JP7284296B2 - ポリカーボネート樹脂、ポリカーボネート樹脂組成物、それらを含む光学用成形体、及び環状カーボネート - Google Patents
ポリカーボネート樹脂、ポリカーボネート樹脂組成物、それらを含む光学用成形体、及び環状カーボネート Download PDFInfo
- Publication number
- JP7284296B2 JP7284296B2 JP2021571270A JP2021571270A JP7284296B2 JP 7284296 B2 JP7284296 B2 JP 7284296B2 JP 2021571270 A JP2021571270 A JP 2021571270A JP 2021571270 A JP2021571270 A JP 2021571270A JP 7284296 B2 JP7284296 B2 JP 7284296B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- polycarbonate resin
- carbon atoms
- carbonate
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G67/00—Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
- C08G67/02—Copolymers of carbon monoxide and aliphatic unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
- C08G64/305—General preparatory processes using carbonates and alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
[1]
下記式(1)で表される構造単位:
ポリメチルメタクリレートを標準試料として用いるサイズ排除クロマトグラフィーにより測定される重量平均分子量Mwが、50,000以上500,000以下である、ポリカーボネート樹脂。
[2]
示査走査熱量計により測定されるガラス転移温度Tgが、80℃以上180℃以下である、[1]に記載のポリカーボネート樹脂。
[3]
前記式(1)で表される構造単位を主鎖に有する、[1]又は[2]に記載のポリカーボネート樹脂。
[4]
13C-NMRにより測定される、モノマー周期構造がメソでありイソタクチックな部分を示すmm、周期構造がラセモ結合でありシンジオタクチックな部分を示すrr、メソ部分とラセモ部分が結合している部分を示すmrとしたとき、mr/(mm+mr+rr)の割合が40%以上である、[1]~[3]のいずれかに記載のポリカーボネート樹脂。
[5]
末端にアルコキシ基を有する、[1]~[4]のいずれかに記載のポリカーボネート樹脂。
[6]
前記アルコキシ基における炭素数が1~10である、[5]に記載のポリカーボネート樹脂。
[7]
サイズ排除クロマトグラフィーによって測定されるポリスチレン換算分子量が1,000以上のポリマー成分について、重量平均分子量(Mw)が100,000以上500,000以下、かつ、数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が2.5以下である、[1]~[6]のいずれかに記載のポリカーボネート樹脂。
[8]
アルコール不溶分を熱重量測定により窒素雰囲気下で加熱したときの150~260℃における重量減少率が30質量%以下である、[7]に記載のポリカーボネート樹脂。
[9]
光弾性係数の絶対値が、10×10-12Pa-1以下である、[1]~[8]のいずれかに記載のポリカーボネート樹脂。
[10]
前記ポリカーボネート樹脂の100%一軸延伸フィルムにおいて、面内位相差の絶対値が、厚さ100μm換算で100nm以下である、[1]~[9]のいずれかに記載のポリカーボネート樹脂。
[11]
前記式(1)で表される構造単位であって、式(1)中、R1、R2、R3及びR4が水素原子である構成単位を有する、[1]~[10]のいずれかに記載のポリカーボネート樹脂。
[12]
下記式(1')で表される構造単位:
[13]
[1]~[12]のいずれかに記載のポリカーボネート樹脂と、酸化防止剤と、
を含有する、ポリカーボネート樹脂組成物。
[14]
[1]~[12]のいずれかに記載のポリカーボネート樹脂、又は[13]に記載のポリカーボネート樹脂組成物を含有する、光学部品。
[15]
[1]~[12]のいずれかに記載のポリカーボネート樹脂、又は[13]に記載のポリカーボネート樹脂組成物の、光学部品用材料としての使用。
[16]
[1]~[12]のいずれかに記載のポリカーボネート樹脂の製造方法であって、
下記式(3)で表される環状カーボネート:
製造方法。
[17]
前記重合工程において、有機リチウム、金属アルコキシド、又は、HO基、HS基若しくはHN基を有する有機化合物と環状アミンとの組合せを重合開始剤として用いる、[16]に記載のポリカーボネート樹脂の製造方法。
[18]
前記重合工程における反応温度(重合温度)が-5℃超40℃以下である、[16]又は[17]に記載のポリカーボネート樹脂の製造方法。
[19]
前記重合工程における重合性モノマーの初期濃度(初期モノマー濃度)が10質量%以上である、[18]に記載のポリカーボネート樹脂の製造方法。
[20]
モノマーに対して添加する重合開始剤の割合が、0.0001mol%以上1mol%以下である、[19]に記載のポリカーボネート樹脂の製造方法。
[21]
分子中に少なくとも2つのカーボネート基を含み、イノシトール骨格を有し、下記式(11)で表される、環状カーボネート。
[22]
分子中に少なくとも1つのtransカーボネート基を有する、[21]に記載の環状カーボネート。
[23]
分子中に2つのカーボネート基を有し、少なくとも1つのカーボネート基がtransカーボネート基であり、下記式(12)で表される、[21]又は[22]に記載の環状カーボネート。
[24]
分子中にcisカーボネート基及びtransカーボネート基の2つのカーボネート基を有し、下記式(13)で表される、[21]~[23]のいずれかに記載の環状カーボネート。
[25]
イノシトール骨格を有する化合物に少なくとも2つのカーボネート基を導入して、下記式(11)で表される環状カーボネートを得る工程を含む、[21]~[24]のいずれかに記載の環状カーボネートの製造方法。
上述の背景技術に記載した通り、ポリ(シクロヘキセンカーボネート)を開示するこれまでの文献は、重合条件と分子量の相関の評価をするに留まっており、ポリ(シクロヘキセンカーボネート)の特性についてはほとんど言及されていない。特に、その光学特性については全く言及されていない。
本実施形態のポリカーボネート樹脂は、下記式(1)で表される構造単位を有し、ポリメチルメタクリレートを標準試料として用いるサイズ排除クロマトグラフィー(SEC)により測定される重量平均分子量Mwが、50,000以上500,000以下である。
また、前記式(1)で表される構造単位を主鎖に有することが好ましい。
末端のアルコキシ基の含有量は、ポリカーボネート樹脂を構成するモノマー単位100mol%としたとき、0.01mol%以上1mol%以下であることが好ましい。
本実施形態のポリカーボネート樹脂は、このような構造単位を有すると、耐熱性、及び低複屈折性等の光学特性に一層優れる傾向にある。
本実施形態のポリカーボネート樹脂組成物は、上記の構成を備えることにより、熱重量減少をより顕著に抑制することができる。この要因は、以下のように考えられるが、要因はこれに限定されない。
本実施形態のポリカーボネート樹脂において、当該重量減少率は、具体的には実施例に記載の方法によって測定することができる。
本実施形態のポリカーボネート樹脂組成物は、上記のポリカーボネート樹脂と、酸化防止剤とを含有する。
本実施形態の光学部品は、上記のポリカーボネート樹脂又は上記のポリカーボネート樹脂組成物を含有する。
本実施形態のポリカーボネート樹脂の製造方法は、下記式(3)で表される環状カーボネート(A1)を開環重合することにより、ポリカーボネート樹脂を得る重合工程を有する。
