JPH03177384A - 耐酸化性材料及びその製造法 - Google Patents

耐酸化性材料及びその製造法

Info

Publication number
JPH03177384A
JPH03177384A JP1316778A JP31677889A JPH03177384A JP H03177384 A JPH03177384 A JP H03177384A JP 1316778 A JP1316778 A JP 1316778A JP 31677889 A JP31677889 A JP 31677889A JP H03177384 A JPH03177384 A JP H03177384A
Authority
JP
Japan
Prior art keywords
oxidation
carbonaceous
resistant
carbonaceous material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1316778A
Other languages
English (en)
Inventor
Toshiro Yamashina
山科 俊郎
Tomoaki Hino
日野 友明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP1316778A priority Critical patent/JPH03177384A/ja
Publication of JPH03177384A publication Critical patent/JPH03177384A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は耐酸化性材料並びにその製造法に関し、更に詳
しくは炭化珪素(以下SiCということがある)と炭素
とを主成分として成る耐酸化性に著しく優れた材料並び
にそれの製造法に関する。
〔従来の技術〕
炭素材料は周知の通り各種優れた特性を有し極めて有用
な物質である反面、高温に於いて酸素共存下では酸素と
反応して消耗し、所謂耐酸化性に優れているとは言い難
い難点がある。
このために高減圧下または不活性ガスによる置換された
条件下に於いて用いられることが普通である。
しかし、このような高減圧下乃至置換雰囲気下での作業
に於いては極めて不都合が多く、また装置的にも大きな
負担となり、1り11えば炭素材料を炉等の断熱材とし
て使用する場合等では被焼成物の出し入れ、補修等に際
して容器を解放する時、充分に冷却して行わないと上記
のように空気による断熱材の劣化が起こり、断熱性能が
低下する。
〔発明が解決しようとする課題〕
上記で述べた通り炭素材料は優れた耐熱性を有し、特に
高温用耐熱材として広く使用されているが、酸化雰囲気
就中高温に於いて酸化されて消耗するという難点がある
。従って本発明が解決しようとする課題はこの難点を解
消することである。
〔課題を解決するための手段] 本発明者らは、炭素材料についての従来技術が抱える問
題点についてこれを解決するために研究を行った結果炭
素材料を金属珪素(以下Siということがある)と反応
させると、炭素材料が炭化珪素化すると共に、得られた
材料は極めて耐酸化性が向上することが判明した。特に
炭化珪素化する際には炭素材料の嵩密度、及びボアー半
径が関係していることも判明した。
更に詳しくは、炭素材料金てをSiと反応せしめずにそ
の一部をSiと反応せしめて一部分のみをSiC化した
炭素−3iC複合祠料は、特に炭素材料の耐酸化性を著
しく向上せしめ得ることが判明した。
〔発明の構成並びに作用〕
本発明に於いては、基材たる炭素材料と31とを反応せ
しめること、特に好ましくは嵩密度1.50g/crd
以下及び平均ボアー半径1.5μm以上の多孔性炭素材
料と反応せしめることにより、反応せしめる金属Siの
量により、SiCの含量の異なる5iC−炭素複合材料
(換言すればC:SiCの異なる)を収得することがで
きる。モして5iC−炭素複合材料は従来の炭素材料に
比し著しく耐酸化性が向上し、またSiC材料は挿めて
純度の高いSiCとなる。
以下に本発明をその製法に従って説明する。
本発明に於いては、炭素材料をSiと反応せしめる。
この反応に於いて使用される炭素材料としては、炭素成
分より成る適宜の材料が挙げられるが、特に等方性黒鉛
材が好ましい。またその他好ましいものとしては、炭素
質繊維から成るフェルト状物や、球形状炭素材またはこ
れを固めた材料である。
また本発明に於いては炭素材料として高純度のものを使
用することにより、得られる目的物が更に高純度のもの
となる。高純度炭素材料としてはその純度としては不純
物(灰分)がloppm以下、特に好ましくは2 pp
m以下のものが好ましい。高純度化の方法としては特に
制限されず、各種の方法が任意に適用される。好ましい
方法としては特願昭61−224131号に記載の方法
を例示することが出来る。その他の好ましい物性として
は嵩密度が1.50g/cTA以下、及び平均ボアー半
径が1.5μm以上のものが好ましい。このような特定
物性を有する炭素材料を使用することにより、Siとの
反応が内部までより完全にしかも容易に起る結果、炭素
材料が確実にSiC化される。
また本発明の炭素材料としては、この他の物性として気
孔率が25%以上、及び(または)全細孔容積が20 
X 10””cri!/g以上であるものが特に好まし
い。このような特性を更に具備する炭素材料ではよりス
ムーズに深部までSiとの反応が進行する効果がある。
但しこれ等冬物性は夫々次のことを意味する。
嵩密度:炭素基材の全体積当りの質i(g/cnf)気
孔率:炭素基材の体積中の全気孔の割合真比重 全細孔容積:Hgポロシメーター(Hg圧入法)により
求めた開気孔の全容積(cffl/g)平均ボアー半径
:Hgポロシメーターから求めた細孔容積の平均ボアー
半径(μ m) 更にはまた本発明に於いては熱分解炭素所謂パイロカー
ボンを使用することも出来る。またこのパイロカーボン
と他の炭素材料との複合材料例えば炭素材料にパイロカ
ーボンを析出させた材料や炭素繊維等の不織物乃至不織
布にパイ口カーボンを含浸・析出させたものも使用する
ことも出来る。
上記各■〜■の反応に於いて使用するSiとしては金属
珪素を使用する。
金属珪素と炭素材料との接触方法としては、溶融珪素に
浸漬する方法、金属珪素蒸気と接触させる方法、及びハ
ロゲン化珪素の分解により、炭素材料表面に珪素被覆を
形成させ、さらに減圧下で珪素の融点以上の温度に加熱
して内部に浸透させる方法等を例示出来る。
含浸させるべき珪素の量はCH31の原子比で100:
20以上好ましくは30〜60程度である。上記原子比
が例えば100:30であれば、炭素材中の30%のC
がSiと反応してSiCとなり、炭素とSiCとの複合
材となる。また原子比が100:100の場合には完全
反応せしめる場合にはSiC単独の材料が得られるが、
StとCの反応は炭素塊または繊維の表層付近はSiと
の反応が生じ易く、深部は生じ難いことが多いため、C
:Siの比率はStが少ない側に最適値があるようであ
る。
炭素材料の耐酸化性を向上せしめるためにはSiは上記
原子比で100:20以上好ましくは100:30〜6
0程度である。
炭素とSiCとの複合材料は、極めて耐酸化性に優れた
ものとなり、この耐酸化性は含有させるSiO量換言す
ればSiC生戒量が増加するにつれて大きくなる。従っ
てこの材料は特に酸素雰囲気下での使用に適しており、
酸素雰囲気下の各種耐熱部品例えばロケットノズル、ロ
ケットブレーキ、ロケットタイル等に極めて好適である
[実施例] 以下に実施例を示して本発明の詳細な説明する。
実施例1 炭素材料(東洋炭素製rlG−610UJ)に金属珪素
を溶融して、N2雰囲気下C:Siの原子比で100=
32となるように含浸せしめて一部炭素材料をSiCに
転換した。
このものの耐酸化性を測定した。この結果を第1図に示
す。但しこの測定は所定の温度(650”C,700°
C,750°C及び800°C)にて0〜120分間空
気中で加熱した場合の重量減を測定したものである。
実施例2 実施例1の炭素材料を用いCa5tの原子比を100:
62となし、その他は実施例1と同様に処理した。同様
に物性を測定した結果を第2図に示す。但し第2図の温
度条件は650°C1750°C及び800°Cとした
【図面の簡単な説明】
第1図及び第2図はいずれも本発明複合材料の耐酸化特
性を測定したグラフである。 (以 上)

Claims (8)

    【特許請求の範囲】
  1. (1)金属珪素を含浸せしめた炭素質材料を不活性雰囲
    気下または減圧乃至真空下で加熱して得られた耐酸化性
    材料。
  2. (2)炭素質材料が等方性黒鉛である請求項(1)に記
    載の耐酸化性材料。
  3. (3)炭素質材料が炭素質繊維から成るフェルト状物で
    ある請求項(1)に記載の耐酸化性材料。
  4. (4)炭素質材料が球形状炭素材料である請求項(1)
    に記載の耐酸化性材料。
  5. (5)炭素質材料に金属珪素を含浸せしめ、該金属珪素
    と炭素材料と反応せしめて炭化珪素に転換せしめること
    を特徴とする耐酸化性材料の製造法。
  6. (6)炭素材料がパイロカーボンである請求項(5)に
    記載の製造法。
  7. (7)炭素材料が等方性黒鉛−パイロカーボン複合材料
    である請求項(5)に記載の製造法。
  8. (8)嵩密度1.50g/cm^2以下及び平均ボアー
    半径1.5μm以上の黒鉛基材に、金属珪素を含浸せし
    め、非酸化性雰囲気中または減圧下に加熱することを特
    徴とする請求項(5)に記載の製造法。
JP1316778A 1989-12-06 1989-12-06 耐酸化性材料及びその製造法 Pending JPH03177384A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316778A JPH03177384A (ja) 1989-12-06 1989-12-06 耐酸化性材料及びその製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316778A JPH03177384A (ja) 1989-12-06 1989-12-06 耐酸化性材料及びその製造法

Publications (1)

Publication Number Publication Date
JPH03177384A true JPH03177384A (ja) 1991-08-01

Family

ID=18080807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316778A Pending JPH03177384A (ja) 1989-12-06 1989-12-06 耐酸化性材料及びその製造法

Country Status (1)

Country Link
JP (1) JPH03177384A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512260A (ja) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト 溶融物浸透された繊維強化複合セラミック
JP2000512257A (ja) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト 繊維強化複合セラミツク及びこのようなものの製造方法
US6528168B1 (en) 1997-03-31 2003-03-04 Toyo Tanso Co., Ltd. Carbon/silicon carbide composite material
US6793873B2 (en) 1997-03-21 2004-09-21 Daimlerchrysler Ag Melted-infiltrated fiber-reinforced composite ceramic
JP2004307299A (ja) * 2003-04-10 2004-11-04 Japan Atom Energy Res Inst ナノサイズ炭化ケイ素チューブとその製造方法
DE102006026550A1 (de) * 2006-06-08 2007-12-13 Audi Ag Keramische Werkstoffe enthaltend Kohlenstoff-Teilchen mit kugelförmiger Gestalt

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512260A (ja) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト 溶融物浸透された繊維強化複合セラミック
JP2000512257A (ja) * 1997-03-21 2000-09-19 ダイムラークライスラー アクチエンゲゼルシヤフト 繊維強化複合セラミツク及びこのようなものの製造方法
US6793873B2 (en) 1997-03-21 2004-09-21 Daimlerchrysler Ag Melted-infiltrated fiber-reinforced composite ceramic
US6528168B1 (en) 1997-03-31 2003-03-04 Toyo Tanso Co., Ltd. Carbon/silicon carbide composite material
JP2004307299A (ja) * 2003-04-10 2004-11-04 Japan Atom Energy Res Inst ナノサイズ炭化ケイ素チューブとその製造方法
DE102006026550A1 (de) * 2006-06-08 2007-12-13 Audi Ag Keramische Werkstoffe enthaltend Kohlenstoff-Teilchen mit kugelförmiger Gestalt
US8193109B2 (en) 2006-06-08 2012-06-05 Audi Ag Ceramic materials containing spherical shaped carbon particles

Similar Documents

Publication Publication Date Title
JP2645180B2 (ja) 自己保持性セラミック複合体
JP3042297B2 (ja) 炭化珪素材料の製造方法
US3713865A (en) Composite product and method of making same
JPH03177384A (ja) 耐酸化性材料及びその製造法
US5017527A (en) Mechanical seals of SiC-coated graphite by rate-controlled generation of SiO and process therefor
JPH0513116B2 (ja)
CA1307386C (en) Production of ceramic and ceramic-metal composite articles incorporating filler materials
US4981632A (en) Production of ceramic and ceramic-metal composite articles incorporating filler materials
JPS6332841B2 (ja)
JP3482480B2 (ja) 耐酸化性に優れた黒鉛−炭化珪素複合体及びその製造方法
JPH02184511A (ja) 多孔質グラファイトの製造方法
SU680639A3 (ru) Композиционный материал
JPS61101409A (ja) 炭化ケイ素の製法
JP2633863B2 (ja) セラミック物品の製造方法
JPH0240034B2 (ja)
JPH0617236A (ja) 溶融金属用容器
JPH0244078A (ja) 多孔質セラミックス複合材料およびその製造方法
JPS63166789A (ja) シリコン単結晶引上装置用黒鉛製ルツボとその製造方法
JPH01242408A (ja) 炭化珪素−黒鉛複合材料及びその製造法
JP2002201071A (ja) 炭化ケイ素材の製造方法
JPH01115888A (ja) 半導体製造用治具の製造方法
JPS62223063A (ja) 黒鉛製ルツボの製造方法
JP2588278B2 (ja) 炭化珪素多孔質焼結体の製造方法
JPH0782077A (ja) シリコン単結晶引上げ装置用黒鉛ルツボ
Braun et al. Thermal analysis of the direct nitridation of silicon to Si 3 N 4