JP7407111B2 - 拡張現実ディスプレイシステムのための接眼レンズ - Google Patents
拡張現実ディスプレイシステムのための接眼レンズ Download PDFInfo
- Publication number
- JP7407111B2 JP7407111B2 JP2020531091A JP2020531091A JP7407111B2 JP 7407111 B2 JP7407111 B2 JP 7407111B2 JP 2020531091 A JP2020531091 A JP 2020531091A JP 2020531091 A JP2020531091 A JP 2020531091A JP 7407111 B2 JP7407111 B2 JP 7407111B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- eyepiece waveguide
- waveguide
- space
- beams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003190 augmentative effect Effects 0.000 title claims description 42
- 239000013598 vector Substances 0.000 claims description 420
- 239000000758 substrate Substances 0.000 claims description 157
- 210000001747 pupil Anatomy 0.000 claims description 138
- 238000010168 coupling process Methods 0.000 claims description 81
- 238000005859 coupling reaction Methods 0.000 claims description 81
- 230000008878 coupling Effects 0.000 claims description 77
- 230000001747 exhibiting effect Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 186
- 230000000875 corresponding effect Effects 0.000 description 179
- 230000003287 optical effect Effects 0.000 description 118
- 241000153282 Theope Species 0.000 description 105
- 230000003993 interaction Effects 0.000 description 97
- 230000001902 propagating effect Effects 0.000 description 71
- 230000000694 effects Effects 0.000 description 48
- 230000006399 behavior Effects 0.000 description 44
- 230000000737 periodic effect Effects 0.000 description 33
- 210000000695 crystalline len Anatomy 0.000 description 26
- 239000000463 material Substances 0.000 description 23
- 238000012545 processing Methods 0.000 description 19
- 238000013461 design Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 16
- 239000003086 colorant Substances 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 8
- 230000002452 interceptive effect Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 230000004308 accommodation Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 230000002350 accommodative effect Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000009304 pastoral farming Methods 0.000 description 4
- 230000008447 perception Effects 0.000 description 4
- 230000003362 replicative effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000035790 physiological processes and functions Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000256837 Apidae Species 0.000 description 1
- 206010027646 Miosis Diseases 0.000 description 1
- 208000006550 Mydriasis Diseases 0.000 description 1
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003547 miosis Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000010344 pupil dilation Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0944—Diffractive optical elements, e.g. gratings, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/20—Scenes; Scene-specific elements in augmented reality scenes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B27/0103—Head-up displays characterised by optical features comprising holographic elements
- G02B2027/0105—Holograms with particular structures
- G02B2027/0107—Holograms with particular structures with optical power
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0127—Head-up displays characterised by optical features comprising devices increasing the depth of field
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0132—Head-up displays characterised by optical features comprising binocular systems
- G02B2027/0134—Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
- G02B2027/0185—Displaying image at variable distance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Lenses (AREA)
- Eyeglasses (AREA)
- Mechanical Optical Scanning Systems (AREA)
Description
本願は、2017年12月15日に出願され、「EYEPIECES FOR AUGMENTED REALITY DISPLAY SYSTEM」と題された、米国仮特許出願第62/599663号、2017年12月20日に出願され、「EYEPIECES FOR AUGMENTED REALITY DISPLAY SYSTEM」と題された、米国仮特許出願第62/608555号、および2018年1月22日に出願され、「EYEPIECES FOR AUGMENTED REALITY DISPLAY SYSTEM」と題された、米国仮特許出願第62/620465号の優先権を主張する。それに関して外国または国内の優先権の主張が上記に識別され、および/または本願とともに出願されるような出願データシート内のあらゆる出願は、37CFR1.57下、参照することによって本明細書に組み込まれる。
本開示は、仮想現実、拡張現実、および複合現実システムのための接眼レンズに関する。
現代のコンピューティングおよび表示技術は、仮想現実、拡張現実、および複合現実システムの開発を促進している。仮想現実または「VR」システムは、ユーザが体験するためのシミュレートされた環境を作成する。これは、頭部搭載型ディスプレイを通して、コンピュータ生成画像データをユーザに提示することによって行われることができる。本画像データは、感覚体験を作成し、これは、ユーザをシミュレートされた環境内に没入させる。仮想現実シナリオは、典型的には、実際の実世界画像データもまた含むのではなく、コンピュータ生成画像データのみの提示を伴う。
本願明細書は、例えば、以下の項目も提供する。
(項目1)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
前記基板上または前記基板内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、光の入力ビームを受け取り、前記入力ビームを前記基板の中に誘導ビームとして結合するように構成される、ICG領域と、
前記基板上または前記基板内に形成される多指向性瞳エクスパンダ(MPE)領域であって、前記MPE領域は、少なくとも第1の周期性軸および第2の周期性軸に沿って周期性を呈する複数の回折特徴を備え、前記MPE領域は、前記誘導ビームを前記ICG領域から受け取り、それを複数の方向に回折し、複数の回折ビームを作成するように位置付けられる、MPE領域と、
前記基板上または前記基板内に形成される射出瞳エクスパンダ(EPE)領域であって、前記EPE領域は、前記回折ビームのうちの1つ以上のものを前記MPE領域から受け取り、それらを前記光学的に透過性の基板から出力ビームとして外部結合するように位置付けられる、EPE領域と
を備える、接眼レンズ導波管。
(項目2)
前記MPE領域は、別個の回折特徴の2次元格子模様を備える、項目1に記載の接眼レンズ導波管。
(項目3)
前記MPE領域は、交差格子を備える、項目1に記載の接眼レンズ導波管。
(項目4)
前記MPE領域は、前記誘導ビームのパワーの一部を前記ICG領域から少なくとも3つの方向に回折することによって、前記回折ビームを作成するように構成される、項目1に記載の接眼レンズ導波管。
(項目5)
前記3つの方向のうちの1つは、ゼロ次回折ビームに対応する、項目4に記載の接眼レンズ導波管。
(項目6)
前記3つの方向のうちの2つ以上のものは、一次回折ビームに対応する、項目4に記載の接眼レンズ導波管。
(項目7)
前記3つの方向は、角度的に少なくとも45度分離される、項目4に記載の接眼レンズ導波管。
(項目8)
前記MPE領域および前記EPE領域は、重複せず、前記回折ビームの3つの方向のうちの1つのみが、前記EPE領域と交差する、項目4に記載の接眼レンズ導波管。
(項目9)
前記3つの方向のうちの1つは、前記ICG領域から前記MPE領域への方向に対応する、項目4に記載の接眼レンズ導波管。
(項目10)
前記MPE領域は、前記誘導ビームのパワーの一部を前記ICG領域から少なくとも4つの方向に回折することによって、前記回折ビームを作成するように構成される、項目4に記載の接眼レンズ導波管。
(項目11)
前記4つの方向は、角度的に少なくとも45度分離される、項目10に記載の接眼レンズ導波管。
(項目12)
前記MPE領域はさらに、再び、同一複数の方向に複数の分散場所において、回折ビームのうち、最初に回折された後も依然として前記MPE領域内を伝搬しているものを回折することによって、回折ビームの数を増加させるように構成される、項目1に記載の接眼レンズ導波管。
(項目13)
前記回折ビームのサブセットのみが、前記EPE領域に向かって伝搬する、項目12に記載の接眼レンズ導波管。
(項目14)
前記EPE領域は、回折ビームのうち、前記複数の方向のうちの1つに伝搬しているもののみを受け取るように位置付けられる、項目13に記載の接眼レンズ導波管。
(項目15)
前記EPE領域に向かって伝搬する回折ビームは、非均一間隔を有する、項目14に記載の接眼レンズ導波管。
(項目16)
前記MPE領域の回折特徴のうちのいくつかは、10%以下の回折効率を有する、項目1に記載の接眼レンズ導波管。
(項目17)
前記MPE領域の回折特徴の回折効率は、空間的に変動する、項目1に記載の接眼レンズ導波管。
(項目18)
前記ICG領域は、1次元周期格子を備える、項目1に記載の接眼レンズ導波管。
(項目19)
前記ICG領域の1次元周期格子は、ブレーズド格子である、項目1に記載の接眼レンズ導波管。
(項目20)
前記EPE領域は、1次元周期格子を備える、項目1に記載の接眼レンズ導波管。
(項目21)
前記EPE領域内の1次元周期格子は、屈折力を前記出力ビームに付与するように湾曲された複数のラインを備える、項目20に記載の接眼レンズ導波管。
(項目22)
前記入力ビームは、コリメートされ、5mm以下の直径を有する、項目1に記載の接眼レンズ導波管。
(項目23)
前記MPE領域および前記EPE領域は、重複しない、項目1に記載の接眼レンズ導波管。
(項目24)
前記光学的に透過性の基板は、平面である、項目1に記載の接眼レンズ導波管。
(項目25)
前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、項目1に記載の接眼レンズ導波管。
(項目26)
前記接眼レンズは、カラー画像を複数の深度平面に表示するように構成される、項目25に記載の接眼レンズ導波管。
(項目27)
前記ICG領域は、複数の光の入力ビームのセットを受け取り、前記入力ビームのセットを前記基板の中に誘導ビームのセットとして結合するように構成され、前記誘導ビームのセットは、少なくとも部分的に、前記接眼レンズ導波管と関連付けられたk-空間環内にあるk-空間内のk-ベクトルのセットと関連付けられ、前記k-空間環は、前記接眼レンズ導波管内の誘導伝搬と関連付けられたk-空間内の領域に対応し、
前記MPE領域は、少なくとも3つのセットの回折ビームを作成するように、前記誘導ビームのセットを回折するように構成され、前記回折ビームのセットは、少なくとも部分的に、前記k-空間環内の3つの異なる角度場所にある、少なくとも3つのセットのk-ベクトルと関連付けられる、
項目1に記載の接眼レンズ導波管。
(項目28)
前記誘導ビームのセットと関連付けられた前記k-ベクトルのセットは、前記k-空間環内に完全にある、項目27に記載の接眼レンズ導波管。
(項目29)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットは、前記k-空間環内に完全にある、項目27に記載の接眼レンズ導波管。
(項目30)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットは、少なくとも45度前記k-空間環内で相互から角度的に離間される、項目27に記載の接眼レンズ導波管。
(項目31)
前記回折ビームの個別のセットと関連付けられた前記k-ベクトルのセットは、相互に重複しない、項目27に記載の接眼レンズ導波管。
(項目32)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットのうちの1つは、前記ICG領域から前記MPE領域への方向に対応する前記k-空間環内のある角位置に位置する、項目27に記載の接眼レンズ導波管。
(項目33)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットのうちの1つは、前記MPE領域から前記EPE領域への方向に対応する前記k-空間環内のある角位置に位置する、項目27に記載の接眼レンズ導波管。
(項目34)
前記MPE領域は、少なくとも4つのセットの回折ビームを作成するように、前記誘導ビームのセットを回折するように構成され、前記回折ビームのセットは、少なくとも部分的に、前記k-空間環内の4つの異なる角位置にある少なくとも4つのセットのk-ベクトルと関連付けられる、項目27に記載の接眼レンズ導波管。
(項目35)
前記回折ビームが前記MPE領域内を伝搬する間、前記MPE領域は、その対応するk-ベクトルのセットが、前記k-空間環内の3つの異なる場所間で遷移するように、前記回折ビームをさらに回折するように構成される、項目27に記載の接眼レンズ導波管。
(項目36)
前記入力ビームのセットは、入力画像と関連付けられる、項目27に記載の接眼レンズ導波管。
(項目37)
前記入力ビームは、入力画像の中心に対応し、前記ICG領域上に垂直に入射する、項目1に記載の接眼レンズ導波管。
(項目38)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
前記基板上または前記基板内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、光の入力ビームのセットを受け取り、前記入力ビームのセットを前記基板の中に誘導ビームのセットとして結合するように構成され、前記誘導ビームのセットは、少なくとも部分的に、前記接眼レンズ導波管と関連付けられたk-空間環内にあるk-空間内のk-ベクトルのセットと関連付けられ、前記k-空間環は、前記接眼レンズ導波管内の誘導伝搬と関連付けられたk-空間内の領域に対応する、ICG領域と、
前記基板上または前記基板内に形成される多指向性瞳エクスパンダ(MPE)領域であって、前記MPE領域は、前記誘導ビームのセットを前記ICG領域から受け取るように位置付けられ、少なくとも3つのセットの回折ビームを作成するように、前記誘導ビームのセットを回折するように構成され、前記回折ビームのセットは、少なくとも3つのセットのk-ベクトルと関連付けられ、前記少なくとも3つのセットのk-ベクトルは、少なくとも部分的に、前記k-空間環内にあり、3つの異なる角度場所に中心合わせされる、MPE領域と、
前記基板上または前記基板内に形成される射出瞳エクスパンダ(EPE)領域であって、前記EPE領域は、前記回折ビームのセットのうちの1つを前記MPE領域から受け取り、それらを前記光学的に透過性の基板から出力ビームとして外部結合するように位置付けられる、EPE領域と
を備える、接眼レンズ導波管。
(項目39)
前記誘導ビームのセットと関連付けられた前記k-ベクトルのセットは、前記k-空間環内に完全にある、項目38に記載の接眼レンズ導波管。
(項目40)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットは、前記k-空間環内に完全にある、項目38に記載の接眼レンズ導波管。
(項目41)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットは、少なくとも45度前記k-空間環内で相互から角度的に離間される、項目38に記載の接眼レンズ導波管。
(項目42)
前記回折ビームの個別のセットと関連付けられた前記k-ベクトルのセットは、相互に重複しない、項目38に記載の接眼レンズ導波管。
(項目43)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットのうちの1つは、前記ICG領域から前記MPE領域への方向に対応する前記k-空間環内のある角位置に位置する、項目38に記載の接眼レンズ導波管。
(項目44)
前記回折ビームのセットと関連付けられた前記k-ベクトルのセットのうちの1つは、前記MPE領域から前記EPE領域への方向に対応する前記k-空間環内のある角位置に位置する、項目38に記載の接眼レンズ導波管。
(項目45)
前記MPE領域は、少なくとも4つのセットの回折ビームを作成するように、前記誘導ビームのセットを回折するように構成され、前記回折ビームのセットは、少なくとも部分的に、前記k-空間環内にあり、4つの異なる角位置に中心合わせされる少なくとも4つのセットのk-ベクトルと関連付けられる、項目38に記載の接眼レンズ導波管。
(項目46)
前記回折ビームが、前記MPE領域内を伝搬する間、前記MPE領域は、その対応するk-ベクトルのセットが、前記k-空間環内の3つの異なる場所間で遷移するように、前記回折ビームをさらに回折するように構成される、項目38に記載の接眼レンズ導波管。
(項目47)
前記入力ビームのセットは、入力画像と関連付けられる、項目38に記載の接眼レンズ導波管。
(項目48)
前記MPE領域は、少なくとも第1の周期性軸および第2の周期性軸に沿って周期性を呈する複数の回折特徴を備える、項目38に記載の接眼レンズ導波管。
(項目49)
前記MPE領域は、別個の回折特徴の2次元格子模様を備える、項目38に記載の接眼レンズ導波管。
(項目50)
前記MPE領域は、交差格子を備える、項目38に記載の接眼レンズ導波管。
(項目51)
前記入力ビームはそれぞれ、コリメートされ、5mm以下の直径を有する、項目38に記載の接眼レンズ導波管。
(項目52)
前記MPE領域および前記EPE領域は、重複しない、項目37に記載の接眼レンズ導波管。
(項目53)
前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、項目38に記載の接眼レンズ導波管。
(項目54)
前記接眼レンズは、カラー画像を複数の深度平面に表示するように構成される、項目53に記載の接眼レンズ導波管。
(項目55)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
画像と関連付けられた光の入力ビームを受け取るための入力結合領域であって、前記光の入力ビームは、関連付けられた瞳を有する、入力結合領域と、
前記瞳を少なくとも3つの方向に拡張させるように構成される多指向性瞳エクスパンダ(MPE)領域と、
前記画像と関連付けられた光の出力ビームを投影するための出射領域と
を備える、接眼レンズ導波管。
(項目56)
前記MPE領域は、前記瞳サイズを少なくとも4つの方向に拡張させるように構成される、項目55に記載の接眼レンズ導波管。
(項目57)
前記MPE領域および前記出射領域は、重複しない、項目55に記載の接眼レンズ導波管。
(項目58)
前記MPE領域は、出力瞳の非周期的アレイを作成する、項目55に記載の接眼レンズ導波管。
(項目59)
前記入力ビームのセットの中心ビームは、前記ICG領域上に垂直に入射する、項目38に記載の接眼レンズ導波管。
(項目60)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
前記基板上または前記基板内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、
光の入力ビームのセットを受け取ることであって、前記入力ビームのセットは、k-空間内のk-ベクトルのセットと関連付けられる、ことと、
第1の誘導ビームのセットおよび第1の非回折ビームのセットを作成するように、前記入力ビームのセットを回折することであって、前記第1の誘導ビームのセットは、前記接眼レンズ導波管と関連付けられたk-空間環内にある前記k-ベクトルの平行移動サブセットに対応し、前記第1の非回折ビームのセットは、前記k-空間環外にある前記k-ベクトルの平行移動サブセットに対応し、前記k-空間環は、前記接眼レンズ導波管内の誘導伝搬と関連付けられたk-空間内の領域に対応する、ことと、
別個の第2の誘導ビームのセットおよび別個の第2の非回折ビームのセットを作成するように、前記入力ビームのセットを回折することであって、前記第2の誘導ビームのセットは、前記k-空間環内にある前記k-ベクトルの平行移動サブセットに対応し、前記第2の非回折ビームのセットは、前記k-空間環外にある前記k-ベクトルの平行移動サブセットに対応する、ことと
を行うように構成される、ICG領域と、
前記基板上または前記基板内に形成される第1の瞳エクスパンダ領域であって、前記第1の瞳エクスパンダ領域は、前記第1の誘導ビームのセットを前記ICG領域から受け取るように位置付けられ、それらを第1の複製ビームのセットとして複製するように構成される、第1の瞳エクスパンダ領域と、
前記基板上または前記基板内に形成される第2の瞳エクスパンダ領域であって、前記第2の瞳エクスパンダ領域は、前記第2の誘導ビームのセットを前記ICG領域から受け取るように位置付けられ、それらを第2の複製ビームのセットとして複製するように構成される、第2の瞳エクスパンダ領域と、
前記基板上または前記基板内に形成される出射領域であって、前記出射領域は、前記第1および第2の複製ビームのセットを受け取るように位置付けられ、前記出射領域は、それらを出力ビームとして外部結合するように構成され、前記出力ビームは、前記入力ビームの完全セットを表す、出射領域と
を備える、接眼レンズ導波管。
(項目61)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
前記基板上または前記基板内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、
光の入力ビームのセットを受け取ることであって、前記入力ビームのセットは、視野(FOV)形状をk-空間内に形成するk-ベクトルのセットと関連付けられ、前記FOV形状は、前記接眼レンズ導波管と関連付けられたk-空間環の幅より大きい第1の寸法をk-空間内に有し、前記k-空間環は、前記接眼レンズ導波管内の誘導伝搬と関連付けられたk-空間内の領域に対応する、ことと、
入力ビームを前記基板の中に誘導ビームとして結合するように、かつ前記FOV形状を前記k-空間環内の第1の位置および第2の位置の両方に平行移動させるように、前記入力ビームを回折することであって、前記第1の位置では、前記FOV形状の一部は、前記k-空間環外にあり、前記FOV形状の第1のサブ部分のみが、前記k-空間環内にあり、前記第2の位置では、前記FOV形状の一部は、前記k-空間環外にあり、前記FOV形状の第2のサブ部分のみが、前記k-空間環内にある、ことと
を行うように構成される、ICG領域と、
前記基板上または前記基板内に形成される複数の瞳エクスパンダ領域であって、前記複数の瞳エクスパンダ領域は、前記FOV形状の前記第1および第2のサブ部分を、前記完全FOV形状が組み立て直される前記k-空間環内の第3の位置に平行移動させるように、前記誘導ビームを回折するように位置付けられる、複数の瞳エクスパンダ領域と
を備える、接眼レンズ導波管。
(項目62)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
前記基板上または前記基板内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、光の入力ビームのセットを受け取り、前記入力ビームのセットを前記基板の中に誘導ビームのセットとして結合するように構成され、前記入力ビームのセットは、k-空間内のk-ベクトルのセットと関連付けられ、前記k-ベクトルのセットは、前記接眼レンズ導波管と関連付けられたk-空間環の幅より大きい第1の寸法をk-空間内に有し、前記k-空間環は、前記接眼レンズ導波管内の誘導伝搬と関連付けられたk-空間内の領域に対応する、ICG領域と、
前記基板上または前記基板内に形成される複数の瞳エクスパンダ領域であって、前記複数の瞳エクスパンダ領域は、集合的に、前記誘導ビームを前記ICG領域から受け取り、複製ビームのセットを作成するように、それらを回折するように位置付けられる、複数の瞳エクスパンダ領域と、
前記基板上または前記基板内に形成される出射領域であって、前記出射領域は、前記複製ビームを受け取り、前記複製ビームを、前記光学的に透過性の基板から、前記入力ビームの完全セットを表す出力ビームのセットとして外部結合するように位置付けられる、出射領域と
を備える、接眼レンズ導波管。
(項目63)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
光学的に透過性の基板と、
前記基板上または前記基板内に形成される入力結合格子(ICG)領域であって、前記ICG領域は、入力画像に対応する光の入力ビームのセットを複数の回折次数に回折するように構成される回折格子を備え、前記回折格子は、
を満たす周期Λを有し、n 2 は、前記光学的に透過性の基板の屈折率であり、n 1 は、前記光学的に透過性の基板を囲繞する媒体の屈折率であり、ωは、前記光の入力ビームの角周波数であり、cは、光の速さの定数である、ICG領域と、
前記基板上または前記基板内に形成される複数の瞳エクスパンダ領域であって、前記複数の瞳エクスパンダ領域は、集合的に、前記ビームを前記ICG領域から受け取り、複製ビームのセットを作成するように、それらを回折するように位置付けられる、複数の瞳エクスパンダ領域と、
前記基板上または前記基板内に形成される出射領域であって、前記出射領域は、前記複製ビームを受け取り、前記複製ビームを、前記光学的に透過性の基板から、前記完全入力画像を表す出力ビームのセットとして外部結合するように位置付けられる、出射領域と
を備える、接眼レンズ導波管。
(項目64)
拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
第1の表面および第2の表面を有する光学的に透過性の基板と、
前記基板の表面のうちの1つ上または前記基板の表面のうちの1つ内に形成される第1の入力結合格子(ICG)領域であって、前記第1のICG領域は、光の入力ビームを受け取り、前記入力ビームを前記基板の中に誘導ビームとして結合するように構成される、第1のICG領域と、
前記基板の第1の表面上または前記基板の第1の表面内に形成される多指向性瞳エクスパンダ(MPE)領域であって、前記MPE領域は、少なくとも第1の周期性軸および第2の周期性軸に沿って周期性を呈する複数の回折特徴を備え、前記MPE領域は、前記誘導ビームを前記第1のICG領域から受け取り、それを複数の方向に回折し、複数の回折ビームを作成するように位置付けられる、MPE領域と、
前記基板の第2の表面上または前記基板の第2の表面内に形成される射出瞳エクスパンダ(EPE)領域であって、前記EPE領域は、前記MPE領域に重複し、前記EPE領域は、前記回折ビームのうちの1つ以上のものを前記光学的に透過性の基板から出力ビームとして外部結合するように構成される、EPE領域と
を備える、接眼レンズ導波管。
本開示は、画像をユーザの眼に投影するためにARディスプレイシステム内で使用され得る、種々の接眼レンズ導波管を説明する。接眼レンズ導波管は、物理的用語およびk-空間表現の使用の両方において説明される。
図2は、ウェアラブルディスプレイシステム60の実施例を図示する。ディスプレイシステム60は、ディスプレイまたは接眼レンズ70と、そのディスプレイ70の機能をサポートするための種々の機械的および電子的なモジュールおよびシステムとを含む。ディスプレイ70は、フレーム80に結合されてもよく、これは、ディスプレイシステムユーザ90によって装着可能であって、ディスプレイ70をユーザ90の眼の正面に位置付けるように構成される。ディスプレイ70は、いくつかの実施形態では、アイウェアと見なされてもよい。いくつかの実施形態では、スピーカ100が、フレーム80に結合され、ユーザ90の外耳道に隣接して位置付けられる。ディスプレイシステムはまた、1つ以上のマイクロホン110を含み、音を検出してもよい。マイクロホン110は、ユーザが、入力またはコマンドをシステム60に提供することを可能にすることができ(例えば、音声メニューコマンドの選択、自然言語質問等)、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にすることができる。マイクロホン110はまた、オーディオデータ(例えば、ユーザおよび/または環境からの音)をユーザの周囲から収集することができる。いくつかの実施形態では、ディスプレイシステムはまた、周辺センサ120aを含んでもよく、これは、フレーム80と別個であって、ユーザ90の身体(例えば、頭部、胴体、四肢等上)に取り付けられてもよい。周辺センサ120aは、いくつかの実施形態では、ユーザ90の生理学的状態を特徴付けるデータを取得してもよい。
図6は、AR接眼レンズ内で画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム250は、複数の導波管270、280、290、300、310を使用して、3次元知覚を眼/脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ260を含む。いくつかの実施形態では、ディスプレイシステム250は、図2のシステム60であって、図6は、そのシステム60のいくつかの部分をより詳細に図式的に示す。例えば、導波管アセンブリ260は、図2のディスプレイ70の一部であってもよい。ディスプレイシステム250は、いくつかの実施形態では、ライトフィールドディスプレイと見なされてもよいことを理解されたい。
図12Aおよび12Bは、画像をユーザの眼210に向かって投影する際の動作時の接眼レンズ導波管1200の上面図を図示する。画像は、最初に、投影レンズ1210またはある他のプロジェクタデバイスを使用して、像面1207から接眼レンズ導波管1200の入射瞳1208に向かって投影されることができる。各像点(例えば、画像ピクセルまたは画像ピクセルの一部)は、光の対応する入力ビーム(例えば、1202a、1204a、1206a)を有し、これは、入射瞳1208(例えば、プロジェクタレンズ1210の光学軸に対する特定の角度)において特定の方向に伝搬する。光線として図示されるが、光の入力ビーム1202a、1204a、1206aは、例えば、それらが接眼レンズ導波管1200に入射するとき、数ミリメートル以下の直径を伴う、コリメートされたビームであってもよい。
直交瞳エクスパンダを伴う例示的AR接眼レンズ導波管
図16Aは、OPE領域ではなく、多指向性瞳エクスパンダ(MPE)領域1650を有する、例示的接眼レンズ導波管1600を図示する。巨視的レベルでは、接眼レンズ導波管1600の図示される実施形態は、図15Aに示される接眼レンズ導波管1500に類似する。入力ビームは、ICG領域1640によって、接眼レンズ導波管1600の中に結合される。回折ビームは、ICG領域1640から、OPE領域に取って代わる、MPE領域1650に向かって、かつそれを通して伝搬する。最後に、MPE領域1650は、光のビームをEPE領域1660に向かって回折し、そこで、それらは、ユーザの眼に向かって外部結合される。ICG領域1640およびEPE領域1660は、図15A-15Gに関して説明される接眼レンズ導波管1500内の対応する領域と同一方法で機能するように設計されてもよい。しかしながら、MPE領域1650は、光をより多くの方向に回折するという点で、OPE領域1550と明確に異なる。本特徴は、有利には、EPE領域1660内の光ビームの分布における周期的均一性を減少させ、これは、ひいては、EPE領域をより均一に照明させることができる。
図18Aは、ICG領域1840と、2つの直交瞳エクスパンダ(OPE)領域1850a、1850bと、射出瞳エクスパンダ(EPE)領域1860とを伴う、例示的接眼レンズ導波管1800を図示する。図18Aはまた、k-空間内の接眼レンズ導波管1800のこれらのコンポーネントのそれぞれの効果を図示する、k-空間略図を含む。接眼レンズ導波管1800のICG領域1840、OPE領域1850a、1850b、およびEPE領域1860は、入力ビームを接眼レンズ導波管1800の中に結合し、誘導モードを介して伝搬し、空間的に分散された様式においてビームを複製し、複製ビームを接眼レンズ導波管から出射させ、ユーザの眼に向かって投影させる、種々の回折特徴を含む。特に、接眼レンズ導波管1800は、入力ビームを複製するための複数の明確に異なるおよび/または非連続的領域を含む。これらの明確に異なる領域からの複製ビームは、共通射出瞳領域内で再度組み合わせられることができる。
図19は、拡張視野を伴う接眼レンズ導波管1900の実施形態を図示する。接眼レンズ導波管1900は、ICG領域1940と、左OPE領域1950aと、右OPE領域1950bと、EPE領域1960とを含む。巨視的レベルでは、図19に示される接眼レンズ導波管1900は、図18Aに示される接眼レンズ導波管1800と同じであることができる。しかしながら、接眼レンズ導波管1900内の回折特徴のうちのいくつかは、少なくとも1つの寸法において増加された視野を可能にする特性を伴って、設計されることができる。これらの特徴は、図19に示されるk-空間略図によって図示される、接眼レンズ導波管1900のk-空間作用に基づいて、明確に理解されることができる。
拡張視野および重複MPEおよびEPE領域を伴う、例示的AR接眼レンズ導波管
本明細書に説明される接眼レンズ導波管実施形態の多くは、その光学軸が垂直角度でICG領域と交差する、プロジェクタ(または他の画像入力デバイス)と協働するように設計されている。そのような実施形態では、中心入力ビーム(入力画像の中心点に対応する)は、ICG領域上に垂直に入射し、入力画像の上部/底部および左/右部分に対応する入力ビームは、対称角度でICG領域上に入射する。しかしながら、いくつかの実施形態では、接眼レンズ導波管は、角度付けられたプロジェクタ(または他の画像入力デバイス)と機能するように設計されてもよい。図23は、そのような実施形態の実施例を図示する。
いくつかの実施形態では、拡張現実ディスプレイシステムのための接眼レンズ導波管であって、接眼レンズ導波管は、光学的に透過性の基板と、基板上または内に形成される、入力結合格子(ICG)領域であって、光の入力ビームを受け取り、入力ビームを基板の中に誘導ビームとして結合するように構成される、ICG領域と、基板上または内に形成される、多指向性瞳エクスパンダ(MPE)領域であって、MPE領域は、少なくとも第1の周期性軸および第2の周期性軸に沿って周期性を呈する、複数の回折特徴を備え、誘導ビームをICG領域から受け取り、それを複数の方向に回折し、複数の回折ビームを作成するように位置付けられる、MPE領域と、基板上または内に形成される、射出瞳エクスパンダ(EPE)領域であって、回折ビームのうちの1つ以上のものをMPE領域から受け取り、それらを光学的に透過性の基板から出力ビームとして外部結合するように位置付けられる、EPE領域とを備える。
文脈によって別様に明確に要求されない限り、説明および請求項全体を通して、単語「備える」、「~を備えている」、「~を含む」、「~を含んでいる」、「~を有する」、「~を有している」および同等物は、排他的または包括的意味とは対照的に、包含的意味、すなわち、「限定ではないが~を含む」の意味で解釈されるべきである。単語「結合される」は、本明細書で概して使用されるように、直接接続されるか、または1つ以上の中間要素を経由して接続されるかのいずれかであり得る、2つ以上の要素を指す。同様に、単語「接続される」は、本明細書で概して使用されるように、直接接続されるか、または1つ以上の中間要素を経由して接続されるかのいずれかであり得る、2つ以上の要素を指す。文脈に応じて、「結合される」または「接続される」は、光が1つの光学要素から別の光学要素に結合または接続されるような光学結合または光学接続を指し得る。加えて、単語「本明細書で」、「上記で」、「下記で」、「後述の」、「前述の」、および類似意味の単語は、本願で使用されるとき、全体として本願を指すものとし、本願の任意の特定の部分を指すものではない。文脈によって許容される場合、単数形または複数形を使用する上記の詳細な説明における単語はまた、それぞれ、複数形または単数形を含んでもよい。単語「または」は、2つ以上のアイテムのリストを参照する場合、包含的(排他的ではなく)「または」であって、「または」は、以下の単語の解釈の全て、すなわち、リスト内のアイテムのいずれか、リスト内のアイテムの全て、およびリスト内のアイテムのうちの1つ以上のものの任意の組み合わせを網羅し、リストに追加される他のアイテムを除外しない。加えて、冠詞「a」、「an」、および「the」は、本願および添付の請求項において使用される場合、別様に規定されない限り、「1つ以上の」または「少なくとも1つ」を意味すると解釈されるべきである。
Claims (33)
- 拡張現実ディスプレイシステムのための接眼レンズ導波管であって、前記接眼レンズ導波管は、
第1の表面および第2の表面を有する光学的に透過性の基板と、
前記基板の表面のうちの1つ上または前記基板の表面のうちの1つ内に形成される第1の入力結合格子(ICG)領域であって、前記第1のICG領域は、光の入力ビームを受け取り、前記入力ビームを前記基板の中に誘導ビームとして結合するように構成される、第1のICG領域と、
前記基板の第1の表面上または前記基板の第1の表面内に形成される多指向性瞳エクスパンダ(MPE)領域であって、前記MPE領域は、少なくとも第1の周期性軸および第2の周期性軸に沿って周期性を呈する複数の回折特徴を備え、前記MPE領域は、前記誘導ビームを前記第1のICG領域から受け取り、それを複数の方向に回折し、複数の回折ビームを作成するように位置付けられる、MPE領域と、
前記基板の第2の表面上または前記基板の第2の表面内に形成される射出瞳エクスパンダ(EPE)領域であって、前記EPE領域は、前記MPE領域に重複し、前記EPE領域は、前記回折ビームのうちの1つ以上のものを前記光学的に透過性の基板から出力ビームとして外部結合するように構成される、EPE領域と、
第2のICG領域であって、前記MPE領域および前記EPE領域は、前記第1のICG領域と前記第2のICG領域との間に位置する、第2のICG領域と、
前記第1のICG領域の反対側の第1の対の直交瞳エクスパンダ(OPE)領域と、
前記第2のICG領域の反対側の第2の対のOPE領域と
を備え、
前記MPE領域は、前記第1のICG領域からの前記誘導ビームのパワーの一部を少なくとも4つの方向に回折することによって、前記回折ビームを作成するように構成される、接眼レンズ導波管。 - 前記MPE領域および前記EPE領域は、同一サイズであり、相互に整合される、請求項1に記載の接眼レンズ導波管。
- 前記第1のICG領域は、複数の周期的に繰り返されるラインを有する回折格子を備え、前記EPE領域は、前記第1のICG領域内の前記回折格子のラインと垂直に配向される複数の周期的に繰り返されるラインを有する、回折格子を備える、請求項1に記載の接眼レンズ導波管。
- 前記MPE領域は、別個の回折特徴の2次元格子模様または交差格子を備える、請求項1に記載の接眼レンズ導波管。
- 前記4つの方向のうちの3つ以上のものは、一次回折ビームに対応する、請求項1に記載の接眼レンズ導波管。
- 前記4つの方向は、角度的に90度分離される、請求項1に記載の接眼レンズ導波管。
- 前記MPE領域の前記回折特徴における前記第1および第2の周期性軸は、直交しない、請求項1に記載の接眼レンズ導波管。
- 前記MPE領域の前記回折特徴の回折効率は、空間的に変動し、前記第1のICG領域により近い、前記MPE領域内に位置する回折特徴は、より高い回折効率を有し、または、それに沿って前記第1のICG領域が前記誘導ビームを指向する軸により近い、前記MPE領域内に位置する回折特徴は、より高い回折効率を有する、請求項1に記載の接眼レンズ導波管。
- 異なる場所において前記MPE領域に入射する1つ以上の対応する付加的光の入力ビームを提供するために、前記MPE領域の周囲の1つ以上の対応する場所に提供される1つ以上の付加的なICG領域をさらに備える、請求項1に記載の接眼レンズ導波管。
- 前記EPE領域内の回折特徴の回折効率は、空間的に変動し、前記EPE領域の周縁のより近くに位置する回折特徴は、より高い回折効率を有する、請求項1に記載の接眼レンズ導波管。
- 前記基板の周縁の周囲に位置する1つ以上の回折ミラーをさらに備える、請求項1に記載の接眼レンズ導波管。
- 前記接眼レンズ導波管は、拡張現実ディスプレイシステムのための接眼レンズの中に組み込まれる、請求項1に記載の接眼レンズ導波管。
- 前記接眼レンズ導波管が装着時配向にあるとき、前記第1のICG領域は、前記MPE領域および前記EPE領域の鼻側に位置し、前記第2のICG領域は、前記MPE領域および前記EPE領域のこめかみ側に位置する、請求項1に記載の接眼レンズ導波管。
- 前記第1のICG領域および前記第2のICG領域は両方、同一方向に延在する複数の周期的に繰り返されるラインを有する回折格子を備え、前記EPE領域は、前記第1および第2のICG領域内の前記回折格子のラインと垂直に配向される複数の周期的に繰り返されるラインを有する、回折格子を備える、請求項1に記載の接眼レンズ導波管。
- 前記接眼レンズ導波管は、入力画像を形成する入力ビームのセットを受け取るように構成され、前記入力ビームのセットは、k-空間内の視野(FOV)形状を形成するk-ベクトルのセットと関連付けられ、前記FOV形状は、前記接眼レンズ導波管と関連付けられたk-空間環の幅より大きい、k-空間内の第1の寸法を有し、前記k-空間環は、k-空間内の領域であり、前記k-空間環内にあるk-ベクトルと関連付けられた入力ビームは、全内部反射を介して前記接眼レンズ導波管内の誘導伝搬を受け、
前記第1のICG領域は、前記FOV形状の第1のサブ部分に対応する前記入力ビームの第1のサブセットを受け取り、前記入力ビームの第1のサブセットを前記基板の中に誘導ビームとして結合するように、かつ前記FOV形状を、前記FOV形状の前記第1のサブ部分が前記k-空間環内に完全にある、第1の位置に平行移動させるように、前記入力ビームの前記第1のサブセットを回折するように構成され、
前記第2のICG領域は、前記FOV形状の第2のサブ部分に対応する前記入力ビームの第2のサブセットを受け取り、前記入力ビームの第2のサブセットを前記基板の中に誘導ビームとして結合するように、かつ前記FOV形状を、前記FOV形状の前記第2のサブ部分が前記k-空間環内に完全にある、第2の位置に平行移動させるように、前記入力ビームの前記第2のサブセットを回折するように構成される、請求項1に記載の接眼レンズ導波管。 - 前記MPE領域は、前記FOV形状の前記第1のサブ部分を前記k-空間環内の第3の位置および第4の位置の両方に平行移動させるように、前記第1のICG領域からの前記誘導ビームを回折するように構成され、
前記MPE領域はさらに、前記FOV形状の前記第2のサブ部分を前記k-空間環内の前記第3の位置および前記第4の位置の両方に平行移動させるように、前記第2のICG領域からの前記誘導ビームを回折するように構成される、請求項15に記載の接眼レンズ導波管。 - 前記k-空間環内の前記第3および第4の位置では、前記FOV形状の前記第1の寸法は、前記k-空間環の方位角方向に延在する、請求項16に記載の接眼レンズ導波管。
- 完全FOV形状は、前記第3の位置および前記第4の位置において組み立て直される、請求項16に記載の接眼レンズ導波管。
- 前記FOV形状の前記第1および第2のサブ部分は、重複しない、請求項18に記載の接眼レンズ導波管。
- 前記FOV形状の前記第1および第2のサブ部分は、重複する、請求項18に記載の接眼レンズ導波管。
- 前記EPE領域は、前記完全に組み立て直されたFOV形状を、前記k-空間環内の前記第3および第4の位置の両方から、前記k-空間環によって囲繞されるk-空間内の中心位置に平行移動させるように、前記MPE領域からの前記回折ビームをさらに回折するように構成される、請求項18に記載の接眼レンズ導波管。
- 前記接眼レンズ導波管は、前記FOV形状の前記第1の寸法の方向に100度の大きさの視野を提供する、請求項15に記載の接眼レンズ導波管。
- 前記接眼レンズ導波管の第1のインスタンスおよび前記接眼レンズ導波管の第2のインスタンスは、双眼構成に提供される、請求項15に記載の接眼レンズ導波管。
- 前記接眼レンズ導波管の前記第1のインスタンスの視野は、前記接眼レンズ導波管の前記第2のインスタンスの視野と重複する、請求項23に記載の接眼レンズ導波管。
- 前記双眼構成は、150度またはより大きい1つの方向における視野を提供する、請求項24に記載の接眼レンズ導波管。
- 前記第1のICG領域および前記第2のICG領域は両方、同一方向に延在する複数の周期的に繰り返されるラインを有する回折格子を備える、請求項1に記載の接眼レンズ導波管。
- 前記接眼レンズ導波管は、入力画像を形成する入力ビームのセットを受け取るように構成され、前記入力ビームのセットは、k-空間内の視野(FOV)形状を形成するk-ベクトルのセットと関連付けられ、前記FOV形状は、前記接眼レンズ導波管と関連付けられたk-空間環の幅より大きい、k-空間内の第1および第2の寸法を有し、前記k-空間環は、k-空間内の領域であり、前記k-空間環内にあるk-ベクトルと関連付けられた入力ビームは、全内部反射を介して前記接眼レンズ導波管内の誘導伝搬を受け、
前記第1のICG領域は、前記入力ビームのセットの少なくとも一部を前記基板の中に誘導ビームとして結合するように、かつ前記FOV形状を、少なくとも前記FOV形状の第1および第2のサブ部分がそれぞれ、前記k-空間環内に完全にある、第1および第2の位置に平行移動させるように、前記入力ビームのセットを回折するように構成され、
前記第2のICG領域は、前記入力ビームのセットの少なくとも一部を前記基板の中に誘導ビームとして結合するように、かつ前記FOV形状を、少なくとも前記FOV形状の前記第1および第2のサブ部分がそれぞれ、前記k-空間環内に完全にある、前記第1および第2の位置に平行移動させるように、前記入力ビームのセットを回折するように構成される、請求項1に記載の接眼レンズ導波管。 - 前記第1の対のOPE領域は、前記FOV形状の前記第1および第2のサブ部分を、前記FOV形状の前記第1および第2のサブ部分の少なくとも第1の部分が前記k-空間環内に完全にある、第3の位置に平行移動させるように、前記第1のICG領域からの前記誘導ビームを回折するように構成され、
前記第2の対のOPE領域は、前記FOV形状の前記第1および第2のサブ部分を、前記FOV形状の前記第1および第2のサブ部分の少なくとも第2の部分が前記k-空間環内に完全にある、第4の位置に平行移動させるように、前記第2のICG領域からの前記誘導ビームを回折するように構成される、請求項27に記載の接眼レンズ導波管。 - 前記MPE領域は、前記FOV形状の前記第1および第2のサブ部分の前記第1の部分を、前記k-空間環内の前記第1、第2、および第4の位置に平行移動させるように、前記第1の対のOPE領域からの前記誘導ビームを回折するように構成され、
前記MPE領域は、前記FOV形状の前記第1および第2のサブ部分の前記第2の部分を、前記k-空間環内の前記第1、第2、および第3の位置に平行移動させるように、前記第2の対のOPE領域からの前記誘導ビームを回折するようにさらに構成される、請求項28に記載の接眼レンズ導波管。 - 前記EPE領域は、完全FOV形状を、前記k-空間環によって囲繞されるk-空間内の中心位置に組み立て直すように、前記MPE領域からの前記回折ビームをさらに回折するように構成される、請求項29に記載の接眼レンズ導波管。
- 前記FOV形状の前記第1および第2のサブ部分は、重複しない、請求項30に記載の接眼レンズ導波管。
- 前記FOV形状の前記第1および第2のサブ部分は、重複する、請求項30に記載の接眼レンズ導波管。
- 前記入力ビームのセットの中心ビームは、前記第1のICG領域および前記第2のICG領域上に垂直に入射する、請求項27に記載の接眼レンズ導波管。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021202306A JP7372305B2 (ja) | 2017-12-15 | 2021-12-14 | 拡張現実ディスプレイシステムのための接眼レンズ |
JP2023151104A JP2023165792A (ja) | 2017-12-15 | 2023-09-19 | 拡張現実ディスプレイシステムのための接眼レンズ |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762599663P | 2017-12-15 | 2017-12-15 | |
US62/599,663 | 2017-12-15 | ||
US201762608555P | 2017-12-20 | 2017-12-20 | |
US62/608,555 | 2017-12-20 | ||
US201862620465P | 2018-01-22 | 2018-01-22 | |
US62/620,465 | 2018-01-22 | ||
PCT/US2018/065856 WO2019118930A1 (en) | 2017-12-15 | 2018-12-14 | Eyepieces for augmented reality display system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021202306A Division JP7372305B2 (ja) | 2017-12-15 | 2021-12-14 | 拡張現実ディスプレイシステムのための接眼レンズ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021508070A JP2021508070A (ja) | 2021-02-25 |
JP7407111B2 true JP7407111B2 (ja) | 2023-12-28 |
Family
ID=66814408
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020531091A Active JP7407111B2 (ja) | 2017-12-15 | 2018-12-14 | 拡張現実ディスプレイシステムのための接眼レンズ |
JP2021202306A Active JP7372305B2 (ja) | 2017-12-15 | 2021-12-14 | 拡張現実ディスプレイシステムのための接眼レンズ |
JP2023151104A Pending JP2023165792A (ja) | 2017-12-15 | 2023-09-19 | 拡張現実ディスプレイシステムのための接眼レンズ |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021202306A Active JP7372305B2 (ja) | 2017-12-15 | 2021-12-14 | 拡張現実ディスプレイシステムのための接眼レンズ |
JP2023151104A Pending JP2023165792A (ja) | 2017-12-15 | 2023-09-19 | 拡張現実ディスプレイシステムのための接眼レンズ |
Country Status (9)
Country | Link |
---|---|
US (4) | US10852547B2 (ja) |
EP (2) | EP4293414A3 (ja) |
JP (3) | JP7407111B2 (ja) |
KR (2) | KR20240149455A (ja) |
CN (1) | CN111683584A (ja) |
AU (2) | AU2018386296B2 (ja) |
CA (2) | CA3084011C (ja) |
IL (2) | IL303076A (ja) |
WO (1) | WO2019118930A1 (ja) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10534179B1 (en) * | 2016-10-18 | 2020-01-14 | Meta View, Inc. | Image projection systems and methods |
CN110199220B (zh) | 2016-11-18 | 2022-11-01 | 奇跃公司 | 使用交叉光栅的波导光复用器 |
IL268135B2 (en) | 2017-01-23 | 2024-03-01 | Magic Leap Inc | Eyepiece for virtual, augmented or mixed reality systems |
US12013538B2 (en) | 2017-07-03 | 2024-06-18 | Holovisions LLC | Augmented reality (AR) eyewear with a section of a fresnel reflector comprising individually-adjustable transmissive-reflective optical elements |
WO2019118930A1 (en) | 2017-12-15 | 2019-06-20 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
CN111869205B (zh) * | 2018-01-19 | 2022-06-10 | Pcms控股公司 | 具有变化位置的多焦平面 |
FI129084B (en) * | 2018-02-06 | 2021-06-30 | Dispelix Oy | Diffractive display element with lattice mirror |
FI130178B (en) * | 2018-03-28 | 2023-03-29 | Dispelix Oy | Waveguide element and waveguide stack for display use |
CN112585963B (zh) | 2018-07-05 | 2024-04-09 | Pcms控股公司 | 用于2d显示器上的内容的3d感知的近眼焦平面覆盖层的方法和系统 |
US20200096771A1 (en) * | 2018-09-24 | 2020-03-26 | Apple Inc. | Optical Systems with Interleaved Light Redirectors |
US11237393B2 (en) | 2018-11-20 | 2022-02-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
US10600352B1 (en) * | 2018-12-04 | 2020-03-24 | Facebook Technologies, Llc | Display device with a switchable window and see-through pancake lens assembly |
US11067811B2 (en) | 2019-01-11 | 2021-07-20 | Facebook Technologies, Llc | Volume bragg gratings for near-eye waveguide display |
US20220283377A1 (en) * | 2019-02-15 | 2022-09-08 | Digilens Inc. | Wide Angle Waveguide Display |
JP7378872B2 (ja) * | 2019-03-13 | 2023-11-14 | エルジー・ケム・リミテッド | 回折導光板 |
US10955675B1 (en) | 2019-04-30 | 2021-03-23 | Facebook Technologies, Llc | Variable resolution display device with switchable window and see-through pancake lens assembly |
CN114207492A (zh) | 2019-06-07 | 2022-03-18 | 迪吉伦斯公司 | 带透射光栅和反射光栅的波导及其生产方法 |
EP3987343A4 (en) | 2019-06-20 | 2023-07-19 | Magic Leap, Inc. | EYEWEARS FOR AUGMENTED REALITY DISPLAY SYSTEM |
JP7297548B2 (ja) * | 2019-06-21 | 2023-06-26 | 株式会社日立エルジーデータストレージ | 導光板の製造方法、導光板モジュールの製造方法、および画像表示装置の製造方法 |
BR112022003104A2 (pt) * | 2019-08-21 | 2022-05-17 | Bae Systems Plc | Guia de onda óptica |
JP7406622B2 (ja) | 2019-08-21 | 2023-12-27 | マジック リープ, インコーポレイテッド | 高屈折率材料を使用した平坦スペクトル応答格子 |
US20210055551A1 (en) | 2019-08-23 | 2021-02-25 | Facebook Technologies, Llc | Dispersion compensation in volume bragg grating-based waveguide display |
KR20220054386A (ko) | 2019-08-29 | 2022-05-02 | 디지렌즈 인코포레이티드. | 진공 브래그 격자 및 이의 제조 방법 |
TWI704377B (zh) * | 2019-09-09 | 2020-09-11 | 宏碁股份有限公司 | 頭戴式顯示裝置與其視力檢查方法 |
CN110764261B (zh) * | 2019-09-18 | 2022-03-11 | 深圳市光舟半导体技术有限公司 | 一种光波导结构、ar设备光学成像系统及ar设备 |
CN112578574B (zh) * | 2019-09-30 | 2022-04-05 | 中山大学 | 基于光栅的光波导光场显示系统 |
CN115280214A (zh) | 2019-10-17 | 2022-11-01 | 奇跃公司 | 可穿戴显示器中光透射伪影的衰减 |
US11543664B2 (en) | 2019-10-31 | 2023-01-03 | Magic Leap, Inc. | Eyepieces for use in wearable display systems |
US10962787B1 (en) * | 2019-11-25 | 2021-03-30 | Shanghai North Ocean Photonics Co., Ltd. | Waveguide display device |
US10935730B1 (en) * | 2019-11-25 | 2021-03-02 | Shanghai North Ocean Photonics Co., Ltd. | Waveguide display device |
CN112987294B (zh) | 2019-12-16 | 2024-09-20 | 杭州光粒科技有限公司 | 一种二维光波导、虚实光波合束器以及ar设备 |
CN111175975B (zh) * | 2020-01-16 | 2022-04-19 | 华东交通大学 | 一种用于实现大焦深成像的近眼显示装置 |
US20230097201A1 (en) * | 2020-01-17 | 2023-03-30 | Interdigital Ce Patent Holdings | Eyewear apparatus for wide field of view display |
CN115039012A (zh) | 2020-01-31 | 2022-09-09 | 奇跃公司 | 用于测眼评估的增强和虚拟现实显示系统 |
CN113325579A (zh) | 2020-02-28 | 2021-08-31 | 苏州苏大维格科技集团股份有限公司 | 用于呈现增强现实图像的装置和包含该装置的系统 |
JP7509903B2 (ja) | 2020-03-06 | 2024-07-02 | マジック リープ, インコーポレイテッド | ウェアラブルディスプレイ内の光透過アーチファクトの角度選択的減衰 |
US11940639B2 (en) | 2020-03-25 | 2024-03-26 | Magic Leap, Inc. | Optical device with one-way mirror |
US11568610B2 (en) | 2020-05-12 | 2023-01-31 | Magic Leap, Inc. | Privacy preserving expression generation for augmented or virtual reality client applications |
EP4154050A4 (en) * | 2020-05-22 | 2024-06-05 | Magic Leap, Inc. | AUGMENTED AND VIRTUAL REALITY DISPLAY SYSTEMS WITH CORRELATED OPTICAL REGIONS |
EP4154051A4 (en) * | 2020-05-22 | 2024-08-14 | Magic Leap Inc | METHOD AND SYSTEM FOR WIDE FIELD OF VIEW DUAL PROJECTOR WAVEGUIDE DISPLAYS |
WO2021263183A1 (en) | 2020-06-25 | 2021-12-30 | Magic Leap, Inc. | Tunable attenuation of light transmission artifacts in wearable displays |
US11650372B2 (en) | 2020-09-21 | 2023-05-16 | Corning Incorporated | Optical coupling device having diffraction gratings for coupling light with a light guide and fabrication method thereof |
US11531202B2 (en) * | 2020-11-05 | 2022-12-20 | Microsoft Technology Licensing, Llc | Waveguide assembly with virtual image focus |
US12007610B2 (en) | 2021-05-07 | 2024-06-11 | Applied Materials, Inc. | Waveguide combiners having a pass-through in-coupler grating |
US11880036B2 (en) * | 2021-07-19 | 2024-01-23 | GM Global Technology Operations LLC | Control of ambient light reflected from pupil replicator |
CN116047759A (zh) * | 2021-10-28 | 2023-05-02 | 北京小米移动软件有限公司 | 波导显示装置和增强现实显示设备 |
FI20225058A1 (en) * | 2022-01-25 | 2023-07-26 | Dispelix Oy | DISPLAY COMPONENT |
JP2023124625A (ja) * | 2022-02-25 | 2023-09-06 | ソニーグループ株式会社 | 導光板及び画像表示装置 |
CN116068768A (zh) * | 2022-03-15 | 2023-05-05 | 嘉兴驭光光电科技有限公司 | 衍射光波导以及具有其的显示设备 |
WO2023220029A1 (en) * | 2022-05-12 | 2023-11-16 | Google Llc | Waveguide for eyewear display having an expanded field of view area |
WO2023239417A1 (en) * | 2022-06-10 | 2023-12-14 | Magic Leap, Inc. | Compensating thickness variations in substrates for optical devices |
CN115236788B (zh) * | 2022-06-27 | 2024-09-06 | 北京灵犀微光科技有限公司 | 光波导器件、近眼显示装置以及智能眼镜 |
WO2024010600A1 (en) * | 2022-07-08 | 2024-01-11 | Magic Leap, Inc. | Method and system for eyepiece waveguide displays utilizing multi-directional launch architectures |
CN115903122B (zh) * | 2023-01-06 | 2023-06-06 | 北京至格科技有限公司 | 一种用于增强现实显示的光栅波导装置及波导系统 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060132914A1 (en) | 2003-06-10 | 2006-06-22 | Victor Weiss | Method and system for displaying an informative image against a background image |
US20100284085A1 (en) | 2006-09-28 | 2010-11-11 | Nokia Corporation | Beam expansion with three-dimensional diffractive elements |
US20100321781A1 (en) | 2006-12-28 | 2010-12-23 | Nokia Corporation | Device for expanding an exit pupil in two dimensions |
JP2014063173A (ja) | 2004-03-29 | 2014-04-10 | Sony Corp | 画像表示装置 |
US20150016777A1 (en) | 2012-06-11 | 2015-01-15 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
WO2015091669A1 (en) | 2013-12-19 | 2015-06-25 | Bae Systems Plc | Improvements in and relating to waveguides |
CN107092093A (zh) | 2017-06-16 | 2017-08-25 | 北京灵犀微光科技有限公司 | 波导显示装置 |
JP2017524962A (ja) | 2014-05-30 | 2017-08-31 | マジック リープ, インコーポレイテッド | 仮想または拡張現実装置を用いて仮想コンテンツ表示を生成する方法およびシステム |
US20170299864A1 (en) | 2016-04-13 | 2017-10-19 | Microsoft Technology Licensing, Llc | Waveguides with extended field of view |
US20170315346A1 (en) | 2016-04-29 | 2017-11-02 | Jani Kari Tapio Tervo | Robust Architecture for Large Field of View Components |
US20170357089A1 (en) | 2016-06-09 | 2017-12-14 | Microsoft Technology Licensing, Llc | Wrapped Waveguide With Large Field Of View |
Family Cites Families (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4693544A (en) | 1982-12-14 | 1987-09-15 | Nippon Sheet Glass Co., Ltd. | Optical branching device with internal waveguide |
GB8318863D0 (en) | 1983-07-12 | 1983-08-10 | Secr Defence | Thermochromic liquid crystal displays |
JPS62269174A (ja) | 1986-05-18 | 1987-11-21 | Ricoh Co Ltd | カラ−複写機における光路分割・色分解光学装置 |
DE3776157D1 (de) | 1987-06-04 | 1992-02-27 | Walter Lukosz | Optisches modulations- und mess-verfahren. |
US4991924A (en) | 1989-05-19 | 1991-02-12 | Cornell Research Foundation, Inc. | Optical switches using cholesteric or chiral nematic liquid crystals and method of using same |
JPH0384516A (ja) | 1989-08-29 | 1991-04-10 | Fujitsu Ltd | 3次元表示装置 |
US5082354A (en) | 1989-08-29 | 1992-01-21 | Kaiser Aerospace And Electronics Corporation | Optical switch and color selection assembly |
GB2249387B (en) | 1990-10-11 | 1995-01-25 | Holtronic Technologies Ltd | Apparatus for and a method of transverse position measurement in proximity lithographic systems |
US5473455A (en) | 1991-12-20 | 1995-12-05 | Fujitsu Limited | Domain divided liquid crystal display device with particular pretilt angles and directions in each domain |
US6222525B1 (en) | 1992-03-05 | 2001-04-24 | Brad A. Armstrong | Image controllers with sheet connected sensors |
US6219015B1 (en) | 1992-04-28 | 2001-04-17 | The Board Of Directors Of The Leland Stanford, Junior University | Method and apparatus for using an array of grating light valves to produce multicolor optical images |
SE470454B (sv) | 1992-08-26 | 1994-04-11 | Ericsson Telefon Ab L M | Optisk filteranordning |
FR2707781B1 (fr) | 1993-07-16 | 1995-09-01 | Idmatic Sa | Carte souple équipée d'un dispositif de contrôle de validité. |
US5544268A (en) | 1994-09-09 | 1996-08-06 | Deacon Research | Display panel with electrically-controlled waveguide-routing |
JP3836140B2 (ja) | 1995-02-28 | 2006-10-18 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 電気光学装置 |
US5825448A (en) | 1995-05-19 | 1998-10-20 | Kent State University | Reflective optically active diffractive device |
US5670988A (en) | 1995-09-05 | 1997-09-23 | Interlink Electronics, Inc. | Trigger operated electronic device |
JP3649818B2 (ja) | 1996-09-19 | 2005-05-18 | 富士通ディスプレイテクノロジーズ株式会社 | 液晶表示装置 |
US5915051A (en) | 1997-01-21 | 1999-06-22 | Massascusetts Institute Of Technology | Wavelength-selective optical add/drop switch |
US6181393B1 (en) | 1997-12-26 | 2001-01-30 | Kabushiki Kaisha Toshiba | Liquid crystal display device and method of manufacturing the same |
US6188462B1 (en) | 1998-09-02 | 2001-02-13 | Kent State University | Diffraction grating with electrically controlled periodicity |
US6785447B2 (en) | 1998-10-09 | 2004-08-31 | Fujitsu Limited | Single and multilayer waveguides and fabrication process |
US6690845B1 (en) | 1998-10-09 | 2004-02-10 | Fujitsu Limited | Three-dimensional opto-electronic modules with electrical and optical interconnections and methods for making |
US6334960B1 (en) | 1999-03-11 | 2002-01-01 | Board Of Regents, The University Of Texas System | Step and flash imprint lithography |
US6723396B1 (en) | 1999-08-17 | 2004-04-20 | Western Washington University | Liquid crystal imprinting |
JP2001091715A (ja) | 1999-09-27 | 2001-04-06 | Nippon Mitsubishi Oil Corp | 複合回折素子 |
US6873087B1 (en) | 1999-10-29 | 2005-03-29 | Board Of Regents, The University Of Texas System | High precision orientation alignment and gap control stages for imprint lithography processes |
GB9928126D0 (en) | 1999-11-30 | 2000-01-26 | Secr Defence | Bistable nematic liquid crystal device |
US7460200B2 (en) | 2000-03-27 | 2008-12-02 | Helwett-Packard Development Company, L.P. | Liquid crystal alignment |
US6649715B1 (en) | 2000-06-27 | 2003-11-18 | Clemson University | Fluoropolymers and methods of applying fluoropolymers in molding processes |
KR100833809B1 (ko) | 2000-07-05 | 2008-05-30 | 소니 가부시끼 가이샤 | 화상 표시 소자 및 화상 표시 장치 |
IL137625A0 (en) | 2000-08-01 | 2001-10-31 | Sensis Ltd | Detector for an electrophoresis apparatus |
US7023466B2 (en) | 2000-11-03 | 2006-04-04 | Actuality Systems, Inc. | Three-dimensional display systems |
US6795138B2 (en) | 2001-01-11 | 2004-09-21 | Sipix Imaging, Inc. | Transmissive or reflective liquid crystal display and novel process for its manufacture |
EP1227347A1 (en) | 2001-01-29 | 2002-07-31 | Rolic AG | Optical device and method for manufacturing same |
US6735224B2 (en) | 2001-03-01 | 2004-05-11 | Applied Optoelectronics, Inc. | Planar lightwave circuit for conditioning tunable laser output |
GB2374081B (en) | 2001-04-06 | 2004-06-09 | Central Research Lab Ltd | A method of forming a liquid crystal polymer layer |
KR100701442B1 (ko) | 2001-05-10 | 2007-03-30 | 엘지.필립스 엘시디 주식회사 | 잉크젯 방식 액정 도포방법 |
US6542671B1 (en) | 2001-12-12 | 2003-04-01 | Super Light Wave Corp. | Integrated 3-dimensional multi-layer thin-film optical couplers and attenuators |
US6998196B2 (en) | 2001-12-28 | 2006-02-14 | Wavefront Technology | Diffractive optical element and method of manufacture |
GB0201132D0 (en) | 2002-01-18 | 2002-03-06 | Epigem Ltd | Method of making patterned retarder |
JP3768901B2 (ja) | 2002-02-28 | 2006-04-19 | 松下電器産業株式会社 | 立体光導波路の製造方法 |
GB0215153D0 (en) | 2002-07-01 | 2002-08-07 | Univ Hull | Luminescent compositions |
US6900881B2 (en) | 2002-07-11 | 2005-05-31 | Molecular Imprints, Inc. | Step and repeat imprint lithography systems |
US7070405B2 (en) | 2002-08-01 | 2006-07-04 | Molecular Imprints, Inc. | Alignment systems for imprint lithography |
US6982818B2 (en) | 2002-10-10 | 2006-01-03 | Nuonics, Inc. | Electronically tunable optical filtering modules |
AU2003278314A1 (en) | 2002-10-17 | 2004-05-04 | Zbd Displays Ltd. | Liquid crystal alignment layer |
JP3551187B2 (ja) | 2002-11-28 | 2004-08-04 | セイコーエプソン株式会社 | 光学素子及び照明装置並びに投射型表示装置 |
TW556031B (en) | 2003-01-17 | 2003-10-01 | Chunghwa Picture Tubes Ltd | Non-rubbing liquid crystal alignment method |
JP2004247947A (ja) | 2003-02-13 | 2004-09-02 | Olympus Corp | 光学装置 |
US7341348B2 (en) | 2003-03-25 | 2008-03-11 | Bausch & Lomb Incorporated | Moiré aberrometer |
US7519096B2 (en) | 2003-06-06 | 2009-04-14 | The General Hospital Corporation | Process and apparatus for a wavelength tuning source |
US7400447B2 (en) | 2003-09-03 | 2008-07-15 | Canon Kabushiki Kaisha | Stereoscopic image display device |
US7058261B2 (en) | 2003-09-04 | 2006-06-06 | Sioptical, Inc. | Interfacing multiple wavelength sources to thin optical waveguides utilizing evanescent coupling |
EP1711854A4 (en) | 2003-10-17 | 2009-08-19 | Explay Ltd | OPTICAL SYSTEM AND METHOD FOR USE IN PROJECTION SYSTEMS |
US7122482B2 (en) | 2003-10-27 | 2006-10-17 | Molecular Imprints, Inc. | Methods for fabricating patterned features utilizing imprint lithography |
DE602004023641D1 (de) | 2003-11-27 | 2009-11-26 | Asahi Glass Co Ltd | Optisches element mit einem flüssigkristall mit optischer isotropie |
US7430355B2 (en) | 2003-12-08 | 2008-09-30 | University Of Cincinnati | Light emissive signage devices based on lightwave coupling |
US7385660B2 (en) | 2003-12-08 | 2008-06-10 | Sharp Kabushiki Kaisha | Liquid crystal display device for transflector having opening in a first electrode for forming a liquid crystal domain and openings at first and second corners of the domain on a second electrode |
US8076386B2 (en) | 2004-02-23 | 2011-12-13 | Molecular Imprints, Inc. | Materials for imprint lithography |
GB2411735A (en) | 2004-03-06 | 2005-09-07 | Sharp Kk | Control of liquid crystal alignment in an optical device |
US20050232530A1 (en) | 2004-04-01 | 2005-10-20 | Jason Kekas | Electronically controlled volume phase grating devices, systems and fabrication methods |
WO2005103771A1 (en) | 2004-04-23 | 2005-11-03 | Parriaux Olivier M | High efficiency optical diffraction device |
US7140861B2 (en) | 2004-04-27 | 2006-11-28 | Molecular Imprints, Inc. | Compliant hard template for UV imprinting |
JP2005316314A (ja) | 2004-04-30 | 2005-11-10 | Casio Comput Co Ltd | 撮像装置 |
JP4631308B2 (ja) | 2004-04-30 | 2011-02-16 | ソニー株式会社 | 画像表示装置 |
JP4792028B2 (ja) | 2004-06-03 | 2011-10-12 | モレキュラー・インプリンツ・インコーポレーテッド | ナノスケール製造技術における流体の分配およびドロップ・オン・デマンド分配技術 |
USD514570S1 (en) | 2004-06-24 | 2006-02-07 | Microsoft Corporation | Region of a fingerprint scanning device with an illuminated ring |
WO2006017771A1 (en) | 2004-08-06 | 2006-02-16 | University Of Washington | Variable fixation viewing distance scanned light displays |
JP4720424B2 (ja) | 2004-12-03 | 2011-07-13 | コニカミノルタホールディングス株式会社 | 光学デバイスの製造方法 |
US7206107B2 (en) | 2004-12-13 | 2007-04-17 | Nokia Corporation | Method and system for beam expansion in a display device |
JP4995732B2 (ja) | 2004-12-13 | 2012-08-08 | ノキア コーポレイション | 表示装置において近焦点で光線拡張するシステム及び方法 |
US7585424B2 (en) | 2005-01-18 | 2009-09-08 | Hewlett-Packard Development Company, L.P. | Pattern reversal process for self aligned imprint lithography and device |
CN101846811A (zh) | 2005-03-01 | 2010-09-29 | 荷兰聚合物研究所 | 介晶膜中的偏振光栅 |
US8537310B2 (en) | 2005-03-01 | 2013-09-17 | North Carolina State University | Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices |
US7573640B2 (en) | 2005-04-04 | 2009-08-11 | Mirage Innovations Ltd. | Multi-plane optical apparatus |
WO2006132614A1 (en) * | 2005-06-03 | 2006-12-14 | Nokia Corporation | General diffractive optics method for expanding and exit pupil |
US20080043334A1 (en) | 2006-08-18 | 2008-02-21 | Mirage Innovations Ltd. | Diffractive optical relay and method for manufacturing the same |
WO2007036936A1 (en) * | 2005-09-28 | 2007-04-05 | Mirage Innovations Ltd. | Stereoscopic binocular system, device and method |
JP4810949B2 (ja) | 2005-09-29 | 2011-11-09 | ソニー株式会社 | 光学装置及び画像表示装置 |
US11428937B2 (en) | 2005-10-07 | 2022-08-30 | Percept Technologies | Enhanced optical and perceptual digital eyewear |
US8696113B2 (en) | 2005-10-07 | 2014-04-15 | Percept Technologies Inc. | Enhanced optical and perceptual digital eyewear |
US20070081123A1 (en) | 2005-10-07 | 2007-04-12 | Lewis Scott W | Digital eyewear |
JP2007265581A (ja) | 2006-03-30 | 2007-10-11 | Fujinon Sano Kk | 回折素子 |
ITTO20060303A1 (it) | 2006-04-26 | 2007-10-27 | Consiglio Nazionale Ricerche | Lettera di incarico segue |
WO2007141587A1 (en) | 2006-06-02 | 2007-12-13 | Nokia Corporation | Color distribution in exit pupil expanders |
US8466953B2 (en) | 2006-06-02 | 2013-06-18 | Nokia Corporation | Stereoscopic exit pupil expander display |
US20080043166A1 (en) | 2006-07-28 | 2008-02-21 | Hewlett-Packard Development Company Lp | Multi-level layer |
WO2008023375A1 (en) * | 2006-08-23 | 2008-02-28 | Mirage Innovations Ltd. | Diffractive optical relay device with improved color uniformity |
WO2008071830A1 (en) | 2006-12-14 | 2008-06-19 | Nokia Corporation | Display device having two operating modes |
WO2008081071A1 (en) | 2006-12-28 | 2008-07-10 | Nokia Corporation | Light guide plate and a method of manufacturing thereof |
CN101222009A (zh) | 2007-01-12 | 2008-07-16 | 清华大学 | 发光二极管 |
US7394841B1 (en) | 2007-01-18 | 2008-07-01 | Epicrystals Oy | Light emitting device for visual applications |
JP5306323B2 (ja) | 2007-04-16 | 2013-10-02 | ノース・キャロライナ・ステイト・ユニヴァーシティ | 多層アクロマティク液晶偏光回折格子および関連する作製方法 |
CN103472521B (zh) | 2007-04-16 | 2017-03-01 | 北卡罗莱纳州立大学 | 低扭曲手性液晶偏振光栅和相关制造方法 |
CN101688977B (zh) | 2007-06-04 | 2011-12-07 | 诺基亚公司 | 衍射扩束器和基于衍射扩束器的虚拟显示器 |
US8314819B2 (en) | 2007-06-14 | 2012-11-20 | Nokia Corporation | Displays with integrated backlighting |
US20140300695A1 (en) | 2007-08-11 | 2014-10-09 | Massachusetts Institute Of Technology | Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display |
US7990543B1 (en) | 2007-08-31 | 2011-08-02 | California Institute Of Technology | Surface characterization based on optical phase shifting interferometry |
WO2009050504A1 (en) | 2007-10-18 | 2009-04-23 | Bae Systems Plc | Improvements in or relating to head mounted display systems |
JP4395802B2 (ja) | 2007-11-29 | 2010-01-13 | ソニー株式会社 | 画像表示装置 |
WO2009077802A1 (en) | 2007-12-18 | 2009-06-25 | Nokia Corporation | Exit pupil expanders with wide field-of-view |
JP5151518B2 (ja) | 2008-02-07 | 2013-02-27 | ソニー株式会社 | 光学装置及び画像表示装置 |
EP2242419B1 (en) | 2008-02-14 | 2016-01-13 | Nokia Technologies Oy | Device and method for determining gaze direction |
US8757812B2 (en) | 2008-05-19 | 2014-06-24 | University of Washington UW TechTransfer—Invention Licensing | Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber |
JP5651595B2 (ja) | 2008-10-09 | 2015-01-14 | ノース・キャロライナ・ステイト・ユニヴァーシティ | 複数の偏光回折格子配置を有する偏光無依存型液晶ディスプレイ装置及び関連装置 |
US8965152B2 (en) | 2008-12-12 | 2015-02-24 | Bae Systems Plc | Waveguides |
EP2419780B1 (en) | 2009-04-14 | 2017-09-20 | BAE Systems PLC | Optical waveguide and display device |
US8842368B2 (en) * | 2009-04-29 | 2014-09-23 | Bae Systems Plc | Head mounted display |
JP2010271565A (ja) | 2009-05-22 | 2010-12-02 | Seiko Epson Corp | 頭部装着型表示装置 |
US8178011B2 (en) | 2009-07-29 | 2012-05-15 | Empire Technology Development Llc | Self-assembled nano-lithographic imprint masks |
JP2011071500A (ja) | 2009-08-31 | 2011-04-07 | Fujifilm Corp | パターン転写装置及びパターン形成方法 |
US8233204B1 (en) | 2009-09-30 | 2012-07-31 | Rockwell Collins, Inc. | Optical displays |
US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
JP5059079B2 (ja) | 2009-10-21 | 2012-10-24 | キヤノン株式会社 | 積層型回折光学素子および光学系 |
US20110213664A1 (en) | 2010-02-28 | 2011-09-01 | Osterhout Group, Inc. | Local advertising content on an interactive head-mounted eyepiece |
US20120206485A1 (en) | 2010-02-28 | 2012-08-16 | Osterhout Group, Inc. | Ar glasses with event and sensor triggered user movement control of ar eyepiece facilities |
US20120249797A1 (en) | 2010-02-28 | 2012-10-04 | Osterhout Group, Inc. | Head-worn adaptive display |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
JP5631776B2 (ja) | 2010-03-03 | 2014-11-26 | 株式会社東芝 | 照明装置およびこれを備えた液晶表示装置 |
WO2011107831A1 (en) | 2010-03-04 | 2011-09-09 | Nokia Corporation | Optical apparatus and method for expanding an exit pupil |
NL2006747A (en) | 2010-07-26 | 2012-01-30 | Asml Netherlands Bv | Imprint lithography alignment method and apparatus. |
JP5953311B2 (ja) | 2010-11-08 | 2016-07-20 | シーリアル テクノロジーズ ソシエテ アノニムSeereal Technologies S.A. | 表示装置 |
US9304319B2 (en) | 2010-11-18 | 2016-04-05 | Microsoft Technology Licensing, Llc | Automatic focus improvement for augmented reality displays |
US10156722B2 (en) | 2010-12-24 | 2018-12-18 | Magic Leap, Inc. | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
CA2822978C (en) | 2010-12-24 | 2019-02-19 | Hong Hua | An ergonomic head mounted display device and optical system |
TWI552848B (zh) | 2011-01-14 | 2016-10-11 | Jx Nippon Oil & Energy Corp | Method for manufacturing a mold for fine pattern transfer and a method for manufacturing a diffraction grating using the same, and a method of manufacturing an organic electroluminescent device having the diffraction grating |
US20130321747A1 (en) | 2011-02-15 | 2013-12-05 | Sharp Kabushiki Kaisha | Liquid crystal display device |
US9046729B2 (en) | 2011-03-24 | 2015-06-02 | The Hong Kong University Of Science And Technology | Cholesteric liquid crystal structure |
WO2012143701A1 (en) | 2011-04-18 | 2012-10-26 | Bae Systems Plc | A projection display |
JP6316186B2 (ja) | 2011-05-06 | 2018-04-25 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 広範囲同時遠隔ディジタル提示世界 |
JP5713961B2 (ja) | 2011-06-21 | 2015-05-07 | キヤノン株式会社 | 位置検出装置、インプリント装置及び位置検出方法 |
US8548290B2 (en) | 2011-08-23 | 2013-10-01 | Vuzix Corporation | Dynamic apertured waveguide for near-eye display |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
US10795448B2 (en) | 2011-09-29 | 2020-10-06 | Magic Leap, Inc. | Tactile glove for human-computer interaction |
US9715067B1 (en) | 2011-09-30 | 2017-07-25 | Rockwell Collins, Inc. | Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials |
GB201117480D0 (en) | 2011-10-10 | 2011-11-23 | Palikaras George | Filter |
US8885161B2 (en) | 2011-10-12 | 2014-11-11 | Spectroclick, Inc. | Energy dispersion device |
RU2017115669A (ru) | 2011-10-28 | 2019-01-28 | Мэджик Лип, Инк. | Система и способ для дополненной и виртуальной реальности |
US9170436B2 (en) | 2011-10-31 | 2015-10-27 | Hewlett-Packard Development Company, L.P. | Luminescent stacked waveguide display |
KR102116697B1 (ko) | 2011-11-23 | 2020-05-29 | 매직 립, 인코포레이티드 | 3차원 가상 및 증강 현실 디스플레이 시스템 |
US9575366B2 (en) | 2011-12-29 | 2017-02-21 | The Hong Kong University Of Science And Technology | Fast switchable and high diffraction efficiency grating ferroelectric liquid crystal cell |
JP5957972B2 (ja) | 2012-03-07 | 2016-07-27 | セイコーエプソン株式会社 | 虚像表示装置 |
US8848289B2 (en) | 2012-03-15 | 2014-09-30 | Google Inc. | Near-to-eye display with diffractive lens |
GB2500631B (en) | 2012-03-27 | 2017-12-27 | Bae Systems Plc | Improvements in or relating to optical waveguides |
WO2013144898A2 (en) | 2012-03-29 | 2013-10-03 | Ecole Polytechnique Federale De Lausanne (Epfl) | Methods and apparatus for imaging with multimode optical fibers |
KR102028732B1 (ko) | 2012-04-05 | 2019-10-04 | 매직 립, 인코포레이티드 | 능동 포비에이션 능력을 갖는 와이드-fov(field of view) 이미지 디바이스들 |
CN103562802B (zh) | 2012-04-25 | 2016-08-17 | 罗克韦尔柯林斯公司 | 全息广角显示器 |
CN102683803B (zh) | 2012-04-28 | 2015-04-22 | 深圳光启高等理工研究院 | 一种基于超材料卫星天线的商业液晶显示屏 |
WO2013167864A1 (en) | 2012-05-11 | 2013-11-14 | Milan Momcilo Popovich | Apparatus for eye tracking |
US20130314765A1 (en) | 2012-05-25 | 2013-11-28 | The Trustees Of Boston College | Metamaterial Devices with Environmentally Responsive Materials |
US8989535B2 (en) | 2012-06-04 | 2015-03-24 | Microsoft Technology Licensing, Llc | Multiple waveguide imaging structure |
US9310559B2 (en) | 2012-06-11 | 2016-04-12 | Magic Leap, Inc. | Multiple depth plane three-dimensional display using a wave guide reflector array projector |
WO2014016403A1 (de) | 2012-07-27 | 2014-01-30 | Seereal Technologies S.A. | Polarisationsgitter für schräge einfallswinkel |
US8911080B2 (en) | 2012-08-27 | 2014-12-16 | Johnson & Johnson Vision Care, Inc. | Usage compliance indicator for contact lenses |
US8885997B2 (en) | 2012-08-31 | 2014-11-11 | Microsoft Corporation | NED polarization system for wavelength pass-through |
US9810948B2 (en) | 2012-09-05 | 2017-11-07 | Sharp Kabushiki Kaisha | Spatial light modulator comprising a liquid crystal device having reduced stray light |
WO2014043142A1 (en) | 2012-09-11 | 2014-03-20 | Augmented Vision, Inc. | Compact eye imaging and eye tracking apparatus |
AU2013315607A1 (en) | 2012-09-11 | 2015-04-02 | Magic Leap, Inc | Ergonomic head mounted display device and optical system |
US10108266B2 (en) * | 2012-09-27 | 2018-10-23 | The Board Of Trustees Of The University Of Illinois | Haptic augmented and virtual reality system for simulation of surgical procedures |
US10073201B2 (en) | 2012-10-26 | 2018-09-11 | Qualcomm Incorporated | See through near-eye display |
US9933684B2 (en) | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
WO2014120325A2 (en) | 2012-11-19 | 2014-08-07 | The Arizona Board Of Regents On Behalf Of The Universiy Of Arizona | Optical elements comprising cholesteric liquid crystal polymers |
EP2767852A1 (en) | 2013-02-15 | 2014-08-20 | BAE Systems PLC | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
EP2929378A1 (en) | 2012-12-10 | 2015-10-14 | BAE Systems PLC | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
IL293789B2 (en) | 2013-01-15 | 2023-08-01 | Magic Leap Inc | A system for scanning electromagnetic imaging radiation |
US8873149B2 (en) | 2013-01-28 | 2014-10-28 | David D. Bohn | Projection optical system for coupling image light to a near-eye display |
KR102067759B1 (ko) | 2013-02-15 | 2020-01-17 | 삼성전자주식회사 | 파이버 스캐닝 프로젝터 |
CN105188516B (zh) | 2013-03-11 | 2017-12-22 | 奇跃公司 | 用于增强和虚拟现实的系统与方法 |
KR102458124B1 (ko) | 2013-03-15 | 2022-10-21 | 매직 립, 인코포레이티드 | 디스플레이 시스템 및 방법 |
EP2979128B1 (en) | 2013-03-25 | 2017-10-25 | Intel Corporation | Method for displaying an image projected from a head-worn display with multiple exit pupils |
CN104321682B (zh) | 2013-03-28 | 2017-09-22 | 松下知识产权经营株式会社 | 图像显示装置 |
WO2014172252A1 (en) | 2013-04-15 | 2014-10-23 | Kent State University | Patterned liquid crystal alignment using ink-jet printed nanoparticles and use thereof to produce patterned, electro-optically addressable devices; ink-jet printable compositions |
JP2014224846A (ja) | 2013-05-15 | 2014-12-04 | セイコーエプソン株式会社 | 表示装置 |
DE102013105246B4 (de) | 2013-05-22 | 2017-03-23 | Leonhard Kurz Stiftung & Co. Kg | Optisch variables Element |
US9874749B2 (en) | 2013-11-27 | 2018-01-23 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
US10262462B2 (en) | 2014-04-18 | 2019-04-16 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
US9664905B2 (en) | 2013-06-28 | 2017-05-30 | Microsoft Technology Licensing, Llc | Display efficiency optimization by color filtering |
US9952042B2 (en) | 2013-07-12 | 2018-04-24 | Magic Leap, Inc. | Method and system for identifying a user location |
KR102089661B1 (ko) | 2013-08-27 | 2020-03-17 | 삼성전자주식회사 | 와이어 그리드 편광판 및 이를 구비하는 액정 표시패널 및 액정 표시장치 |
JP6187045B2 (ja) | 2013-08-30 | 2017-08-30 | セイコーエプソン株式会社 | 光学デバイス及び画像表示装置 |
IL302408B2 (en) | 2013-10-16 | 2024-09-01 | Magic Leap Inc | An augmented or virtual reality head device with intrapupillary distance adjustment |
US9164290B2 (en) | 2013-11-06 | 2015-10-20 | Microsoft Corporation | Grating configurations for a tiled waveguide display |
CN110542938B (zh) * | 2013-11-27 | 2023-04-18 | 奇跃公司 | 虚拟和增强现实系统与方法 |
KR102067229B1 (ko) | 2013-11-27 | 2020-02-12 | 엘지디스플레이 주식회사 | 액정표시장치 및 그 제조방법 |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
WO2015091277A1 (en) | 2013-12-19 | 2015-06-25 | Bae Systems Plc | Improvements in and relating to waveguides |
US9836122B2 (en) | 2014-01-21 | 2017-12-05 | Osterhout Group, Inc. | Eye glint imaging in see-through computer display systems |
NZ722903A (en) | 2014-01-31 | 2020-05-29 | Magic Leap Inc | Multi-focal display system and method |
CN106461955B (zh) | 2014-01-31 | 2019-08-13 | 奇跃公司 | 显示增强现实的方法 |
US10203762B2 (en) | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
US9395544B2 (en) | 2014-03-13 | 2016-07-19 | Google Inc. | Eyepiece with switchable reflector for head wearable display |
WO2016018488A2 (en) | 2014-05-09 | 2016-02-04 | Eyefluence, Inc. | Systems and methods for discerning eye signals and continuous biometric identification |
USD759657S1 (en) | 2014-05-19 | 2016-06-21 | Microsoft Corporation | Connector with illumination region |
USD752529S1 (en) | 2014-06-09 | 2016-03-29 | Comcast Cable Communications, Llc | Electronic housing with illuminated region |
WO2016019123A1 (en) | 2014-07-31 | 2016-02-04 | North Carolina State University | Bragg liquid crystal polarization gratings |
GB2529003B (en) * | 2014-08-03 | 2020-08-26 | Wave Optics Ltd | Optical device |
US10746994B2 (en) | 2014-08-07 | 2020-08-18 | Microsoft Technology Licensing, Llc | Spherical mirror having a decoupled aspheric |
KR102213662B1 (ko) | 2014-08-22 | 2021-02-08 | 삼성전자주식회사 | 음향광학 소자 어레이 |
US20160077338A1 (en) | 2014-09-16 | 2016-03-17 | Steven John Robbins | Compact Projection Light Engine For A Diffractive Waveguide Display |
US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
US9494799B2 (en) | 2014-09-24 | 2016-11-15 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing switchable diffraction gratings |
KR102295496B1 (ko) | 2014-09-29 | 2021-09-01 | 매직 립, 인코포레이티드 | 상이한 파장의 광을 도파관 밖으로 출력하기 위한 아키텍쳐 및 방법 |
US20160097930A1 (en) | 2014-10-06 | 2016-04-07 | Steven John Robbins | Microdisplay optical system having two microlens arrays |
US9912408B2 (en) | 2014-10-28 | 2018-03-06 | Luxtera, Inc. | Method and system for silicon photonics wavelength division multiplexing transceivers |
EP3224673B1 (en) | 2014-11-24 | 2021-04-28 | LensVector Inc. | Liquid crystal beam control device with improved zone transition and method of manufacture thereof |
WO2016113533A2 (en) | 2015-01-12 | 2016-07-21 | Milan Momcilo Popovich | Holographic waveguide light field displays |
JP6564463B2 (ja) * | 2015-01-19 | 2019-08-21 | レイア、インコーポレイテッドLeia Inc. | 反射性アイランドを利用した一方向格子ベースの背面照明 |
US20160231567A1 (en) | 2015-02-09 | 2016-08-11 | Pasi Saarikko | Display System |
US10018844B2 (en) | 2015-02-09 | 2018-07-10 | Microsoft Technology Licensing, Llc | Wearable image display system |
US20160234485A1 (en) | 2015-02-09 | 2016-08-11 | Steven John Robbins | Display System |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
EP3062142B1 (en) | 2015-02-26 | 2018-10-03 | Nokia Technologies OY | Apparatus for a near-eye display |
GB2539166A (en) | 2015-03-10 | 2016-12-14 | Colour Holographic Ltd | Holographically-projected virtual retinal display |
NZ773826A (en) | 2015-03-16 | 2022-07-29 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
US10591869B2 (en) | 2015-03-24 | 2020-03-17 | Light Field Lab, Inc. | Tileable, coplanar, flat-panel 3-D display with tactile and audio interfaces |
CA2981652C (en) | 2015-04-02 | 2023-08-22 | University Of Rochester | Freeform nanostructured surface for virtual and augmented reality near eye display |
JP6714612B2 (ja) | 2015-04-08 | 2020-06-24 | ディスぺリックス オイ | 光学透視ディスプレイ素子及びかかる素子を利用する装置 |
USD758367S1 (en) | 2015-05-14 | 2016-06-07 | Magic Leap, Inc. | Virtual reality headset |
KR20230025933A (ko) | 2015-06-15 | 2023-02-23 | 매직 립, 인코포레이티드 | 멀티플렉싱된 광 스트림들을 인-커플링하기 위한 광학 엘리먼트들을 가진 디스플레이 시스템 |
US10670862B2 (en) * | 2015-07-02 | 2020-06-02 | Microsoft Technology Licensing, Llc | Diffractive optical elements with asymmetric profiles |
KR102390375B1 (ko) | 2015-08-26 | 2022-04-25 | 삼성전자주식회사 | 백라이트 유닛 및 이를 포함한 입체 영상 표시 장치 |
CN118584664A (zh) | 2015-09-23 | 2024-09-03 | 奇跃公司 | 采用离轴成像器的眼睛成像 |
US10260864B2 (en) | 2015-11-04 | 2019-04-16 | Magic Leap, Inc. | Dynamic display calibration based on eye-tracking |
KR102404944B1 (ko) | 2015-11-06 | 2022-06-08 | 삼성디스플레이 주식회사 | 표시 기판 및 이를 포함하는 액정 표시 장치 |
US9671615B1 (en) * | 2015-12-01 | 2017-06-06 | Microsoft Technology Licensing, Llc | Extended field of view in near-eye display using wide-spectrum imager |
DE102015122055B4 (de) | 2015-12-17 | 2018-08-30 | Carl Zeiss Ag | Optisches System sowie Verfahren zum Übertragen eines Quellbildes |
CA3008032A1 (en) * | 2016-01-12 | 2017-07-20 | Magic Leap, Inc. | Beam angle sensor in virtual/augmented reality system |
USD805734S1 (en) | 2016-03-04 | 2017-12-26 | Nike, Inc. | Shirt |
USD794288S1 (en) | 2016-03-11 | 2017-08-15 | Nike, Inc. | Shoe with illuminable sole light sequence |
AU2017238847A1 (en) * | 2016-03-25 | 2018-10-04 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
US10067347B2 (en) | 2016-04-13 | 2018-09-04 | Microsoft Technology Licensing, Llc | Waveguides with improved intensity distributions |
US10197804B2 (en) | 2016-04-25 | 2019-02-05 | Microsoft Technology Licensing, Llc | Refractive coating for diffractive optical elements |
US9904058B2 (en) | 2016-05-12 | 2018-02-27 | Magic Leap, Inc. | Distributed light manipulation over imaging waveguide |
US20170373459A1 (en) | 2016-06-27 | 2017-12-28 | University Of Central Florida Research Foundation, Inc. | Volume polarization grating, methods of making, and applications |
JP2018004950A (ja) | 2016-07-01 | 2018-01-11 | フォーブ インコーポレーテッド | 映像表示システム、映像表示方法、映像表示プログラム |
CN106101691A (zh) | 2016-07-31 | 2016-11-09 | 吴考寅 | 一种图像深度显示技术 |
JP6813666B2 (ja) * | 2016-08-22 | 2021-01-13 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 多層回折接眼レンズ |
EP4250007A3 (en) * | 2016-08-26 | 2023-11-01 | Molecular Imprints, Inc. | Edge sealant confinement and halo reduction for optical devices |
US10534179B1 (en) * | 2016-10-18 | 2020-01-14 | Meta View, Inc. | Image projection systems and methods |
US10551622B2 (en) | 2016-10-26 | 2020-02-04 | Microsoft Technology Licensing, Llc | Field of view tiling in waveguide-based near-eye displays |
CN110199220B (zh) | 2016-11-18 | 2022-11-01 | 奇跃公司 | 使用交叉光栅的波导光复用器 |
US11067860B2 (en) | 2016-11-18 | 2021-07-20 | Magic Leap, Inc. | Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same |
JP7019695B2 (ja) | 2016-11-18 | 2022-02-15 | マジック リープ, インコーポレイテッド | 広入射角範囲の光を再指向するための多層液晶回折格子 |
AU2017361424B2 (en) | 2016-11-18 | 2022-10-27 | Magic Leap, Inc. | Spatially variable liquid crystal diffraction gratings |
IL304304B2 (en) | 2016-12-08 | 2024-08-01 | Magic Leap Inc | Light beam breaking devices based on cholesteric liquid crystal |
EP3555865B1 (en) | 2016-12-13 | 2024-09-18 | Magic Leap, Inc. | 3d object rendering using detected features |
CN110291453B (zh) | 2016-12-14 | 2022-11-01 | 奇跃公司 | 使用具有表面对准图案的软压印复制对液晶图案化 |
US10746999B2 (en) | 2016-12-28 | 2020-08-18 | Magic Leap, Inc. | Dual depth exit pupil expander |
CN106842397B (zh) * | 2017-01-05 | 2020-07-17 | 苏州苏大维格光电科技股份有限公司 | 一种树脂全息波导镜片及其制备方法、及三维显示装置 |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
CN106773057A (zh) * | 2017-01-13 | 2017-05-31 | 苏州苏大维格光电科技股份有限公司 | 一种单片全息衍射波导三维显示装置 |
IL268135B2 (en) | 2017-01-23 | 2024-03-01 | Magic Leap Inc | Eyepiece for virtual, augmented or mixed reality systems |
WO2018140502A1 (en) | 2017-01-27 | 2018-08-02 | Magic Leap, Inc. | Antireflection coatings for metasurfaces |
US11243450B2 (en) | 2017-01-30 | 2022-02-08 | The Charles Stark Draper Laboratory, Inc. | Saw modulator having optical power component for extended angular redirection of light |
WO2018152337A1 (en) | 2017-02-15 | 2018-08-23 | Magic Leap, Inc. | Projector architecture incorporating artifact mitigation |
IL307602A (en) | 2017-02-23 | 2023-12-01 | Magic Leap Inc | Variable focus virtual imagers based on polarization conversion |
IL269085B2 (en) | 2017-03-21 | 2023-12-01 | Magic Leap Inc | Stacked waveguides with different refractive gratings for an integrated field of view |
IL303471B2 (en) | 2017-03-21 | 2024-08-01 | Magic Leap Inc | An eye imaging device that uses optical refractive elements |
WO2019060741A1 (en) | 2017-09-21 | 2019-03-28 | Magic Leap, Inc. | INCREASED REALITY DISPLAY HAVING A WAVEGUIDE CONFIGURED TO CAPTURE IMAGES OF THE EYE AND / OR THE ENVIRONMENT |
WO2019118930A1 (en) | 2017-12-15 | 2019-06-20 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
AU2019214951A1 (en) * | 2018-01-31 | 2020-06-25 | Magic Leap, Inc. | Method and system for large field of view display with scanning mirror having optical power |
JP7444861B2 (ja) | 2018-09-26 | 2024-03-06 | マジック リープ, インコーポレイテッド | 屈折力を有する回折光学要素 |
US11237393B2 (en) | 2018-11-20 | 2022-02-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
EP3987343A4 (en) | 2019-06-20 | 2023-07-19 | Magic Leap, Inc. | EYEWEARS FOR AUGMENTED REALITY DISPLAY SYSTEM |
-
2018
- 2018-12-14 WO PCT/US2018/065856 patent/WO2019118930A1/en active Application Filing
- 2018-12-14 US US16/221,359 patent/US10852547B2/en active Active
- 2018-12-14 KR KR1020247033394A patent/KR20240149455A/ko unknown
- 2018-12-14 AU AU2018386296A patent/AU2018386296B2/en active Active
- 2018-12-14 IL IL303076A patent/IL303076A/en unknown
- 2018-12-14 CA CA3084011A patent/CA3084011C/en active Active
- 2018-12-14 CN CN201880088408.5A patent/CN111683584A/zh active Pending
- 2018-12-14 KR KR1020207019234A patent/KR102716968B1/ko active IP Right Grant
- 2018-12-14 JP JP2020531091A patent/JP7407111B2/ja active Active
- 2018-12-14 EP EP23205769.5A patent/EP4293414A3/en active Pending
- 2018-12-14 IL IL274977A patent/IL274977B2/en unknown
- 2018-12-14 CA CA3236968A patent/CA3236968A1/en active Pending
- 2018-12-14 EP EP18888973.7A patent/EP3723580B1/en active Active
-
2020
- 2020-10-23 US US17/079,143 patent/US11347063B2/en active Active
-
2021
- 2021-12-14 JP JP2021202306A patent/JP7372305B2/ja active Active
-
2022
- 2022-05-26 US US17/825,932 patent/US11977233B2/en active Active
-
2023
- 2023-09-19 JP JP2023151104A patent/JP2023165792A/ja active Pending
-
2024
- 2024-02-05 AU AU2024200691A patent/AU2024200691B2/en active Active
- 2024-03-27 US US18/618,091 patent/US20240231111A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060132914A1 (en) | 2003-06-10 | 2006-06-22 | Victor Weiss | Method and system for displaying an informative image against a background image |
JP2014063173A (ja) | 2004-03-29 | 2014-04-10 | Sony Corp | 画像表示装置 |
US20100284085A1 (en) | 2006-09-28 | 2010-11-11 | Nokia Corporation | Beam expansion with three-dimensional diffractive elements |
US20100321781A1 (en) | 2006-12-28 | 2010-12-23 | Nokia Corporation | Device for expanding an exit pupil in two dimensions |
US20150016777A1 (en) | 2012-06-11 | 2015-01-15 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
WO2015091669A1 (en) | 2013-12-19 | 2015-06-25 | Bae Systems Plc | Improvements in and relating to waveguides |
JP2017524962A (ja) | 2014-05-30 | 2017-08-31 | マジック リープ, インコーポレイテッド | 仮想または拡張現実装置を用いて仮想コンテンツ表示を生成する方法およびシステム |
US20170299864A1 (en) | 2016-04-13 | 2017-10-19 | Microsoft Technology Licensing, Llc | Waveguides with extended field of view |
US20170315346A1 (en) | 2016-04-29 | 2017-11-02 | Jani Kari Tapio Tervo | Robust Architecture for Large Field of View Components |
US20170357089A1 (en) | 2016-06-09 | 2017-12-14 | Microsoft Technology Licensing, Llc | Wrapped Waveguide With Large Field Of View |
CN107092093A (zh) | 2017-06-16 | 2017-08-25 | 北京灵犀微光科技有限公司 | 波导显示装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3723580B1 (en) | 2024-01-24 |
US11347063B2 (en) | 2022-05-31 |
KR102716968B1 (ko) | 2024-10-11 |
US20220357581A1 (en) | 2022-11-10 |
CA3084011A1 (en) | 2019-06-20 |
KR20240149455A (ko) | 2024-10-14 |
CA3084011C (en) | 2024-06-11 |
IL274977A (en) | 2020-07-30 |
EP3723580A1 (en) | 2020-10-21 |
AU2018386296A1 (en) | 2020-06-18 |
AU2024200691A1 (en) | 2024-02-22 |
US20210041704A1 (en) | 2021-02-11 |
IL303076A (en) | 2023-07-01 |
CA3236968A1 (en) | 2019-06-20 |
US20190187474A1 (en) | 2019-06-20 |
JP7372305B2 (ja) | 2023-10-31 |
CN111683584A (zh) | 2020-09-18 |
US10852547B2 (en) | 2020-12-01 |
AU2024200691B2 (en) | 2024-05-02 |
AU2018386296B2 (en) | 2023-11-23 |
JP2021508070A (ja) | 2021-02-25 |
JP2022027885A (ja) | 2022-02-14 |
US20240231111A1 (en) | 2024-07-11 |
EP4293414A3 (en) | 2024-03-13 |
EP3723580A4 (en) | 2021-09-08 |
KR20200097290A (ko) | 2020-08-18 |
EP4293414A2 (en) | 2023-12-20 |
US11977233B2 (en) | 2024-05-07 |
JP2023165792A (ja) | 2023-11-17 |
IL274977B1 (en) | 2023-06-01 |
WO2019118930A1 (en) | 2019-06-20 |
IL274977B2 (en) | 2023-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7372305B2 (ja) | 拡張現実ディスプレイシステムのための接眼レンズ | |
JP7373594B2 (ja) | 拡張現実ディスプレイシステムのための接眼レンズ | |
US20220137417A1 (en) | Eyepieces for augmented reality display system | |
JP7571242B2 (ja) | 拡張現実ディスプレイシステムのための接眼レンズ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211214 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230512 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7407111 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |