CN109698236B - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN109698236B
CN109698236B CN201811242525.0A CN201811242525A CN109698236B CN 109698236 B CN109698236 B CN 109698236B CN 201811242525 A CN201811242525 A CN 201811242525A CN 109698236 B CN109698236 B CN 109698236B
Authority
CN
China
Prior art keywords
electrode
source
semiconductor device
gate electrode
field plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811242525.0A
Other languages
English (en)
Other versions
CN109698236A (zh
Inventor
山田文生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Publication of CN109698236A publication Critical patent/CN109698236A/zh
Application granted granted Critical
Publication of CN109698236B publication Critical patent/CN109698236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

公开了一种实现场板的半导体装置。半导体装置包括源电极、栅电极和漏电极;绝缘膜,至少覆盖漏电极;场板,包括与栅电极重叠的第一部分和不与栅电极重叠的第二部分;以及与源电极连接的源极互连件。本发明的半导体装置的特征在于第一部分和第二部分均与源极互连件电连接。

Description

半导体装置
相关申请的交叉引用
本申请基于并要求于2017年10月24日提交的日本专利申请No.2017-205093的优先权,其全部内容通过引用并入本文。
技术领域
本发明涉及一种半导体装置,尤其涉及一种主要由氮化物半导体材料制成的半导体装置。
背景技术
日本专利申请特开No.JP2008-277604A已经公开了一种具有场板的半导体装置类型的场效应晶体管(FET)。主要由氮化物半导体材料制成的半导体装置有时提供场板,以便缓和在其栅电极边缘处感应的电场。场板通常利用其间的绝缘膜覆盖栅电极,并且可以在刚刚去除同时发生的高漏极偏压与深栅极偏压的刚性条件之后抑制漏电流的减小,这通常被称为漏极电流崩塌。场板还将栅电极与漏电极隔离开。
场板通常与源电极连接,使得场板延伸到围绕装置的有源区的无源区并且与从源电极延伸的源极互连件(source interconnection)接触,其中场板、源电极和源极互连件的那些布置已在例如上述的相关专利文献中被公开。然而,场板可能在由栅电极的一侧固有地形成的阶梯处破裂。
发明内容
本发明的一个方面涉及一种半导体装置,其包括源电极、漏电极、和栅电极;绝缘膜;场板;和源极互连件。那些电极沿纵向延伸。绝缘膜至少覆盖栅电极并在栅电极和漏电极之间延伸。场板提供第一部分和第二部分,第一部分与栅电极重叠,绝缘膜插入在场板和栅电极之间,并且第二部分不与栅电极重叠,第二部分在栅电极和漏电极之间的绝缘膜上延伸。源极互连件与源电极接触并从其延伸。本发明的半导体装置的特征在于,不仅场板的第二部分与源极互连件电连接,而且第一部分与源极互连件电连接。
附图说明
从下文参照附图对本发明优选实施例的详细描述中,将更好地理解前述和其他目的、方面和优点,其中:
图1是示出根据本发明的实施例的半导体装置的平面图;
图2A和图2B是分别沿图1中的线IIa-IIa和IIb-IIb截取的图1中所示的半导体装置的截面图;
图3A和图3B分别是在形成图1中所示的半导体装置的过程中的平面图和截面图,其中图3B是沿图3A中所示的线IIIb-IIIb所截取;