環状カーボネート(A1)を開環重合するための重合開始剤としては、特に限定されないが、例えば、酸触媒、塩基触媒、及び酵素触媒が挙げられる。塩基触媒としては、特に限定されないが、例えば、アルキル金属、金属アルコキシド、金属有機酸塩、HO基、HS基若しくはHN基を有する有機化合物と塩基性物質との組合せが挙げられる。アルキル金属としては、特に限定されないが、例えば、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、及びフェニルリチウムのような有機リチウム、メチルマグネシウムハライド、エチルマグネシウムハライド、プロピルマグネシウムハライド、フェニルマグネシウムハライド、トリメチルアルミニウム、及びトリエチルアルミニウムが挙げられる。その中でも、好ましくはメチルリチウム、n-ブチルリチウム、又はsec-ブチルリチウムが用いられる。金属アルコキシド中の金属イオンとしては、特に限定されないが、例えば、アルカリ金属、アルカリ土類金属イオンが挙げられ、好ましくはアルカリ金属である。アルコキシドイオンとしては、特に限定されないが、例えば、メトキシド、エトキシド、プロポキシド、ブトキシド、フェノキシド、及びベンジルオキシドが挙げられる。なお、フェノキシド、ベンジルオキシドについては、芳香環上に置換基を有していてもよい。金属有機酸塩中の有機酸イオンとしては、特に限定されないが、例えば、炭素数1~10のカルボン酸イオンが挙げられる。金属有機酸塩中の金属としては、特に限定されないが、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、及びスズが挙げられる。HO基、HS基あるいはHN基を有する有機化合物としては、特に限定されないが、例えば、メタノール、エタノール等のアルコール、メタンチオール、エタンチオール等のチオール、メチルアミン、エチルアミン等の1級アミン、ジメチルアミン、ジエチルアミン等の2級アミンが挙げられる。塩基性物質としては、特に限定されないが、例えば、有機塩基が挙げられる。有機塩基としては、特に限定されないが、例えば、環状モノアミン及び環状ジアミン(特に、アミジン骨格を有する環状ジアミン化合物)のような環状アミン、グアニジン骨格を有するトリアミン化合物、並びに窒素原子を含有する複素環式化合物が挙げられる。有機塩基としては、特に限定されないが、より具体的には、例えば、1,4-ジアザビシクロ-[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、ジフェニルグアニジン(DPG)、N,N-ジメチル-4-アミノピリジン(DMAP)、イミダゾール、ピリミジン、及びプリンが挙げられる。これらの重合開始剤の中でも、重合工程において、有機リチウム、金属アルコキシド、又は、HO基、HS基若しくはHN基を有する有機化合物と環状アミンとの組合せを重合開始剤として用いることが好ましい。本実施形態の効果をより有効かつ確実に奏する観点から、本実施形態の重合開始剤は、好ましくはアルキル金属又は金属アルコキシドであり、より好ましくはtert-ブトキシドを含むアルカリ金属のアルコキシド又はn-ブチルリチウムである。
得られるポリカーボネート樹脂の平均分子量を制御する観点から、上記重合開始剤に加えて、重合停止剤を用いてもよい。重合停止剤としては、特に限定されないが、例えば、塩酸、硫酸、硝酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、リン酸、メタリン酸、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、クエン酸、アスコルビン酸、グルコン酸、シュウ酸、酒石酸、メルドラム酸、及び安息香酸のような無機酸及び有機酸が挙げられる。
得られるポリマーの分子量を制御する観点、及び末端構造を制御することで種々の特性を発現させる観点から、上記重合開始剤に加えて、添加剤を用いてもよい。添加剤としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、ノナノール、デカノール、ドデカノール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、5-ノルボルネン-2-メタノール、1-アダマンタノール、2-アダマンタノール、トリメチルシリルメタノール、フェノール、ベンジルアルコール、及びp-メチルベンジルアルコールのようなモノアルコール、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサンジオール、ノナンジオール、テトラメチレングリコール、及びポリエチレングリコールのようなジアルコール、グリセロール、ソルビトール、キシリトール、リビトール、エリスリトール、及びトリエタノールアミンのような多価アルコール、並びに、乳酸メチル、及び乳酸エチルが挙げられる。また、上記の添加剤は一種類を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
本実施形態のポリカーボネート樹脂の製造方法は、前記重合工程において、反応物及び/又は生成物を撹拌することが好ましい。重合工程において撹拌がなされることにより、系内の均一性が向上し、かつ、成長鎖とモノマーとの接触頻度が向上するため、一層高分子量のポリカーボネート樹脂を製造することができる傾向にある。撹拌方法としては、特に限定されないが、例えば、メカニカルスターラーと撹拌翼とを用いた撹拌、及びマグネチックスターラーと回転子とを用いた撹拌が挙げられる。一層高分子量のポリカーボネート樹脂を製造することができる観点から、重合工程における撹拌は、撹拌翼を用いて行われることがより好ましい。
本実施形態のポリカーボネート樹脂の製造方法において、重合工程における反応温度は、本実施形態のポリカーボネート樹脂を製造することができる範囲内であれば特に限定されないが、好ましくは0℃以上150℃以下であり、より好ましくは0℃以上130℃以下であり、更に好ましくは0℃以上120℃以下である。重合工程における反応温度が上記範囲内にあることで、得られるポリカーボネート樹脂の重量平均分子量を50,000以上500,000以下の範囲に制御することが一層容易になる。
本実施形態のポリカーボネート樹脂の製造方法では、溶媒を用いてもよく、用いなくてもよい。溶媒としては、特に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、及びプロピレングリコールノモノメチルエーテルアセテートのようなエーテル系溶媒、塩化メチレン、クロロホルム、ジクロロメタン、ジクロロエタン、及びトリクロロエタンのようなハロゲン系溶媒、ヘキサン、ヘプタン、オクタン、ノナン、シクロヘキサン、及びメチルシクロヘキサンのような飽和炭化水素系溶媒、トルエン、キシレン、o-キシレン、m-キシレン、p-キシレン、及びクレゾールのような芳香族炭化水素系溶媒、並びに、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、シクロペンタノン、シクロヘキサノン、及びメチルイソブチルケトンのようなケトン系溶媒が挙げられる。
本実施形態のポリカーボネート樹脂の製造方法において、重合工程における反応温度(重合温度)は、-5℃超40℃以下であることが好ましい。重合工程における反応温度が上記範囲内にあることで、得られるポリカーボネート樹脂の重量平均分子量(Mw)を100,000以上500,000以下の範囲に制御すること、及び重量平均分子量と数平均分子量の比(Mw/Mn)を2.5以下に制御することが一層容易になる。同様の観点から、反応温度は、好ましくは0℃以上40℃以下であり、より好ましくは0℃以上35℃以下であり、更に好ましくは0℃以上30℃以下である。
本実施形態のポリカーボネート樹脂の製造方法の重合工程において、重合性モノマーの初期濃度(初期モノマー濃度)は10質量%以上であることが好ましい。重合性モノマーの初期濃度が上記範囲内にあることで、得られるポリカーボネート樹脂の重量平均分子量(Mw)を100,000以上500,000以下の範囲に制御することが一層容易になる。同様の観点から、初期モノマー濃度は、好ましくは15質量%以上であり、より好ましくは18質量%以上であり、更に好ましくは20質量%以上である。初期モノマー濃度の上限は、特に限定されないが、例えば、100%である。
上述の背景技術に記載した通り、再生可能資源からなる環状カーボネートの例は報告されているものの、架橋剤やモノマー、添加剤としてより効果が期待され、合成中間体としての分子設計の幅が広がる多官能性の環状カーボネートの例は報告されていない。
本実施形態の環状カーボネートは、多官能性の環状カーボネートであり、分子中に少なくとも2つのカーボネート基を含み、イノシトール骨格を有し、下記式(11)で表される化合物である。
本実施形態の環状カーボネートの製造方法は、イノシトール骨格を有する化合物に少なくとも2つのカーボネート基を導入して、上記式(11)で表される環状カーボネートを得ることができれば特に限定されず種々の方法を用いることができる。例えば、ジオールとホスゲンとを反応させる手法や、オキシドとCO2とを触媒下で反応させる手法等が利用されうる。また、Carbohydrate Research 277 (1995) C5-C7や、特開2019-127441号公報、特開2019-127442号公報に示される通り、ジオールを有機塩基存在下又は金属酸化物触媒存在下でカーボネート化合物と反応させる手法、あるいはPolymer journal (2013)45,1183-1187に示す通り、ジオールとクロロギ酸エステルとを用いて反応させる手法が挙げられるが、これに限定されない。定量的に反応させることができ、また有害な原料を用いないという点から、カーボネート化合物と反応させる手法、又は、クロロギ酸エステルを反応させる手法が好ましく、ハロゲンを含む副生物を混入しがたいという点からカーボネート化合物を反応させる手法がより好ましい。
本明細書において、ポリカーボネート樹脂の物性の測定は以下のように行った。
日本電子株式会社製NMR装置(製品名:ECZ400S)、及びTFHプローブを用いて、以下のようにNMR測定をすることで、ポリカーボネート樹脂の1H-NMRスペクトルを得た。なお、重溶媒の基準ピークは、クロロホルム-dを用いた場合は7.26ppm、ジメチルスルホキシド-d6を用いた場合は2.50ppmであるとし、積算回数は32回として測定を行った。
ポリカーボネート樹脂0.1gに対して、クロロホルム-dを1gの割合で加えた溶液を測定試料とし、日本電子株式会社製NMR装置(製品名:ECZ400S)、及びTFHプローブを用いて、下記のように13C-NMR測定を行った。この13C-NMRにより測定される、モノマー周期構造がメソでありイソタクチックな部分を示すmm、周期構造がラセモ結合でありシンジオタクチックな部分を示すrr、メソ部分とラセモ部分が結合している部分を示すmrとした。なお、重溶媒の基準ピークは77.0ppmとし、積算回数は4000回として測定を行った。
得られた13C-NMRスペクトルの21~24ppmに観測されるピークについて、最も低磁場側のmmピーク左端を23.5ppm、最も高磁場側のrrピーク右端を21.7ppmとした積分ベースラインを引いた。続いて、mmとmr(22.0ppm付近)、mrとrr(22.5ppm付近)の間の谷でピークを切断した。このとき、最も高磁場側のmmのピークの積分強度比を1としたときのmr及びrrの積分強度比をmr/(mm+mr+rr)に代入し、ランダム性を算出した。
ポリメチルメタクリレート(以下「PMMA」とも記す)を標準試料として用いるサイズ排除クロマトグラフィーにより測定される重量平均分子量(Mw)及び数平均分子量(Mn)を以下のとおり測定した。
ポリカーボネート樹脂0.02gに対して、テトラヒドロフランを2.0gの割合で加えた溶液を測定試料とし、HPLC装置(Waters社製、製品名「Alliance e2695」)を用いて、ポリカーボネート樹脂の重量平均分子量を測定した。カラムとして、東ソー株式会社製のTSKガードカラムSuperH-H、TSKgel SuperHM-H、TSKgel SuperHM-H、TSKgel SuperH2000、及びTSKgel SuperH1000(いずれも東ソー株式会社製製品名)を直列に連結して用いた。カラム温度は40℃とし、テトラヒドロフランを移動相として、0.35mL/分の速度で分析した。検出器としては、RIディテクターを用いた。Polymer Standards Service製のポリメタクリル酸メチル標準試料(分子量:2200000、988000、608000、340000、202000、88500、41400、18700、9680、5050、2380、800)を標準試料として、検量線を作成した。このようにして作成した検量線を基に、ポリカーボネート樹脂の数平均分子量及び重量平均分子量を求めた。
サイズ排除クロマトグラフィーによって測定されるポリスチレン(以下「PS」とも記す)換算分子量が1,000以上のポリマー成分について、重量平均分子量(Mw)及び数平均分子量(Mn)を以下のとおり測定した。
ポリカーボネート樹脂0.02gに対して、テトラヒドロフランを2.0gの割合で加えた溶液を測定試料とし、高速GPC装置(東ソー株式会社製、製品名「HLC-8420GPC」)を用い、カラムとして、東ソー株式会社製のTSKガードカラムSuperH-H、TSKgel SuperHM-H、TSKgel SuperHM-H、TSKgel SuperH2000、及びTSKgel SuperH1000(いずれも東ソー株式会社製製品名)を直列に連結して用いた。カラム温度は40℃とし、テトラヒドロフランを移動相として、0.60mL/分の速度で分析した。検出器としては、RIディテクターを用いた。Polymer Standards Service製のポリスチレン標準試料(分子量:2520000、1240000、552000、277000、130000、66000、34800、19700、8680、3470、1306、370)を標準試料として、検量線を作成した。このようにして作成した検量線を基に、ポリカーボネート樹脂のポリスチレン換算分子量が1,000以上のポリマー成分について、数平均分子量及び重量平均分子量を求めた。
後述の実施例及び比較例にて得られたポリカーボネート樹脂のメタノール不溶分約10mgを測定試料とし、示差熱・熱重量同時測定装置(島津製作所製、製品名「DTG-60A」)を用いて、窒素雰囲気下、10℃/分で40℃から400℃まで昇温し、ポリカーボネート樹脂の熱重量測定を行った。得られた結果から、150~260℃における重量減少率(質量%)を算出した。
ポリカーボネート樹脂を、30mg/mLのクロロホルム溶液とし、分取GPC装置(日本分析工業社製、製品名「LC-908」)を用いて、分画した。カラムとして、JALGEL3H(日本分析工業社製)を使用し、クロロホルムを移動相として、3.33mL/分の速度で分析した。分画したフラクションを、4mg/mL~10mg/mLの範囲で調整し、trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile(DCTB)を10mg/mL、トリフルオロ酢酸ナトリウム(NaTFA)を1mg/mLにテトラヒドロフランを用いて調製した後、各溶液を1:1:1で混合し測定用プレートに滴下、風乾した試料をMALDI-TOFMS分析装置(Bruker社製、製品名「UltrafleXtreme」)を用いて分析した。質量値の補正はそれぞれTHFに溶解させたポリエチレングリコール(1mg/mL):DCTB(10mg/mL):NaTFA(10mg/mL)=1:1:1の試料を用いて行い、構造推定できた成分が存在した場合には、その成分を用いて再度質量値の校正を行った。
真空乾燥したポリカーボネート樹脂を、室温、200kgf/cm2の圧力で圧縮成形した。圧縮成形した上記ポリカーボネート樹脂から10mgを切り出し、試験片として用いた。パーキンエルマージャパン株式会社製の示差走査熱量測定装置(製品名「DSC8500」)を用い、窒素ガス流量20mL/分の条件下、測定を行った。より詳細には、例えば、実施例A2の試料については、40℃で3分間保持した後、20℃/分で40℃から160℃まで1次昇温し、試料を完全に融解させた。その後、50℃/分で160℃から40℃まで降温し、40℃で5分間保持した。続いて、10℃/分で40℃から150℃まで2次昇温する際に描かれるDSC曲線の階段状変化部分曲線と各接線の延長線から縦軸方向に等距離にある直線とのとの交点(中間点ガラス転移温度)をガラス転移温度(Tg)とした。その他の実施例及び比較例の試料についても、同様にしてガラス転移温度を測定した。
まず、真空圧縮成形機を用いて、ポリカーボネート樹脂の未延伸試料を作製した。具体的には、下記のようにして作製した。ポリカーボネート樹脂を25~150μm厚のポリイミド製枠内に入れ、2枚のポリイミドフィルムと2枚のアルミ板及び2枚の鉄板で挟むことで、積層体を得た。このとき、積層体の積層順が、鉄板、アルミ板、ポリイミドフィルム、ポリイミド製枠、ポリイミドフィルム、アルミ板、鉄板のようになるように積層した。上記の積層体を真空圧縮成形機(神藤金属工業所製、SFV-30型)にセットし、表1に記載の所定の温度において、減圧下(10kPa)で5分間予熱した後、減圧条件を保持したまま、上記所定の温度において、プレス圧10MPaの条件で10分間圧縮した。減圧及びプレス圧を解除した後、上記圧縮した積層体を冷却用圧縮成形機(株式会社神藤金属工業所製、AYS-10型)に移して冷却固化させることにより、厚さ20~250μmのプレスフィルムを得た。得られたプレスフィルムを、23℃、湿度50%の恒温恒湿室内で24時間養生することにより、未延伸試料を得た。
上記300%一軸延伸フィルムを用いて、以下のようにしてヘイズを測定した。ヘイズは日本電色工業製濁度計(製品名「NDH5000W」)を用い、ブランク測定を行った後、上記300%一軸延伸フィルムのヘイズを測定した。なお、各試料のヘイズは同一試験片について測定位置を3回変えて測定し、3回の平均値を記載した。
上記100%一軸延伸フィルムを用いて、以下のようにして面内位相差及び配向複屈折率を測定した。まず、各延伸フィルムについて、王子計測機器製位相差測定装置(製品名「KOBRA-WR」)を用いて、波長587nmにおける面内位相差の絶対値を測定した。その後、得られた面内位相差の絶対値及び各延伸フィルムの厚さを用いて、配向複屈折率を算出した。得られた配向複屈折率を用いて、厚さ100μm換算の面内位相差の絶対値を算出した。なお、配向複屈折率、面内位相差の絶対値、厚さ100μm換算の面内位相差の絶対値、及び延伸フィルムの厚さは、以下の式(A)、(B)及び(C)を満たす。
Δn=nx-ny (A)
Re=Δn×d (B)
Re100(nm)=Δn×1.0×105 (C)
(Δn:配向複屈折率、nx:伸張方向の屈折率、ny:試料面内で伸張方向と垂直な方向の屈折率、Re:面内位相差の絶対値、Re100:厚さ100μm換算の面内位相差の絶対値、d:延伸フィルムの厚さ)
上記「未延伸試料及び延伸試料の作製」で得た未延伸試料を幅6mm、長さ30mmに切り出したものを試料として用いて、以下のようにして光弾性係数を測定した。なお、測定方法の詳細は、Polymer Engineering and Science 1999, 39,2349-2357を参照した。具体的には、以下のとおりである。上記の試料を、23℃、湿度50%の恒温恒湿室に設置したフィルム引張り装置(井元製作所製)に、チャック間が20mmになるように配置した。次いで、複屈折測定装置(大塚電子製、製品名「RETS-100」)の光経路が上記試料の中心部に位置するように、上記複屈折測定装置を配置した。チャック間を20mm、チャック移動速度を0.1mm/分として、伸張応力をかけながら、波長550nmで試験片の複屈折率を測定した。測定された複屈折率と伸張応力との関係から、最小二乗法を用いて、光弾性係数(Pa-1)を計算した。計算には、伸張応力σが2.5MPa≦σ≦10MPaであるデータを用いた。なお、複屈折率、伸張応力、及び光弾性係数は、以下の式(D)及び(E)を満たす。
Δn=nx-ny (D)
C=Δn/σ (E)
(Δn:複屈折率、nx:伸張方向の屈折率、ny:試料面内で伸張方向と垂直な方向の屈折率、C:光弾性係数、σ:伸張応力)
アルゴン気流下、5L4つ口フラスコに、trans-1,2-シクロヘキサンジオール(200.0g、1.722mmol)、脱水1,4-ジオキサン(2.0L)を加えた。次いで、メカニカルスターラーを用いて撹拌し、かつ、反応容器を氷浴につけて冷却しながら、クロロギ酸エチル(280.2g、2.582mmol)を反応液中へゆっくり滴下した。更に、撹拌及び冷却を保ちながら、トリエチルアミン(348.4g、3.443mmol)を脱水トルエン(2.5L)で希釈した溶液を反応液中へゆっくり滴下した。滴下後、冷却を保ちながら1.5時間撹拌した後、反応容器の内温を室温まで昇温し、更に12時間撹拌した。副生した白色固体を減圧濾過によって除去し、ろ液を減圧下濃縮した。残渣に酢酸エチル(2.0L)を加えて溶解させた後、1質量%塩酸水溶液(2.0L)で洗浄した。有機層を回収し、イオン交換水(2.0L)で3回洗浄した。更に、硫酸マグネシウムを加えて脱水した後、減圧濾過を行った。ろ液を減圧下濃縮することによって得られた白色固体を、シリカゲルカラムクロマトグラフィーによって精製し、目的のtrans-シクロヘキセンカーボネート(110g)を得た。
50mL3つ口フラスコへ、合成したtrans-シクロヘキセンカーボネート(5.02g、35.3mmol)を加え、フラスコ内を窒素で置換した。フラスコを60℃に加熱し、内容物が溶融した後、メカニカルスターラーと撹拌翼とを用いて撹拌しながら、カリウムtert-ブトキシドTHF溶液(0.18mL、1.0M、0.18mmol)をゆっくりと加え、60℃で6時間撹拌した。フラスコを室温まで放冷した後、クロロホルム30mLを加えて溶解させ、綿栓ろ過によって微量の不要物を除去した。
マグネチックスターラーと回転子とを用いて撹拌を行った以外は実施例A1と同様の方法で重合を行い、ホモポリマー(ポリカーボネート樹脂)2.76gを得た。得られたホモポリマーの1H-NMRスペクトルを測定したところ、後述の実施例A3と同様のスペクトルが得られた。また、実施例A2のポリカーボネート樹脂を分取GPCによって分画したフラクションのMALDI-TOF-MSスペクトルにおいて、末端アルコキシ基として、ヒドロキシシクロヘキシルオキシ基、tert-ブトキシ基、メトキシ基を有する化学種が観測された。このうち、ヒドロキシシクロヘキシルオキシ基(3.7ppm付近)及びメトキシ基(3.6ppm付近)については、1H-NMRスペクトルにおける積分強度比から、ポリマー主鎖を100mol%とすると、それぞれ順に0.10mol%及び0.58mol%と算出した。MALDI-TOF-MSスペクトルを図5に示す。
trans-シクロヘキセンカーボネート(5.02g、35.3mmol)に代えてtrans-シクロヘキセンカーボネート(5.04g、35.4mmol)を用い、フラスコ内を窒素で置換した後、フラスコを60℃に加熱する前に初期モノマー濃度が50質量%となるようにm-キシレン(5.06g)をフラスコ内に加えた以外は、実施例A1と同様の方法で重合反応を行い、ホモポリマー(ポリカーボネート樹脂)3.17gを得た。得られたホモポリマーの1H-NMRスペクトルを図2に示す。また、得られたホモポリマーの13C-NMRスペクトルを測定し、mr/(mm+mr+rr)の割合を48%と算出した。
trans-シクロヘキセンカーボネート(5.02g、35.3mmol)に代えて、trans-シクロヘキセンカーボネート(2.19g、15.4mmol)と、1,4-ジ-O-オクチル-2,3:5,6-ジカーボネート-myо-イノシトール(0.217g、0.475mmol)とを用いた以外は実施例A1と同様にして重合反応を行い、コポリマー(ポリカーボネート樹脂)1.04gを得た。
trans-シクロヘキセンカーボネート(5.04g、35.4mmol)に代えてtrans-シクロヘキセンカーボネート(10.4g、73.0mmol)を用い、含水率が約100ppmのm-キシレン(10.4g)をフラスコ内に加えた以外は、実施例A3と同様の方法で重合反応を行い、ホモポリマー(ポリカーボネート樹脂)6.61gを得た。得られたホモポリマーの1H-NMRスペクトルを測定したところ、実施例A3と同様のスペクトルが得られた。
比較例A2として、ビスフェノールA系ポリカーボネート樹脂(三菱エンジニアリングプラスチック社製、製品名「ユーピロンS-3000」)を用いた。
比較例A3として、シクロヘキセンオキシドと二酸化炭素の共重合により合成されたポリ(シクロヘキセンカーボネート)樹脂(Empower Materials社製、製品名「QPAC130」)を用いた。また、13C-NMRスペクトルを測定し、mr/(mm+mr+rr)の割合を36%と算出した。更に、分取GPC装置を用いて分画した成分のうち、m/z1500~1600のMALDI-TOF-MSスペクトルを図4に示す。
比較例A3のポリカーボネート樹脂の1H-NMRスペクトルでは、実施例A1~A3には見られないブロードなピークが、ポリ(シクロヘキセンカーボネート)のメチン水素由来の3~5ppm付近に複数観測された。実施例A1~A3に示す環状カーボネートモノマーの開環重合とは異なり、比較例A3のようなエポキシドと二酸化炭素との共重合で生成しうる、二酸化炭素の関与しないポリエーテル構造等の異種結合等に由来するものと推察される。
比較例A3のポリカーボネート樹脂を分取GPCによって分画したフラクションのMALDI-TOF-MSスペクトルにおいて、二酸化炭素の関与しないエーテル結合を末端以外に1つ以上含む化学種が観測された。このようなカーボネート結合以外の異種結合は実施例A1~A3に示すような環状カーボネートの開環重合により合成されるポリ(シクロヘキセンカーボネート)のMALDI-TOF-MSスペクトルでは観測されなかった。
上述の実施例のポリカーボネート樹脂、及び比較例A3のポリカーボネート樹脂について、300%一軸延伸フィルムのヘイズを測定すると、実施例のポリカーボネート樹脂と比べて、比較例A3のポリカーボネート樹脂が10倍以上高い値であった。前述のNMRスペクトルやMALDI-TOF-MSスペクトルで見られたような、ポリマー主鎖を構成する部分構造の違いによるものと推察される。
50mLセパラブルフラスコへ、合成したtrans-シクロヘキセンカーボネート(10.1g、71.2mmol)を加え、フラスコ内を窒素で置換した。前記フラスコを25℃の恒温槽に浸し、フラスコ内へm-キシレン(40.2g)を加え、メカニカルスターラーと撹拌翼とを用いて撹拌し、モノマーを完全に溶解させてモノマー溶液を得た。別途、乾燥させた30mLシュレンク管へ、カリウムtert-ブトキシド溶液(1.0M、0.28mL、0.28mmol)とベンジルアルコール(0.063g、0.58mmol)とを量り取り、m-キシレン2.6mLで希釈して重合開始剤溶液を調製した。モノマー溶液を撹拌しながら、調製した重合開始剤溶液0.27mLを前記モノマー溶液に一度に加え、25℃で30分撹拌して重合反応を行った。酢酸0.012gを加えて反応を停止させてポリカーボネート樹脂を含む重合液を得た。得られた重合液を一部サンプリングしてクロロホルム-dで希釈したサンプルについて1H-NMRスペクトルを測定し、4.0ppmのモノマー由来のピークと4.6ppmのポリマー由来のピークとの積分強度比から、モノマー転化率を94%と算出した。
重合温度を10℃とした以外は、実施例A5と同様の方法で重合反応及び再沈殿操作を行ってポリカーボネート樹脂を得た。反応停止後の1H-NMRスペクトルからモノマー転化率を96%と算出した。再沈殿操作により得られたホモポリマー(ポリカーボネート樹脂)を窒素雰囲気下で加熱したときの熱重量測定結果から重量減少率を求めた。
重合温度を5℃とした以外は、実施例A5と同様の方法で重合反応及び再沈殿操作を行ってポリカーボネート樹脂を得た。反応停止後の1H-NMRスペクトルからモノマー転化率を97%と算出した。再沈殿操作により得られたホモポリマー(ポリカーボネート樹脂)を窒素雰囲気下で加熱したときの熱重量測定結果から重量減少率を求めた。
重合温度を0℃とした以外は、実施例A5と同様の方法で重合反応及び再沈殿操作を行ってポリカーボネート樹脂を得た。反応停止後の1H-NMRスペクトルからモノマー転化率を97%と算出した。再沈殿操作により得られたホモポリマー(ポリカーボネート樹脂)を窒素雰囲気下で加熱したときの熱重量測定結果から重量減少率を求めた。
重合温度を-5℃とした以外は、実施例A5と同様の方法で重合反応を行ってポリカーボネート樹脂を得た。反応停止後の1H-NMRスペクトルからモノマー転化率を5%と算出した。比較例A5の条件では、重量平均分子量Mw(PMMA換算)が50,000以上のポリカーボネート樹脂は得られなかった。
重合温度を-10℃とした以外は、実施例A5と同様の方法で重合反応を行ってポリカーボネート樹脂を得た。反応停止後の1H-NMRスペクトルからモノマー転化率を8%と算出した。比較例A6の条件では、重量平均分子量Mw(PMMA換算)が50,000以上のポリカーボネート樹脂は得られなかった。
以下、本実施例に記載した試薬は特に記載がない限り、富士フイルム和光純薬製を用いた。
本実施例に記載した分析手法は下記の通りである。
化合物の同定及び収率の計算は、主に1H-NMRを用いて行った。
当該測定において、機器は日本電子株式会社(ECZ400S)を用い、プローブはTFHプローブを用いた。なお、当該測定において、重溶媒の基準ピークは、クロロホルム-d(以下「CDCl3」とも記す)を用いた場合は7.26ppm、ジメチルスルホキシド-d6(以下「DMSO-d6」とも記す)を用いた場合は2.50ppmとし、積算回数は32回とした。
純度の計算は、ガスクロマトグラフィー(GC)分析にて行った。当該測定において、機器は株式会社島津製作所のガスクロマトグラフ(GC-2010)を用い、カラム:DB-WAX、キャリアガス:ヘリウム、インジェクション温度:270℃、検出器(温度):水素炎イオン化検出器(FID)(270℃)とした。
ガスクロマトグラフィー質量分析(GC/MS)は以下の手順で実施した。
分析機器はTRACE-GC/ISQ(Thermo社)を用いた。
Equity-1(30m×0.25mm、膜厚:0.25μm)カラムを用い、分析条件は、イオン化:EI(70eV)、質量範囲:m/z=10~1000、流量:1.0mL/分(Constant Flow)、オーブン温度:50℃→昇温10℃/分→300℃(15分)とした。
試料の前処理として、イノシトール誘導体1.0mgにジメチルスルホキシド(以下「DMSO」とも記す)1滴を加え溶解後、BSA(N,O-ビストリメチルシリルアセトアミド)1.0mLを加えて60℃×60分加熱した。
ガラス転移温度(Tg)の測定は以下の手順で行った。真空乾燥したポリマーを室温で圧縮成形した試料から、試験片として約10mgを切り出し、パーキンエルマージャパン株式会社製の示差走査熱量測定装置(DSC8500)を用い、窒素ガス流量20mL/分の条件下、ガラス転移温度(Tg)の測定を行った。
試料については、40℃で3分間保持した後、20℃/分で40℃から160℃まで1次昇温し、試料を完全に融解させた。その後、50℃/分で160℃から40℃まで降温し、40℃で5分間保持した。続いて、10℃/分で40℃から150℃まで2次昇温する際に描かれるDSC曲線の階段状変化部分曲線と各接線の延長線から縦軸方向に等距離にある直線との交点(中間点ガラス転移温度)をガラス転移温度(Tg)とした。
融点の測定は示差走査熱量計(DSC)を用いて以下の手順で行った。示差走査熱量計(DSC)としてはTAInstruments社製Q200を用いた。測定条件は昇温降温速度10℃/分とした。融点は当該測定における20℃からの昇温過程での融解温度とした。
ポリマー分子量の測定はゲル浸透クロマトグラフィー(GPC)を用いて以下の手順で行った。
ポリカーボネート樹脂0.02gに対して、2.0gの割合でテトラヒドロフラン(以下「THF」とも記す)に溶解した溶液を測定試料とし、高速液体クロマトグラフシステムとしてはWaters社製Alliance e2695を用いてポリマー分子量を測定した。カラムは東ソー株式会社製のTSKガードカラムSuperH-H、TSKgel SuperHM-H、TSKgel SuperHM-H、TSKgel SuperH2000、TSKgel SuperH1000を直列に連結して使用し、カラム温度は40℃とし、テトラヒドロフランを移動相として0.35mL/分の速度で分析した。検出器は、示差屈折率検出器(RID)を使用した。Polymer Standards Service製のポリメタクリル酸メチル標準試料(分子量:2200000、988000、608000、340000、202000、88500、41400、18700、9680、5050、2380、800)を標準試料として測定し、検量線を作成した。この検量線を基に、ポリカーボネート樹脂の数平均分子量(Mn)及び重量平均分子量(Mw)を求めた。
(ステップ2-1)2,3:5,6-ジ-O-シクロヘキシリデン-myo-イノシトールの合成
実施例B1のステップ1-1と同様に合成を行ってジオール体(2,3:5,6-ジ-O-シクロヘキシリデン-myo-イノシトール)を得た。
また、得られたOCIの融点は120℃であった。
(ステップ3-1)2,3:5,6-ジ-O-シクロヘキシリデン-myo-イノシトールの合成
実施例B1のステップ1-1と同様に合成を行ってジオール体(2,3:5,6-ジ-O-シクロヘキシリデン-myo-イノシトール)を得た。
得られたECIの融点は100℃であった。
DMSO(50mL)にmyo-イノシトール(3.60g、0.4M)を加え、60℃で溶解後、室温でジフェニルカーボネート(8.57g)、LiOH(0.0024g、0.5mol/%)を加えて、室温で70時間反応させた。反応混合液について、1H-NMRでフェノールの生成量を算出し、反応が90%進行していることを確認した。
反応混合液をイオン交換樹脂(inertSep(r)SCX)に通液し、通液後の溶液(82.63g)をエバポレーターで濃縮して濃縮液(26.99g)を得た。得られた濃縮液(7.12g)に酢酸(141.58g)を添加して、生じた沈殿を吸引ろ過及び洗浄してろ液(173.88g)を得た。得られたろ液をエバポレーターで濃縮して濃縮液(8.21g)を得た。得られた濃縮液(7.47g)にクロロホルム(226.86g)を添加して沈殿を生じさせた。生じた沈殿を吸引ろ過し、ろ物を乾燥してカーボネート-myo-イノシトール組成物を0.698g得た。
得られたカーボネート-myo-イノシトール組成物をトリメチルシリル化(TMS化)して、GC/MSを測定し、該組成物中に下記の2種類の化合物を同定した。GC/MSの測定結果を図10に示す。
50mLの3つ口フラスコへ、実施例B1で得られたBCI(0.560g、1.36mmol)と合成例1で得られたT6C(1.65g、11.6mmol)とを投入した。フラスコ内を脱気及び窒素置換を行った後、フラスコ内を60℃に加熱し、内容物が溶融して溶液を得た。その後、得られた溶液をマグネチックスターラー及び回転子で撹拌しながらカリウムtert-ブトキシドTHF溶液(65μL、1.0M、0.0065mmol)をゆっくりと加え、60℃で6時間撹拌して重合反応を行った。フラスコ内を室温まで放冷した後、反応液にクロロホルム15mLを加えて溶解させて調製したポリマー溶液をメタノール150mL中に加えてポリマーを析出させた。析出したポリマーを減圧濾過によって回収し、メタノールで洗浄した。得られたポリマーを60℃で4時間真空乾燥させ、BCI/T6Cのコポリマー0.571gを得た(収率:26%)。
コポリマー中の各モノマー成分(表3中のM1及びM2成分)の割合は1H-NMR測定によって算出した。1H-NMR測定結果を図12に示す。
ジメチルスルホキシド-d6に溶解したサンプルの1H-NMRスペクトルにおいて、T6C上のメチレン水素8H分に帰属されるシグナルが0.9-2.2ppmに観測され、BCI上のフェニル基の水素10H分に帰属されるシグナルが7.1-7.4ppmに観測された。これらの積分強度比からコポリマー中のBCIに由来する割合(モル比)を26%と算出した。また、得られたコポリマーの数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(PDI)及びガラス転移温度(Tg)を求めた。結果を表1に示す。
T6C(1.56g、11.0mol)に対して、BCIの代わりに実施例B2で得られたOCI(0.560g、1.23mmol)をコモノマーとして添加した以外は合成例2と同様の方法で重合反応を行い、OCI/T6Cのコポリマー0.469gを得た(収率:22%)。
コポリマー中の各モノマー成分(表3中のM1及びM2成分)の割合は1H-NMR測定によって算出した。1H-NMR測定結果を図13に示す。
すなわち、クロロホルム-dに溶解したサンプルの1H-NMRスペクトルにおいて、T6C上のメチレン水素2H分に帰属されるシグナルが1.9-2.3ppmに、OCI上のメチル基の水素6H分に帰属されるシグナルが0.8-0.9ppmに観測された。これらの積分強度比からコポリマー中のOCIに由来する割合(モル比)を21%と算出した。また、得られたコポリマーの数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(PDI)及びガラス転移温度(Tg)を求めた。結果を表3に示す。
BCIの仕込み量を「0.566g、1.37mmol」とし、T6Cの仕込み量を「1.67g、11.7mmol」とし、マグネチックスターラー及び回転子の代わりに、メカニカルスターラー及び撹拌翼を用いて撹拌を行った以外は合成例2と同様の方法で重合反応を行い、BCI/T6Cのコポリマー0.951gを得た(収率:43%)。
コポリマー中の各モノマー成分(表3中のM1及びM2成分)の割合は1H-NMR測定によって算出した。1H-NMR測定結果を図14に示す。
1H-NMRスペクトルの積分強度比から、コポリマー中のBCIに由来する割合(モル比)は17%と算出した。また、得られたコポリマーの数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(PDI)及びガラス転移温度(Tg)を求めた。結果を表3に示す。
BCIの仕込み量を「0.218g、0.529mmol」とし、T6Cの仕込み量を「2.43g、17.1mmol」とした以外は合成例4と同様の方法で重合反応を行い、BCI/T6Cのコポリマー1.19gを得た(収率:45%)。
コポリマー中の各モノマー成分(表3中のM1及びM2成分)の割合は1H-NMR測定によって算出した。1H-NMR測定結果を図15に示す。
1H-NMRスペクトルの積分強度比から、コポリマー中のBCIに由来する割合(モル比)は4%と算出した。また、得られたコポリマーの数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(PDI)及びガラス転移温度(Tg)を求めた。結果を表3に示す。
OCIの仕込み量を「0.217g、0.475mmol」とし、T6Cの仕込み量を「2.19g、15.4mmol」とした以外は合成例3と同様の方法で重合反応を行い、OCI/T6Cのコポリマー1.04gを得た(収率:43%)。
コポリマー中の各モノマー成分(表3中のM1及びM2成分)の割合は1H-NMR測定によって算出した。1H-NMR測定結果を図16に示す。
1H-NMRスペクトルの積分強度比から、コポリマー中のOCIに由来する割合(モル比)は4%と算出した。また、得られたコポリマーの数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(PDI)及びガラス転移温度(Tg)を求めた。結果を表3に示す。
上記の合成例の結果から、NMR解析により、myo-イノシトールのジカーボネートのうち、trans位のみが重合し、cis位は維持され、当該ポリマーは下記式(B-1)で表される構造を有していることが確認された。
b) f1: メタノール再沈殿精製後のポリマー中に含まれるM1成分のモル比(1H-NMRより算出)
c) Yield(収率):メタノール再沈殿精製で得られるメタノール不溶分重量(g)/仕込みモノマー重量(g)×100
Claims (24)
- 下記式(1)で表される構造単位:
ポリメチルメタクリレートを標準試料として用いるサイズ排除クロマトグラフィーにより測定される重量平均分子量Mwが、50,000以上500,000以下であり、
示査走査熱量計により測定されるガラス転移温度Tgが、80℃以上180℃以下である、ポリカーボネート樹脂。 - 前記式(1)で表される構造単位を主鎖に有する、請求項1に記載のポリカーボネート樹脂。
- 13C-NMRにより測定される、モノマー周期構造がメソでありイソタクチックな部分を示すmm、周期構造がラセモ結合でありシンジオタクチックな部分を示すrr、メソ部分とラセモ部分が結合している部分を示すmrとしたとき、mr/(mm+mr+rr)の割合が40%以上である、請求項1又は2に記載のポリカーボネート樹脂。
- 末端にアルコキシ基を有する、請求項1~3のいずれか一項に記載のポリカーボネート樹脂。
- 前記アルコキシ基における炭素数が1~10である、請求項4に記載のポリカーボネート樹脂。
- サイズ排除クロマトグラフィーによって測定されるポリスチレン換算分子量が1,000以上のポリマー成分について、重量平均分子量(Mw)が100,000以上500,000以下、かつ、数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が2.5以下である、請求項1~5のいずれか一項に記載のポリカーボネート樹脂。
- アルコール不溶分を熱重量測定により窒素雰囲気下で加熱したときの150~260℃における重量減少率が30質量%以下である、請求項6に記載のポリカーボネート樹脂。
- 光弾性係数の絶対値が、10×10-12Pa-1以下である、請求項1~7のいずれか一項に記載のポリカーボネート樹脂。
- 前記ポリカーボネート樹脂の100%一軸延伸フィルムにおいて、面内位相差の絶対値が、厚さ100μm換算で100nm以下である、請求項1~8のいずれか一項に記載のポリカーボネート樹脂。
- 前記式(1)で表される構造単位であって、式(1)中、R1、R2、R3及びR4が水素原子である構成単位を有する、請求項1~9のいずれか一項に記載のポリカーボネート樹脂。
- 下記式(1’)で表される構造単位:
(1’)
(式(1’)中、R1及びR4は、各々独立して、水素原子、水酸基、リン酸基、アミノ基、ビニル基、アリル基、炭素数1~10のアルコキシ基、炭素数1~11のエステル基、炭素数1~11のアシル基、又は、非置換の直鎖状、分岐状、若しくは環状の炭素数1~10のアルキル基であり、アルキレン基又はカーボネート基を介して互いに結合して環状構造を形成していてもよく、前記アルキレン基は、水酸基、リン酸基、アミノ基、アルコキシ基、又はエステル基によって置換されていてもよく、主鎖にカルボニル基が挿入されていてもよい。)を有する、請求項1~10のいずれか一項に記載のポリカーボネート樹脂。 - 請求項1~11のいずれか一項に記載のポリカーボネート樹脂と、酸化防止剤と、
を含有する、ポリカーボネート樹脂組成物。 - 請求項1~11のいずれか一項に記載のポリカーボネート樹脂、又は請求項12に記載のポリカーボネート樹脂組成物を含有する、光学部品。
- 請求項1~11のいずれか一項に記載のポリカーボネート樹脂、又は請求項12に記載のポリカーボネート樹脂組成物の、光学部品用材料としての使用。
- 請求項1~11のいずれか一項に記載のポリカーボネート樹脂の製造方法であって、
下記式(3)で表される環状カーボネート:
製造方法。 - 前記重合工程において、有機リチウム、金属アルコキシド、又は、HO基、HS基若しくはHN基を有する有機化合物と環状アミンとの組合せを重合開始剤として用いる、請求項15に記載のポリカーボネート樹脂の製造方法。
- 前記重合工程における反応温度(重合温度)が-5℃超40℃以下である、請求項15又は16に記載のポリカーボネート樹脂の製造方法。
- 前記重合工程における重合性モノマーの初期濃度(初期モノマー濃度)が10質量%以上である、請求項17に記載のポリカーボネート樹脂の製造方法。
- モノマーに対して添加する重合開始剤の割合が、0.0001mol%以上1mol%以下である、請求項18に記載のポリカーボネート樹脂の製造方法。
- 分子中に少なくとも1つのtransカーボネート基を有する、請求項20に記載の環状カーボネート。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020005443 | 2020-01-16 | ||
JP2020005443 | 2020-01-16 | ||
JP2020015754 | 2020-01-31 | ||
JP2020015754 | 2020-01-31 | ||
PCT/JP2021/001325 WO2021145443A1 (ja) | 2020-01-16 | 2021-01-15 | ポリカーボネート樹脂、ポリカーボネート樹脂組成物、それらを含む光学用成形体、及び環状カーボネート |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021145443A1 JPWO2021145443A1 (ja) | 2021-07-22 |
JP7284296B2 true JP7284296B2 (ja) | 2023-05-30 |
Family
ID=76864658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021571270A Active JP7284296B2 (ja) | 2020-01-16 | 2021-01-15 | ポリカーボネート樹脂、ポリカーボネート樹脂組成物、それらを含む光学用成形体、及び環状カーボネート |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230192949A1 (ja) |
EP (1) | EP4092068A4 (ja) |
JP (1) | JP7284296B2 (ja) |
KR (1) | KR20220117285A (ja) |
CN (1) | CN114945619A (ja) |
TW (1) | TWI788757B (ja) |
WO (1) | WO2021145443A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230143168A (ko) * | 2021-03-30 | 2023-10-11 | 아사히 가세이 가부시키가이샤 | 폴리카보네이트 수지 조성물 |
WO2023182378A1 (ja) * | 2022-03-23 | 2023-09-28 | 旭化成株式会社 | ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学部品、及びポリカーボネート樹脂の製造方法 |
JPWO2023223888A1 (ja) * | 2022-05-19 | 2023-11-23 | ||
CN117654477B (zh) * | 2023-11-28 | 2024-05-31 | 中国矿业大学 | 一种C@CeO2催化剂及其制备方法和在催化二氧化碳解吸中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160068630A1 (en) | 2013-04-29 | 2016-03-10 | Total Research & Technology Feluy | Process for Preparing Polycarbonates by Polymerization of Five-Membered-Ring Cyclic Carbonates |
CN107991842A (zh) | 2017-12-01 | 2018-05-04 | 浙江大学 | 一种聚碳酸酯作为电子束光刻胶材料的应用 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS543537B2 (ja) | 1974-05-31 | 1979-02-23 | ||
JPS57210542A (en) | 1981-06-22 | 1982-12-24 | Hitachi Ltd | Electron gun sealing process for cathode-ray tube |
JPS58146562A (ja) | 1982-02-24 | 1983-09-01 | Kawaken Fine Chem Co Ltd | インドリンの製造方法 |
DE3346189C1 (de) | 1983-12-21 | 1985-06-13 | Carl Hurth Maschinen- und Zahnradfabrik GmbH & Co, 8000 München | Abrichtwerkzeug zum Abrichten von abrasiven zahnradartigen Feinbearbeitungswerkzeugen |
JP4774610B2 (ja) | 2001-03-13 | 2011-09-14 | 三菱瓦斯化学株式会社 | ポリカーボネートの製造方法 |
JP4937806B2 (ja) | 2007-03-24 | 2012-05-23 | 株式会社ダイセル | ナノインプリント用光硬化性樹脂組成物 |
WO2009113716A1 (ja) | 2008-03-11 | 2009-09-17 | 国立大学法人東京大学 | ポリカーボネート製造用触媒とポリカーボネート製造方法 |
CN102939314B (zh) | 2010-06-15 | 2016-07-06 | 巴斯夫欧洲公司 | 环状碳酸酯在环氧树脂组合物中的用途 |
JP6327151B2 (ja) | 2012-11-07 | 2018-05-23 | 三菱瓦斯化学株式会社 | ポリカーボネート樹脂、その製造方法および光学成形体 |
EP2899208A1 (en) | 2014-01-28 | 2015-07-29 | F.Hoffmann-La Roche Ag | Camelid single-domain antibody directed against phosphorylated tau proteins and methods for producing conjugates thereof |
KR102169539B1 (ko) | 2014-05-02 | 2020-10-23 | 미츠비시 가스 가가쿠 가부시키가이샤 | 폴리카보네이트 수지 조성물, 그리고 그것을 사용한 광학 재료 및 광학 렌즈 |
JP6507495B2 (ja) | 2014-06-12 | 2019-05-08 | 三菱ケミカル株式会社 | ポリカーボネート樹脂組成物 |
TWI727990B (zh) | 2015-11-04 | 2021-05-21 | 日商三菱瓦斯化學股份有限公司 | 熱可塑性樹脂之製造方法 |
WO2017078075A1 (ja) | 2015-11-04 | 2017-05-11 | 三菱瓦斯化学株式会社 | 熱可塑性樹脂の製造方法 |
JP7184520B2 (ja) | 2018-01-22 | 2022-12-06 | 旭化成株式会社 | トランス型脂環式カーボネートの製造方法 |
JP7141219B2 (ja) | 2018-01-22 | 2022-09-22 | 旭化成株式会社 | 脂環式カーボネートの製造方法 |
JP7073210B2 (ja) | 2018-06-29 | 2022-05-23 | Dynabook株式会社 | 電子機器および充電制御方法 |
-
2021
- 2021-01-15 TW TW110101642A patent/TWI788757B/zh active
- 2021-01-15 JP JP2021571270A patent/JP7284296B2/ja active Active
- 2021-01-15 US US17/792,813 patent/US20230192949A1/en active Pending
- 2021-01-15 EP EP21741616.3A patent/EP4092068A4/en active Pending
- 2021-01-15 CN CN202180009029.4A patent/CN114945619A/zh active Pending
- 2021-01-15 KR KR1020227024497A patent/KR20220117285A/ko active Search and Examination
- 2021-01-15 WO PCT/JP2021/001325 patent/WO2021145443A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160068630A1 (en) | 2013-04-29 | 2016-03-10 | Total Research & Technology Feluy | Process for Preparing Polycarbonates by Polymerization of Five-Membered-Ring Cyclic Carbonates |
CN107991842A (zh) | 2017-12-01 | 2018-05-04 | 浙江大学 | 一种聚碳酸酯作为电子束光刻胶材料的应用 |
Non-Patent Citations (2)
Title |
---|
GUERIN et al.,Enantiopure Isotactic PCHC Synthesized by Ring-Opening Polymerization of Cyclohexene Carbonate,Macromolecules,ACS PUBLICATIONS,2014年,47,pp.4230-4235,DOI:10.1021/ma5009397 |
LYUTIK, A. I. et al.,Derivatives of asymmetrically substituted myoinositol. IX. Methods for synthesizing phophoinositides. Synthesis of 1-0-(1',2'-di-0- stearoylglycerylphosphoryl)myoinositol,Zhurnal Obshchei Khimii,1971年,Vol.41, No.12,pp.2747-2753 |
Also Published As
Publication number | Publication date |
---|---|
CN114945619A (zh) | 2022-08-26 |
TW202134224A (zh) | 2021-09-16 |
JPWO2021145443A1 (ja) | 2021-07-22 |
US20230192949A1 (en) | 2023-06-22 |
KR20220117285A (ko) | 2022-08-23 |
TWI788757B (zh) | 2023-01-01 |
EP4092068A1 (en) | 2022-11-23 |
EP4092068A4 (en) | 2023-04-26 |
WO2021145443A1 (ja) | 2021-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7284296B2 (ja) | ポリカーボネート樹脂、ポリカーボネート樹脂組成物、それらを含む光学用成形体、及び環状カーボネート | |
JP2009249487A (ja) | 脂環式構造及びペルフルオロシクロブチルエーテル構造を有するポリマー | |
TWI791799B (zh) | 聚碳酸酯及成形體 | |
WO2012063965A1 (ja) | コポリカーボネート | |
KR20100046044A (ko) | 노르보르넨 유도체의 제조 방법 | |
JP2023039347A (ja) | 耐熱性に優れる脂環式ポリカーボネート樹脂、樹脂組成物、及びその製造方法 | |
CN109563209B (zh) | 用于光学制品的可聚合组合物 | |
WO2023182378A1 (ja) | ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学部品、及びポリカーボネート樹脂の製造方法 | |
JP7267008B2 (ja) | 新規なジヒドロキシ化合物 | |
JP2022134073A (ja) | 脂環式ポリカーボネート | |
WO2024024607A1 (ja) | 環式ジオール化合物、樹脂改質剤、該樹脂改質剤を用いた樹脂、及び該樹脂の用途 | |
JP2023151035A (ja) | 重合性組成物及びポリカーボネート樹脂 | |
JP2023160599A (ja) | ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学部品、及びポリカーボネート樹脂の製造方法 | |
WO2023243651A1 (ja) | ポリエーテル系樹脂ならびにその製造方法および用途 | |
JP2022152168A (ja) | ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学部品、及びポリカーボネート樹脂の製造方法 | |
CN118541413A (zh) | 聚碳酸酯树脂、聚碳酸酯树脂组合物、光学部件以及聚碳酸酯树脂的制造方法 | |
JP2024117294A (ja) | 環式ジアルコール化合物およびその製造方法 | |
WO2017170095A1 (ja) | 新規なジヒドロキシ化合物 | |
WO2022244451A1 (ja) | ポリエーテル系樹脂ならびにその製造方法および用途 | |
JP2018016546A (ja) | トリオキセタンエーテル化合物 | |
TW202239754A (zh) | 環式二醇化合物、該化合物之製造方法及該化合物之用途 | |
JP2022189641A (ja) | ポリカーボネートおよび樹脂成形体 | |
JP2024502984A (ja) | 樹脂およびその製造方法 | |
JP2023032408A (ja) | 環状カーボネートとその製造方法 | |
JP5759302B2 (ja) | 脂環式構造及びトリアジン構造を含む重合体、並びに当該重合体を含んでなる透明材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230518 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7284296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |