層31にオーミック接続されている。ゲートフィンガ20Aは、表面層34にショットキ接触し、その直下のチャネル層31のポテンシャルを制御する。
ソースオーミック接触部15Aとゲートフィンガ20Aとの間、及びドレインオーミック接触部10Aとゲートフィンガ15Aとの間の表面層34の上、ソースオーミック接触部15Aの上、及びドレインオーミック接触部10Aの上にSiNからなる第1の保護膜35が形成されている。第1の保護膜35の上、及びゲートフィンガ20Aの表面上に、SiNからなる第2の保護膜36が形成されている。第1の保護膜35及び第2の保護膜36に、ドレインオーミック接触部10A及びソースオーミック接触部15Aの上面を露出させる開口が形成されている。ドレインオーミック接触部10Aの上にドレイン配線10Dが配置され、ソースオーミック接触部15Aの上にソース配線15Dが配置されている。ドレイン配線10D及びソース配線15Dは、それぞれ第1の保護膜35と第2の保護膜36とに形成された開口を経由して、ドレインオーミック接触部10A及びソースオーミック接触部15Aにオーミックに接続されている。ドレイン配線10D及びソース配線15Dは、例えばAuで形成される。
図2Bに示すように、活性領域33Aを取り囲む領域の電子供給層33は半絶縁性の素子分離領域33Bとされている。電子供給層33の上に、ドレイン連結部10B、ソースオーミック接触部15A、及びソース連結部15Bが配置されている。ドレイン連結部10Bは、活性領域33Aの一方の側(図2Bにおいて右側)の素子分離領域33B上に配置され、ソース連結部15Bは、他方の側(図2Bにおいて左側)の素子分離領域33B上に配置されている。ソースオーミック接触部15Aは、活性領域33Aの一方の縁から他方の縁まで延在する。
ドレイン連結部10B、ソースオーミック接触部15A、及びソース連結部15Bは、同一の導電膜をパターニングすることにより形成される。ソース連結部15Bは、ソースオーミック接触部15Aから間隔を隔てて配置されている。ソース連結部15Bとソースオーミック接触部15Aとの間の電子供給層33の表面が、表面層34で覆われている。この表面層34の上に、ゲート給電配線20Bが配置されている。
ソースオーミック接触部15Aとドレイン連結部10Bとの間の電子供給層33の表面が表面層34で覆われている。この表面層34の上に、ゲート先端連結部20Cが配置されている。ゲート給電配線20B及びゲート先端連結部20Cは、ゲートフィンガ20Aと同時に形成される。
表面層34の表面のうちゲート給電配線20B及びゲート先端連結部20Cが配置されていない領域が、第1の保護膜35で覆われている。第1の保護膜35は、表面層34に隣接するドレイン連結部10B、ソースオーミック接触部15A、及びソース連結部15Bの上面の一部分まで延在する。ゲート給電配線20B、ゲート先端連結部20C、及び第1の保護膜35の上に、第2の保護膜36が形成されている。第1の保護膜35及び第2の保護膜36に、ドレイン連結部10B、ソースオーミック接触部15A、及びソース連結部15Bの上面を露出させる開口が形成されている。ドレイン連結部10Bの上面を露出させる開口は、図2Aに示したドレインオーミック接触部10Aの上に配置された開口に連続している。
ドレイン連結部10Bの上に、ドレイン配線10Dが形成されている。ドレイン配線10Dは、図2Aに示したドレインオーミック接触部10A上のドレイン配線10Dに連続している。
ソースオーミック接触部15Aの上にソース配線15Dが配置されている。このソース配線15Dは、ゲート給電配線20Bの上を通過して、ソース連結部15Bの上まで延在し、ソースオーミック接触部15Aとソース連結部15Bとを電気的に接続している。ソース配線15Dとゲート給電配線20Bとが交差する箇所において、両者は第2の保護膜36により電気的に絶縁されている。
図2Cに示すように、電子供給層33の素子分離領域33B上に、相互にある間隔を隔てて2つのドレイン連結部10Bが配置されている。なお、この2つのドレイン連結部10Bは、図1に示したように、活性領域33Aからより離れた位置において相互に接続されている。ドレインオーミック接触部10Aの間の電子供給層33の表面が、表面層34で覆われている。表面層34の上に、ゲート先端連結部20Cが配置されている。表面層34の表面のうちゲート先端連結部20Cが配置されていない領域が、第1の保護膜35で覆われている。第1の保護膜35は、表面層34に隣接するドレイン連結部10Bの上面の一部分まで延在する。
ゲート先端連結部20C及び第1の保護膜35の上に、第2の保護膜36が形成されている。第1の保護膜35及び第2の保護膜36に、ドレイン連結部10Bの上面を露出させる開口が形成されている。ドレイン連結部10Bの上に、ドレイン配線10Dが配置されている。このドレイン配線10Dは、図2Aに示したドレインオーミック接触部10Aの上のドレイン配線10Dに連続している。
次に、図3A〜図3Iを参照して、第1の実施例による電界効果トランジスタの製造方法について説明する。図3A〜図3Iは、図1の一点鎖線2B−2Bにおける断面に相当する。
図3Aに示すように、SiCからなる基板30の上に、アンドープのGaNからなる厚さ約3000nmのチャネル層31、アンドープのAlGaNからなる厚さ約2nmの中間層32、n型AlGaNからなる厚さ約25nmの電子供給層33、及びn型GaNからなる厚さ約5nmの表面層34をこの順番に堆積させる。これらの層は、有機金属気相エピタキシ(MOVPE)によりエピタキシャル成長させることにより形成される。
図3Bに示すように、素子分離領域33B内の電子供給層33及び表面層34にHe、N、C、Zn等をドープする。これらの元素をドープすることにより、素子分離領域33B内の電子供給層33及び表面層34が、半絶縁性状態になる。なお、半絶縁性状態にする代わりに、素子分離領域33B内の中間層32、電子供給層33及び表面層34をエッチングして、チャネル層31の表面を露出させてもよい。中間層32、電子供給層33及び表面層34のエッチングは、Cl、BCl、SiCl等の塩素系ガスを用いた反応性イオンエッチング(RIE)により行うことができる。これにより、半絶縁性の素子分離領域33Bに囲まれた活性領域33Aが画定される。
図3Cに示す構造に至るまでの工程について、以下に説明する。表面層34の上にレジスト膜を形成する。このレジスト膜に、ドレインオーミック接触部10A(図2A、図2C参照)、ドレイン連結部10B、ソースオーミック接触部15A及びソース連結部15Bに対応する開口を形成する。開口を形成したレジスト膜をマスクとして、表面層34をエッチングする。GaNからなる表面層34のエッチングは、例えばClを用いたRIEにより行うことができる。
開口の底面に電子供給層33が露出した状態で、Ta膜とAl膜とを順番に蒸着する。Ta膜及びAl膜の厚さは、例えば、それぞれ10nm及び300nmである。レジスト膜を、その上に堆積しているTa膜及びAl膜とともに除去する。これにより、Ta膜とAl膜との2層構造を有するドレインオーミック接触部10A、ドレイン連結部10B、ソースオーミック接触部15A及びソース連結部15Bが形成される。
温度600℃で熱処理を行い、ドレインオーミック接触部10A及びソースオーミック接触部15Aを、電子供給層33にオーミック接触させる。これにより、ドレインオーミック接触部10A及びソースオーミック接触部15Aが、その直下の中間層32とオーミックに接続される。
図3Dに示す構造に至るまでの工程について、以下に説明する。基板全面に、SiNからなる厚さ100nmmp第1の保護膜35を形成する。第1の保護膜35は、例えばプラズマ励起化学気相成長(PE−CVD)により形成することができる。第1の保護膜35の上にレジスト膜を形成する。このレジスト膜に、ゲートフィンガ20A(図1、図2A参照)、ゲート給電配線20B、及びゲート先端連結部20Cに対応する開口を形成する。開口を形成したレジスト膜をマスクとして、第1の保護膜35をエッチングする。SiNからなる第1の保護膜35のエッチングは、例えばSGを用いたRIEにより行う。これにより、表面層34の表面が露出する。
開口の底面に露出した表面層34の上に、Ni膜とAu膜とを順番に蒸着する。Ni膜及びAu膜の厚さは、例えばそれぞれ50nm及び300nmとする。蒸着後、レジスト膜を、その上に堆積しているNi膜及びAu膜とともに除去する。これにより、ゲートフィンガ20A、ゲート給電配線20B、及びゲート先端連結部20Cからなるゲート20が形成される。
図3Eに示すように、基板全面に、SiNからなる厚さ200nmの第2の保護膜36を、PE−CVDにより形成する。
図3Fに示すように、第1の保護膜35及び第2の保護膜36に、ドレインオーミック接触部10A(図2A、図2C参照)、ドレイン連結部10B、ソースオーミック接触部15A、及びソース連結部15Bの上面を露出させる開口を形成する。
図3Gに示すように、基板全面に、TiNからなる厚さ200nmのシード層25を、スパッタリングにより形成する。
シード層25の上に、レジスト膜を形成する。このレジスト膜に、ドレイン配線10D及びソース配線15Dに対応する開口を形成することにより、レジストパターン43を残す。シード層25を電極として、Auを電解めっきすることにより、ドレイン配線10D及びソース配線15Dを形成する。
図3Hに示すように、レジストパターン43を除去する。図3Iに示すように、レジストパターン43の下に残っていたシード層25をエッチング除去する。最後に、基板全面にSiNからなる保護膜(図示せず)を形成し、この保護膜に、ドレイン配線10D、ソース配線15D、ゲート給電配線20B等に設けられているパッド部分を露出させるための開口を形成する。
第1の実施例による電界効果トランジスタにおいては、ゲートフィンガ20Aが断線したとしても、そのゲートフィンガ20Aと、ソースオーミック接触部15Aを挟んで隣り合う他の1本のゲートフィンガ20A、及びゲート先端連結部20Cを介して、断線箇所よりもドレイン連結部10B側の部分にゲート電圧が供給される。このため、ゲートフィンガ断線に起因する歩留まりの低下を抑制することができる。
一例として、ゲートフィンガ長を0.4mm、ゲートフィンガ間隔を30μmとし、結晶欠陥が長さ0.6μmの直線状であったとする。単純化のために、結晶欠陥が、ゲートフィンガに直交していると仮定する。この場合、結晶欠陥がゲートフィンガと交差する確率は1/5である。すなわち、約20%の確率で、ゲートフィンガと結晶欠陥とが交差することによる断線に起因して素子不良が発生する。これに対し、第1の実施例の電界効果トランジスタでは、ゲートフィンガが一箇所で断線しても、素子不良が発生しない。
また、第1の実施例による電界効果トランジスタでは、ゲート先端連結部20Cがドレイン10と重ならないように配置されているため、ゲート−ドレイン間の寄生容量の増大を防止することができる。
図4に、第1の実施例による電界効果トランジスタの利得の周波数依存性の計算結果を示す。比較のために、図10Cに示した参考例による電界効果トランジスタの利得の周波数依存性の計算結果も示す。第1の実施例による電界効果トランジスタのゲート先端連結部20Cの長さを30μm、幅を10μm、ドレイン連結部10Bの幅を20μm、ゲート先端連結部20Cとドレイン連結部10Bとの間隔を5μmと仮定した。この場合、第1の実施例の構造とすることにより、図10Cに示したゲート先端連結部(第2のゲート給電線路)20Yがドレインオーミック接触部10Aと交差する場合に比べて、ゲート−ドレイン間の寄生容量が約20%低下する。
図4の実線a及びbは、それぞれ比較例及び第1の実施例による電界効果トランジスタの高周波特性を示す。なお、周波数10〜11GHzの近傍における折れ曲がり部よりも低周波側は、最大安定利得(MSG)を示し、高周波側は、最大有能利得(MAG)を示す。第1の実施例の構造とすることにより、約10GHzの周波数域において、利得が約2dB高くなることがわかる。このように、高周波特性が改善されることが確認された。
図5に、第2の実施例による電界効果トランジスタの平面図を示す。第1の実施例では、図1及び図2Cに示したように、ゲート先端連結部20Cが、ゲートフィンガ20Aと同一の導電膜により形成されていたが、第2の実施例では、ゲート先端連結部20Cが、ゲートフィンガ20Aよりも上に、絶縁膜を介して配置された導電膜で形成されている。この絶縁膜に、ゲート先端連結部20Cとゲートフィンガ20Aとを接続するためのビアホール(開口)27が形成されている。ビアホール27の位置決めを容易にするために、ゲートフィンガ20Aの先端を太くしている。例えば、ゲートフィンガ20Aの先端に、一辺の長さが2μm程度の正方形のパターンが配置される。ビアホール27の平面形状は、例えば、一辺の長さが1μmの正方形である。
図6A及び図6Cを参照して、第2の実施例による電界効果トランジスタの製造方法について説明する。図6A及び図6Bは、図5の一点鎖線6A−6Aにおける断面に相当する。
図6Aは、第1の実施例の図3Fに示した構造に至るまでの工程終了時の構造を示す。第1の実施例では、図2Cに示したように、ゲートフィンガ20Aと同一の導電膜により、ゲート先端連結部20Cが形成されていた。第2の実施例では、ゲートフィンガ20Aは形成されているが、ゲート先端連結部は形成されていない。また、第1の実施例では、ゲート先端連結部20Cの全面が、第2の保護膜36で覆われていたが、第2の実施例では、第2の保護膜36に、ゲートフィンガ20Aの先端の上面を露出させる開口27が形成されている。
図6Bに示すように、ドレイン連結部10Bの上に、ドレイン配線10Dを形成するとともに、一対のゲートフィンガ20A及びその間の第2の保護膜36の上に、ゲート先端連結部20Cを形成する。ゲート先端連結部20Cは、ドレイン配線10Dと同一の導電膜をパターニングすることにより形成される。
第2の実施例による電界効果トランジスタでは、表面層34とゲート先端連結部20Cとの間に、誘電体材料からなる第1の保護膜35及び第2の保護膜36が配置されている。このため、ゲート先端連結部20Aとドレインとの間の寄生容量を低減させることができる。
図7に、第2の実施例による電界効果トランジスタの利得の周波数特性を実線cで示す。比較のために、第1の実施例による電界効果トランジスタの利得の周波数特性を実線bで示す。なお、第2の実施例による電界効果トランジスタのゲート先端連結部20Cの下に配置されている第1及び第2の保護膜34及び35の合計の厚さを0.5μmとした。
第1の実施例に比べて、第2の実施例による電界効果トランジスタの利得が、周波数12GHz域において約2dB向上していることがわかる。このように、ゲート先端連結部20Cを、誘電体膜の上に配置することにより、高周波特性を改善することができる。
さらに、第2の実施例による構造を採用することにより、ゲートフィンガ等をリフトオフにより形成する際に、レジスト残渣が生じにくいという新たな効果が確認された。第1の実施例では、図1に示したように、リフトオフ後に残るゲートパターンが、ゲートフィンガ20A、ゲート給電配線20B、及びゲート先端連結部20Cで構成された閉じた図形となる。閉じた図形に囲まれた領域に、リフトオフ用の薬液が浸透しにくいため、レジスト残渣が生じやすかった。これに対し、第2の実施例では、ゲートパターンが閉じた図形にならないため、リフトオフ用の薬液が十分浸透し、レジスト残渣が生じにくい。
次に、図8A〜図8Fを参照して、第3の実施例による電界効果トランジスタの製造方法について説明する。第3の実施例による電界効果トランジスタの平面図は、図5に示した第2の実施例のものと同一である。
図8Aの第2の保護膜36を形成する工程までは、図6Aに示した第2の実施例の場合と同一である。相互に隣り合う2本のゲートフィンガ20Aの先端の間の第2の保護膜36の上に、第1のレジストパターン50を形成する。図8Bに示すように、基板全面に、シード層25を形成する。
図8Cに示すように、シード層25の上に第2のレジスト膜を形成した後、第2のレジスト膜に、ドレイン配線10D、ソース配線15D、及びゲート先端連結部20Cに対応する開口を形成することにより、第2のレジストパターン51を形成する。
図8Dに示すように、シード層25を電極としてAuを電解めっきすることにより、ドレイン配線10D、ソース配線15D、及びゲート先端連結部20Cを形成する。その後、第1のレジストパターン50及び第2のレジストパターン51を除去する。
図8Eに示すように、中空に支持されたゲート先端連結部20Cが残る。図8Fに示すように、露出しているシード層25をエッチングにより除去する。
第3の実施例では、ゲート先端連結部20Cが中空に支持されているため、第2の実施例に比べて、ゲート−ドレイン間の寄生容量をより低減させることができる。
図9に、第3の実施例による電界効果トランジスタの利得の周波数特性を実線dで示す。比較のために、第1の実施例による電界効果トランジスタの利得の周波数特性を実線bで示す。なお、第1及び第2の保護膜34及び35の合計の厚さを0.5μmとし、第2の保護膜36の上面から、ゲート先端連結部20Cの底面までの高さを2μmとした。図9と図7とを比較すると、第3の実施例の高周波特性が、第2の実施例の高周波特性よりもさらに改善されていることがわかる。
上記実施例では、下地基板30としてSiCを用いたが、他の半導体基板を用いてもよい。特に、ゲートフィンガの断線を引き起こすような結晶欠陥が内在している下地基板を採用する場合に、上記実施例のゲート構造が有効である。また、上記実施例では、チャネル層31にGaNを用い、電子供給層33にAlGaNを用いたが、他の半導体材料を用いてもよい。電子供給層33には、チャネル層31よりもバンドギャップの広い材料が用いられる。なお、表面層34の機能は、電子供給層33に含まれるAlに起因する表面トラップの影響を軽減することであり、表面層34を省略することも可能である。
さらに、上記実施例による電界効果トランジスタのゲート構造は、上記実施例に示した構造以外の平面形状が櫛型のゲートを持つトランジスタに適用することが可能である。
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
第1の実施例による電界効果トランジスタの平面図である。 第1の実施例による電界効果トランジスタの断面図である。 第1の実施例による電界効果トランジスタの製造途中段階の断面図である。 第1の実施例による電界効果トランジスタの製造途中段階の断面図である。 第1の実施例による電界効果トランジスタの製造途中段階の断面図である。 第1の実施例による電界効果トランジスタの高周波特性を、従来のものと比較して示すグラフである。 第2の実施例による電界効果トランジスタの平面図である。 第2の実施例による電界効果トランジスタの製造途中段階の断面図である。 第2の実施例による電界効果トランジスタの高周波特性を、第1の実施例による電界効果トランジスタと比較して示すグラフである。 第3の実施例による電界効果トランジスタの製造途中段階の断面図である。 第3の実施例による電界効果トランジスタの製造途中段階の断面図である。 第3の実施例による電界効果トランジスタの製造途中段階の断面図である。 第3の実施例による電界効果トランジスタの高周波特性を、第1の実施例による電界効果トランジスタと比較して示すグラフである。 従来の電界効果トランジスタの平面図である。
符号の説明
10 ドレイン
10A ドレインオーミック接触部
10B ドレイン連結部
10D ドレイン配線
15 ソース
15A ソースオーミック接触部
15B ソース連結部
15D ソース配線
20A ゲートフィンガ
20B ゲート給電配線
20C ゲート先端連結部
25 シード層
27 ビアホール(開口)
30 下地基板
31 チャネル層
32 中間層
33 電子供給層
33A 活性領域
33B 素子分離領域
34 表面層
35 第1の保護膜
36 第2の保護膜
43 レジストパターン
50 第1のレジストパターン
51 第2のレジストパターン

Claims (6)

  1. 表層部に、活性領域と、該活性領域を取り囲む素子分離領域とが画定された半導体基板と、
    前記半導体基板の上に、該活性領域と交差するように配置された少なくとも2つのドレインオーミック接触部と、
    相互に隣り合う2つのドレインオーミック接触部の間の前記半導体基板上に、前記活性領域と交差するように配置されたソースオーミック接触部と、
    前記半導体基板の前記素子分離領域上に配置され、前記ドレインオーミック接触部の同じ側の端部同士を接続するドレイン連結部と、
    前記ドレインオーミック接触部とソースオーミック接触部との間の各領域の前記半導体基板上に、前記活性領域と交差するように配置されたゲートフィンガと、
    前記半導体基板の素子分離領域上に配置され、前記ゲートフィンガ同士を、前記ドレイ連結部が配置された側とは反対側の端部において接続し、該ゲートフィンガにゲート電圧を供給するゲート給電配線と、
    前記ソースオーミック接触部を挟んで隣り合う2つのゲートフィンガ同士を、前記ドレイン連結部が配置された側の端部において接続するとともに、前記ドレイオーミック接触部及びドレイン連結部のいずれとも交差しないように配置されたゲート先端連結部と
    を有する電界効果トランジスタ。
  2. 前記半導体基板が、
    SiCからなる下地基板と、
    前記下地基板上に形成されたチャネル層と、
    前記チャネル層の上に形成され、該チャネル層に電子を供給する電子供給層と
    を有し、
    前記ソースオーミック接触部及びドレインオーミック接触部が、該ソースオーミック接触部及びドレインオーミック接触部の直下の前記チャネル層にオーミック接続され、
    前記ゲートフィンガは、該ゲートフィンガ直下の前記チャネル層のポテンシャルを変化させる請求項1に記載の電界効果トランジスタ。
  3. 前記ゲートフィンガ及び前記ゲート先端連結部は、同一の導電膜により一体的に形成されている請求項1または2に記載の電界効果トランジスタ。
  4. さらに、前記ゲート先端連結部と前記半導体基板の表面との間に配置された誘電体からなる絶縁膜を有し、ゲート先端連結部は、該絶縁膜に形成されたビアホールを経由して前記ゲートフィンガに接続されている請求項1または2に記載の電界効果トランジスタ。
  5. 前記ゲート先端連結部の一端が、一つの前記ゲートフィンガに接続され、他端が他のゲートフィンガに接続され、中央部が中空に支持されている請求項1または2に記載の電界効果トランジスタ。
  6. 前記ソースオーミック接触部が少なくとも2つ配置され、
    さらに、前記活性領域から、前記ゲート給電配線よりも遠い素子分離領域上に配置されたソース連結部と、
    前記ソースオーミック接触部の各々と前記ソース連結部とを接続するソース配線と
    を有し、該ソース配線は、前記ゲート給電配線と交差し、該交差箇所において両者が相互に絶縁されている請求項1乃至5のいずれか1項に記載の電界効果トランジスタ。
JP2007217254A 2007-08-23 2007-08-23 電界効果トランジスタ Pending JP2009054632A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007217254A JP2009054632A (ja) 2007-08-23 2007-08-23 電界効果トランジスタ
DE102008033234.8A DE102008033234B4 (de) 2007-08-23 2008-07-15 Feldeffekttransistor
US12/192,187 US7952117B2 (en) 2007-08-23 2008-08-15 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217254A JP2009054632A (ja) 2007-08-23 2007-08-23 電界効果トランジスタ

Publications (1)

Publication Number Publication Date
JP2009054632A true JP2009054632A (ja) 2009-03-12

Family

ID=40280359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217254A Pending JP2009054632A (ja) 2007-08-23 2007-08-23 電界効果トランジスタ

Country Status (3)

Country Link
US (1) US7952117B2 (ja)
JP (1) JP2009054632A (ja)
DE (1) DE102008033234B4 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182924A (ja) * 2009-02-06 2010-08-19 Furukawa Electric Co Ltd:The トランジスタおよびその製造方法
WO2010113779A1 (ja) * 2009-03-30 2010-10-07 日本電気株式会社 半導体装置
JP2010245352A (ja) * 2009-04-07 2010-10-28 Toshiba Corp 半導体装置およびその製造方法
JP2010245349A (ja) * 2009-04-07 2010-10-28 Toshiba Corp 半導体装置およびその製造方法
JP2011151155A (ja) * 2010-01-20 2011-08-04 Nec Corp 電界効果トランジスタ、電子装置、電界効果トランジスタの製造方法及び使用方法
WO2011121830A1 (ja) * 2010-03-29 2011-10-06 住友電気工業株式会社 電界効果トランジスタ
JP2013038239A (ja) * 2011-08-09 2013-02-21 Sanken Electric Co Ltd 窒化物半導体装置
WO2017098603A1 (ja) * 2015-12-09 2017-06-15 三菱電機株式会社 窒化物半導体装置
JP2018056271A (ja) * 2016-09-28 2018-04-05 日亜化学工業株式会社 電界効果トランジスタ
WO2021193535A1 (ja) * 2020-03-26 2021-09-30 住友電工デバイス・イノベーション株式会社 半導体装置
JP2021533556A (ja) * 2018-08-06 2021-12-02 メイコム テクノロジー ソリューションズ ホールディングス インコーポレイテッド 高電圧大電力アクティブデバイスの信頼性を向上させるための外部電界終端構造
US11276778B2 (en) 2019-12-03 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device
JP7509746B2 (ja) 2018-08-06 2024-07-02 メイコム テクノロジー ソリューションズ ホールディングス インコーポレイテッド 高電圧大電力アクティブデバイスの信頼性を向上させるための外部電界終端構造

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735981B2 (en) * 2009-06-17 2014-05-27 Infineon Technologies Austria Ag Transistor component having an amorphous semi-isolating channel control layer
KR101632314B1 (ko) * 2009-09-11 2016-06-22 삼성전자주식회사 전계 효과형 반도체 소자 및 그 제조 방법
US9236378B2 (en) 2010-08-11 2016-01-12 Sarda Technologies, Inc. Integrated switch devices
US8519916B2 (en) * 2010-08-11 2013-08-27 Sarda Technologies, Inc. Low interconnect resistance integrated switches
US8653565B1 (en) * 2010-08-11 2014-02-18 Sarda Technologies, Inc. Mixed mode multiple switch integration of multiple compound semiconductor FET devices
US8896034B1 (en) 2010-08-11 2014-11-25 Sarda Technologies, Inc. Radio frequency and microwave devices and methods of use
JP5985282B2 (ja) * 2012-07-12 2016-09-06 ルネサスエレクトロニクス株式会社 半導体装置
US9774322B1 (en) 2016-06-22 2017-09-26 Sarda Technologies, Inc. Gate driver for depletion-mode transistors
US10545055B2 (en) 2017-06-13 2020-01-28 Semiconductor Components Industries, Llc Electronic device including a temperature sensor
CN113764509B (zh) * 2021-07-21 2023-08-25 中山市华南理工大学现代产业技术研究院 一种增强型电容耦合GaN毫米波开关器件及其制造方法
WO2024000451A1 (zh) * 2022-06-30 2024-01-04 京东方科技集团股份有限公司 薄膜晶体管、移位寄存器单元、栅极驱动电路和显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278820A (ja) * 1989-03-14 1990-11-15 Motorola Inc エアブリッジ金属相互接続の製造方法
JPH04115555A (ja) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH04302149A (ja) * 1991-03-29 1992-10-26 Matsushita Electric Ind Co Ltd 電界効果型トランジスタ
JP2001230407A (ja) * 1999-12-08 2001-08-24 Matsushita Electric Ind Co Ltd 半導体装置
JP2002299443A (ja) * 2001-03-30 2002-10-11 Fujitsu Quantum Devices Ltd 半導体装置及びその製造方法
JP2004103819A (ja) * 2002-09-10 2004-04-02 Toshiba Corp モノリシックマイクロ波集積回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549197A (en) * 1982-07-06 1985-10-22 Texas Instruments Incorporated Common-gate GaAs FET design for monolithic microwave integrated circuits
US5397911A (en) * 1991-04-02 1995-03-14 Honda Giken Kogyo Kabushiki Kaisha Semiconductor sensor with plural gate electrodes
JPH07142512A (ja) * 1993-11-12 1995-06-02 Hitachi Ltd 半導体装置
JP2629643B2 (ja) * 1995-03-31 1997-07-09 日本電気株式会社 電界効果トランジスタ
JP2996929B2 (ja) 1997-04-04 2000-01-11 株式会社東芝 マイクロ波スイッチ素子
JP3425100B2 (ja) * 1999-03-08 2003-07-07 松下電器産業株式会社 フィールドプログラマブルゲートアレイおよびその製造方法
JP2001015526A (ja) * 1999-06-28 2001-01-19 Nec Kansai Ltd 電界効果トランジスタ
US6639255B2 (en) 1999-12-08 2003-10-28 Matsushita Electric Industrial Co., Ltd. GaN-based HFET having a surface-leakage reducing cap layer
WO2003071607A1 (fr) * 2002-02-21 2003-08-28 The Furukawa Electric Co., Ltd. Transistor a effet de champ gan
US7250642B2 (en) * 2004-07-29 2007-07-31 Matsushita Electric Industrial Co., Ltd. Field-effect transistor
JP4695484B2 (ja) 2005-10-20 2011-06-08 富士通株式会社 半導体装置
JP4800084B2 (ja) * 2006-03-31 2011-10-26 住友電工デバイス・イノベーション株式会社 半導体装置およびその製造方法
WO2008105077A1 (ja) * 2007-02-27 2008-09-04 Fujitsu Limited 化合物半導体装置とその製造方法
JP4268647B2 (ja) * 2007-03-30 2009-05-27 Okiセミコンダクタ株式会社 半導体素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278820A (ja) * 1989-03-14 1990-11-15 Motorola Inc エアブリッジ金属相互接続の製造方法
JPH04115555A (ja) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH04302149A (ja) * 1991-03-29 1992-10-26 Matsushita Electric Ind Co Ltd 電界効果型トランジスタ
JP2001230407A (ja) * 1999-12-08 2001-08-24 Matsushita Electric Ind Co Ltd 半導体装置
JP2002299443A (ja) * 2001-03-30 2002-10-11 Fujitsu Quantum Devices Ltd 半導体装置及びその製造方法
JP2004103819A (ja) * 2002-09-10 2004-04-02 Toshiba Corp モノリシックマイクロ波集積回路

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182924A (ja) * 2009-02-06 2010-08-19 Furukawa Electric Co Ltd:The トランジスタおよびその製造方法
WO2010113779A1 (ja) * 2009-03-30 2010-10-07 日本電気株式会社 半導体装置
JPWO2010113779A1 (ja) * 2009-03-30 2012-10-11 日本電気株式会社 半導体装置
JP2010245352A (ja) * 2009-04-07 2010-10-28 Toshiba Corp 半導体装置およびその製造方法
JP2010245349A (ja) * 2009-04-07 2010-10-28 Toshiba Corp 半導体装置およびその製造方法
JP2011151155A (ja) * 2010-01-20 2011-08-04 Nec Corp 電界効果トランジスタ、電子装置、電界効果トランジスタの製造方法及び使用方法
US8624303B2 (en) 2010-03-29 2014-01-07 Sumitomo Electric Industries, Ltd. Field effect transistor
WO2011121830A1 (ja) * 2010-03-29 2011-10-06 住友電気工業株式会社 電界効果トランジスタ
JP2011210834A (ja) * 2010-03-29 2011-10-20 Sumitomo Electric Ind Ltd 電界効果トランジスタ
JP2013038239A (ja) * 2011-08-09 2013-02-21 Sanken Electric Co Ltd 窒化物半導体装置
WO2017098603A1 (ja) * 2015-12-09 2017-06-15 三菱電機株式会社 窒化物半導体装置
JP2018056271A (ja) * 2016-09-28 2018-04-05 日亜化学工業株式会社 電界効果トランジスタ
JP2021533556A (ja) * 2018-08-06 2021-12-02 メイコム テクノロジー ソリューションズ ホールディングス インコーポレイテッド 高電圧大電力アクティブデバイスの信頼性を向上させるための外部電界終端構造
US11961888B2 (en) 2018-08-06 2024-04-16 Macom Technology Solutions Holdings, Inc. Extrinsic field termination structures for improving reliability of high-voltage, high-power active devices
JP7509746B2 (ja) 2018-08-06 2024-07-02 メイコム テクノロジー ソリューションズ ホールディングス インコーポレイテッド 高電圧大電力アクティブデバイスの信頼性を向上させるための外部電界終端構造
US11276778B2 (en) 2019-12-03 2022-03-15 Kabushiki Kaisha Toshiba Semiconductor device
WO2021193535A1 (ja) * 2020-03-26 2021-09-30 住友電工デバイス・イノベーション株式会社 半導体装置

Also Published As

Publication number Publication date
US20090050900A1 (en) 2009-02-26
DE102008033234A1 (de) 2009-02-26
US7952117B2 (en) 2011-05-31
DE102008033234B4 (de) 2017-01-26

Similar Documents

Publication Publication Date Title
JP2009054632A (ja) 電界効果トランジスタ
US9882056B2 (en) Thin film transistor and method of manufacturing the same
JP5544713B2 (ja) 化合物半導体装置及びその製造方法
JP5487613B2 (ja) 化合物半導体装置及びその製造方法
JP5386829B2 (ja) 半導体装置
US20090256210A1 (en) Semiconductor device and fabrication method of the semiconductor device
US6717192B2 (en) Schottky gate field effect transistor
US20210104610A1 (en) Semiconductor device
CN109698236B (zh) 半导体装置
JP5740356B2 (ja) 半導体装置
US20060273396A1 (en) Semiconductor device and manufacturing method thereof
JP2018186142A (ja) 半導体装置
US9640672B2 (en) Diode device and method for manufacturing the same
US20110291203A1 (en) Semiconductor device and method for manufacturing the same
US11302817B2 (en) Semiconductor device and process of forming the same
JP5487590B2 (ja) 半導体装置及びその製造方法
JP2002110700A (ja) 半導体装置及びその製造方法
JP7398885B2 (ja) 窒化物半導体装置およびその製造方法
US20220328682A1 (en) Gallium nitride high electron mobility transistor
KR102639314B1 (ko) 수직 구조 전계효과 트랜지스터 및 그 제조방법
JP7456449B2 (ja) 電界効果型トランジスタの製造方法
US20240088231A1 (en) Semiconductor device and method for manufacturing the same
JP5664744B2 (ja) 化合物半導体装置及びその製造方法
JP2023062209A (ja) 半導体デバイス及び半導体デバイスの製造方法
CN111584364A (zh) 半导体装置的制造方法及半导体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100713

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100827