JP7275201B2 - 高濃度の生物学的実体を含むマスターバッチ組成物 - Google Patents

高濃度の生物学的実体を含むマスターバッチ組成物 Download PDF

Info

Publication number
JP7275201B2
JP7275201B2 JP2021106712A JP2021106712A JP7275201B2 JP 7275201 B2 JP7275201 B2 JP 7275201B2 JP 2021106712 A JP2021106712 A JP 2021106712A JP 2021106712 A JP2021106712 A JP 2021106712A JP 7275201 B2 JP7275201 B2 JP 7275201B2
Authority
JP
Japan
Prior art keywords
masterbatch composition
weight
polymer
masterbatch
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021106712A
Other languages
English (en)
Other versions
JP2021169608A (ja
Inventor
シャトー,ミシェル
ルーゼル,ジャン-フィリップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbios SA
Original Assignee
Carbios SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbios SA filed Critical Carbios SA
Publication of JP2021169608A publication Critical patent/JP2021169608A/ja
Application granted granted Critical
Publication of JP7275201B2 publication Critical patent/JP7275201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L99/00Compositions of natural macromolecular compounds or of derivatives thereof not provided for in groups C08L89/00 - C08L97/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/096Polyesters; Polyamides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • C12N9/60Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi from yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21062Subtilisin (3.4.21.62)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/04Starch derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • C08J2497/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/018Additives for biodegradable polymeric composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0033Additives activating the degradation of the macromolecular compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

本発明は、高濃度の生物学的実体を含む、新規なマスターバッチ組成物に関する。また、本発明は、このようなマスターバッチ組成物を製造するための方法及びプラスチック製品の製造のためのその使用に関する。
[発明の背景]
プラスチックは、安価で耐久性のある材料であり、広い範囲の用途に使用を見出す、各種の製品を製造するのに利用される。その結果として、プラスチックの製造は、最近10年間にわたって劇的に増えてきた。これらのプラスチックの大部分は、1回の使用で使い捨てられる用途、又は、製造から1年以内に廃棄される短い製品寿命の製品(例えば、バッグ、トレイ、容器、ボトルを含む包装材、農業用フィルム等)に使用される。(高い分子量値、疎水性、及び結晶性による)含まれるポリマーの耐久性及び生分解に対するその高い抵抗性のために、実質的な量のプラスチックが、埋立てサイト及び自然の生息地に蓄積され、世界的な環境問題をますます生じさせている。
これらの問題を解決するために、種々の物理的、化学的、及び/又は生化学的アプローチが、ポリマーの生分解抵抗性を低下させ、その生分解速度を向上させるのに開発されてきた。例えば、生分解性プラスチック製品が開発されてきた。しかしながら、環境中での分解条件は、このような生分解性プラスチックに最適ではなく、その分解は、一般的には部分的に生じる。
近年、ポリマー分解活性を有する生物学的実体を少量含有する、新たなプラスチック材料が開発されてきた。興味深いことに、生物学的実体は、前記プラスチック材料の少なくとも1つのポリマーを分解することができる。このようなプラスチック材料を製造するための方法は、国際公開公報第2013/093355号に記載されている。この方法により得られたプラスチック材料は、ポリマー中に分散された生物学的実体を含有し、改善された生分解性を有するプラスチック製品を製造するために、押出しダイに直接使用できる。
本発明は、向上した生分解性を有するプラスチック製品を製造するための、改善された方法及び組成物を提供する。本発明者らは、担体材料中に分散させた高濃度の生物学的実体を含有するマスターバッチ組成物を開発した。本発明者らは、このような組成物を優れた特性を有するプラスチック材料を製造するのに使用することができることを示してきた。特に、本発明の組成物及び方法により、プラスチック製品中に生物学的実体の改善された分散及び分布割合を有するプラスチック製品の製造が可能となり、このため、生分解性の改善された制御がもたらされる。さらに、本発明の方法は、プラスチック加工の標準的な操作において使用することができ、得られたプラスチック製品の機械的特性を損なわない。
[発明の概要]
本発明は、担体材料内に埋め込まれた高濃度の生物学的実体を含む、新規なマスターバッチ組成物に関する。また、本発明は、このようなマスターバッチ組成物を製造するための方法及び特に、プラスチック製品の製造のための方法におけるその使用に関する。驚くべきことに、本発明者らは、高温で行われる混合工程中であっても、多量の生物学的実体を担体材料内に導入することができること、及び、得られたマスターバッチ中の生物学的実体がポリマー分解活性を保持し、改善された生分解性を有するプラスチック製品の効率的な製造が可能となることを発見した。さらに、本発明により、マスターバッチが高温で混合することによりプラスチック内に導入された場合であっても、すなわち、生物学的実体の2回の連続的な加熱後(すなわち、マスターバッチの製造プロセス中及び前記マスターバッチをプラスチックの製造に使用している間)に、効果的な分解活性が、プラスチック製品中に存在することが示される。このため、本発明のマスターバッチ組成物及び方法は、工業的条件下において、改善されたプラスチック製品の製造に優れた利点を提供する。
したがって、本発明の目的は、担体材料と、ポリマー分解活性を有する生物学的実体とを含み、ここで、担体材料が、マスターバッチ組成物の総重量の10重量%~89重量%を表わす、マスターバッチ組成物を提供することである。
本マスターバッチ組成物は、好ましくは、マスターバッチ組成物の総重量に基づいて、11重量%~90重量% 生物学的実体を含む。
本発明の別の目的は、マスターバッチ組成物を製造するための方法であって、11重量%~90重量% ポリマー分解活性を有する生物学的実体を、10重量%~89重量% 担体材料と混合する工程(a)と、場合により、工程(a)の前記混合物を固体状に調整する工程(b)とを含む、方法を提供することである。
また、本発明は、プラスチック製品を製造するための、このようなマスターバッチ組成物の使用に関する。
加えて、本発明は、このようなマスターバッチ組成物から製造され、ここで、生物学的実体が、プラスチック製品の少なくとも1つのポリマーを分解するのに適している、プラスチック製品に関する。
また、本発明の目的は、少なくとも1つのポリマーを含むプラスチック製品を製造するための方法であって、
A-上記で定義されたマスターバッチ組成物を提供することであって、前記マスターバッチ中の生物学的実体が、前記少なくとも1つのポリマーを分解するのに適している提供、および
B-前記マスターバッチ組成物を、前記プラスチック製品の製造中に、前記ポリマー中に導入することを含む、方法を提供することでもある。
また、本発明の別の目的は、少なくとも1つのポリマーを含むプラスチック製品の生分解性を向上させるための方法であって、ポリマーを、本発明のマスターバッチ組成物と混合することであって、マスターバッチ組成物の生物学的実体が、前記ポリマーを分解する混合と、さらに、前記混合物を含むプラスチック製品を製造することとを含む、方法を提供することでもある。
本発明のマスターバッチ組成物を製造するのに使用することができる二軸押出し機の模式的表示(図1A:供給及び混合要素の再分割)。 本発明のマスターバッチ組成物を製造するのに使用することができる二軸押出し機の模式的表示(図1B:連続的な加熱ゾーンZ1~Z9の再分割)。 固体状の本発明のマスターバッチ組成物(50重量% ポリカプロラクトン及び50重量% リパーゼPS配合を含む);市販のポリカプロラクトン;及び、本マスターバッチ組成物を4重量%で前記市販のポリカプロラクトンと混合することにより得られた、本発明の2種類のプラスチック製品の生分解性試験についての結果。 市販のポリカプロラクトン、及び、本発明のマスターバッチ組成物(50重量% ポリカプロラクトン及び50重量% リパーゼPS配合)を4重量%で前記市販のポリカプロラクトンと混合することにより得られた、本発明のプラスチックフィルムの生分解性試験についての結果。 PLA及びプロテアーゼを含有する本発明のマスターバッチ(MB1、MB2)の分解試験についての結果。両マスターバッチは、高い分解割合(それぞれ24%及び41%)を示す。40% 生物学的実体を含有するマスターバッチは、20% 生物学的実体を含有するマスターバッチより、二倍高い分解割合を示す。 本発明のマスターバッチにより製造されたプラスチック製品(A、B)の分解試験についての結果。この結果から、生物学的実体の分解活性が、最終的なプラスチック製品において維持されていることが確認される。 本発明のマスターバッチにより製造されたプラスチック製品A(8% プロテアーゼ)及びB(2% プロテアーゼ)の分解試験についての、生物学的実体がプラスチック製品のポリマーに直接包含されているプラスチック製品C(8% プロテアーゼ)と比較した結果。結果から、本発明のマスターバッチにより製造されたプラスチック製品Aは、生物学的実体をプラスチック製品のポリマーに直接加えることにより製造されたプラスチック製品Cと比較して、より良好な生分解性を有することが確認される。 本発明のマスターバッチにより製造されたプラスチック製品と、生物学的実体がプラスチック製品のポリマーに直接加えられている対照プラスチック製品の分解の比較結果。結果から、マスターバッチにより製造されたプラスチック製品は、対照プラスチック製品と比較して、より良好な生分解性を有することが確認される。
[発明の詳細な説明]
本発明は、改善されたプラスチック材料及び製品を製造するための、新規な組成物及び方法に関する。とりわけ、本発明は、高濃度の生物学的実体と担体材料とを含む、新規なマスターバッチ組成物を提供する。本発明により、このようなマスターバッチ組成物が、活性な生物学的実体の適切な分散及び分布割合を有する、改善された生分解性プラスチック製品を調製するのに使用することができることが示される。さらに、前記マスターバッチは、連続的な熱曝露にも関わらず、完全なポリマー分解活性を有するプラスチック製品を製造するのに、古典的なマスターバッチと同様に使用することができる。
定義
本開示は、下記定義を参照することにより、最も良く理解されるであろう。
本明細書で使用する場合、「マスターバッチ組成物」という用語は、プラスチック製品又は材料に所望の特性を付与するために、それらに成分を導入するのに使用することができる、選択された成分(例えば、活性剤、添加剤等)の濃縮混合物を示す。マスターバッチ組成物は、固体又は液体であることができる。マスターバッチ組成物により、加工業者が、プラスチック製造プロセス中において経済的に、選択された成分を導入するのが可能となる。一般的には、マスターバッチ組成物は、所望量の選択された成分を有する最終的なプラスチック製品を製造するために、ベースポリマーと共に使用される。好ましくは、本発明のマスターバッチ組成物は、少なくとも10重量% 活性成分、より好ましくは、ポリマー分解活性を有する生物学的実体を含有する。
本発明の文脈内において、「プラスチック製品(plastic article)」又は「プラスチック製品(plastic product)」という用語は、互換的に使用され、少なくとも1つのポリマーから製造された任意の品目、例えば、プラスチックシート、チューブ、ロッド、プロファイル、シェイプ、大きなブロック、繊維等を意味する。好ましくは、プラスチック製品は、製造された製品、例えば、硬い又は可撓性の包装材、農業用フィルム、バッグ、及び袋、使い捨て品目等である。好ましくは、プラスチック製品は、半結晶及び/もしくは非結晶性ポリマー、又は半結晶性ポリマーと添加剤との混合物を含む。プラスチック製品は、更なる物質又は添加剤、例えば、可塑剤、鉱物、又は有機充填材を含有することができる。
「プラスチック材料」という用語は、典型的には、任意の成形又は調整工程前の、ポリマー及び更なる化合物(例えば、添加剤、増強剤等)の原混合物を意味する。
「ポリマー」は、構造が共有化学結合により結合されている複数の繰返し単位により構成されている、化合物又は化合物の混合物を意味する。本発明の文脈内において、「ポリマー」という用語は、天然又は合成ポリマーを含み、これらは、1種類の繰返し単位(すなわち、ホモポリマー)又は異なる種類の繰返し単位(すなわち、ブロックコポリマー及びランダムコポリマー)を含む。例として、合成ポリマーは、石油由来のポリマー又は生物由来のポリマー、例えば、ポリオレフィン、脂肪族又は芳香族ポリエステル、ポリアミド、ポリウレタン、及び塩化ポリビニルを含む。天然ポリマーは、可塑化されていてもよく、又は、可塑化されていなくてもよい、リグニン及び多糖類、例えば、セルロース、ヘミセルロース、デンプン、ならびにそれらの誘導体を含む。
本発明の文脈において、「担体材料」という用語は、大量の選択された成分(生物学的実体を含む)を担持することができ、プラスチック製品中に更に包含される、任意の材料を意味する。有利に、担体材料は、広い範囲のポリマー又はプラスチック製品を製造するのに通常使用される特定のポリマーに適合性である。好ましくは、担体材料は、マスターバッチを包含するであろう主成分のポリマーと適合性である。担体材料は、一般的には、鉱物もしくは有機充填材又は天然もしくは合成ポリマー、あるいは、それらの任意の組み合わせを含む。
本発明の文脈において、「充填材」という用語は、プラスチック材料及び/又はプラスチック製品に、それらのコストを下げ、又は場合により、それらの物理的特性(例えば、その硬度、剛性、又は強度)を改善するために包含される物質を意味する。充填材は、不活性(すなわち、不活性)又は活性な材料であることができ、プラスチック材料又は製品の成分と化学結合を形成することができる。充填材は、合成、天然、又は改質充填材であることができる。充填材は、鉱物及び/又は有機充填材を含むことができる。プラスチック製造業界において使用される鉱物充填材の例は、炭酸カルシウム(石灰石)、ケイ酸マグネシウム(タルク)、硫酸カルシウム(石膏)、マイカ、ケイ酸カルシウム、硫酸バリウム、及びカオリン(陶土)を含むが、これらに限定されない。有機充填材の例は、デンプン、セルロース又はヘミセルロース、穀粉、木粉、樹皮粉、ナッツ粉、麻すさ、ニワトリの羽、及びもみ殻を含むが、これらに限定されない。
本明細書で使用する場合、「生物学的実体」という用語は、活性な酵素又は酵素生成微生物、例えば、胞子形成微生物、及びそれらの組み合わせ又は配合を示す。例えば、「生物学的実体」は、純粋な酵素又は微生物ならびに酵素及び/又は微生物と希釈剤又は担体、例えば、安定化成分及び/又は可溶化成分(水、グリセロール、ソルビトール、デキストリン(マルトデキストリン及び/又はシクロデキストリンを含む)、デンプン、グリコール、例えば、プロパンジオール、塩等を含む)とを含有する配合を意味することができる。生物学的実体は、固形状(例えば、粉末)又は液状であることができる。
本明細書で使用する場合、「重量」という用語は、考慮される組成物又は製品の総重量に基づく割合を意味する。
本発明の文脈において、「約」という用語は、+/-5%、好ましくは、+/-1%の許容差、又は、適切な測定装置又は機器の許容範囲内を意味する。
生物学的実体
本発明は、担体材料と、ポリマー分解活性を有する生物学的実体とを含み、ここで、前記生物学的実体は、マスターバッチ組成物の11重量%超を表わす、マスターバッチ組成物に関する。本発明によれば、このようなマスターバッチ組成物は、ポリマー分解活性を示し、プラスチック材料及び製品に、改善された生分解性を付与するのに使用することができる。
特定の実施態様では、本マスターバッチ組成物は、15重量%超、好ましくは、20%超、より好ましくは、30%超、及びさらにより好ましくは、40%超 生物学的実体を含む。有利に、本マスターバッチ組成物は、11重量%~90重量% 生物学的実体、好ましくは、20%~80%、より好ましくは、30%~70%、及びさらにより好ましくは、40重量%~60重量% 生物学的実体を含む。好ましい実施態様では、本マスターバッチ組成物は、約50重量% 生物学的実体を含む。
好ましい実施態様では、生物学的実体は、少なくとも、ポリマー分解活性を有する酵素、及び/又は、少なくとも、ポリマー分解活性を有する酵素を発現し、及び場合により分泌する微生物を含む。
特定の実施態様では、生物学的実体は、少なくとも、合成ポリマー分解活性を有する酵素、及び/又は、少なくとも、合成ポリマー分解活性を有する酵素を発現し、及び場合により、分泌する微生物を含むか、又は、これらからなる。好ましくは、生物学的実体は、少なくとも、ポリエステル分解活性を有する酵素、及び/又は、少なくとも、ポリエステル分解活性を有する酵素を発現し、及び場合により、分泌する微生物を含むか、又は、これらからなる。
本発明に使用するのに適したポリマー分解活性を有する酵素の例は、デポリメラーゼ、エステラーゼ、リパーゼ、クチナーゼ、ヒドラーゼ、プロテアーゼ、ポリエステラーゼ、オキシゲナーゼ、及び/又はオキシダーゼ、例えば、ラッカーゼ、ペルオキシダーゼ、もしくはオキシゲナーゼを含むが、これらに限定されない。酵素は、純粋もしくは濃縮された状態、又は、他の賦形剤もしくは希釈剤との混合物の状態であることができる。酵素の組み合わせも使用することができる。
別の実施態様では、生物学的実体は、このような酵素を天然に生成する微生物、又は、特定の操作の結果として、このような酵素を生成する微生物(例えば、リコンビナント微生物)のいずれかを含む。適切な微生物の好ましい例は、細菌、真菌、及び酵素を含むが、これらに限定されない。実施態様において、生物学的実体は、胞子形成微生物及び/又はその胞子を含む。
特定の実施態様では、生物学的実体は、本マスターバッチの担体材料と同じ材料からなるナノカプセルに封入された酵素、ケージ分子に封入された酵素、及び、互いに凝集した酵素を含む。別の特定の実施態様では、生物学的実体は、本マスターバッチの担体材料とは異なる材料のナノカプセルに封入された酵素を含む。特に、このような材料は、本マスターバッチの担体材料と適合性、及び/又は、混和性の材料の中から選択される。「ケージ分子」という用語は、酵素を安定させ、高温に抵抗性にするために、前記酵素の構造内に挿入することができる分子を示す。封入技術は、当業者に周知であり、例えば、ナノエマルジョンを含む。
生物学的実体は、液状又は固体状で供給することができる。例えば、生物学的実体は、粉末状であることができる。この目的で、生物学的実体は、乾燥させ、又は、脱水させることができる。生物学的実体、例えば、微生物又は酵素を乾燥させ、又は、脱水させるための方法は、当業者に周知であり、凍結乾燥、フリーズドライ、噴霧乾燥、超臨界乾燥、吹込み蒸発、薄層蒸発、遠心分離蒸発、コンベア乾燥、流動床乾燥、ドラム乾燥、又はそれらの任意の組み合わせを含むが、これらに限定されない。
特定の実施態様では、本マスターバッチを調製するのに使用される生物学的実体は、希釈剤又は担体、例えば、安定化成分及び/又は可溶化成分と混合された酵素及び/又は微生物の配合である。例えば、この配合は、水に懸濁させた酵素及び/又は微生物、ならびに場合により、更なる成分、例えば、グリセロール、ソルビトール、デキストリン、デンプン、グリコール、例えば、プロパンジオール、塩等を含む溶液であることができる。あるいは、この配合は、安定化粉末、例えば、マルトデキストリンと混合された、粉末状の酵素及び/又は微生物を含む粉末であることができる。
特定の実施態様では、生物学的実体は、ポリマー分解微生物の培養上清を含む。これに関して、本発明の特定の目的は、20%~80%、より好ましくは、30%~70%、及びさらに好ましくは、40重量%~60重量% ポリマー分解微生物の培養上清を含む、上記で定義された液体のマスターバッチ組成物に関する。上清は、酵素濃度を向上させ、及び/又は、他の成分、例えば、DNA又は細胞デブリを除去するために、(例えば、機械的又は物理的又は化学的に)処理することができる。
担体材料
本発明によれば、本マスターバッチ組成物は、本組成物の総重量に基づいて、10重量%~89重量% 担体材料を含む。特定の実施態様では、担体材料は、80重量%未満、好ましくは、70%未満、及びより好ましくは、60%未満を表わす。例えば、本発明の好ましいマスターバッチ組成物は、20重量%~80重量%、好ましくは、30%~70%、より好ましくは、40%~60% 担体材料を含む。特定の実施態様では、本マスターバッチ組成物は、約45重量% 担体材料を含む。本マスターバッチ組成物中の担体材料の量は、当業者に周知の技術、例えば、熱重量測定分析又は分光法により容易に評価することができる。この担体材料の量は、本マスターバッチの製造中に容易に調整することができる。
本発明によれば、担体材料は、好ましくは、鉱物もしくは有機充填材、又は天然もしくは合成ポリマー、又はそれらの任意の組み合わせから選択される。
特定の実施態様では、担体材料は、ポリマーを含む。ポリマーは、天然又は合成ポリマーから選択される。特に、本マスターバッチ組成物は、本マスターバッチ組成物の生物学的実体により分解することができるポリマーを含む。
天然ポリマーは、リグニン、多糖類、例えば、セルロース又はヘミセルロース、デンプン、キチン、キトサン、及びそれらの誘導体又はそれらのブレンド/混合物からなる群より選択することができる。特定の実施態様では、天然ポリマーは、本マスターバッチ組成物を製造するためのその使用の前に、(例えば、可塑剤、例えば、水又はグリセロールにより)可塑化される。このような可塑化工程により、天然ポリマーの化学構造が改質され、プラスチック製造プロセスを通してその使用が可能となる。
合成ポリマーは、ポリオレフィン、脂肪族もしくは半芳香族ポリエステル、ポリアミド、ポリウレタン、又はビニルポリマー、及びその誘導体又はこれらの材料のブレンド/混合物からなる群より選択することができるが、これらに限定されない。
本発明に使用するのに好ましいポリオレフィンは、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリブテン-1(PB-1)、ポリイソブチレン(PIB)、エチレンプロピレンゴム(EPR)、エチレンプロピレンジエンモノマーゴム(EPDM)、環状オレフィンコポリマー(COC)、及びそれらの誘導体又はブレンド/混合物を含むが、これらに限定されない。
本発明に使用するのに好ましい脂肪族ポリエステルは、ポリ乳酸(PLA)、ポリ(L-乳酸)(PLLA)、ポリ(D-乳酸)(PDLA)、ポリ(D,L-乳酸)(PDLLA)、PLA立体複合体(scPLA)、ポリグリコール酸(PGA)、ポリヒドロキシアルカノアート(PHA)、ポリカプロラクトン(PCL)、ポリブチレンスクシナート(PBS)を含むが、これらに限定されない。半芳香族ポリエステルは、ポリエステルテレフタラート(PET)、ポリトリメチレンテレフタラート(PTT)、ポリブチレンテレフタラート(PBT)、ポリエチレンイソソルビドテレフタラート(PEIT)、ポリブチレンスクシナートアジパート(PBSA)、ポリブチレンアジパートテレフタラート(PBAT)、ポリエチレンフラノアート(PEF)、ポリ(エチレンアジパート)(PEA)、ポリエチレンナフタラート(PEN)、及びそれらの誘導体又はブレンド/混合物から選択される。
本発明に使用するのに好ましいポリアミドポリマー(ナイロンとも呼ばれる)は、ポリアミド-6又はポリ(β-カプロラクタム)又はポリカプロアミド(PA6)、ポリアミド-6,6又はポリ(ヘキサメチレンアジパミド)(PA6,6)、ポリ(11-アミノウンデカノアミド)(PA11)、ポリドデカノラクタム(PA12)、ポリ(テトラメチレンアジパミド)(PA4,6)、ポリ(ペンタメチレンセバカミド)(PA5,10)、ポリ(ヘキサメチレンアゼラアミド)(PA6,9)、ポリ(ヘキサメチレンセバカミド)(PA6,10)、ポリ(ヘキサメチレンドデカノアミド)(PA6,12)、ポリ(m-キシリレンアジパミド(PAMXD6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(PA66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(PA66/6I)、及びそれらの誘導体又はブレンド/混合物を含むが、これらに限定されない。
好ましいビニルポリマーは、ポリスチレン(PS)、塩化ポリビニル(PVC)、塩化ポリビニル(PVdC)、エチレンビニルアセタート(EVA)、エチレンビニルアルコール(EVOH)、ポリビニルアルコール(PVOH)、及びこれらの材料の誘導体又はブレンド/混合物を含む。
特定の実施態様では、本マスターバッチの担体材料は、180℃を下回る融点及び/又は70℃を下回るガラス転移点を有する、少なくとも1つのポリマーを含む。同ポリマーは、好ましくは、PLA、PCL、PBAT、PHA、PBS、及びEVAからなる群より選択される。好ましくは、本マスターバッチの担体材料は、120℃を下回る融点及び/又は30℃を下回るガラス転移点を有する、少なくとも1つのポリマーを含む。同ポリマーは、好ましくは、PCL、PBAT、及びEVAからなる群より選択される。
特定の実施態様では、本マスターバッチ組成物は、「ユニバーサル」ポリマー、すなわち、広い範囲のポリマーと適合性のポリマーを含む。最も多くの場合、公知のユニバーサルマスターバッチ組成物は、エチレンビニルアセタートコポリマー(EVA)を、担体材料として使用する。
別の実施態様では、担体材料は、充填材を含む、充填材は、プラスチック業界において従来から使用されている任意の充填材から選択することができる。充填材は、天然又は合成のものであることができる。充填材は、鉱物又は有機充填材から選択することができる。好ましい実施態様では、鉱物充填材は、方解石、炭酸塩、又は金属炭酸塩、例えば、炭酸カルシウム(又は石灰石)、炭酸カリウム、炭酸マグネシウム、炭酸アルミニウム、炭酸亜鉛、炭酸銅、チョーク、ドロマイト、ケイ酸塩、例えば、含水ケイ酸マグネシウム、例えば、タルク又はせっけん石、ケイ酸カルシウム(珪灰石)、ケイ酸カリウム、ケイ酸マグネシウム(タルク)、ケイ酸アルミニウム(カオリン)、又はそれらの混合物、例えば、マイカ、スメクタイト、例えば、モンモリロナイト、バーミキュライト、及びパリゴルスカイト-セピオライト、硫酸塩、例えば、硫酸バリウム又は硫酸カルシウム(石膏)、マイカ、水酸化物塩又は金属水酸化物、例えば、水酸化カルシウム又は水酸化カリウム(カリ)又は水酸化マグネシウム又は水酸化アルミニウム又は水酸化ナトリウム(苛性ソーダ)、ヒドロタルサイト、金属酸化物、又は酸化物塩、例えば、酸化マグネシウム又は酸化カルシウム又は酸化アルミニウム又は酸化鉄又は酸化銅、クレイ、アスベスト、シリカ、グラファイト、カーボンブラック、金属繊維、又は金属フレーク、ガラス繊維、磁性充填材、アラミド繊維、セラミック繊維、及びその誘導体、又はこれらの材料のブレンド/混合物からなる群より選択されるが、これらに限定されない。別の好ましい実施態様では、有機充填材は、木粉、植物又は野菜粉、例えば、穀粉(トウモロコシ粉、小麦粉、米粉、大豆粉、殻粉、貝殻粉、トウモロコシの穂軸粉、コルク粉、もみ殻粉);おがくず;植物繊維、例えば、亜麻繊維、樹木繊維、麻繊維、竹繊維、ニワトリ羽、及びそれらの誘導体またはこれらの材料のブレンド/混合物からなる群より選択される。天然ポリマーは、有機充填材としても使用することができる。同天然ポリマーは、例えば、リグニン、又は多糖類、例えば、セルロース又はヘミセルロース、デンプン、キチン、キトサン、及びこれらの材料の誘導体又はブレンド/混合物である。充填材の種類及び正確な量は、当業者により、マスターバッチ組成物の種類及び本願で提供される下記ガイダンスに応じて採用することができる。
特定の実施態様では、本マスターバッチ組成物は、ポリマー及び充填材の両方を含む。
例えば、本マスターバッチ組成物は、好ましくは、充填材より多くのポリマーを含む。逆に、本マスターバッチ組成物は、ポリマーより多くの充填材を含むことができる。
更なる化合物
本マスターバッチ組成物は、1つ又は複数の更なる化合物を更に含むことができる。
特に、本マスターバッチ組成物は、1つ以上の添加剤を更に含むことができる。一般的には、添加剤は、最終製品(すなわち、前記マスターバッチ組成物により製造された最終的なプラスチック製品)の特定の特性を向上させるために使用される。例えば、添加剤は、可塑剤、着色剤、加工助剤、レオロジー剤、帯電防止剤、抗UV剤、強化剤、防曇剤、適合剤、スリップ剤、難燃剤、抗酸化剤、光安定剤、酸素スカベンジャー、インク、接着剤、肥料、及び植物検疫製品からなる群より選択することができるが、これらに限定されない。有利に、本マスターバッチ組成物は、20重量%未満 このような添加剤、好ましくは、10%未満、より好ましくは、5%未満、典型的には、0.1~4重量% このような添加剤を含む。
別の特定の実施態様では、本マスターバッチ組成物は、少なくとも1つの酸化促進要素を更に含む。同要素は、好ましくは、金属、例えば、コバルト、鉄、マンガン、ニッケル、又は亜鉛のカルボン酸塩からなる群より選択されるが、これらに限定されない。有利に、本マスターバッチ組成物は、20重量%未満 酸化促進剤、好ましくは、10%未満、より好ましくは、5%未満、典型的には、0.1~4重量% このような添加剤を含む。
マスターバッチ組成物
本発明の目的は、担体材料中に埋め込まれた高濃度の活性な生物学的実体を含む、マスターバッチ組成物を提供することである。本発明によれば、多量の、ポリマー分解活性を有する活性な生物学的実体が、ポリマー分解活性が存在する組成物を製造するために、担体材料に加えられる。本発明のマスターバッチ組成物は、環境条件における改善された分解性を有するプラスチック製品又は材料を更に調製するのに容易に使用することができる。
本マスターバッチ組成物は、固体状(例えば、粉末又は顆粒)又は液状であることができる。好ましくは、本マスターバッチ組成物は、1~60に含まれるメルトフローインデックスを有する物理的に固体状である。このようなメルトフローインデックスは、当業者に公知の技術、例えば、キャピラリーレオメーター又はメルトフローレオメーターにより測定することができる。本マスターバッチ組成物の形状は、有利に、前記組成物の最終目的(例えば、ポリマーの性質、製造されるプラスチック製品の種類等)に適応させることができる。
同じ方法において、生物学的実体及びその量を、最終的なプラスチック製品に適応させることができる。
特定の実施態様では、本マスターバッチ組成物は、本マスターバッチ組成物の総重量に基づいて、
- 5~30重量% 少なくとも1つのポリマー、
- 5~30重量% 少なくとも1つの充填材、
- 30~70重量% ポリマー分解活性を有する生物学的実体、ならびに場合により、
- 少なくとも1つの添加剤及び/又は少なくとも1つの酸化促進剤を含む。
別の特定の実施態様では、本マスターバッチ組成物は、本マスターバッチ組成物の総重量に基づいて、
- 30~70重量% 少なくとも1つのポリマー、
- 5~30重量% 少なくとも1つの充填材、
- 20~40重量% ポリマー分解活性を有する生物学的実体、ならびに場合により、
- 少なくとも1つの添加剤及び/又は少なくとも1つの酸化促進剤を含む。
別の実施態様では、本マスターバッチ組成物は、本マスターバッチ組成物の総重量に基づいて、
- 30~70重量% 少なくとも1つのポリマー、及び
- 30~70重量% ポリマー分解活性を有する生物学的実体、ならびに場合により、
- 少なくとも1つの添加剤及び/又は少なくとも1つの酸化促進剤を含む。
特に、前記生物学的実体は、本マスターバッチ組成物のポリマーを分解することができる。
別の実施態様では、本マスターバッチ組成物は、本マスターバッチ組成物の総重量に基づいて、
- 30~70重量% 少なくとも1つの充填材料、及び
- 30~70重量% ポリマー分解活性を有する生物学的実体、ならびに場合により、
- 少なくとも1つの添加剤及び/又は少なくとも1つの酸化促進剤を含む。
具体的な実施態様では、本発明は、30~70重量% リパーゼ配合と、30~70重量% ポリカプロラクトンとを含む、好ましくは、40~60重量% リパーゼ配合と、40~60重量% ポリカプロラクトンとを含む、より好ましくは、約50重量% リパーゼ配合と、約50重量% ポリカプロラクトンとを含む、マスターバッチ組成物に関する。
別の実施態様では、本マスターバッチ組成物は、15~60重量%、好ましくは、15~50重量% プロテアーゼ(例えば、プロテイナーゼK又はSavinase(登録商標)又はActinomadura keratinilyticaからのプロテアーゼ、又はLaceyella sacchari LP175からのプロテアーゼ)配合と、50~85重量% PLAとを含む、好ましくは、20~40重量% プロテアーゼ配合と、60~80重量% PLAとを含む。
特定の実施態様では、本マスターバッチ組成物は、15~45重量% PLA分解胞子配合と、25~65重量% PLAと、10~50重量% 小麦粉とを含む、好ましくは、15~35重量% PLA分解胞子配合と、35~55重量% PLAと、20~40重量% 小麦粉とを含む、より好ましくは、約25重量% PLA分解胞子配合と、約45重量% PLAと、約30重量% 小麦粉とを含む。
特定の実施態様では、本マスターバッチ組成物は、20~60重量% リパーゼ配合と、30~70重量% PCLと、1~30重量% CaCOとを含む、好ましくは、30~50重量% リパーゼ配合と、40~60重量% PCLと、1~20重量% CaCOとを含む、より好ましくは、約40重量% リパーゼ配合と、約50重量% PCLと、約10重量% CaCOとを含む。
別の特定の実施態様では、本マスターバッチ組成物は、15~50重量% PLA分解プロテアーゼ配合と、50~85重量% PBATとを含む、好ましくは、20~40重量% PLA分解プロテアーゼ配合と、60~80重量% PBATとを含む、より好ましくは、約40重量% PLA分解プロテアーゼ配合と、約60重量% PBATとを含む。
別の特定の実施態様では、本マスターバッチ組成物は、15~50重量% PLA分解プロテアーゼ配合と、50~85重量% PCLとを含む、好ましくは、20~40重量% PLA分解プロテアーゼ配合と、60~80重量% PCLとを含む、より好ましくは、約40重量% PLA分解プロテアーゼ配合と、約60重量% PCLとを含む。
特定の実施態様では、本マスターバッチ組成物は、15~50重量% PLA分解プロテアーゼ配合と、40~80重量% PCLと、1~30重量% CaCOとを含む、好ましくは、20~40重量% PLA分解プロテアーゼ配合と、40~60重量% PCLと、1~20重量% CaCOとを含む、より好ましくは、約30重量% PLA分解プロテアーゼ配合と、約60重量% PCLと、約10重量% CaCOとを含む、
特定の実施態様では、本マスターバッチ組成物は、15~50重量% オキシダーゼ配合と、45~85重量% PEと、1~20重量% 酸化促進剤とを含む、好ましくは、20~40重量% オキシダーゼ配合と、55~75重量% PEと、1~10重量% 酸化促進剤とを含む、より好ましくは、約30重量% オキシダーゼ配合と、約65重量% PEと、約5重量% 酸化促進剤とを含む。
特定の実施態様では、本マスターバッチ組成物は、当業者に公知の少なくとも1つの関連する基準及び/又はラベル、例えば、EN13432基準、ASTM D6400基準、OK Biodegradation Soil(Label Vincotte)、OK Biodegradation Water(Label Vincotte)、OK Compost(Label Vincotte)、OK Compost Home(Label Vincotte)に適合する、生分解性マスターバッチ組成物である。
生分解性マスターバッチ組成物は、環境条件下において、本マスターバッチの少なくとも1つのポリマーのオリゴマー及び/もしくはモノマー、水、二酸化炭素、又はメタン及びバイオマスに、少なくとも部分的に変換される、マスターバッチ組成物を意味する。実施例に例示されたように、本発明の好ましいマスターバッチ組成物は、水中において生分解性である。好ましくは、約90重量% 本マスターバッチ組成物が、90日未満、より好ましくは、60日未満、さらにより好ましくは、30日未満で、水中において生分解される。代替的に又は付加的に、本マスターバッチ組成物は、埋立て時に生じる湿度及び温度条件に曝された場合、生分解することができる。好ましくは、約90重量% 本マスターバッチ組成物が、環境中で3年未満、より好ましくは2年未満、さらにより好ましくは、1年未満で生分解される。あるいは、本マスターバッチ組成物は、温度が50℃を上回って維持されている、工業的なコンポスト化条件下において生分解することができる。
マスターバッチの製造方法
また、本発明は、マスターバッチ組成物の総重量に基づく11重量%~90重量% ポリマー分解活性を有する生物学的実体を、10重量%~89重量% 担体材料と混合する工程(a)と、場合により、工程(a)の前記混合物を固体状に調整する工程(b)とを含む、上記されたマスターバッチ組成物を製造するための方法に関する。特定の実施態様では、本方法は、少なくとも1つの添加剤及び/又は少なくとも1つの酸化促進剤を、生物学的実体及び担体材料と混合する工程を、更に含む。
特定の実施態様では、混合工程(a)は、大気温度、すなわち、45℃を下回る、好ましくは、35℃を下回る、より好ましくは、30℃~20℃の温度において、粉末及び/又は液体を混合することにより行われる。
例えば、混合工程(a)は、担体材料及び生物学的実体の粉末について行われる。この目的で、担体及び/又は生物学的実体を、混合工程(a)の前に、このような粉末状をもたらすために、機械的に予め処理することができる、特に、担体材料を、粉砕することができ、及び/又は、生物学的実体を、乾燥させ、又は、脱水させることができる。好ましくは、本方法は、粉末(すなわち、担体材料及び生物学的実体)を、例えば、攪拌等により均質にする工程を更に含む。このような粉末混合物は、押出し機、好ましくは、一軸押出し機、同時回転又は異方向回転設計のいずれかの多軸押出し機、分散混練機、往復型一軸押出し機(同時混練機)内でブレンドすることができる。このような押出し工程により、担体材料が部分的又は全体的に溶融状態にある温度において、担体材料中における生物学的実体の分散の均一性及び均質性が確保される。
あるいは、混合工程(a)は、液状の担体材料及び生物学的実体について行われる。例えば、担体材料は、混合工程(a)の前に液体中に希釈され、及び/又は、安定化成分及び/又は可溶化成分を含む生物学的実体の液体配合が使用される。
あるいは、好ましい実施態様では、混合工程(a)は、担体材料が部分的又は全体的に溶融状態にある温度において行われる。このため、混合工程(a)は、担体材料の性質に応じて、とりわけ、ポリマーの性質に応じて、40℃を上回る、特に、45℃、55℃、60℃、70℃、80℃、90℃、100℃を上回る、又は更に、150℃を上回る温度で行うことができる。典型的には、この温度は、300℃を超えない。とりわけ、この温度は、250℃を超えない。混合工程の温度は、本マスターバッチ組成物の製造に使用される担体、ポリマー、及び/又は充填材の種類に応じて、当業者により適応させることができる。特に、この温度は、担体材料の成分の融点又は融解温度に基づいて選択される。特定の実施態様では、混合工程(a)は、担体材料のポリマーの融点において行われる。ついで、ポリマーは、部分的又は全体的に溶融状態にある。別の実施態様では、混合工程(a)は、前記ポリマーのガラス転移点(Tg)と融点との間の温度で行われる。別の特定の実施態様では、混合工程(a)は、前記ポリマーの融点を上回る温度で行われる。
特定の実施態様では、本マスターバッチ組成物は、「コンパウンディング」と呼ばれるプロセス、通常、押出し造粒プロセスにより製造することができる。同プロセスにおいて、担体材料は溶融され、生物学的実体と混合される。コンパウンディングは、最終的なコンパウンドにおける均一性、均質性、及び分散を確保するために、熱プロセス中に、混合技術とブレンド技術とを組み合わせる。コンパウンディングは、当業者に公知の技術である。このようなコンパウンディングプロセスは、押出し機、例えば、一軸押出し機、同時回転又は異方向回転設計のいずれかの多軸押出し機、分散混練機、往復一軸押出し機(同時混練機)により行うことができる。
別の特定の実施態様では、本マスターバッチ組成物は、欧州特許第2173529号に開示された「パステル形成」と呼ばれるプロセスにより製造することができる。
より一般的には、混合工程(a)は、担体材料が加熱され、溶融され、生物学的実体と混合される、押出し機により行うことができる。
好ましい実施態様では、本マスターバッチ組成物の製造に使用される押出し機は、多軸押出し機、好ましくは、二軸押出し機、より好ましくは、同時回転型二軸押出し機である。特定の実施態様では、押出し機は、スクリューの後に、スタティックミキサーを更に含む。別の実施態様では、押出し機は、孔があいたダイ、好ましくは、2つの孔があいたダイと共に使用される。
好ましい実施態様では、押出し機中の混合物の滞留時間は、5秒~3分に含まれ、好ましくは、2分未満、より好ましくは、1分未満である。本マスターバッチが180℃を下回る溶融温度を有するポリマーを含む場合、押出し機中の混合物の滞留時間は、好ましくは、2分未満である。
当業者であれば、押出し機の特徴(例えば、スクリューの長さ及び直径等)及び担体材料の滞留時間、添加剤、ならびに意図されたマスターバッチ組成物の種類を容易に適応させるであろう。
担体材料は、粉末状又は顆粒状で、好ましくは、顆粒状で押出し機に導入することができる。
上記で開示されたように、生物学的実体は、粉末状又は液状で、例えば、安定化成分及び/又は可溶化成分(例えば、水、グリセロール、ソルビトール、デキストリン(マルトデキストリン及びシクロデキストリンを含む)、デンプン、グリコール、例えば、プロパンジオール、塩等)を含む液体配合で、押出し機に導入することができる。
有利に、生物学的実体は、混合工程の最後の段階、及びとりわけ、担体材料が部分的又は全体的に溶融状態にある時点で導入される。このため、高温への曝露が少なくなる。好ましくは、押出し機中の生物学的実体の滞留時間は、担体材料の滞留時間の半分以下である。
本発明によれば、混合工程(a)後に、混合物は、任意の適切な固体状に調整する(b)ことができる。これに関して、好ましい実施態様では、液体混合物又は溶融混合物は、ダイを通してロッドに形成される。ついで、ロッドは冷却され、及び場合により、乾燥され、その後、マスターバッチの顆粒及び/又はパステルの状態に細断される。更なる実施態様では、前記マスターバッチの顆粒は、粉砕され、又は、微細化されて、前記マスターバッチの粉末を製造することができる。
工程(a)で示された混合物が粉末混合物である場合、粉末混合物を、好ましくは、押出し機中において、押出し造粒プロセスに供することができる、これにより、混合物は、工程(b)の前に、部分的又は全体的に溶融した状態にある。
あるいは、工程(a)で示された生物学的実体と担体材料粉末との混合物は、物理的に固体状に凝集される。
あるいは、本マスターバッチ組成物は、酵素吸収プロセス、例えば、Jesionowski et al., Adsorption (2014) 20:801-821に記載されたプロセスにより製造することができる。このようなプロセスは、当業者に周知であり、マスターバッチ組成物、マスターバッチ組成物に包含されるであろう生物学的実体及び/又は担体材料の種類に応じて、容易に適応されるであろう。
特に、本マスターバッチ組成物は、当業者に公知の任意の技術により、マスターバッチ組成物の種類に応じて製造することができる。
プラスチック製品の製造方法
また、本発明は、改善された分解性又は制御された分解性を有するプラスチック製品を製造するための、本発明のマスターバッチ組成物の使用に関する。本発明のマスターバッチ組成物は、ポリマー分解活性を有する生物学的実体を、製造プロセス中に、ポリマーに供給するのに容易に使用することができる。本発明によれば、生物学的実体は、プラスチック製品のポリマーを分解することができる生物学的実体の中から選択される。驚くべきことに、本発明者らは、マスターバッチ組成物が溶融ポリマーと混合され、混合物が意図された形状に成形された後であっても、生物学的実体が、ポリマー分解活性を未だに示すことを発見した。種々の量のマスターバッチ組成物を、生物学的実体及びポリマーの性質、プラスチック製品の種類及びその使用等に応じて、ポリマーに加えることができる。さらに、得られたプラスチック製品は、前記生物学的実体の良好な分散及び分布割合を示す。
また、本発明の目的は、本マスターバッチ組成物の生物学的実体がプラスチック製品の少なくとも1つのポリマーを分解するのに適している、本発明のマスターバッチ組成物から製造されたプラスチック製品を提供することである。
本発明は、少なくとも1つのポリマーを含むプラスチック製品を製造するための方法であって、
A-本発明のマスターバッチ組成物を提供することであって、生物学的実体が、プラスチック製品の前記少なくとも1つのポリマーを分解するのに適している提供、および B-前記マスターバッチ組成物を、前記少なくとも1つのポリマーに導入することを含む、方法に関する。
有利に、ポリマーは、天然又は合成ポリマー、ならびに/又はその誘導体及び/もしくは混合物から選択される。天然ポリマーは、好ましくは、リグニン又は多糖類、例えば、セルロースもしくはヘミセルロース、デンプン、キチン、キトサン、及びその誘導体、ならびに、これらの材料のブレンド/混合物からなる群より選択されるが、これらに限定されない。特定の実施態様では、天然ポリマーは、包含前に可塑化される。合成ポリマーは、好ましくは、ポリオレフィン、脂肪族もしくは半芳香族ポリエステル、ポリアミド、ポリウレタン、又はビニルポリマー、ならびにその誘導体及びその混合物からなる群より選択されるが、これらに限定されない。
本マスターバッチ組成物の担体材料は、前記マスターバッチを包含するであろうポリマーと、有利に適合性である。特定の実施態様では、本プラスチック製品のポリマーは、本マスターバッチ組成物のポリマーと同じものである。
別の実施態様では、本プラスチック製品のポリマーは、本マスターバッチ組成物のポリマーとは異なり、本マスターバッチ組成物は、ポリマーと、本マスターバッチ組成物のポリマーを分解するのに適していない生物学的実体とを含む。この特定の実施態様では、本マスターバッチの担体材料は、180℃を下回るもしくは150℃を下回る溶融温度、ならびに/又は、70℃を下回るガラス転移点を有する、少なくとも1つのポリマーを含む。同ポリマーは、好ましくは、PLA、PCL、PBAT、PHA、PBS、及びEVAからなる群より選択される。好ましくは、本マスターバッチの担体材料は、120℃を下回るもしくは100℃を下回る融点ならびに/又は30℃を下回るガラス転移点を有する、少なくとも1つのポリマーを含む。同ポリマーは、好ましくは、PCL、PBAT、及びEVAからなる群より選択される。
あるいは、本マスターバッチ組成物は、「ユニバーサル」ポリマー、すなわち、広い範囲のポリマーと適合性のポリマーを含む。一般的に公知のユニバーサルマスターバッチ組成物は、エチレンビニルアセタートコポリマー(EVA)を担体材料として利用する。したがって、本マスターバッチ組成物は、それに含有される生物学的実体により分解することができない。有利に、工程Bは、マスターバッチを包含するであろうポリマーが部分的又は全体的に溶融状態にある温度で実行される。例えば、工程Bは、本マスターバッチ組成物を包含するであろうポリマーの性質に応じて、55℃を上回る、特に、60℃、70℃、80℃、90℃、100℃を上回る、又は更に、150℃を上回る温度で行うことができる。典型的には、この温度は、300℃を超えない。とりわけ、この温度は、250℃を超えない。混合工程の温度は、本マスターバッチ組成物、本マスターバッチを包含するであろうポリマーの種類、及び/又は、意図されたプラスチック製品の種類に応じて、当業者により適応させることができる。特に、この温度は、本マスターバッチを包含するであろうポリマーの融点又は融解温度に基づいて選択される。
特定の実施態様では、工程Bは、前記ポリマーの融点において行われる。ついで、ポリマーは、部分的又は全体的に溶融状態にある。別の実施態様では、工程Bは、前記ポリマーのガラス転移点(Tg)を上回る温度、及び/又は、ガラス転移点(Tg)と融点との間の温度において行われる。別の特定の実施態様では、工程Bは、前記ポリマーの融点を上回る温度において行われる。
典型的には、前記工程Bは、押出し、押出しコンパウンディング、押出しブロー成形、キャストフィルム押出し、カレンダー及び熱成形、射出成形、圧縮成形、押出し膨張、回転成形、アイロン、コーティング、層化、発泡、引抜き成形、圧縮造粒、又は3D印刷により行うことができる。このような操作は、加工条件(例えば、温度、滞留時間等)を容易に適応させるであろう当業者に周知である。
特定の実施態様では、工程Bは、固体状のマスターバッチ組成物、例えば、粉末又は顆粒ついて実行される、特に、ポリマーは、工程Bにおいて、粉末又は顆粒状で、好ましくは、顆粒状で導入される。別の実施態様では、工程Bは、液体のマスターバッチ組成物について実行される。
特定の実施態様では、ポリマー及び本マスターバッチ組成物は、工程Bを行うのに使用される装置中に、別々に導入される。有利に、まず、ポリマーが導入され、二番目に、本マスターバッチ組成物が導入される。好ましくは、本マスターバッチ組成物が前記装置に導入される時点で、ポリマーは、既に部分的又は全体的に溶融状態にある。
別の特定の実施態様では、ポリマー及び本マスターバッチ組成物は、工程Bを行うのに使用される装置中に、同時に導入される。この目的で、本マスターバッチ組成物及びポリマーは、有利に、攪拌等により、好ましくは、大気温度において、工程Bの前に互いに混合することができる。有利に、この実施態様は、固体状のマスターバッチ組成物及びポリマーを使用して行われる。
特定の実施態様では、プラスチック製品の最終重量と比較して、0.01~20重量%、好ましくは、15%未満、より好ましくは、10%未満、及びさらにより好ましくは、5%未満 マスターバッチ組成物が、ポリマーに対して加えられる。別の特定の実施態様では、プラスチック製品の最終重量と比較して、25~40重量%、好ましくは、最大30%、より好ましくは、最大40% マスターバッチ組成物が、ポリマーに対して加えられる。
特定の実施態様では、1重量%~5重量% マスターバッチ組成物が、95重量%~99重量% 部分的又は全体的に溶融状態にあるポリマーに包含され、及び/又は、混合される。
有利に、本プラスチック製品は、当業者に公知の少なくとも1つの関連する基準及び/又はラベル、例えば、EN13432基準、ASTM D6400基準、OK Biodegradation Soil(Label Vincotte)、OK Biodegradation Water(Label Vincotte)、OK Compost(Label Vincotte)、OK Compost Home(Label Vincotte)に適合する、生分解性プラスチック製品である。
生分解性プラスチック製品は、環境条件下において、本マスターバッチの少なくとも1つのポリマーのオリゴマー及び/もしくはモノマー、水、二酸化炭素、又はメタン及びバイオマスに、少なくとも部分的に変換される、プラスチックを意味する。例えば、本プラスチック製品は、水中において生分解性である。好ましくは、約90重量% 本プラスチック製品が、90日未満、より好ましくは、60日未満、さらにより好ましくは、30日未満で、水中において生分解される。より好ましくは、本プラスチック製品は、埋立て時に生じる湿度及び温度条件に曝された場合、生分解することができる。好ましくは、約90重量% 本プラスチック製品は、環境中で3年未満、より好ましくは、2年未満、さらにより好ましくは、1年未満で生分解される。あるいは、本プラスチック製品は、温度が50℃を上回って維持されている、工業的なコンポスト化条件下において生分解することができる。
また、本発明は、少なくとも1つのポリマーを含むプラスチック製品の生分解性を向上させるための方法であって、前記ポリマーが、前記ポリマーを分解することができる生物学的実体を含む本発明のマスターバッチ組成物と混合され、プラスチック製品が、前記混合物により更に製造される、方法も提供する。
生物学的実体が大量に存在する本発明のマスターバッチ組成物の使用により、そのポリマー分解活性が、複数回の熱処理後であっても保持される。したがって、ポリマーを、高濃度の活性な生物学的実体を含むマスターバッチ組成物と混合することにより得られたプラスチック製品は、このような生物学的実体に乏しいプラスチック製品と比較して、より良好な生分解性を示す。興味深いことに、前記プラスチック製品は、生物学的実体がプラスチック製品のポリマーに直接包含されているプラスチック製品と比較しても、より良好な生分解性を示す。
実施例1-PCLとリパーゼとを含む顆粒状のマスターバッチ組成物の調製
顆粒状のPCL(ポリカプロラクトンポリマー、PerstorpによるCAPA 6500)と、固体状のリパーゼPS酵素(Sigma AldrichによるAmano Lipase PS)とを含むマスターバッチ組成物を調製した。
コンパウンディング機械又は同時回転型二軸押出し機を使用した(「Coperion ZSK 18 megalab」)。このコンパウンディング機械は、連続的に、第1供給要素、2つの混合要素、及び第2供給要素を含んだ(図1Aを参照のこと)。このコンパウンディング機械は、温度を独立して制御し、レギュレーションすることができる、9つの連続的な加熱ゾーンZ1~Z9を含んだ(図1Bを参照のこと)。更なるゾーンZ10が、ゾーンZ9の後に存在し、二軸のヘッドに相当した。
この実験によれば、50重量% ポリカプロラクトンを、50重量% リパーゼと混合し、以下の表1で記載された温度プロファイルにより押し出した。
Figure 0007275201000001
ポリマーを、第1ホッパー(Z1ゾーンの前)において、流量(重量スケール)2kg/hで導入した。ポリマーを、ゾーンZ1からZ5を通過させた。ここで、温度を、ポリマーの溶融をもたらす80℃(Z4)にまで上昇させた。生物学的実体(すなわち、リパーゼ配合)を、流量2kg/hで、ゾーンZ6において、サイドフィーダーNo2から導入した。ここで、温度を、60℃まで下げた。
ついで、生物学的実体及びポリマーを、300rpmでの二軸の回転により、ゾーンZ7からZ9にかけて互いに混合させた。Z1からZ9にかけての滞留時間は、約1分とした。ついで、ポリマーと生物学的実体との混合物は、直径2.5mmの2つの孔を含むスクリューヘッド(Z10)に到達した。ここで、この混合物を、ペレットと呼ばれる顆粒形状を形成するために押出した。ついで、同ペレットを、水中で冷却し、乾燥させ、その後調整する。スクリュー端部における温度は、69℃であると測定された。
顆粒状のマスターバッチ組成物を得た。同組成物は、マスターバッチ組成物の総重量に基づいて、50重量% ポリマーと、50重量% 生物学的実体とを含有した。
実施例2-PLAとPLAデポリメラーゼとを含む顆粒状のマスターバッチ組成物の調製 予め65℃で4時間乾燥させた顆粒状のPLAポリマー(Natureplastからのポリ乳酸PLE 003)と、PLAデポリメラーゼ酵素の液体配合(Sigma Aldrichからの、30% グリセロール中に再懸濁させた粉末状の70% プロテイナーゼK)とを含むマスターバッチ組成物を、実施例1で記載されたコンパウンディング機械を使用して調製する。
この実験によれば、70重量% PLAを、30重量% PLAデポリメラーゼの液体配合と混合し、以下の表2で記載された温度プロファイルにより押し出す。
Figure 0007275201000002
PLAを、第1ホッパー(Z1ゾーンの前)において、流量7kg/hで導入する。PLAを、ソーンZ1からZ5を通過させる。ここで、温度を、PLAの溶融をもたらす180℃(Z4)にまで上昇させた。ついで、酵素を、流量3kg/hで、ゾーンZ6において、サイドフィーダーNo2から導入する。ここで、温度を、140℃に下げる。
ついで、酵素及びPLAを、200rpmでの二軸の回転により、ゾーンZ7からゾーンZ9にかけて互いに混合する。Z1からZ9にかけての滞留時間は、約1分30秒とする。ついで、PLAと生物学的実体との混合物は、直径2.5mmの2つの孔を含むスクリューヘッド(Z10)に到達する。ここで、この混合物を、ペレットを形成するために押し出す。ついで、同ペレットを、水中で冷却し、乾燥させ、その後調整する。顆粒状のマスターバッチ組成物を得る。同組成物は、70重量% PLAと、30重量% PLAデポリメラーゼ配合を含有する。
実施例3-PLA、小麦粉、及び細菌胞子を含む顆粒状のマスターバッチ組成物の調製
マスターバッチ組成物を、実施例1で記載されたコンパウンディング機械を使用して調製する。このマスターバッチは、
・予め65℃で4時間乾燥させた顆粒状のPLAポリマー(Natureplastからのポリ乳酸PLE 003)、
・同様に予め乾燥させた小麦粉、及び
・Bacillus licheniformisの培養上清の凍結乾燥により得られた胞子調製物を含む。
この実験によれば、45重量% PLAを、30重量% 小麦粉及び25重量% 胞子調製物と混合し、ついで、以下の表3で記載された温度プロファイルにより押し出す。
Figure 0007275201000003
PLAを、第1ホッパー(Z1ゾーンの前)において、流量4.5kg/hで導入する。小麦粉を、サイドフィーダーNo1(Z3)において、流量3kg/hで導入する。この時点で、PLAは、既に部分的又は全体的に溶融状態にある。混合物を、ソーンZ3からZ5を通過させる。ここで、温度を、PLA及び小麦粉の溶融混合物をもたらす180℃(Z4)にまで上昇させる。ついで、胞子を、流量2.5kg/hで、Z6において、サイドフィーダーNo2から導入する。ここで、温度を、140℃に下げる。
ついで、胞子、PLA、及び粉を、200rpmでの二軸の回転により、ゾーンZ7からゾーンZ9にかけて互いに混合する。Z1からZ9にかけての滞留時間は、約1分30秒とした。ついで、PLAと粉と胞子との混合物は、直径2.5mmの2つの孔を含むスクリューヘッド(Z10)に到達する。ここで、この混合物を、ペレットを形成するために押し出す。ついで、同ペレットを、水中で冷却し、乾燥させ、その後調整する。顆粒状のマスターバッチ組成物を得る。同組成物は、30重量% 小麦粉及び25重量% 胞子調製物と混合された、45重量% PLAを含有する。
実施例4-PCL、炭酸カルシウム、及びリパーゼを含む顆粒状のマスターバッチ組成物の調製
マスターバッチ組成物を、実施例1で記載されたコンパウンディング機械を使用して調製する。このマスターバッチは、
・顆粒状のPCL(ポリカプロラクトンポリマー、PerstorpによるCAPA 6500)
・充填材である炭酸カルシウム(CaCO
・固体状のリパーゼPS酵素(Sigma AldrichによるAmano Lipase PS)
を含む。
この実験によれば、50重量% PCLを、10重量% CaCO及び40重量% 酵素と混合し、以下の表4で記載された温度プロファイルにより押し出す。
Figure 0007275201000004
PCLを、第1ホッパー(Z1ゾーンの前)において、流量5kg/hで導入する。CaCOを、サイドフィーダーNo1(Z3)において、流量1kg/hで導入する。この時点で、PCLは、既に部分的又は全体的に溶融状態にある。混合物を、ソーンZ3からZ5を通過させる。ここで、温度を、ポリマーであるPCL及び充填材であるCaCOの溶融混合物をもたらす80℃(Z4)にまで上昇させる。ついで、酵素を、流量4kg/hで、Z6において、サイドフィーダーNo2から導入する。ここで、温度を、60℃に下げる。
ついで、酵素、PCL、及びCaCOを、200rpmでの二軸の回転により、ゾーンZ7からゾーンZ9にかけて互いに混合する。Z1からZ9にかけての滞留時間は、約1分30秒とした。ついで、PCLとCaCOと酵素との混合物は、直径2.5mmの2つの孔を含むスクリューヘッド(Z10)に到達する。ここで、この混合物を、ペレットを形成するために押し出す。ついで、同ペレットを、水中で冷却し、乾燥させ、その後調整する。顆粒状のマスターバッチ組成物を得る。同組成物は、10重量% CaCO及び40重量% 酵素と混合された、50重量% PCLを含有する。
実施例5-PE、ラッカーゼ、及び酸化促進剤を含む顆粒状のマスターバッチ組成物の調製
マスターバッチ組成物を、実施例1で記載されたコンパウンディング機械を使用して調製する。このマスターバッチは、
・顆粒状のポリエチレン(PE)(BraskemからのGreen PE)、
・Rhodococcus種(例えば、Rhodococcus ruber DSM 45332及び/又はR. rhodochrous ATCC29672)から生成されたラッカーゼ配合物
・酸化促進剤であるFe-Mnを含む。
この実験によれば、65重量% PEを、5重量% 酸化促進剤及び30重量% ラッカーゼ配合物と混合し、以下の表5で記載された温度プロファイルにより押し出す。
Figure 0007275201000005
PEを、第1ホッパー(Z1ゾーンの前)において、流量6.5kg/hで導入する。酸化促進剤を、サイドフィーダーNo1(Z3)において、流量0.5kg/hで導入する。混合物を、ソーンZ3からZ5を通過させる。ここで、温度を、PE及び酸化促進剤の溶融混合物をもたらす145℃(Z4)にまで上昇させる。ついで、酵素を、流量3kg/hで、Z6において、サイドフィーダーNo2から導入する。ここで、温度を、140℃に下げる。
ついで、PE、及び酸化促進剤を、200rpmでの二軸の回転により、ゾーンZ7からゾーンZ9にかけて互いに混合する。Z1からZ9にかけての滞留時間は、約1分30秒とする。ついで、PEと酸化促進剤と酵素との混合物は、直径2.5mmの2つの孔を含むスクリューヘッド(Z10)に到達する。ここで、この混合物を、ペレットを形成するために押し出す。ついで、同ペレットを、水中で冷却し、乾燥させ、その後調整する。顆粒状のマスターバッチ組成物を得る。同組成物は、5重量% 酸化促進剤及び30重量% 酵素と混合された、65重量% PEを含有する。
実施例6-PCLとリパーゼとを含む粉末状のマスターバッチ組成物の調製
顆粒状のPCL(ポリカプロラクトンポリマー、PerstorpによるCAPA 6500)(前記ポリマーの粉末を生成するのに更に微粒子化されている)と、粉末状のリパーゼPS酵素(Sigma AldrichによるAmano Lipase PS)とを含むマスターバッチ組成物を調製した。
100グラム PCLと100グラム リパーゼPS酵素とを、大気温度である約25℃において、攪拌することにより混合する。
このようにして、粉末状のマスターバッチ組成物を得る。同組成物は、50重量% 生物学的実体と混合された、50重量% PCLを含有した。
実施例7-生分解性プラスチック製品を製造するためのマスターバッチ組成物の使用
実施例1の顆粒化されたマスターバッチ組成物を、生分解性ポリカプロラクトン系プラスチック製品を、押出しコンパウンディングプロセスにより製造し、生分解性ポリカプロラクトン系フィルムを、キャストフィルム押出しプロセスにより製造するのに使用した。
前記プラスチック製品及びフィルムの生分解性を更に試験した。
7A-押出しコンパウンディングプロセスによる本発明のマスターバッチ組成物を使用するプラスチック製品を製造する方法
プラスチック製品を、実施例1のコンパウンディング機械を使用して製造した。種々のゾーンの温度プロファイルを、マスターバッチを包含したポリマー及び製品の種類に適応させた(以下の表6を参照のこと)。とりわけ、2種類の温度プロファイルを、生物学的実体の活性についてのその影響について試験した。
プラスチック製品のポリマーは、ポリカプロラクトン(PerstorpによるPCL CAPA 6500)とした。本マスターバッチ組成物を、実施例1で得られたものとした。
Figure 0007275201000006
PCLを、ホッパー(Z1の前)において、重量スケール7.68kg/hで、顆粒状で導入した。ポリマーを、溶融させるために、Z1からZ5を通過させた。温度プロファイル2において、ポリマーを、より高温を通過させた。ついで、顆粒状のマスターバッチ組成物を、サイドフィーダーNo2(Z6)において、重量スケール0.32kg/hで導入した。これにより、混合物の総重量に基づいて、4重量% マスターバッチ組成物が包含された。マスターバッチ組成物及びポリマーを、ゾーンZ7からZ9にかけて、200rpmでの二軸の回転により互いに混合した。
ついで、ポリマーとマスターバッチ組成物との溶融混合物は、出力流量8kg/hにおいて、直径2.5mmの2つの孔を含むスクリューヘッド(Z10)に到達した。ここで、混合物を、プラスチックペレットを形成するために押し出した。
このようにして得られたプラスチック製品は、2重量% 生物学的実体と、98重量%PCLとを含有する。
7B-7Aで製造されたプラスチック製品の生分解性試験
以下:
-2種類の温度プロファイルにより得られた、実施例7Aの2つのプラスチック製品;
-実施例1のマスターバッチ組成物
-市販のポリカプロラクトン(PerstorpによるPCL CAPA 6500)
を使用して、生分解性の種々の試験を行った。
生分解性試験を、水中で行った、空のティーバッグを、生分解性試験中に、サンプルを保護するのに使用した。種々の製品の分解性を、1週間、2週間、4週間、及び8週間後での質量減少により測定した。
まず、製品及び空のティーバッグを、通気オーブン中において、40℃で一晩乾燥させた。ついで、これらを、23℃及び湿度50%で熱的にレギュレーションされたチャンバー中において、1時間維持した。その後、約5g 各製品の複数のサンプルを、異なるティーバッグに入れた(最も近いミリグラムに正確に測定)。ついで、このティーバッグを、水(Cristalline(登録商標))1リットルのタンクに浸した。ついで、各製品のサンプルを、1週間、2週間、4週間、又は8週間後に取り出し、通気オーブン中において、40℃で一晩維持した。ついで、サンプルを、23℃及び湿度50%で熱的にレギュレーションされたチャンバー中において、1時間維持した。ついで、サンプルの質量を、最も近いミリグラムに正確に測定して、質量減少を評価した。
得られた結果から、実施例7Aのプラスチック製品について、水中での8週間のインキュベーション後に、90%の生分解性が示される。一方、市販のCAPAポリマーは、8週間後に何ら質量減少を示さなかった(図2を参照のこと)。実施例1のマスターバッチ組成物は、2週間後に90%超の質量減少を表わす。
これらの実験から、生物学的実体は、マスターバッチを調製するためのプロセス及びプラスチック製品を製造するプロセス中に加えられた、連続的な熱処理に耐えたことが証明される。
7C-キャストフィルム押出しプロセスによる本発明のマスターバッチを使用するプラスチックフィルムを製造する方法
実施例1の顆粒化マスターバッチを、一軸押出し機及びキャストフィルム押出しプロセスを使用して、ポリカプロラクトン(Perstorpにより製造されたPCL CAPA 6500)と混合した。
押出し機:「Monovis Rheocord Sustem 40(A Haake Buchler Product)」。この押出し機は、3つのゾーンZ1~Z3と、押出しダイとを含んだ。これらにおいて、温度を、独立して制御し、レギュレーションすることができる。押出し機の長さは、約40センチメートルである。ThermoElectron Corporationからのローラーカレンダーシステムを、押出し機の端部に固定して、厚み100μm及び幅5cmのフィルムを製造した。
この実施例において、本発明のマスターバッチを、最終製品の総重量に基づいて、4%の割合で包含させた。
まず、両方とも顆粒状である、実施例1のマスターバッチ(20グラム)及びポリマーCAPA 6500(480グラム)を共に撹拌した。ついで、顆粒を、真空下30℃で、一晩乾燥させ、押出し機のZ1の前に導入した。顆粒を溶融させ、押出しダイの一軸回転が18~20rpmになるまで、Z1からZ3にかけて混合した。混合物の滞留時間は、約30秒とした。この特定の実施例では、Z1、Z2、Z3、及び押出しダイ全ての温度を、140℃でレギュレーションした。
製造されたプラスチックフィルムは、2重量% 生物学的実体と、98重量% ポリマーとを含有した。
7D-7Cからのプラスチックフィルムの生分解性試験
-元のポリマーであるポリカプロラクトン(Perstorpによる製造されたPCL CAPA 6500)
-7Cのプラスチックフィルム
を使用して、生分解性の種々の試験を行った。
生分解性試験を、水中で行った、冬季作物保護ベールを、生分解性試験中に、サンプルを保護するのに使用した。種々の製品の分解性を、1週間、2週間、4週間、及び8週間後での質量減少により測定した。
まず、製品及び冬季作物保護ベールを、通気オーブン中において、40℃で一晩乾燥させた。ついで、これらを、23℃及び湿度50%で熱的にレギュレーションされたチャンバー中において、1時間維持した。その後、各製品の複数のサンプルを、異なる冬季作物保護ベールに入れた。ついで、このベールを、水(Cristalline(登録商標)) 1リットルのタンクに浸した。ついで、各製品のサンプルを、1週間、2週間、4週間、又は8週間後に取り出し、通気オーブン中において、40℃で一晩維持した。ついで、サンプルを、23℃及び湿度50%で熱的にレギュレーションされたチャンバー中において、1時間維持した。ついで、サンプルの質量を、最も近いミリグラムに正確に測定して、質量減少を評価した。
結果から、水中での8週間のインキュベーション後に、10%を上回るプラスチックフィルムの生分解性が示された。一方、市販のCAPAポリマーは、8週間後に何ら質量減少を示さなかった(図3を参照のこと)。
これらの実験から、生物学的実体は、マスターバッチを調製するためのプロセス及びプラスチック製品を製造するプロセス中に加えられた、連続的な熱処理に耐えたことが証明される。
実施例8-ポリ乳酸(PLA)とプロテアーゼとを含むマスターバッチ組成物及びプラスチック製品
8A.マスターバッチの製造方法
粉末状のポリ乳酸(ポリ乳酸、NatureWorksからのPLA 4043D)と、固体状で配合されたプロテアーゼ酵素(NovozymesによるSavinase(登録商標) 16L)とを含むマスターバッチ組成物を調製した。
PLAを、顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用してサイズ500μm未満の微細粉末に微細化して得た。
固体状のSavinase(登録商標) 16Lを、市販の液状から、3.5kDaメンブラン上での限外ろ過、透析ろ過、デキストリン添加、及び凍結乾燥による乾燥により得た。Savinase(登録商標) 16Lは、PLAを分解することが公知である(Degradation of Polylactide by commercial proteases; Y.Oda, A. Yonetsu, T. Urakami and K. Tonomura; 2000)。
コンパウンディング機械又は同時回転型二軸押出し機を、マスターバッチ組成物の製造に使用した(「Haake MiniLab II ThermoFisher」)。このコンパウンディング機械は、手動供給要素と、2つの同時回転型スクリューと、二軸のヘッドとを連続的に含んだ。
この実験によれば、2つのマスターバッチ組成物(表7)が製造された。
Figure 0007275201000007
プロテアーゼ(生物学的実体)とポリマーとを互いに、コンパウンディング機械への導入前に、手動撹拌により混合した。ついで、この混合物を、供給ソーンに導入し、スクリュー押出し機に押し込み、手動で圧力を加えた。この混合物を、回転速度80rpmを使用して、同時回転型スクリューを通過させた。温度を、150℃に固定した。ついで、ポリマーと生物学的実体の混合物は、直径0.4mmの1つの孔を含むスクリューヘッドに到達した。ここで、混合物を、ストリップ形状を形成するために押し出した。ついで、この押出し成形物を、切断プライヤーにより、顆粒状を得るために切断した。
60~80重量% ポリマーと、20~40重量% 生物学的実体とを含有する、顆粒状のマスターバッチ組成物を得た。
8B-マスターバッチ組成物の生分解性試験
マスターバッチMB1及びMB2の生分解性試験を行った。
100mg 各サンプルを秤量し、透析チューブに導入した。0.1M Tris.HClバッファー pH9.5 3mLを、透析チューブに加え、その後、それを閉じた。ついで、透析チューブを、0.1M Tris.HClバッファー pH9.5 50mLを含有するプラスチックボトルに導入した。
脱重合を、各サンプルを45℃で、Infors HT Multitron Proインキュベーション振とう機中において150rpmでインキュベーションすることにより開始した。バッファー 1mLアリコートを、規則的にサンプリングし、0.22μmシリンジフィルタでろ過し、乳酸(LA)及び乳酸二量体(DP2)の放出をモニターするのに、Aminex HPX-87Hカラムを備える高速液体クロマトグラフィー(HPLC)により分析した。使用されたクロマトグラフィーシステムを、Ultimate 3000 UHPLCシステム(Thermo Fisher Scientific, Inc. Waltham, MA, USA)とした。同システムは、ポンプモジュール、オートサンプラー、50℃でのカラムオーブンサーモスタット、及び220nmでのUV検出器を含む。溶出液を、5mM HSOとした。インジェクションを、サンプル 20μLとした。LAを、市販のLAから作成された検量線に従って測定した。
% 分解を、PLAに最初に含有されるLAに対する、所定時間におけるLA及びDP2に含有されるLAのモル比により算出する。6日後の脱重合の結果を、図4に示す。興味深いことに、MB1の分解割合も高いが、2倍量の生物学的実体を含有するMB2の分解割合は、MB1と比較して2倍高い。
8C-プラスチック製品の製造方法
顆粒状のマスターバッチ組成物を、生分解性ポリ乳酸系プラスチック製品を押出しプロセスにより製造するのに使用した。前記プラスチック製品の生分解性を更に試験した。
プラスチック製品を、実施例8Aのコンパウンディング機械を使用して製造した。温度プロファイルを、マスターバッチを包含したポリマーに適応させた。
プラスチック製品のポリマーを、ポリ乳酸(NatureWorksによるPLA 4043D、実施例8Aと同じ)とした。顆粒状のマスターバッチ組成物を、実際例8Aで得られたものとした。各マスターバッチ組成物を、最終的なプラスチック製品の総重量に基づいて、20重量%相当で加えた。粉末状の炭酸カルシウム(OMYA)も、最終的なプラスチック製品の5重量%相当で加えた。したがって、粉末状のPLAを、最終的なプラスチック製品の総重量に基づいて、75重量%相当で加えた。
PLAを、PLA顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用して微細化して得られた粉末状(500μm未満)で使用する。マスターバッチ、ポリマー、及びCaCOを互いに、手動撹拌により混合し、その後、コンパウンディング機械に導入した。押出しを、実施例8Aで記載されたプロトコールに従って行った。押出し温度のみを変更し、155℃で固定した。
Figure 0007275201000008
8D-プラスチック製品の生分解性試験
生分解性試験を、プラスチック製品A及びBを使用して行った。
その後の脱重合を、実施例8Bで示されたのと同じ材料及び方法を使用して行った。分解パーセントを、PLAに最初に含有されるLAに対する、所定時間におけるLA及びDP2に含有されるLAとのモル比により算出する。
図5に示されたように、16日後に、プラスチック製品A(4% 生物学的実体を含有)の分解割合は、約6%である。一方、プラスチック製品B(8% 生物学的実体を含有)の分解割合は、約12%である。両プラスチック製品は、分解割合を示す。興味深いことに、プラスチック製品内での生物学的実体の活性も、マスターバッチ中における活性と同様に存在する。このことから、生物学的実体の活性は、2回の温度処理後であっても維持されることが確認される。
実施例9-ポリブチレンアジパートテレフタラート(PBAT)とプロテアーゼとを含むマスターバッチ組成物及びプラスチック製品
9A-マスターバッチの製造方法
粉末状のポリマー(ポリブチレンアジパートテレフタラート、BASFからのPBAT Ecoflex Blend C1200)と、固体状で配合されたプロテアーゼ酵素(NovozymesによるSavinase(登録商標) 16L)とを含むマスターバッチ組成物を調製した。このプロテアーゼは、PLA分解活性を有するのが公知である。
PBAT粉末を、顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用してサイズ500μm未満の微細粉末に微細化して得た。固体状のSavinase 16Lを、市販の液状から、3.5kDaメンブラン上での限外ろ過、透析ろ過、デキストリン添加、及び凍結乾燥による乾燥により得た。
マスターバッチの組成は、下記:60重量% PBATおよび40重量% プロテアーゼである。パーセントを、マスターバッチ組成物の総重量に基づいて算出する。
押出し温度を120℃で固定したことを除いて、実施例8Aにおけるのと同じコンパウンディング機械及び押出しプロトコールを使用した。
9B-プラスチック製品の製造方法
PLA分解プロテアーゼを含有する実施例9Aの顆粒状のマスターバッチ組成物を、生分解性PLA系プラスチック製品を押出しプロセスにより製造するのに使用した。前記プラスチック製品の生分解性を更に試験した。
プラスチック製品を、実施例8Aのコンパウンディング機械を使用して製造した。温度プロファイルを、マスターバッチを包含したポリマーに適応させた。
プラスチック製品のポリマーを、ポリ乳酸(NatureWorksからのPLA 4043D、実施例8Aと同じ)とした。マスターバッチ組成物を、実際例9Aで得られたものとし、顆粒状で使用する。マスターバッチ組成物を、プラスチック製品配合の総重量に基づいて、20重量%相当で加えた。粉末状の炭酸カルシウム(OMYA)も、5重量%相当で加えた。このため、PLAを、最終的なプラスチック製品の総重量に基づいて、75重量%相当で加えた。PLAを、PLA顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用し微細化して得られた粉末状(500μm未満)で使用した。
マスターバッチ、ポリマー、及びCaCOを互いに、手動撹拌により混合し、その後、コンパウンディング機械に導入した。押出しを、実施例8Aで記載されたプロトコールに従って行った。
このようにして得られたプラスチック製品の組成は、下記:(プラスチック製品の総重量に基づく重量で)75% PLA+12% PBAT+8% プロテアーゼ+5% CaCOである。
9C-プラスチック製品の生分解性試験
生分解性試験を、実施例8Bで示されたのと同じ材料及び方法を使用して行った。プラスチック製品の加水分解を、放出されたLA及びLA二量体に基づいて算出した。分解パーセントを、配合中のPLAの最終的なパーセントに関して算出する。
4日後、実施例9Aのマスターバッチ組成物から製造されたプラスチック製品の脱重合割合は、48%であった。
興味深いことに、このプラスチック製品の分解結果を、実施例8Cのプラスチック製品
Bの結果と比較することができる(両方とも8% プロテアーゼを含有)。実施8Cのプラスチック製品Bの分解割合は、12日後に12%に達する。一方、実施例9Cのプラスチック製品では、4日で48%に達する。この結果から、より低い融点を有する、すなわち、最終的なプラスチック製品における生物学的実体の活性のより良好な保存を可能にするより低い押出し温度を必要とする、ポリマーを含むマスターバッチ組成物を製造する利点が存在する可能性があることを示している可能性があることを示すことができる。
実施例10-ポリカプロラクトン(PCL)とプロテアーゼとを含むマスターバッチ組成物及びプラスチック製品
10A-マスターバッチの製造方法
粉末状のPCL(ポリカプロラクトンポリマー、PerstorpからのCAPA 6500)と、PLA分解活性を有するのが公知のプロテアーゼ酵素であるNovozymesによるSavinase(登録商標) 16Lとを含むマスターバッチ組成物を調製した。
PCL粉末を、PCL顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用してサイズ500μm未満の微細粉末に微細化して得た。固体状のSavinase 16Lを、市販の液状から、3.5kDaメンブラン上での限外ろ過、透析ろ過、デキストリン添加、及び凍結乾燥による乾燥により得た。
この実験によれば、(マスターバッチ組成物の総重量に基づいて)60重量% ポリカプロラクトンが、40重量% プロテアーゼと混合される。
温度を65℃に固定したことを除いて、実施例8Aにおけるのと同じコンパウンディング機械及び押出しプロトコールを使用した。
10B-プラスチック製品の製造方法
顆粒状のマスターバッチ組成物を、生分解性ポリ乳酸系プラスチック製品を押出しプロセスにより製造するのに使用した。前記プラスチック製品の生分解性を更に試験した。
プラスチック製品を、実施例8Aのコンパウンディング機械を使用して製造した。温度プロファイルを、マスターバッチを包含したポリマーに適応させた。
プラスチック製品のポリマーを、ポリ乳酸(NatureWorksからのPLA 4043D)とした。マスターバッチ組成物を、実際例10Aで得られたものとした。顆粒状のマスターバッチを、プラスチック製品配合の総重量に基づいて、種々の配合(表9を参照のこと)をもたらすように、5~20重量%で加えた。粉末状の炭酸カルシウム(OMYA)も、5重量%相当で加えた。
PLAを、PLA顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用し微細化して得られた粉末状(500μm未満)で使用する。
マスターバッチ、ポリマー、及びCaCOを互いに、手動撹拌により混合し、その後、コンパウンディング機械に導入した。押出しを、実施例8Aで記載されたプロトコールに従って行った。温度のみを変更し、150℃で固定した。
Figure 0007275201000009
対照サンプル(C)を、粉末状のPLA(75重量%)、PCL(12重量%)、プロテアーゼ(8重量%)、及びCaCO(5重量%)を混合することにより製造した。使用された材料は、PCL及びプロテアーゼについては、実施例10Aで記載されたのと同様とし、PLA及びCaCOについては、実施例9Aで記載されたのと同様とした。Cの押出しを、実施例8Aで記載されたのと同じコンパウンディング機械を使用して行った。まず、粉末混合物を、上記されたプロトコールに従って押し出した。得られた押出し成形物を、切断プライヤーにより、顆粒状を得るために切断した。ついで、二回目に、この顆粒状を、実施例8Aで記載されたプロトコール(150℃、80rpm)に従って押し出した。対照サンプルCは、プラスチック製品が最終的な量の生物学的実体を含有するコンパウンドから直接製造される場合を反映している(このため、対照サンプルCは、配合Aと比較される必要がある)。
10C-プラスチック製品の生分解性試験
生分解性試験を、実施例8Bで示されたのと同じ材料及び方法を使用して行った。
分解パーセントを、PLAに最初に含有されるLAに対する、所定時間におけるLA及びDP2に含有されるLAのモル比により算出する。
8日後での脱重合の結果を、図6に示す。
予測されたとおり、プラスチック製品Aは、プラスチック製品Bより良好な分解を示す。このことは、プラスチック製品Aが、プラスチック製品Bのその配合におけるより、4倍多くプロテアーゼを含有するためであると説明される。
興味深いことに、プラスチック製品Aと同じ最終的な配合を有する対照プラスチック製品Cは、Aより低い分解割合を示す。このことは、マスターバッチから製造されたプラスチック製品が、生物学的実体がプラスチック製品のポリマーに直接包含されているプラスチック製品と比較して、より良好な生分解性を示すことを示している可能性がある。
実施例11-ポリカプロラクトン(PCL)とプロテアーゼとCaCOとを含むマスターバッチ組成物及びプラスチック製品
11A-マスターバッチの製造方法
粉末状のPCL(ポリカプロラクトンポリマー、PerstorpからのCAPA 6500)と、PLA分解活性を有するのが公知の、固体状で配合されたプロテアーゼ酵素(NovozymesによるSavinase(登録商標) 16L)と、炭酸カルシウムCaCO(OMYA)とを含むマスターバッチ組成物を調製した。
PCL粉末を、PCL顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用してサイズ500μm未満の微細粉末に微細化して得た。固体状のSavinase 16Lを、市販の液状から、3.5kDaメンブラン上での限外ろ過、透析ろ過、デキストリン添加、及び凍結乾燥による乾燥により得た。
この実験によれば、マスターバッチ組成物の総重量に基づいて、60重量% ポリカプロラクトンが、30重量% プロテアーゼ及び10重量% 炭酸カルシウムCaCOと混合される。
温度を65℃に固定したことを除いて、実施例8Aにおけるのと同じコンパウンディング機械及び押出しプロトコールを使用した。
11B-プラスチック製品の製造方法
顆粒状のマスターバッチ組成物を、生分解性ポリ乳酸系プラスチック製品を押出しプロセスにより製造するのに使用した。前記プラスチック製品の生分解性を更に試験した。
プラスチック製品を、実施例8Aのコンパウンディング機械を使用して製造した。温度プロファイルを、マスターバッチを包含したポリマーに適応させた。
プラスチック製品のポリマーを、ポリ乳酸(NatureWorksからのPLA 4043D)とした。マスターバッチ組成物を、実際例11Aで得られたものとした。顆粒状のマスターバッチを、プラスチック製品配合の総重量に基づいて、25%で加えた。
PLAを、PLA顆粒から、液体窒素中に浸し、Ultra Centrifugal Mill ZM 200システムを使用し微細化して得られた粉末状(500μm未満)で使用する。
マスターバッチ及びポリマーを互いに、手動撹拌により混合し、その後、コンパウンディング機械に導入した。押出しを、実施例8Aで記載されたプロトコールに従って行った。温度のみを変更し、150℃で固定した。
このようにして得られたプラスチック製品は、7.5重量% プロテアーゼ、2.5重量% CaCO、15重量% PCL、及び75重量% PLAを含有する。
11C-プラスチック製品の生分解性試験
対照サンプルを、粉末状のPLA(75重量%)、PCL(15重量%)、プロテアーゼ(7.5重量%)、及びCaCO(2.5重量%)を混合することにより製造した。使用された材料は、PCL、プロテアーゼ、及びCaCOについては、実施例11Aで記載されたのと同様とし、PLAについては、実施例8Aで記載されたのと同様とした。押出しを、実施例1Aで記載されたのと同じコンパウンディング機械を使用して行った。1回目に、粉末混合物を、実施例11Bで記載されたプロトコールに従って押し出した。得られた押出し成形物を、切断プライヤーにより、顆粒状を得るために切断した。二回目に、この顆粒状を、実施例11Bで記載されたプロトコール(150℃、80rpm)に従って押し出した。対照サンプルは、例えば、プラスチック製品が最終的な量の生物学的実体を含有するコンパウンドから直接製造される場合を反映している。
生分解性試験を、実施例8Bで示されたのと同じ材料及び方法を使用して行った。
分解パーセントを、PLAに最初に含有されるLAに対する、所定時間におけるLA及びDP2に含有されるLAとのモル比により算出する。
31時間後での脱重合の結果を、図7に示す。
興味深いことに、実施例11Aのマスターバッチから製造されたプラスチック製品は、対照サンプルより良好な分解割合(8倍高い)を示す。これは、マスターバッチ組成物から製造されたプラスチック製品が、生物学的実体がプラスチック製品のポリマーに直接包含されているプラスチック製品と比較して、より良好な生分解性を示すことを示している可能性がある。

Claims (22)

  1. 担体材料と、合成ポリマー分解活性を有する酵素とを含む、マスターバッチ組成物であって、
    前記担体材料は、融点180℃未満の少なくとも1つの合成ポリマーを含み、
    前記担体材料は、マスターバッチ組成物の総重量に基づいて、組成物の10重量%~89重量%を占め
    前記酵素が固体状態にあるマスターバッチ組成物の担体材料中に埋め込まれるように、
    前記担体材料と、
    希釈剤又は担体と混合された前記酵素の配合物と、
    を押出し中に混合ブレンドすることにより得られる、マスターバッチ組成物。
  2. 前記合成ポリマーが、ポリ乳酸(PLA)、ポリカプロラクトン(PCL)、ポリブチレンアジペートテレフタレート(PBAT)、ポリヒドロキシアルカノエート(PHA)、ポリブチレンスクシネート(PBS)及びエチレンビニルアセテート(EVA)からなる群から選択される、請求項1に記載のマスターバッチ組成物。
  3. 希釈剤又は担体と混合された前記酵素の配合物が、マスターバッチ組成物の総重量に基づいて、組成物の11重量%~90重量%を占める、請求項1又は2に記載のマスターバッチ組成物。
  4. 担体材料が、炭酸カルシウム;含水ケイ酸マグネシウム、例えば、タルクもしくはせっけん石;ケイ酸アルミニウム、例えば、カオリン;石膏、ガラス繊維、木粉、植物もしくは野菜粉、例えば、小麦粉;麻すさ、及びそれらの誘導体からなる群より選択される充填材料を更に含む、請求項1~3のいずれか一項に記載のマスターバッチ組成物。
  5. 担体材料が、合成ポリマー及び充填材料を含み、ここで、合成ポリマーの濃度が充填材の濃度より高い、請求項1~4のいずれか一項記載のマスターバッチ組成物。
  6. 担体材料が、マスターバッチ組成物の20重量%~80重量%を占める、請求項1~5のいずれか一項記載のマスターバッチ組成物。
  7. 前記酵素が、デポリメラーゼ、エステラーゼ、リパーゼ、クチナーゼ、ヒドラーゼ、プロテアーゼ、ポリエステラーゼ、オキシゲナーゼ、及び/又はオキシダーゼ、例えば、ラッカーゼ、ペルオキシダーゼ、もしくはオキシゲナーゼから選択される、請求項1~6のいずれか一項記載のマスターバッチ組成物。
  8. 前記酵素が、担体材料の前記少なくとも1つの合成ポリマーを分解するのに適している、請求項1~7のいずれか一項記載のマスターバッチ組成物。
  9. 可塑剤、着色剤、加工助剤、難燃剤、光安定剤からなる群より選択される、少なくとも1つの添加剤を更に含む、請求項1~8のいずれか一項記載のマスターバッチ組成物。
  10. 前記合成ポリマーの融点が120℃未満である、請求項1~9のいずれか一項記載のマスターバッチ組成物。
  11. 前記合成ポリマーが、ポリ乳酸(PLA)、ポリカプロラクトン(PCL)、及びポリブチレンアジペートテレフタレート(PBAT)からなる群から選択され、
    前記マスターバッチ組成物が、当該マスターバッチ組成物の総重量に基づいて、(i)50~85重量%のポリ乳酸(PLA)、ポリカプロラクトン(PCL)、ポリブチレンアジペートテレフタレート(PBAT);及び
    (ii)15~50重量%の、プロテアーゼ配合物を含む、請求項1~10のいずれか一項に記載のマスターバッチ組成物。
  12. 前記合成ポリマーが、ポリカプロラクトン(PCL)及びポリブチレンアジペートテレフタレート(PBAT)からなる群から選択され、
    前記マスターバッチ組成物が、当該マスターバッチ組成物の総重量に基づいて、
    (i)50~85重量%のポリカプロラクトン(PCL)、ポリブチレンアジペートテレフタレート(PBAT);及び
    (ii)15~50重量%の、ポリ乳酸(PLA)分解プロテアーゼ配合物を含む、請求項11に記載のマスターバッチ組成物。
  13. 前記合成ポリマーが、ポリ乳酸(PLA)であり、
    前記マスターバッチ組成物が、当該マスターバッチ組成物の総重量に基づいて、(i)50~85重量%のポリ乳酸(PLA);及び
    (ii)15~50重量%の、プロテアーゼ配合物を含む、請求項11に記載のマスターバッチ組成物。
  14. マスターバッチ組成物の総重量に基づき、希釈剤又は担体と混合された合成ポリマー分解活性を有する酵素の配合物11重量%~90重量%を、融点180℃未満の少なくとも1つの合成ポリマーを含む担体材料10重量%~89重量%と混合する工程(a)と、
    工程(a)の前記混合物を固体状に調整する工程(b)とを含み、
    ここで、混合工程(a)は、担体材料が部分的又は全体的に溶融状態にあるか、及び/又は、押出し機中にある、
    請求項1~13のいずれか一項記載のマスターバッチ組成物を製造するための方法。
  15. 前記酵素の配合物の希釈剤又は担体水、グリセロール、ソルビトール、デキストリン、デンプン及びグリコールからなる群から選択される請求項14に記載の方法。
  16. 前記押出し機が二軸押出し機から選択される、請求項14または15に記載の方法。
  17. プラスチック製品を製造するための、請求項1~13のいずれか一項記載のマスターバッチ組成物の使用。
  18. 請求項1~13のいずれか一項記載のマスターバッチ組成物から製造されるプラスチック製品であって、
    ここで、前記酵素が、プラスチック製品の少なくとも1つの合成ポリマーを分解するのに適している、
    プラスチック製品。
  19. 前記プラスチック製品のポリマーが、前記マスターバッチ組成物のポリマーとは異なるポリマーを含み、前記マスターバッチ組成物が、当該マスターバッチ組成物のポリマーを分解するのに適していない酵素を含む、請求項18に記載のプラスチック製品。
  20. 少なくとも1つの合成ポリマーを含むプラスチック製品を製造するための方法であって、
    A-請求項1~13のいずれか一項記載のマスターバッチ組成物を提供する工程であって、前記酵素が、前記プラスチック製品の少なくとも1つの合成ポリマーを分解するのに適している工程、および
    B-前記マスターバッチ組成物を、前記プラスチック製品の製造中、前記合成ポリマー中に導入する工程を含む、方法。
  21. 前記合成ポリマーが部分的又は全体的に溶融状態にある温度で、工程Bが実施され、及び/又は、
    工程Bが、押出し、押出しコンパウンディング、押出しブロー成形、キャストフィルム押出し、カレンダー及び熱成形、射出成形、圧縮成形、押出し膨張、回転成形、アイロン、コーティング、層化、発泡、引抜き成形、圧縮造粒、及び3D印刷により行われる、請求項20に記載の方法。
  22. 少なくとも1つの合成ポリマーを含むプラスチック製品の生分解性を向上させるための方法であって、
    合成ポリマーを、請求項1~13のいずれか一項記載のマスターバッチ組成物と混合して混合物を得る工程であって、前記マスターバッチ組成物の酵素が前記合成ポリマーを分解するものである工程と、
    さらに、前記混合物を用いてプラスチック製品を製造する工程とを含む、方法。
JP2021106712A 2015-06-12 2021-06-28 高濃度の生物学的実体を含むマスターバッチ組成物 Active JP7275201B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15305903 2015-06-12
EP15305903.5 2015-06-12
JP2017564425A JP6985154B2 (ja) 2015-06-12 2016-06-10 高濃度の生物学的実体を含むマスターバッチ組成物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017564425A Division JP6985154B2 (ja) 2015-06-12 2016-06-10 高濃度の生物学的実体を含むマスターバッチ組成物

Publications (2)

Publication Number Publication Date
JP2021169608A JP2021169608A (ja) 2021-10-28
JP7275201B2 true JP7275201B2 (ja) 2023-05-17

Family

ID=53442699

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017564425A Active JP6985154B2 (ja) 2015-06-12 2016-06-10 高濃度の生物学的実体を含むマスターバッチ組成物
JP2017564417A Active JP6907132B2 (ja) 2015-06-12 2016-06-10 生分解性ポリエステル組成物及びその使用
JP2021074725A Active JP7234287B2 (ja) 2015-06-12 2021-04-27 生分解性ポリエステル組成物及びその使用
JP2021106712A Active JP7275201B2 (ja) 2015-06-12 2021-06-28 高濃度の生物学的実体を含むマスターバッチ組成物

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2017564425A Active JP6985154B2 (ja) 2015-06-12 2016-06-10 高濃度の生物学的実体を含むマスターバッチ組成物
JP2017564417A Active JP6907132B2 (ja) 2015-06-12 2016-06-10 生分解性ポリエステル組成物及びその使用
JP2021074725A Active JP7234287B2 (ja) 2015-06-12 2021-04-27 生分解性ポリエステル組成物及びその使用

Country Status (9)

Country Link
US (4) US10723848B2 (ja)
EP (2) EP3307812B1 (ja)
JP (4) JP6985154B2 (ja)
CN (3) CN107835829B (ja)
BR (3) BR112017026697B1 (ja)
CA (2) CA2987842C (ja)
MX (2) MX2017016068A (ja)
MY (1) MY192862A (ja)
WO (2) WO2016198650A1 (ja)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
PT3209771T (pt) 2014-10-21 2021-01-12 Centre Nat Rech Scient Polipeptídeo que tem uma atividade de degradação do poliéster e as suas utilizações
WO2016097325A1 (en) 2014-12-19 2016-06-23 Carbios Plastic compound and preparation process
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
MX2017016068A (es) * 2015-06-12 2018-11-09 Carbios Composicion de mezcla maestra que comprende una elevada concentracion de entidades biologicas.
US11674018B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11359088B2 (en) 2015-06-30 2022-06-14 BiologiQ, Inc. Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
US11674014B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
RU2758138C2 (ru) 2015-12-21 2021-10-26 Карбио Рекомбинантные клетки дрожжей, продуцирующие полимолочную кислоту, и их использования
EP3458508A1 (en) 2016-05-19 2019-03-27 Carbios A process for degrading plastic products
CN114891768A (zh) 2016-07-12 2022-08-12 卡比奥斯公司 新酯酶及其用途
KR102649944B1 (ko) 2016-07-12 2024-03-22 까르비오 신규한 에스테라아제 및 그의 용도
JP7179002B2 (ja) * 2016-12-16 2022-11-28 キャルビオス 改良されたプラスチック分解プロテアーゼ
WO2018175492A1 (en) * 2017-03-21 2018-09-27 College Of William & Mary Biodegradable shotgun wad system
MX2020000807A (es) * 2017-07-25 2020-08-17 PK Med SAS Proceso para preparar una composicion de entrega de farmaco.
SG11202000494UA (en) * 2017-07-25 2020-02-27 PK Med SAS Drug delivery composition
CN116790108A (zh) 2017-08-31 2023-09-22 卡比奥利司公司 包含酶的可生物降解的聚酯制品
EP3904431A1 (en) 2017-08-31 2021-11-03 Carbios Liquid composition comprising biological entities and uses thereof
AU2018386552A1 (en) 2017-12-21 2020-07-16 Carbios Novel proteases and uses thereof
CN108178845A (zh) * 2017-12-28 2018-06-19 北京林业大学 一种以木材化学成分为主要原料的3d打印材料配方
KR20210024448A (ko) * 2018-04-23 2021-03-05 바이올로지크, 인코퍼레이티드 플라스틱 물질로의 생분해성 부여 첨가제의 추가
CN108841803B (zh) * 2018-05-31 2021-07-20 南京林业大学 一种高效全降解聚己内酯的方法
US10683399B2 (en) * 2018-06-26 2020-06-16 Intrinsic Advanced Materials, LLC Biodegradable textiles, masterbatches, and method of making biodegradable fibers
FR3083543B1 (fr) 2018-07-06 2021-03-05 Carbiolice Matiere plastique à haute teneur en pla comprenant un ester de citrate
FR3083544B1 (fr) 2018-07-06 2020-09-11 Carbiolice Matiere plastique à haute teneur en pla comprenant des oligomeres d’acide lactique
TWI691631B (zh) * 2018-07-23 2020-04-21 東加塑膠有限公司 牡蠣紙及製造方法
JP2021531032A (ja) 2018-07-27 2021-11-18 キャルビオスCarbios 新規なエステラーゼ及びその使用
MX2021001045A (es) 2018-07-27 2021-04-12 Carbios Nuevas esterasas y usos de las mismas.
JP2021531030A (ja) 2018-07-27 2021-11-18 キャルビオスCarbios 新規なエステラーゼ及びその使用
CN109369961B (zh) * 2018-10-16 2020-11-20 河南工程学院 一种多肽增强的纳米纤维素基薄膜材料及其制备方法
JP2022526344A (ja) 2019-03-28 2022-05-24 キャルビオス 多成分熱可塑性製品
FR3094268B1 (fr) 2019-03-28 2021-03-19 Carbiolice Article multicouche enzymé
JP7291890B2 (ja) 2019-05-24 2023-06-16 パナソニックIpマネジメント株式会社 電子機器
CN114174393B (zh) * 2019-05-28 2023-09-05 巴拉工业和娱乐私人有限公司 用于将聚乙烯转化为可分解材料的组合物及其制备方法
FR3098519B1 (fr) * 2019-07-10 2021-07-23 Carbiolice Matiere plastique à haute teneur en pla comprenant du ppgdge
CA3145465A1 (en) 2019-07-11 2021-01-14 Carbios Novel esterases and uses thereof
MX2022000469A (es) 2019-07-11 2022-02-03 Carbios Esterasas y usos de las mismas.
WO2021011256A1 (en) * 2019-07-15 2021-01-21 Primaloft, Inc. Recycled polyester binder fiber
CN114829470B (zh) 2019-12-19 2024-01-23 卡比奥斯公司 发泡塑料组合物
CN110983480B (zh) * 2019-12-19 2022-07-12 安踏(中国)有限公司 一种复合涤纶及其制备方法
FR3106592B1 (fr) 2020-01-24 2022-08-05 Carbiolice Procédé de Préparation d’un Mélange Maître Enzymé
FR3106591B1 (fr) 2020-01-24 2022-08-05 Carbiolice Utilisation d’un melange enzyme pour ameliorer les proprietes mecaniques d’un article comprenant le melange enzyme et un polymere biodegradable
US11859085B2 (en) * 2020-03-08 2024-01-02 Reearthable, Llc Hemp and PBAT biopolymer substrate
GB202005073D0 (en) 2020-04-06 2020-05-20 Mellizyme Biotechnology Ltd Enzymatic degradation of plastics
PL433862A1 (pl) * 2020-05-07 2021-11-08 Grupa Azoty Spółka Akcyjna Sposób wytwarzania skrobi termoplastycznej i skrobia termoplastyczna
CN111560159A (zh) * 2020-06-10 2020-08-21 汕头市雷氏塑化科技有限公司 一种竹粉聚丁二酸丁二醇脂淀粉生物降解塑料及其制备方法
CN111548611A (zh) * 2020-06-12 2020-08-18 汕头市雷氏塑化科技有限公司 一种高密度竹粉/pbat/聚乳酸生物降解塑料及其制备方法
CN112063149A (zh) * 2020-09-18 2020-12-11 深圳市百奥降解材料科技有限公司 一种稳定性好的可降解塑料及其制备方法
RU2753723C1 (ru) * 2020-09-22 2021-08-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет пищевых производств" Биодеградируемая полимерная композиция с антимикробными свойствами и регулируемым сроком биоразложения
CN116529373A (zh) 2020-10-27 2023-08-01 卡比奥斯公司 新酯酶及其用途
WO2022090290A1 (en) 2020-10-27 2022-05-05 Carbios Novel esterases and uses thereof
US20230399628A1 (en) 2020-10-27 2023-12-14 Carbios Novel esterases and uses thereof
EP4237551A1 (en) 2020-10-27 2023-09-06 Carbios Novel esterases and uses thereof
CN112695020B (zh) * 2020-12-18 2023-01-31 安徽丰原生物技术股份有限公司 一种化学修饰脂肪酶的制备方法、脂肪酶及合成l-丙交酯的应用
CN115028935A (zh) * 2021-03-05 2022-09-09 普裕兴业股份有限公司 生物可分解材料
CN113265123A (zh) * 2021-04-26 2021-08-17 苏州赛荣建筑装饰工程有限公司 一种可降解的保温塑料地膜及其制备方法
CN114133705B (zh) * 2021-07-09 2023-03-21 四川晶应新材料技术有限公司 一种可降解塑料混合颗粒的制备方法
FR3125533A1 (fr) 2021-07-20 2023-01-27 Carbiolice Procédé de Préparation d’un Mélange Maître Enzymé
WO2023044267A1 (en) * 2021-09-15 2023-03-23 Everywhere Apparel, Inc. Recycled biodegradable plastic additive, biodegradable recycled fibers and method of making same
WO2023088909A2 (en) 2021-11-16 2023-05-25 Carbios Novel esterases and uses thereof
CA3237152A1 (en) 2021-11-16 2023-05-25 Alain Marty Esterases and uses thereof
CN114369346A (zh) * 2021-11-30 2022-04-19 苏州星火丰盈环保包装有限公司 一种可生物降解的塑料垃圾袋及其制备方法
CH719537A1 (de) * 2022-03-25 2023-10-13 Alpla Werke Alwin Lehner Gmbh & Co Kg Verfahren zur Einfärbung von Polyestern und Masterbatchzusammensetzung dafür.
CN115160654A (zh) * 2022-07-13 2022-10-11 集美大学 一种可微生物降解的改性醋酸纤维及其制备方法
EP4321616A1 (en) 2022-08-09 2024-02-14 Covestro Deutschland AG Thermally stable carboxylic ester hydrolases in layered double hydroxides for intrinsic recyclable polymers
FR3139569A1 (fr) 2022-09-14 2024-03-15 Carbiolice ARTICLE MONOCOUCHE ENZYMÉ ayant des propriétés barrières à l’eau
FR3139500A1 (fr) 2022-09-14 2024-03-15 Carbiolice ARTICLE MULTICOUCHE ENZYMÉ ayant des propriétés barrières à l’eau

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356623A (ja) 2001-05-30 2002-12-13 Toyota Motor Corp 微生物を含む生分解性樹脂
JP2008101107A (ja) 2006-10-19 2008-05-01 Kankyo Create:Kk 生分解性樹脂マスターバッチおよび成形品の製造方法
JP2009535475A (ja) 2006-05-01 2009-10-01 ビーエヌティー フォース バイオディグレイダブル ポリマーズ プライベート リミテッド 生分解性プラスチックの製造に有用な新規生分解性ポリマー組成物、及び当該組成物の製造方法
JP2010508425A (ja) 2006-10-31 2010-03-18 バイオ−テック エンバイロメンタル,エルエルシー 高分子材料を生分解性にする化学添加剤
WO2014167518A1 (en) 2013-04-12 2014-10-16 Steripak Pty Ltd Degradable and biodegradable plastic material and a method for making it
JP2015531411A (ja) 2012-08-30 2015-11-02 ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド バイオベースポリマー添加剤、バイオベースポリマー添加剤を調製するための方法、および前記バイオベースポリマー添加剤を含んでいる生分解性ポリマー組成物

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630597U (ja) 1979-08-14 1981-03-24
NL8700085A (nl) 1987-01-15 1988-08-01 Rijksuniversiteit Werkwijze voor het bereiden van verbindingen met eindstandige hydroxyl- of epoxygroep; daarvoor bruikbare microorganismen.
US5212219A (en) 1987-05-21 1993-05-18 Epron Industries Limited Degradable plastics
FI881965A (fi) 1988-04-27 1989-10-28 Amerplast Oy Biologiskt nedbrytbar sammansaettning.
JP2794749B2 (ja) * 1989-02-28 1998-09-10 大日本インキ化学工業株式会社 酵素含有樹脂組成物
FI88724C (fi) * 1989-10-05 1993-06-28 Biodata Oy Biologiskt nedbrytbar taeckfilm och foerfarande foer att framstaella en saodan
FI91643C (fi) * 1989-10-05 1994-07-25 Biostor Oy Biologisesti hajoava kalvo ja menetelmä sellaisen valmistamiseksi
JP3294288B2 (ja) 1991-02-22 2002-06-24 明治乳業株式会社 乳酸桿菌由来の新規なプラスミドpBUL1 及びその誘導体
US5145779A (en) 1991-05-03 1992-09-08 Iowa State University Research Foundation, Inc. Process of biodegradation of high molecular weight polyethylene by aerobic lignolytic microorganisms
US5378738A (en) 1991-10-31 1995-01-03 Kabushiki Kaisha Kobe Seiko Sho Biodegradable plastic
WO1996011972A1 (fr) 1994-10-13 1996-04-25 Kabushiki Kaisha Kobe Seiko Sho Procede de degradation enzymatique de polymere synthetique
JPH09118842A (ja) 1995-10-26 1997-05-06 Nippon Paint Co Ltd 自己更新型防汚塗料組成物
JPH09118844A (ja) * 1995-10-26 1997-05-06 Nippon Paint Co Ltd 防汚塗料組成物
WO1998007843A1 (en) 1996-08-22 1998-02-26 Chr. Hansen A/S Metabolically engineered lactic acid bacteria and their use
FR2754192B1 (fr) 1996-10-04 1998-12-04 Rhone Poulenc Fibres & Polymer Procede d'extraction de composes amines d'un milieu liquide
IT1294728B1 (it) 1997-09-12 1999-04-12 Biopolo S C A R L Ceppi di lievito per la riproduzione di acido lattico
CN1322045A (zh) 2000-04-29 2001-11-14 杨新 一种高压输电线为防鸟害的架设方式
JP3922033B2 (ja) 2001-03-29 2007-05-30 日本製紙株式会社 プラスチックフィルム製包装袋及び複合素材包装袋
JP2002293982A (ja) 2001-04-02 2002-10-09 Kanebo Ltd 生分解性ポリマーの分解促進剤及び分解促進方法並びに分解方法
JP2002320499A (ja) 2001-04-27 2002-11-05 Keio Gijuku ポリアルキレンアルカノエートまたはポリ(3−ヒドロキシアルカノエート)の環状体を主成分とするオリゴマーへの解重合方法、および前記環状オリゴマーの重合方法
JP4171823B2 (ja) 2001-07-05 2008-10-29 学校法人慶應義塾 超臨界二酸化炭素を用いるポリエステルの解重合法および解重合生成物からのポリエステルの製造方法
JP2003128835A (ja) 2001-10-26 2003-05-08 Asahi Kasei Corp ポリオレフィン系樹脂の分解方法
AU2003251381B2 (en) 2002-05-30 2008-04-03 Natureworks Llc Fermentation process using specific oxygen uptake rates as a process control
JP2004058010A (ja) 2002-07-31 2004-02-26 Toyobo Co Ltd 生分解性樹脂製成形物を含む有機廃棄物の処理方法
EP1548053A1 (en) 2002-08-05 2005-06-29 Keio University Method of enzymatic depolymerization of polylactic acid and process for producing polylactic acid from depolymerization product
EP1595949B1 (en) 2002-10-23 2011-06-22 Tohoku Techno Arch Co., Ltd. Method of degrading plastic and process for producing useful substance using the same
JP4059395B2 (ja) 2003-03-27 2008-03-12 鹿島建設株式会社 生分解性プラスチックの処理方法及びシステム
JP2004290130A (ja) 2003-03-28 2004-10-21 Mitsubishi Chemicals Corp ポリエステル構成成分モノマーの回収方法
US7172814B2 (en) * 2003-06-03 2007-02-06 Bio-Tec Biologische Naturverpackungen Gmbh & Co Fibrous sheets coated or impregnated with biodegradable polymers or polymers blends
JP2005082710A (ja) 2003-09-09 2005-03-31 Keio Gijuku 超臨界流体を用いるポリエステル、ポリカーボネート又はポリ乳酸の連続解重合方法、及び連続解重合装置
US7053130B2 (en) 2004-05-24 2006-05-30 E. I . Du Pont De Nemours And Company Method to accelerate biodegradation of aliphatic-aromatic co-polyesters by enzymatic treatment
US7960154B1 (en) 2005-01-21 2011-06-14 Japan Science And Technology Agency Polyester-based-plastic-degrading bacteria, polyester-based-plastic-degrading enzymes and polynucleotides encoding the enzymes
CN1322045C (zh) * 2005-07-27 2007-06-20 丁宏广 酶杀菌母粒、酶杀菌聚合物单丝及其制备工艺和用途
WO2007117282A2 (en) 2005-11-23 2007-10-18 Natureworks Llc Lactic acid-producing yeast cells having nonfunctional l-or d-lactate: ferricytochrome c oxidoreductase gene
JP2007319092A (ja) 2006-06-01 2007-12-13 Toyo Seikan Kaisha Ltd 生分解性樹脂の分解方法
ATE506860T1 (de) 2006-06-16 2011-05-15 Gumlink As Kaugummi enthaltend eine hydrophobe enzymformulierung
WO2008005509A2 (en) * 2006-07-06 2008-01-10 Massachusetts Institute Of Technology Methods and compositions for altering biological surfaces
JP5128595B2 (ja) * 2006-07-28 2013-01-23 バイオグレード・(ホンコン)・ピーティーワイ・リミテッド マスターバッチおよびポリマー組成物
US20080242784A1 (en) 2007-03-29 2008-10-02 Balakrishnan Ganesan Polyester compositions having improved heat resistance
FR2918378B1 (fr) 2007-07-06 2010-01-15 Lefrant Rubco Soc Procede de fabrication d'un melange maitre
KR101037354B1 (ko) 2007-09-07 2011-05-26 한국과학기술원 수크로스로부터 폴리락틱산 또는 폴리락틱산 공중합체를제조할 수 있는 재조합 미생물 및 이러한 미생물을이용하여 수크로스로부터 폴리락틱산 또는 락틱산공중합체를 제조하는 방법
US8476056B2 (en) 2007-10-24 2013-07-02 Food Industry Research And Development Institute Thermotolerant actinomadura strain capable of degrading polyesters
BRPI0818979A2 (pt) 2007-12-07 2014-10-14 Toray Industries "cassete de expressão de lactato desidrogenase, cepa de levedura transformante e método de produzir ácido láctico"
JP2011529336A (ja) 2008-07-31 2011-12-08 トータル エス.アー. ポリペプチドを産生及び分泌させるための構築物及び方法
WO2010032697A1 (ja) 2008-09-16 2010-03-25 三井化学株式会社 乳酸生産細菌及び乳酸生産方法
GB2464285A (en) 2008-10-08 2010-04-14 Wells Plastics Ltd Transition metal additives for enhancing polymer degradation
US8748137B2 (en) 2008-10-27 2014-06-10 Toyota Jidosha Kabushiki Kaisha Method for production of polylactate using recombinant microorganism
WO2010050482A1 (ja) 2008-10-27 2010-05-06 東洋製罐株式会社 生分解性樹脂を分解してオリゴマーおよび/またはモノマーを生成する方法
JP5630597B2 (ja) 2008-12-04 2014-11-26 東洋製罐株式会社 生分解性樹脂成形体を含む有機系廃棄物の処理方法
CN101457218A (zh) 2008-12-12 2009-06-17 山东大学 一类具有蛋白质降解活性的聚乳酸降解酶
BE1018628A3 (fr) 2009-01-16 2011-05-03 Futerro Sa Acide polylactique isotactique et son procede de fabrication.
KR101211767B1 (ko) 2009-06-30 2012-12-12 한국과학기술원 폴리하이드록시알카노에이트 합성효소 변이체를 이용한 락테이트 중합체 및 락테이트 공중합체의 제조방법
FR2950900B1 (fr) 2009-10-02 2011-11-25 Centre Nat Rech Scient Souches bacteriennes et leurs variants capables de degrader l'acide polylactique et leurs utilisations
KR101120359B1 (ko) 2009-10-28 2012-02-24 고려대학교 산학협력단 섬유소를 효과적으로 분해할 수 있는 유전자가 삽입된 재조합 벡터, 그 재조합벡터를 포함하는 형질전환체, 및 그 형질전환체를 이용한 에탄올 생산방법
US20110245057A1 (en) 2010-04-01 2011-10-06 Jim Scoledes Environmental bag recycling system
JP5829393B2 (ja) 2010-10-05 2015-12-09 東洋製罐株式会社 生分解性樹脂組成物
JP5286505B2 (ja) * 2011-01-19 2013-09-11 東洋製罐株式会社 生分解性樹脂組成物
JP5885148B2 (ja) 2011-01-27 2016-03-15 国立大学法人北海道大学 遺伝子組換えコリネ型細菌および含乳酸ポリエステルの製造方法
CN102250379B (zh) 2011-06-01 2013-01-16 中国人民解放军总后勤部军需装备研究所 一种涤棉混纺织物的分离及涤纶再聚合方法
JP2013000099A (ja) 2011-06-21 2013-01-07 National Univ Corp Shizuoka Univ ポリ乳酸分解酵素及びそれを産生する微生物
FR2984354A1 (fr) 2011-12-20 2013-06-21 Centre Nat Rech Scient Procede de preparation d'alliage polymere/enzymes
FR2988733B1 (fr) 2012-03-27 2016-02-05 Carbios Microorganisme recombinant
CN102675712B (zh) 2012-04-27 2013-10-09 谷尚昆 生物降解塑料及其生产方法
JP5071598B2 (ja) 2012-05-16 2012-11-14 東洋製罐株式会社 生分解性樹脂組成物
EP2861615A1 (en) 2012-06-04 2015-04-22 Carbios Recombinant cellulosome complex and uses thereof
CN103654457B (zh) * 2012-09-19 2017-06-20 漳州灿坤实业有限公司 一种面包自动制作机、面包原料盒和面包的快捷制作方法
JP6449165B2 (ja) 2012-11-20 2019-01-09 キャルビオスCarbios プラスチック製品をリサイクルする方法
CN103937179A (zh) * 2013-01-17 2014-07-23 山东省意可曼科技有限公司 一种可完全生物降解地膜材料及地膜
WO2014122698A1 (ja) 2013-02-08 2014-08-14 国立大学法人福島大学 プロテアーゼ、プロテアーゼ含有洗浄剤及びその製造方法
JP2014162884A (ja) * 2013-02-27 2014-09-08 Toray Ind Inc 生分解性フィルム
US20160053070A1 (en) 2013-04-11 2016-02-25 B.G Negev Technologies Ltd. Compositions and methods for biodegrading plastic
EP3065890A2 (en) 2013-11-05 2016-09-14 Carbios A method for degrading a plastic
WO2015097104A1 (en) 2013-12-23 2015-07-02 Carbios Method for recycling plastic products
US10385183B2 (en) 2014-05-16 2019-08-20 Carbios Process of recycling mixed PET plastic articles
CN103980535B (zh) 2014-05-26 2017-12-15 北京航空航天大学 芽孢杆菌胞外漆酶降解聚乙烯的方法
PT3209771T (pt) 2014-10-21 2021-01-12 Centre Nat Rech Scient Polipeptídeo que tem uma atividade de degradação do poliéster e as suas utilizações
WO2016097325A1 (en) 2014-12-19 2016-06-23 Carbios Plastic compound and preparation process
US10508269B2 (en) 2015-03-13 2019-12-17 Carbios Polypeptide having a polyester degrading activity and uses thereof
MX2017016068A (es) 2015-06-12 2018-11-09 Carbios Composicion de mezcla maestra que comprende una elevada concentracion de entidades biologicas.
RU2758138C2 (ru) 2015-12-21 2021-10-26 Карбио Рекомбинантные клетки дрожжей, продуцирующие полимолочную кислоту, и их использования
EP3458508A1 (en) 2016-05-19 2019-03-27 Carbios A process for degrading plastic products
KR102649944B1 (ko) 2016-07-12 2024-03-22 까르비오 신규한 에스테라아제 및 그의 용도
CN114891768A (zh) 2016-07-12 2022-08-12 卡比奥斯公司 新酯酶及其用途
JP7179002B2 (ja) 2016-12-16 2022-11-28 キャルビオス 改良されたプラスチック分解プロテアーゼ
EP3904431A1 (en) 2017-08-31 2021-11-03 Carbios Liquid composition comprising biological entities and uses thereof
AU2018386552A1 (en) 2017-12-21 2020-07-16 Carbios Novel proteases and uses thereof
JP2021531030A (ja) 2018-07-27 2021-11-18 キャルビオスCarbios 新規なエステラーゼ及びその使用
MX2021001045A (es) 2018-07-27 2021-04-12 Carbios Nuevas esterasas y usos de las mismas.
JP2021531032A (ja) 2018-07-27 2021-11-18 キャルビオスCarbios 新規なエステラーゼ及びその使用
FR3088069B1 (fr) 2018-11-06 2021-11-26 Carbios Procede de production d'acide terephtalique a l'echelle industrielle
FR3088070B1 (fr) 2018-11-06 2021-11-26 Carbios Procede de degradation enzymatique de polyethylene terephtalate
JP2022526344A (ja) 2019-03-28 2022-05-24 キャルビオス 多成分熱可塑性製品
MX2022000469A (es) 2019-07-11 2022-02-03 Carbios Esterasas y usos de las mismas.
CA3145465A1 (en) 2019-07-11 2021-01-14 Carbios Novel esterases and uses thereof
EP4061934A1 (en) 2019-11-18 2022-09-28 Carbios Novel proteases and uses thereof
CA3159993A1 (en) 2019-12-19 2021-06-24 Alain Marty Process for degrading plastic products
EP3838976A1 (en) 2019-12-19 2021-06-23 Carbios Process for degrading plastic products
CN114829470B (zh) 2019-12-19 2024-01-23 卡比奥斯公司 发泡塑料组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356623A (ja) 2001-05-30 2002-12-13 Toyota Motor Corp 微生物を含む生分解性樹脂
JP2009535475A (ja) 2006-05-01 2009-10-01 ビーエヌティー フォース バイオディグレイダブル ポリマーズ プライベート リミテッド 生分解性プラスチックの製造に有用な新規生分解性ポリマー組成物、及び当該組成物の製造方法
JP2008101107A (ja) 2006-10-19 2008-05-01 Kankyo Create:Kk 生分解性樹脂マスターバッチおよび成形品の製造方法
JP2010508425A (ja) 2006-10-31 2010-03-18 バイオ−テック エンバイロメンタル,エルエルシー 高分子材料を生分解性にする化学添加剤
JP2015531411A (ja) 2012-08-30 2015-11-02 ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド バイオベースポリマー添加剤、バイオベースポリマー添加剤を調製するための方法、および前記バイオベースポリマー添加剤を含んでいる生分解性ポリマー組成物
WO2014167518A1 (en) 2013-04-12 2014-10-16 Steripak Pty Ltd Degradable and biodegradable plastic material and a method for making it

Also Published As

Publication number Publication date
WO2016198650A1 (en) 2016-12-15
JP6907132B2 (ja) 2021-07-21
BR112017026693A2 (ja) 2018-08-21
US11198767B2 (en) 2021-12-14
CA2987705A1 (en) 2016-12-15
US10723848B2 (en) 2020-07-28
MY192862A (en) 2022-09-13
CN107835829A (zh) 2018-03-23
JP2018525457A (ja) 2018-09-06
EP3307811A1 (en) 2018-04-18
US20180186943A1 (en) 2018-07-05
JP2021119240A (ja) 2021-08-12
EP3307812A1 (en) 2018-04-18
MX2021013820A (es) 2022-03-17
JP6985154B2 (ja) 2021-12-22
US20180142097A1 (en) 2018-05-24
JP7234287B2 (ja) 2023-03-07
EP3307812B1 (en) 2024-05-08
BR112017026693B1 (pt) 2022-05-24
US11802185B2 (en) 2023-10-31
US20240052114A1 (en) 2024-02-15
BR112017026697A2 (ja) 2018-08-21
CA2987842A1 (en) 2016-12-15
CN107709457A (zh) 2018-02-16
CN113621223A (zh) 2021-11-09
WO2016198652A1 (en) 2016-12-15
BR122020011682B1 (pt) 2022-05-24
JP2018520231A (ja) 2018-07-26
CN107835829B (zh) 2021-08-31
BR112017026697B1 (pt) 2022-02-01
CA2987842C (en) 2024-01-02
JP2021169608A (ja) 2021-10-28
CN107709457B (zh) 2021-05-25
MX2017016068A (es) 2018-11-09
US20200339766A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP7275201B2 (ja) 高濃度の生物学的実体を含むマスターバッチ組成物
JP7217267B2 (ja) 生物学的実体を含む液体組成物及びその使用
JP7321146B2 (ja) 酵素を含む生分解性ポリエステル物品
BR122020011873B1 (pt) Artigo plástico produzido a partir de uma composição de lote mestre sob forma sólida compreendendo um material carreador e enzimas que têm uma atividade de degradação de polímero e método para fabricar um artigo plástico

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150