图4A和图4B分别是在形成图1中所示的半导体装置的过程中的平面图和截面图,其中图4B是沿图4A中所示的线IVb-IVb所截取;
图5A和图5B分别是在形成图1中所示的半导体装置在形成其的过程中的平面图和截面图,其中图5B是沿图5A中所示的线Vb-Vb所截取;
图6A和图6B分别是在形成图1中所示的半导体装置在形成其的过程中的平面图和截面图,其中图6B是沿图6A中所示的线VIb-VIb所截取;
图7是具有场板的常规半导体装置的平面图;以及
图8A至图8C是图7中所示的常规半导体装置的截面图,其中图8A至图8C分别是沿图7中所示的线VIIIa-VIIIa、VIIIb-VIIIb、VIIIc-VIIIc所截取。
具体实施例
接下来,将参照附图描述根据本发明的实施例。然而,本发明不限于所述实施例,并且具有在所附权利要求所限定的范围以及在该范围内的所有变化和修改及其等同物。在附图的描述中,彼此相同或相似的数字或符号将指代彼此相同或相似的元件而不重复说明。
图1是示出根据本发明的实施例的半导体装置1A的平面图。图2A和图2B是分别沿在图1中分别示出的线IIa-IIa和IIb-IIb截取的半导体装置1A的截面图。为了简化说明,图1省略了绝缘膜21至23。
本实施例的半导体装置1A提供衬底11、设置在衬底11上的半导体堆叠18,以及分别设置在半导体堆叠18上的漏电极31、源电极32和栅电极33。制备衬底11用于在其平面主表面上外延生长半导体层,衬底11可以由碳化硅(SiC)、蓝宝石(Al2O3)、硅(Si)、金刚石(C)等制成。衬底可具有约500μm的厚度。
本实施例的半导体装置1A是一种场效应晶体管(FET),确切地说,是一种高电子迁移率晶体管(HEMT),其包括半导体堆叠18中的沟道层12和阻挡层13,其中沟道层12和阻挡层13在衬底11上外延生长,并在沟道层12中的与阻挡层13的界面处感应出二维电子气(2DEG)。2DEG可以用作HEMT 1A的沟道。沟道层12可以由氮化镓(GaN)制成,厚度约为1μm,具体地,0.5μm至1.2μm。阻挡层13可以由例如氮化铝镓(AlGaN)、氮化铟铝(InAlN)和/或氮化铟铝镓(InAlGaN)制成,厚度约为20nm,具体地,10nm至30nm。本实施例提供由Al0.25Ga0.75N制成的厚度为20nm的阻挡层13。半导体堆叠18还可以在阻挡层13上提供盖层,其中盖层可以由GaN或n型GaN制成,厚度约为5nm。
半导体堆叠18被分成两个部分,其中一个是有源区A1,而另一个是围绕有源区A1的无源区A2。有源区A1可以用作半导体装置1A,而无源区A2不具有载流子传输的功能;确切地说,无源区A2是通过在其中注入氩离子(Ar+)以增加其中的电阻率而形成的。因此,无源区A2可以电隔离有源区A1。
漏电极31和源电极32设置在有源区A1中并与其接触。本实施例的半导体装置1A提供一个漏电极31和两个源电极32,其中两个源电极32将漏电极31夹在其间。漏电极31和源电极32以及一种呈现非整流特性的所谓的欧姆电极是通过将堆叠的厚度约为10nm的钛(Ti)金属和厚度约为300nm的铝(Al)金属合金化而形成的,其中漏电极31和源电极32具有沿着各自的纵向(具体地,沿图1中的上下方向)延伸的矩形平面形状。另一厚度约为10nm的Ti层可以覆盖Al层。
漏电极31和源电极32可以与阻挡层13接触。在一替代方案中,当半导体堆叠18在阻挡层13上提供盖层时,电极可以与盖层接触。在另一替代方案中,通过去除部分阻挡层13,漏电极31和源电极32可以与沟道层12接触。
无源区A2可以提供漏极互连件41,所述漏极互连件41连接由于无源区A2的存在而均被绝缘的各个半导体装置1A。无源区A2还可以提供源极互连件42,所述源极互连件42连接设置在各自的有源区A1中的源电极。在本实施例中,漏极互连件41和源极互连件42沿着漏电极31和源电极32的纵向延伸,并且沿着纵向但相反的方向被引出(extract)。也就是说,漏极互连件41与漏电极31重叠并且在图1中被向上引出;而源极互连件42与源电极32重叠,但在图1中被向下引出。更具体地,漏电极31通过漏极互连件41被引出,漏极互连件41沿着漏电极31的纵向延伸并且越过(cross)漏电极31的一端,但是其另一端41a处于漏电极31内。
源电极32通过源极互连件42被引出,源极互连件42沿着源电极32的纵向延伸、越过源电极32的一端,但源极互连件42的另一端42a存在于无源区A2中以在此处与场板34连接。可以通过镀覆4μm至6μm厚度的金(Au)来形成漏极互连件41和源极互连件42。
栅电极33在漏极互连件41的侧面沿着纵向从有源区A1延伸到无源区A2。本实施例提供将漏电极31夹在其间的两个栅电极33,并将栅电极33放置在漏电极31与各个源电极32之间。因此,栅电极33平行于漏电极31和源电极32设置。栅电极33可以具有堆叠的金属镍(Ni)、钯(Pd)和金(Au),其中这些金属可以分别具有约0.1μm、约50nm和约0.5μm的厚度,其中Ni与半导体堆叠18形成肖特基接触。考虑到各个金属的沉积条件,栅电极33优选地具有大于0.3μm的总厚度或高度,但是从利用第二绝缘膜22稳定地覆盖栅电极33的角度而言,栅电极33的总厚度或高度小于0.7μm。两个栅电极33与栅极互连件36连接,栅极互连件36沿着有源区A1的边缘在无源区A2中横向延伸。栅极互连件36连接形成在衬底11上的每个半导体装置1A。
栅电极33在其一端朝向无源区A2中的源极互连件42弯曲。具体地,栅电极33在与栅极互连件36相对侧通过有源区A1和无源区A2之间的界面,并在其延伸部分33a处朝向源极互连件42弯曲。栅电极33的延伸部分33a存在于源电极32的外侧。如图2B所示,将栅电极33的延伸部分33a放置在无源区A2和源极互连件42之间,无源区A2和源极互连件42将场板34夹在其间。
如在图2A和图2B所示,本实施例的HEMT 1A还提供第一绝缘膜21至第三绝缘膜23以及场板34。绝缘膜21至23使半导体堆叠18、漏电极31、源电极32、栅电极33、以及场板34的表面钝化。
覆盖暴露在漏电极31、源电极32和栅电极33之间的半导体堆叠18的第一绝缘膜21提供其中暴露半导体堆叠18的表面的至少三个开口,其中开口是漏极开口、源极开口和栅极开口。漏电极31填充漏极开口,源电极32填充源极开口,并且栅电极填充栅极开口。漏电极31、源电极32和栅电极33可以在各自的开口中与半导体堆叠18的表面直接接触。栅极开口沿着连接漏电极31与源电极32的方向具有0.4μm的长度,即,HEMT具有0.4μm的栅极长度。第一绝缘膜21可以是包含硅(Si)的无机材料,通常是厚度约为50nm的氮化硅(SiN)。
设置在第一绝缘膜21上的第二绝缘膜22覆盖漏电极31、源电极32和栅电极33。第二绝缘膜22在漏电极31和源电极32上具有开口22c和开口22d,通过开口22c和开口22d形成漏极互连件41和源极互连件42。漏极互连件41可以通过开口22c与漏电极31接触,而源极互连件42可以通过开口22d与源电极32接触。
第二绝缘膜22提供覆盖栅电极33的部分22a和存在于栅电极33和漏电极31之间的另一部分22b,其中前一部分22a设置在栅电极33上并位于其上方,而后一部分22b设置在栅电极33和漏电极31之间的有源区A1的上方。两个部分22a和22b构成源于栅电极33的存在的阶梯。第二绝缘膜22也可以由含有Si的无机材料制成,通常为厚度为0.4μm至0.6μm的SiN,其中该实施例具有厚度为0.5μm的第二绝缘膜22。
设置在第二绝缘膜22上的第三绝缘膜23覆盖漏极互连件41和源极互连件42。第三绝缘膜23也可以由包含Si的无机材料制成,通常为SiN,优选为厚度为0.1μm的SiN。第三绝缘膜23可以防止漏极互连件41和源极互连件42短路和氧化。
场板34可以由例如从衬底11的一侧堆叠的例如钛(Ti)和金(Au)的金属制成。本实施例的场板34提供两个部分。如图1所示,其中一个部分(即在图2A和图2B中由稀疏点区域34a表示的部分)可以在栅电极33上方延伸,而另一个部分(即在图2A和图2B中由密集点区域34b表示的部分)延伸到栅电极33和漏电极31之间的区域。另外,如图2A所示,场板34在其第一部分34a与栅电极33重叠,而在其不与栅电极33重叠的第二部分34b中,场板34在栅电极33和漏电极41之间的第二绝缘膜22上延伸。第一部分34a优选地具有窄于2μm的宽度。场板34被第三绝缘膜23覆盖,以防止场板34氧化。
场板34可以将栅电极33相对于漏电极31电屏蔽,并且弱化集中在栅电极33的边缘处的电场。场板34优选地具有小于栅电极33的厚度的厚度。例如,与第二绝缘膜22接触的第一金属(可由钛(Ti)制成)的场板34具有5nm至30nm的厚度,通常为10nm;而设置在第一金属上方的第二金属(其可以由金(Au)制成)优选地具有0.1μm至0.3μm的厚度,通常为0.2μm。
场板34在其与栅极互连件36相对侧的一端从有源区A1突出、延伸到无源区A2中,在此处以大致90°弯曲,并且延伸入源电极32的端部的外侧的区域。即,场板34的各个部分34a和34b均存在于无源区A2中的源电极32外侧的区域中。
第一部分34a(其与栅电极33重叠,并且第二绝缘膜22a插入在栅电极33与第一部分34a之间)也从有源区A1突出、进入到无源区A2中,在此处90°弯曲朝向源电极32,并且在此处与源极互连件42接触。
此外,场板34的第二部分34b(其覆盖栅电极33和漏电极31之间的第二绝缘膜22b的一部分)延伸超出有源区A1、进入到源电极32的外侧的无源区A2中,以围绕场板34的第一部分34a;然后,在此处与源极互连件42接触。因此,即使第一部分34a和第二部分34b被源于增厚的栅电极33而形成在第二绝缘膜22中的阶梯物理隔离,两个部分34a和34b也共同地在无源区A2中的源电极32的外侧与源极互连件42连接。
场板34优选地在源电极42的外侧的无源区A2中具有是第一部分34a和第二部分34b的总宽度的宽度W2,其大于是有源区A1中的第一部分34a和第二部分34b的总宽度的宽度W1。宽度W1可以是例如0.5μm至2.0μm,在本实施例中为1.0μm,而宽度W2可以是例如0.5μm至10μm,在本实施例中为3.0μm。
接下来,将描述根据本发明实施例的形成半导体装置1A的过程。图3A、图4A、图5A、图6A是图1所示半导体装置处于形成所述装置1A的过程的各个步骤的平面图,图3B、图4B、图5B、图6B是分别与图3A、图4A、图5A、图6A对应的截面图,其中截面图是沿与其对应的附图中所示的相应线截取的。
该过程首先通过在衬底11上顺序且外延地生长包括沟道层12和阻挡层13的氮化物半导体层来制备半导体堆叠18。金属有机化学气相沉积(MOCVD)技术可以容易地生长半导体层。此后,半导体堆叠18被分成有源区A1和无源区A2。具体地,用掩模覆盖将被转换成有源区A1的区域,将例如氩(Ar+)离子的离子注入到未被掩模覆盖的剩余区域中可以形成围绕有源区A1的无源区A2。此后,漏电极31和源电极32可以形成在有源区A1上。如图3A所示,漏电极31和源电极32具有矩形平面形状。
此后,漏电极31、源电极32和从漏电极31和源电极32暴露的其他区域被第一绝缘膜21完全覆盖,其中第一绝缘膜21可以通过化学气相沉积技术形成。在替代方案中,首先将第一绝缘膜21沉积在半导体堆叠18上;然后,在第一绝缘膜21中形成开口。在半导体堆叠18中形成漏电极31和源电极32以填充开口。然后,在第一绝缘膜21中形成开口21a,即栅极开口,以在开口中暴露半导体堆叠18的表面,并且沉积栅电极33以填充栅极开口21a并且栅电极33在栅极开口21a周围的第一绝缘膜21上部分地延伸,如图4B所示。在本实施例中,如图4A所示,栅电极33从有源区A1突出并在无源区A2中朝向源电极32弯曲,以在此处形成延伸部分33a。因此,栅电极33的延伸部分33a存在于无源区A2中的源电极32的外侧,并且栅电极33在其延伸部分33a与半导体堆叠18直接接触,但是对于半导体装置1A的操作没有影响,因为延伸部分33a存在于无源区A2中。
此后,如图5A和图5B所示,第二绝缘膜22覆盖漏电极31、源电极32和栅电极33,其中可以通过CVD技术沉积第二绝缘膜22。此后,该过程形成场板34。具体地,首先在第二绝缘膜22上制备图案化的光阻(图中未示出),其中图案化的光阻具有对应于场板34的开口。光阻中的开口将针对第一部分34a的区域与针对第二部分34b的另一区域组合。在第二绝缘膜22上和图案化的光阻上沉积金属,并去除累积在图案化的光阻上的残余金属,仅场板34的第一部分34a和第二部分34b可以留在第二绝缘膜22上,这通常被称为剥离过程。如图5B所示,因为第二绝缘膜22中存在阶梯,与栅电极33重叠的在图5A中表示为稀疏点区域的第一部分34a与表示为密集点区域的第二部分34b物理隔离。
此后,如图6A和图6B所示,该过程通过在第二绝缘膜22中形成相应的开口22c和22d来暴露漏电极31、源电极32、和栅电极33。然后,通过镀金(Au)形成漏极互连件41和源极互连件42。漏极互连件41朝向有源区A1的与栅极互连件36相对的一侧延伸;同时,源极互连件42朝向栅极互连件36侧延伸。此外,源极互连件42还在漏极互连件41的侧面中延伸越过源电极32的边缘,并且在源电极32外侧的无源区A2内突出。然后,在此处源极互连件42可以与场板34的第一部分34a和第二部分34b两者接触。因此,尽管第一部分34a和第二部分34b由于在第二绝缘膜22中形成的陡峭阶梯而在有源区A1内被物理隔离,但是第一部分34a和第二部分34b可以与源极互连件42物理接触。最后,通过第三绝缘膜23覆盖漏极互连件41、源极互连件42、栅极互连件36、以及场板34的第一部分34a和第二部分34b,其中第三绝缘膜23可通过CVD工艺形成,可以完成本实施例的半导体装置1A。
将相比于图7所示的常规半导体装置描述半导体装置1A的优点及其形成过程。图7是常规半导体装置100的平面图。图8A至图8C是分别沿着图7中所示的线VIIIa-VIIIa、VIIIb-VIIIb和VIIIc-VIIIc截取的常规装置100横截面图。图7省略了绝缘膜21至绝缘膜23。
通常通过例如真空蒸发金属以容易地去除积聚在光阻上的残余金属来形成场板,这使得用于场板的金属难以覆盖栅电极的侧面或第二绝缘膜22中的阶梯(其反映出栅极金属的大厚度)的侧面。栅电极需要形成得较厚以降低其栅极电阻,而场板可以形成得薄,因为其中没有电流流动并且其电阻变得可忽略。因此,源于增厚的栅电极的阶梯可能导致场板的破裂。上述场板的破裂可能在半导体装置1A内不规则地发生。
参照图7以及图8A至图8C,常规半导体装置100不具有栅电极33的延伸部分33a;也就是说,只有场板34在源电极32的外侧延伸并且在此处与源极互连件42连接。当栅电极33,确切地说,源于增厚的栅极金属的阶梯可能在与栅极金属重叠的部分和围绕栅极金属而不与栅极金属重叠的另一部分之间的栅极金属中发生破裂,前一部分不与源极互连件42电连接,这降低了场板34的功能,即,使栅电极33相对于漏电极31屏蔽,并缓和由栅电极33形成的场强。另外,场板34的破裂可以改变栅电极33和源电极32之间的寄生电容。
根据本实施例的半导体装置1A将栅电极33延长到源电极32的外侧以在此处形成延伸部分33a,这意味着不仅第二部分34b存在源电极32的外侧而且第一部分34a存在源电极32的外侧,并且即使当第一部分34a与第二部分34b通过源于增厚的栅电极33的第二绝缘层22中的阶梯处的破裂而被物理隔离时,第一部分34a与第二部分34b也可以与源极互连件42电连接。因此,场板34可以与源电极32稳定地连接并稳定其电势。作为常规半导体装置100,场板34的第二部分34b也可以与源电极32稳定地连接。
源电极32外侧的场板34可以优选地具有沿电极31至33的纵向的宽度W2,其大于沿电极31至33的横向的宽度W1,这使得在场板34和源极互连件42之间产生电连接。由于栅电极33的延伸部分33a存在于半导体装置1A的无源区A2中,所以半导体装置1A的性能,确切地说,栅电极33周围的电流电压性能可以不受影响。
虽然出于说明的目的在本文中已描述了本发明的特定实施例,但许多修改和变化对于本领域技术人员而言将变得显而易见。例如,上述实施例集中在主要由氮化物半导体材料制成的半导体装置类型的HEMT,本发明可以应用于其他类型的半导体装置并且由除氮化物半导体材料之外的材料制成。此外,实施例集中在具有两个栅电极和两个场板的半导体装置上。然而,本发明可以应用于具有单个栅电极的装置,所述栅电极具有单个场板,或者可以应用于具有三个或更多个栅电极的装置,所述每个栅电极具有相应的场板。因此,所附权利要求旨在包含落入本发明的真实精神和范围内的所有这些修改和变化。

Claims (6)

1.一种半导体装置,包括:
各自沿纵向延伸的源电极、栅电极和漏电极;
绝缘膜,其至少覆盖所述栅电极并在所述栅电极和所述漏电极之间延伸;
场板,其具有第一部分和第二部分,所述第一部分与所述栅电极重叠,所述绝缘膜插入在所述第一部分与所述栅电极之间,所述第二部分不与所述栅电极重叠并在所述栅电极和所述漏电极之间的所述绝缘膜上延伸;以及
源极互连件,其与所述源电极电连接并从所述源电极延伸,
其中,所述第一部分和所述第二部分与所述源极互连件电连接,
所述半导体装置还包括有源区和围绕所述有源区的无源区,所述源电极、所述漏电极和所述栅电极存在于所述有源区中,
其中,所述栅电极在所述无源区中的所述源电极的外侧区域中具有延伸部分,所述延伸部分被所述场板的所述第一部分覆盖并被所述第二部分围绕,所述绝缘膜插入在所述延伸部分和所述场板的所述第一部分之间,
其中,所述场板在其所述第一部分和所述第二部分在所述源电极的所述外侧区域中与所述源极互连件接触。
2.根据权利要求1所述的半导体装置,
其中,所述场板的所述第一部分与所述第二部分彼此物理隔离。
3.根据权利要求1所述的半导体装置,
其中,所述源电极和所述漏电极具有沿其纵向的矩形平面形状,
其中,所述场板在所述源电极的所述外侧区域中沿纵向的宽度宽于在所述源电极和所述漏电极之间的区域中沿与所述纵向交叉的横向的宽度。
4.根据权利要求1至3中任一项所述的半导体装置,
其中,所述栅电极的厚度为0.3μm至0.7μm,所述场板的厚度为0.1μm至0.3μm。
5.根据权利要求1至3中任一项所述的半导体装置,
其中,所述绝缘膜的厚度为0.1μm至0.3μm。
6.根据权利要求1至3中任一项所述的半导体装置,
其中,所述源极互连件的厚度为4μm至6μm。
CN201811242525.0A 2017-10-24 2018-10-24 半导体装置 Active CN109698236B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-205093 2017-10-24
JP2017205093A JP6874928B2 (ja) 2017-10-24 2017-10-24 半導体装置

Publications (2)

Publication Number Publication Date
CN109698236A CN109698236A (zh) 2019-04-30
CN109698236B true CN109698236B (zh) 2023-09-01

Family

ID=66170680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811242525.0A Active CN109698236B (zh) 2017-10-24 2018-10-24 半导体装置

Country Status (4)

Country Link
US (1) US10546935B2 (zh)
JP (1) JP6874928B2 (zh)
CN (1) CN109698236B (zh)
TW (1) TWI772545B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436975B (zh) * 2021-08-27 2021-12-14 深圳市时代速信科技有限公司 一种半导体器件及制备方法
CN113506821B (zh) * 2021-09-09 2021-12-14 深圳市时代速信科技有限公司 半导体器件
WO2024030127A1 (en) * 2022-08-03 2024-02-08 Vishay Siliconix Llc P-gan high electron mobility transistor field plating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950945A (zh) * 2004-05-11 2007-04-18 美商克立股份有限公司 具有多个场板的宽能带隙晶体管

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW506132B (en) * 1999-12-17 2002-10-11 Matsushita Electric Ind Co Ltd High-voltage semiconductor device
JP2007273920A (ja) * 2006-03-31 2007-10-18 Eudyna Devices Inc 半導体装置およびその製造方法
JP2008277604A (ja) 2007-05-01 2008-11-13 Oki Electric Ind Co Ltd 電界効果トランジスタ
JP2010219117A (ja) * 2009-03-13 2010-09-30 Toshiba Corp 半導体装置
JP6268366B2 (ja) 2012-09-28 2018-01-31 パナソニックIpマネジメント株式会社 半導体装置
US9745840B2 (en) * 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9847411B2 (en) * 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
JP2015122361A (ja) * 2013-12-20 2015-07-02 株式会社東芝 電界効果トランジスタ
JP6496149B2 (ja) * 2015-01-22 2019-04-03 ローム株式会社 半導体装置および半導体装置の製造方法
JP2016171260A (ja) * 2015-03-13 2016-09-23 株式会社東芝 半導体装置
US20170301780A1 (en) * 2016-04-15 2017-10-19 Macom Technology Solutions Holdings, Inc. High-voltage gan high electron mobility transistors with reduced leakage current
US10263085B2 (en) * 2016-12-30 2019-04-16 Texas Instruments Incorporated Transistor with source field plates and non-overlapping gate runner layers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950945A (zh) * 2004-05-11 2007-04-18 美商克立股份有限公司 具有多个场板的宽能带隙晶体管

Also Published As

Publication number Publication date
TWI772545B (zh) 2022-08-01
CN109698236A (zh) 2019-04-30
JP2019079909A (ja) 2019-05-23
TW201935688A (zh) 2019-09-01
US20190123152A1 (en) 2019-04-25
US10546935B2 (en) 2020-01-28
JP6874928B2 (ja) 2021-05-19

Similar Documents

Publication Publication Date Title
JP5457292B2 (ja) 窒化物半導体装置
US8193561B2 (en) Semiconductor device and method of manufacturing the same
US10868164B2 (en) Nitride semiconductor device
JP5526470B2 (ja) 窒化物系化合物半導体装置
JP7082508B2 (ja) 窒化物半導体装置
US10553688B2 (en) Semiconductor device having field plate
CN109698236B (zh) 半导体装置
KR102339311B1 (ko) 반도체 소자 및 그 제조 방법
KR20210074871A (ko) 반도체 장치 및 그 제조 방법
US20160225865A1 (en) Semiconductor device and method of manufacturing semiconductor device
US11296193B2 (en) Nitride semiconductor device
CN114078965B (zh) 高电子迁移率晶体管及其制作方法
US20230231022A1 (en) High electron mobility transistor and method for fabricating the same
WO2023102744A1 (en) Nitride-based semiconductor device and method for manufacturing the same
CN117981087A (zh) 降低漏电流的氮化镓半导体装置及其制造方法
KR20140141126A (ko) 전계 완화부를 구비하는 질화물계 트랜지스터 및 이의 제조 방법
KR102501473B1 (ko) 전력 반도체 장치 및 그 제조 방법
CN115812253B (zh) 氮化物基半导体器件及其制造方法
KR20150099150A (ko) 반도체 소자
CN114975573A (zh) 高电子迁移率晶体管及其制作方法
KR20150039481A (ko) 전력 반도체 소자
CN115832041A (zh) 半导体器件及其制造方法
KR20150095317A (ko) 전력 소자
KR20140111795A (ko) 전력 반도체 소자 및 패키지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant