JP7226246B2 - 角速度センサおよび角速度センサシステム - Google Patents

角速度センサおよび角速度センサシステム Download PDF

Info

Publication number
JP7226246B2
JP7226246B2 JP2019196694A JP2019196694A JP7226246B2 JP 7226246 B2 JP7226246 B2 JP 7226246B2 JP 2019196694 A JP2019196694 A JP 2019196694A JP 2019196694 A JP2019196694 A JP 2019196694A JP 7226246 B2 JP7226246 B2 JP 7226246B2
Authority
JP
Japan
Prior art keywords
detection
electrodes
resonance frequency
spring
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019196694A
Other languages
English (en)
Other versions
JP2021071325A (ja
Inventor
勝昭 後藤
翔太 原田
卓 勝間田
良幸 畑
照久 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019196694A priority Critical patent/JP7226246B2/ja
Priority to PCT/JP2020/040470 priority patent/WO2021085485A1/ja
Priority to CN202080074706.6A priority patent/CN114599936A/zh
Publication of JP2021071325A publication Critical patent/JP2021071325A/ja
Priority to US17/730,752 priority patent/US11852482B2/en
Application granted granted Critical
Publication of JP7226246B2 publication Critical patent/JP7226246B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • G01C19/5762Structural details or topology the devices having a single sensing mass the sensing mass being connected to a driving mass, e.g. driving frames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/02Devices characterised by the use of mechanical means
    • G01P3/14Devices characterised by the use of mechanical means by exciting one or more mechanical resonance systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Description

本発明は、角速度を検出する角速度センサおよび角速度センサシステムに関するものである。
従来より、例えば、特許文献1には、質量部を駆動軸方向に沿って駆動振動させた状態で角速度を検出する角速度センサが提案されている。具体的には、このような角速度センサでは、駆動軸方向に沿って駆動振動させている状態で角速度が印加されると、コリオリ力により、駆動軸と直交する検出軸方向に質量部が振動する。このため、検出軸方向に沿った振動に基づいて角速度が検出される。
また、この角速度センサでは、駆動軸方向と検出軸方向とを切り替えることができるようになっている。そして、この角速度センサでは、駆動軸方向と検出軸方向とを切り替えながら駆動軸方向に沿った共振周波数と検出軸方向に沿った共振周波数とを取得し、これらの共振周波数の差に基づいて感度を補正することにより、温度変化や衝撃等の外乱によって検出精度が低下することを抑制するようにしている。
特開2017-187445号公報
しかしながら、上記角速度センサは、駆動軸方向を切り替えることが必要であり、駆動軸方向を切り替える毎に角速度の検出を行うことができない期間が構成される。つまり、上記角速度センサでは、角速度を検出できない期間が所的期間毎に構成され、検出精度が低くなり易い。
また、上記角速度センサは、駆動軸方向に沿って駆動振動させている際、検出軸方向に沿った共振周波数が変化しても対応できず、検出精度が低下することを十分に抑制できない。さらに、角速度センサにおける感度は、駆動軸方向に沿った共振周波数に依存するため、駆動軸方向に沿った共振周波数と検出軸方向に沿った共振周波数との差に基づいて感度を補正すると、共振周波数の絶対値の変動による感度変動を十分に抑制できず、検出精度が低下する。
本発明は上記点に鑑み、温度変化や衝撃等の外乱によって検出精度が低下することを十分に抑制できる角速度センサおよび角速度センサシステムを提供することを目的とする。
上記目的を達成するための請求項1および2では、角速度を検出する角速度センサシステムであって、駆動バネ(43a、43b)および検出バネ(42a、42b)と、駆動バネおよび検出バネを介して支持され、駆動バネの変形によって第1方向に振動可能とされると共に、第1方向に振動している際に角速度が印加されると、コリオリ力による検出バネの変形によって第1方向と直交する第2方向に振動可能とされている質量部(30)と、可動部用駆動電極(201a、201b)と、可動部用検出電極(231a、231b)と、を有する可動部(20)と、可動部用駆動電極と対向して配置された固定部用駆動電極(501a、501b)と、可動部用検出電極と対向して配置された固定部用検出電極(531a、531b)と、を有する角速度センサ(1)と、所定の処理を行う制御部(600)と、を備えている。そして、角速度センサは、可動部に可動部用検出励振電極(251a、251b)が備えられ、可動部用検出励振電極と対向する固定部用検出励振電極(551a、551b)と、駆動バネのバネ定数を変化させる駆動バネ調整部(211a、211b、511a、511b)と、検出バネのバネ定数を変化させる検出バネ調整部(241a、241b、541a、541b)と、を有している。制御部は、固定部用駆動電極に所定の電圧を印加することによって可動部を第1方向に振動させつつ、固定部用検出励振電極に所定の電圧を印加することによって可動部を第2方向にも振動させ、可動部における第1方向に沿った方向の第1共振周波数(fd)および可動部における第2方向に沿った方向の第2共振周波数(fs、fsa)を取得し、第1共振周波数が一定の値に維持されるように駆動バネ調整部を制御して駆動バネのバネ定数を調整すると共に、第2共振周波数が一定の値に維持されるように検出バネ調整部を制御して検出バネのバネ定数を調整し、固定部用検出電極からの信号を第1共振周波数で同期検波した結果に基づいて角速度を検出するように構成されている。
また、請求項1は、可動部は、第2共振周波数として、検出共振周波数(fs)と、検出共振周波数および第1共振周波数と異なる非検出共振周波数(fsa)とを有する構成とされ、さらに、制御部は、第2共振周波数としての非検出共振周波数を取得し、非検出共振周波数が一定の値に維持されるように検出バネ調整部を制御して検出バネのバネ定数を調整するように構成されている。
請求項2は、可動部は、第2共振周波数として、検出共振周波数(fs)と、検出共振周波数および第1共振周波数と異なる非検出共振周波数(fsa)を有する構成とされ、さらに、制御部は、第2共振周波数としての非検出共振周波数とを取得すると共に非検出共振周波数から検出共振周波数を推定し、推定した検出共振周波数が一定の値に維持されるように検出バネ調整部を制御して検出バネのバネ定数を調整するように構成されている。
これによれば、制御部は、可動部を第1方向および第2方向に振動させつつ、第1共振周波数が一定の値に維持されると共に第2共振周波数が一定の値に維持されるようにしている。このため、温度変化や衝撃等による外乱の影響を低減でき、検出精度が低下することを抑制できる。
また、制御部は、可動部を第1方向および第2方向に振動させつつ、第1共振周波数が一定の値に維持されると共に第2共振周波数が一定の値に維持されるようにしており、第1方向と第2方向とを切り替える必要がない。このため、可動部を間欠的に振動させる必要がなく、角速度を検出できない期間が構成されない。したがって、検出精度が低下することをさらに抑制できる。
また、請求項1は、角速度を検出する角速度センサであって、駆動バネ(43a、43b)および検出バネ(42a、42b)と、駆動バネおよび検出バネを介して支持され、駆動バネの変形によって第1方向に振動可能とされると共に、第1方向に振動している際に角速度が印加されると、コリオリ力による検出バネの変形によって第1方向と直交する第2方向に振動可能とされている質量部(30)と、可動部用駆動電極(201a、201b)と、可動部用検出電極(231a、231b)と、を有する可動部(20)と、可動部用駆動電極と対向して配置された固定部用駆動電極(501a、501b)と、可動部用検出電極と対向して配置された固定部用検出電極(531a、531b)と、を備えている。可動部には、可動部用検出励振電極(251a、251b)が備えられ、可動部用検出励振電極と対向する固定部用検出励振電極(551a、551b)と、駆動バネのバネ定数を変化させる駆動バネ調整部(211a、211b、511a、511b)と、検出バネのバネ定数を変化させる検出バネ調整部(241a、241b、541a、541b)と、を有している。そして、角速度センサは、固定部用駆動電極に所定の電圧が印加されることによって可動部が第1方向に振動しつつ、固定部用検出励振電極に所定の電圧が印加されることによって可動部が第2方向にも振動し、可動部における第1方向に沿った方向の第1共振周波数(fd)が一定の値に維持されるように、駆動バネ調整部が制御されて駆動バネのバネ定数が調整され、可動部における第2方向に沿った方向の第2共振周波数(fs、fsa)が一定の値に維持されるように、検出バネ調整部が制御されて検出バネのバネ定数が調整され、固定部用検出電極からの信号に基づいて角速度が検出されるようになっている。さらに、請求項12は、質量部は、第2方向に沿って配列された第1質量部(301)および第2質量部(302)と、第1質量部と第2質量部とを連結すると共に第1質量部および第2質量部を第2方向に沿って変位させるリンクバネ(303)とを有する構成とされ、可動部は、第2共振周波数として、第1質量部と第2質量部とが第2方向において同方向に振動する同相モードの検出共振周波数と、第1質量部と第2質量部とが第2方向において逆方向に振動する逆相モードの非検出共振周波数とを有し、検出バネ調整部が制御される際、第2共振周波数として、検出共振周波数または非検出共振周波数が一定の値に維持されるように、検出バネのバネ定数が調整されるようになっている。
これによれば、可動部は、第1方向および第2方向に振動した状態とされつつ、第1共振周波数が維持されると共に第2共振周波数が維持される。このため、温度変化や衝撃等による外乱の影響を低減でき、検出精度が低下することを抑制できる。
また、可動部は、第1方向および第2方向に振動した状態とされつつ、第1共振周波数が維持されると共に第2共振周波数が維持されるため、第1方向と第2方向とが切り替えられる必要がない。このため、可動部を間欠的に振動させる必要がなく、角速度を検出できない期間が構成されない。したがって、検出精度が低下することをさらに抑制できる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態における角速度センサを示す平面図である。 周波数と、可動部の駆動特性および検出特性との関係を示す図である。 図1に示す角速度センサを有する角速度センサシステムを示すブロック図である。 第2実施形態における角速度センサを示す平面図である 第3実施形態における角速度センサを示す平面図である 検出モード中の質量部の状態を示す模式図である。 非検出モード中の質量部の状態を示す模式図である。 周波数と、可動部の駆動特性および検出特性との関係を示す図である 第3実施形態における角速度センサシステムを示すブロック図である。 第4実施形態における角速度センサシステムを示すブロック図である。 第5実施形態における角速度センサシステムを示すブロック図である。 第6実施形態における角速度センサを示す平面図である。 第6実施形態における角速度センサシステムを示すブロック図である。 第7実施形態における角速度センサシステムを示すブロック図である。 他の実施形態における可動部用駆動調整電極および固定部用駆動調整電極の構成を示す平面図である。 他の実施形態における可動部用駆動調整電極および固定部用駆動調整電極の構成を示す平面図である。 他の実施形態における可動部用駆動調整電極および固定部用駆動調整電極の構成を示す平面図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
第1実施形態について、図面を参照しつつ説明する。なお、本実施形態の角速度センサ1は、例えば、車両に搭載され、車両の上下方向に平行な軸周りの角速度の検出に用いられると好適である。
角速度センサ1は、図1に示されるように、板状の基板10の一面側に形成されている。基板10は、本実施形態では、支持基板11、図示しない埋込絶縁膜、半導体層12が順に積層されたSOI(Silicon on insulatorの略)基板を用いて構成されている。そして、角速度センサ1におけるセンサ構造体を構成する各パターンは、埋込絶縁膜が部分的に除去されることでリリースされた状態となっている。
なお、以下では、半導体層12の面方向における一方向をx軸方向とし、x軸方向に直交する方向をy軸方向とし、x軸方向およびy軸方向と直交する方向をz軸方向として説明する。図1中では、紙面左右方向をx軸方向とし、紙面上下方向をy軸方向とし、紙面垂直方向をz軸方向としている。
角速度センサ1は、可動部20および固定部50等を有する構成とされている。可動部20は、後述するアンカー部20aを除く部分において、裏面側に位置する埋込絶縁膜が除去され、支持基板11からリリースされた状態とされている。固定部50は、裏面側の少なくとも一部に埋込絶縁膜が残されており、当該少なくとも一部が支持基板11からリリースされることなく、支持基板11に固定された状態とされている。そして、可動部20および固定部50は、特に図示しないが、それぞれ所定箇所にパッドが形成されており、当該パッドを介して後述する制御部600と電気的に接続されている。
以下、可動部20および固定部50の構成について具体的に説明する。可動部20は、質量部30、梁部40、各種電極部200a、200b、210a、210b、220a、220b、230a、230b、240a、240b、250a、250bを有する構成とされている。
質量部30は、印加された角速度に応じて変位する部分であり、梁部40を介してアンカー部20aに支持されている。本実施形態では、質量部30は、x軸方向に沿った一対の一辺30a、30cおよびy軸方向に沿った一対の一辺30b、30dを有する平面略矩形状とされている。
梁部40は、質量部30を支持すると共に、角速度検出を行う際に質量部30をx軸方向およびy軸方向に変位させることが可能な構成とされている。本実施形態では、梁部40は、プレート41a、41b、検出バネ42a、42b、駆動バネ43a、43bを有する構成とされている。
プレート41a、41bは、質量部30よりもy軸方向の長さが短くされた平面矩形状とされており、質量部30を挟んで各一辺30a、30cと対向するように配置されている。つまり、各プレート41a、41bは、質量部30を挟んで配置されている。
検出バネ42a、42bは、質量部30と各プレート41a、41bとを連結するように配置されている。本実施形態では、検出バネ42a、42bは、質量部30におけるx軸方向に沿った一辺30a、30cの両端部と各プレート41a、41bとを接続するように備えられている。なお、本実施形態の検出バネ42a、42bは、ストレートビーム構造とされている。
駆動バネ43a、43bは、各プレート41a、41bにおけるy軸方向に沿った各一辺とアンカー部20aとを連結するように配置されている。つまり、それぞれのプレート41a、41bは、2つの駆動バネ43a、43bによってアンカー部20aに支持されている。これにより、質量部30は、駆動バネ43a、43b、プレート41a、41b、検出バネ42a、42bを介してアンカー部20aに支持された状態となっている。なお、本実施形態の駆動バネ43a、43bは、検出バネ42a、42bよりも線形的に撓み易い構造とされ、フォールデッドビーム構造とされている。
各種電極部200a、200b、210a、210b、220a、220b、230a、230b、240a、240b、250a、250bは、可動部用駆動電極部200a、200b、可動部用駆動調整電極部210a、210b、可動部用駆動モニタ電極部220a、220b、可動部用検出電極部230a、230b、可動部用検出調整電極部240a、240b、可動部用検出励振電極部250a、250bとされている。
可動部用駆動電極部200a、200b、可動部用駆動調整電極部210a、210b、および可動部用駆動モニタ電極部220a、220bは、各プレート41a、41bに備えられている。
具体的には、可動部用駆動電極部200a、200bは、各プレート41a、41bにおけるx軸方向の略中央部において、質量部30側と反対側に櫛歯状に突出した可動部用駆動電極201a、201bを有する構成とされている。
可動部用駆動調整電極部210a、210bは、可動部用駆動電極部200a、200bを挟むように、2つずつ備えられている。そして、可動部用駆動調整電極部210a、210bは、後述する固定部用駆動調整電極511a、511bと対向する部分を可動部用駆動調整電極211a、211bとして構成されている。
可動部用駆動モニタ電極部220a、220bは、可動部用駆動電極201a、201b、および可動部用駆動調整電極211a、211bを挟むように2つずつ備えられている。そして、可動部用駆動モニタ電極部220a、220bは、質量部30側と反対側に櫛歯状に突出した可動部用駆動モニタ電極221a、221bを有する構成とされている。
可動部用検出電極部230a、230b、可動部用検出調整電極部240a、240b、可動部用検出励振電極部250a、250bは、質量部30のうちのy軸方向に沿った各一辺30b、30dにそれぞれ備えられている。つまり、可動部用検出電極部230a、230b、可動部用検出調整電極部240a、240b、可動部用検出励振電極部250a、250bは、質量部30を挟んだ両側にそれぞれが位置するように形成されている。
可動部用検出電極部230a、230bは、可動部用検出電極231a、231bと、当該可動部用検出電極231a、231bを支持する支持部232a、232bとを有する構成とされている。支持部232a、232bは、質量部30からx軸方向に沿って突出するように形成されている。そして、可動部用検出電極231a、231bは、支持部232a、232bからy軸方向に沿って延設されるように、支持部232a、232bに備えられている。
可動部用検出調整電極部240a、240bは、可動部用検出調整電極241a、241bと、当該可動部用検出調整電極241a、241bを支持する支持部242a、242bとを有する構成とされている。支持部242a、242bは、質量部30からx軸方向に沿って突出するように形成されている。そして、可動部用検出調整電極241a、241bは、支持部242a、242bからy軸方向に沿って延設されるように、支持部242a、242bに備えられている。
可動部用検出励振電極部250a、250bは、可動部用検出励振電極251a、251bと、当該可動部用検出励振電極251a、251bを支持する支持部252a、252bとを有する構成とされている。支持部252a、252bは、質量部30からx軸方向に沿って突出するように形成されている。そして、可動部用検出励振電極251a、251bは、支持部252a、252bからy軸方向に沿って延設されるように、支持部252a、252bに備えられている。
なお、可動部用検出電極231a、231b、可動部用検出調整電極241a、241b、可動部用検出励振電極251a、251bは、それぞれ各支持部232a、232b、242a、242b、252a、252bの両側に延設されている。
以上が本実施形態における可動部20の構成である。そして、本実施形態の可動部20は、具体的には後述するが、角速度の検出を行う際、y軸方向に沿って自励共振させられると共に、x軸方向に沿って自励共振させられる。本実施形態では、可動部20がy軸方向に沿って自励共振することを駆動共振するともいい、可動部20がx軸方向に沿って自励共振することを検出共振するともいう。そして、本実施形態では、y軸方向が駆動軸方向となり、第1方向に相当する。同様に、x軸方向が検出軸方向となり、第2方向に相当する。
また、図2に示されるように、以下では、可動部20が駆動共振する際のy軸方向に沿った方向の共振周波数を駆動共振周波数fdとし、可動部20が検出共振する際のx軸方向に沿った方向の共振周波数を検出共振周波数fsとする。なお、図2中では、可動部20のy軸方向に沿った振動に関する周波数と振幅との関係を駆動特性と示し、可動部20のx軸方向に沿った振動に関する周波数と振幅との関係を検出特性と示している。そして、本実施形態では、駆動共振周波数fdが第1共振周波数に相当し、検出共振周波数fsが第2共振周波数に相当する。さらに、本実施形態では、駆動共振周波数fdと検出共振周波数fsとは異なる値とされている。
固定部50は、図1に示されるように、固定部用駆動電極部500a、500b、固定部用駆動調整電極部510a、510b、固定部用駆動モニタ電極部520a、520b、固定部用検出電極部530a、530b、固定部用検出調整電極部540a、540b、固定部用検出励振電極部550a、550bを有している。
固定部用駆動電極部500a、500bは、可動部用駆動電極201a、201bの櫛歯と噛み合うようにy軸方向に延設された櫛歯状の固定部用駆動電極501a、501bと、固定部用駆動電極501a、501bを支持する支持部502a、502bとを有する構成とされている。
固定部用駆動調整電極部510a、510bは、プレート41a、41bと対向するように配置されている。本実施形態では、固定部用駆動調整電極部510a、510bは、平面略矩形状とされた固定部用駆動調整電極511a、511bを有する構成とされている。そして、固定部用駆動調整電極部510a、510bは、固定部用駆動電極部500a、500bを挟むようにそれぞれ2つずつ、プレート41a、41bと所定の間隔だけ離れた位置に配置されている。なお、上記のように、プレート41a、41bのうちの固定部用駆動調整電極511a、511bと対向する部分が可動部用駆動調整電極211a、211bとなる。
固定部用駆動モニタ電極部520a、520bは、可動部用駆動モニタ電極221a、221bの櫛歯と噛み合うようにy軸方向に延設された固定部用駆動モニタ電極521a、521bと、固定部用駆動モニタ電極521a、521bを支持する支持部522a、522bとを有する構成とされている。
固定部用検出電極部530aは、可動部用検出電極231a、231bの櫛歯と噛み合うようにy軸方向に延設された固定部用検出電極531a、531bと、固定部用検出電極531a、531bを支持する支持部532a、532bとを有する構成とされている。
固定部用検出調整電極部540a、540bは、可動部用検出調整電極241a、241bの櫛歯と噛み合うようにy軸方向に延設された固定部用検出調整電極541a、541bと、固定部用検出調整電極541a、541bを支持する支持部542a、542bとを有する構成とされている。
固定部用検出励振電極部550a、550bは、可動部用検出励振電極251a、251bの櫛歯と噛み合うようにy軸方向に延設された固定部用検出励振電極551a、551bと、固定部用検出励振電極551a、551bを支持する支持部552a、552bとを有する構成とされている。
なお、可動部用検出調整電極241a、241bと固定部用検出調整電極541a、541bとは、隣合う各電極241a、241b、541a、541bの間隔が等しくなるように形成されている。つまり、可動部用検出調整電極241a、241bは、x軸方向に沿って隣合う固定部用検出調整電極541a、541bの中心に形成されている。
一方、可動部用検出電極231a、231bと固定部用検出電極531a、531bとは、隣合う各電極231a、231b、531a、531bの間隔が異なるように形成されている。本実施形態では、可動部用検出電極231a、231bと固定部用検出電極531a、531bは、x軸方向に沿って隣合う固定部用検出電極531a、531bと、当該固定部用検出電極531a、531bの間に配置される可動部用検出電極231a、231bとの間隔が次のようにされている。すなわち、可動部用検出電極231a、231bと固定部用検出電極531a、531bは、質量部30側の固定部用検出電極531a、531bと可動部用検出電極231a、231bとの間隔が、質量部30側と反対側の固定部用検出電極531a、531bと可動部用検出電極231a、231bとの間隔より広くなるように形成されている。
同様に、可動部用検出励振電極251a、251bと固定部用検出励振電極551a、551bとは、隣合う各電極251a、251b、551a、551bの間隔が異なるように形成されている。本実施形態では、可動部用検出励振電極251a、251bと固定部用検出励振電極551a、551bは、x軸方向に沿って隣合う固定部用検出励振電極551a、551bと、当該固定部用検出励振電極551a、551bの間に配置される可動部用検出励振電極251a、251bとの間隔が次のようにされている。すなわち、可動部用検出励振電極251a、251bと固定部用検出励振電極551a、551bは、質量部30側の固定部用検出励振電極551a、551bと可動部用検出励振電極251a、251bとの間隔が、質量部30側と反対側の固定部用検出励振電極551a、551bと可動部用検出励振電極251a、251bとの間隔より広くなるように形成されている。
以上が本実施形態における角速度センサ1の構成である。なお、本実施形態では、可動部用駆動調整電極211a、211bおよび固定部用駆動調整電極511a、511bが駆動バネ調整部に相当している。可動部用検出調整電極241a、241bおよび固定部用検出調整電極541a、541bが検出バネ調整部に相当している。次に、上記角速度センサ1を用いた角速度センサシステムについて、図3を参照しつつ説明する。なお、図3中のfd、fsは、周波数を示している。
角速度センサシステムは、上記角速度センサ1と、各種回路を有する制御部600と、を有する構成とされている。なお、角速度センサシステムが車両に搭載される場合、制御部600は、車両ECU(Electronic Control Unitの略)等で構成される。また、可動部20は、特に図示しないが、例えば、制御部600のグランドと接続されてグランド電位に維持される。
制御部600は、第1電圧入力回路610、第1取出回路620、第1位相同期回路(以下では、単に第1PLL(Phase-Locked Loopの略)回路ともいう)630、第1周波数制御器640、第1同期検波回路650、振幅制御器660、第1積算器670等を備えている。また、制御部600は、第2電圧入力回路680、第2取出回路690、第2同期検波回路700、第2位相同期回路(以下では、第2PLL回路ともいう)710、第2周波数制御器720、第2積算器730等を備えている。
第1電圧入力回路610は、バイアス付加回路、位相反転回路、非反転回路等を有する構成とされており、各固定部用駆動電極501a、501bに接続されている。第1電圧入力回路610は、入力された信号に所定のバイアスを付加しつつ、位相を180°反転した信号と非反転の信号の2種類の信号を生成する。そして、第1電圧入力回路610は、各固定部用駆動電極501a、501bの一方に反転信号を入力し、他方に非反転信号を入力する。なお、第1電圧入力回路610は、後述するが、周波数がfdである交流電圧を固定部用駆動電極501a、501bに入力する。また、可動部20は、後述するが、駆動共振周波数がfdに維持されるように制御される。このため、可動部20は、y軸方向に沿って駆動共振する。
第1取出回路620は、C-V変換回路、差動増幅回路等を有する構成とされており、各固定部用駆動モニタ電極521a、521bと接続されている。そして、第1取出回路620は、各固定部用駆動モニタ電極521a、521bから出力される信号を取得して差動増幅すると共に電圧に変換した信号を出力する。
第1PLL回路630は、第1取出回路620と接続されており、第1取出回路620から入力された信号の周波数がfdとなるようにして出力する。この場合、第1PLL回路630は、入力される信号と出力する信号の位相差が共振時の位相差(例えば、90°)となるように、周波数を制御する。
第1周波数制御器640は、第1PLL回路630および固定部用駆動調整電極511a、511bと接続されており、例えば、周波数カウンタ等を備える構成とされ、第1PLL回路630から出力された信号の周波数を数値化する。そして、第1周波数制御器640は、数値化した周波数が所望の駆動共振周波数(すなわち、図3中のset point1)となるように、固定部用駆動調整電極511a、511bに直流電圧を印加する。これにより、可動部20(すなわち、可動部用駆動調整電極211a、211b)と、可動部20を挟むように配置された固定部用駆動調整電極511a、511bとの間の電位差に応じた電気バネ効果が発生する。そして、角速度センサ1では、電気バネ効果によって駆動バネ43a、43bのバネ定数が調整され、可動部20の駆動共振周波数が所望のfdに維持される。つまり、角速度センサ1に対して温度変化や衝撃等の外乱が印加されたとしても、可動部20の駆動共振周波数が所望のfdに維持される。
第1同期検波回路650は、第1取出回路620および第1PLL回路630と接続されており、第1PLL回路630から出力された信号を参照信号として、第1取出回路620から出力された信号を同期検波する。そして、第1同期検波回路650は、参照信号と同じ周波数成分の振幅量を振幅制御器660に出力すると共に、第1積算器670に周波数がfdである信号を出力する。
振幅制御器660は、第1同期検波回路650と接続されており、第1同期検波回路650から振幅量が入力されると、所望の駆動共振の振幅量(すなわち、図3中のset point2)となるように、固定部用駆動電極501a、501bに印加する交流電圧の電圧値を調整して第1積算器670に出力する。これにより、固定部用駆動電極501a、501bには、第1積算器670および第1電圧入力回路610を介し、制御された電圧値を有する周波数fdの交流電圧が入力される。したがって、可動部20は、y軸方向に沿って一定の振幅で駆動共振する。
第2電圧入力回路680は、バイアス付加回路、位相反転回路、非反転回路等を有する構成とされており、各固定部用検出励振電極551a、551bに接続されている。第2電圧入力回路680は、入力された信号に所定のバイアスを付加しつつ、位相を反転した信号と非反転の信号の2種類の信号を生成する。そして、第2電圧入力回路680は、各固定部用検出励振電極551a、551bの一方に反転信号を入力し、他方に非反転信号を入力する。なお、第2電圧入力回路680は、後述するが、周波数がfsである交流電圧を固定部用検出励振電極551a、551bに入力する。また、可動部20は、後述するが、検出共振周波数がfsに維持されるように制御される。このため、可動部20は、x軸方向に沿って検出共振する。
第2取出回路690は、C-V変換回路、差動増幅回路等を有する構成とされており、各固定部用検出電極531a、531bと接続されている。そして、第2取出回路690は、各固定部用検出電極531a、531bから出力される信号を取得して差動増幅すると共に電圧に変換した信号を出力する。
なお、固定部用検出電極531a、531bから出力される信号は、検出共振に起因する信号と、角速度が印加されることによって発生するコリオリ力の振動に起因する信号とを重ね合わせた信号となる。
第2同期検波回路700は、第2取出回路690および第1PLL回路630と接続されており、第1PLL回路630から出力される信号(すなわち、駆動共振周波数fdを有する信号)を参照信号とし、第2取出回路690から出力された信号を同期検波する。また、本実施形態の第2同期検波回路700は、ローパスフィルタ(以下では、単にLPFともいう)を備えており、LPFによって同期検波後の信号の交流成分を除去し、直流成分を出力する。つまり、第2同期検波回路700は、LPFにより、検出共振の影響を低減しつつ、参照信号と同じ周波数成分の振幅量を出力する。これにより、駆動共振周波数fdで同期検波した結果に基づいて角速度が検出される。なお、本実施形態のLPFでは、駆動共振周波数fdと検出共振周波数fsとの差の絶対値(すなわち、|fs-fd|)以上の周波数を除去する。
すなわち、第2同期検波回路700で同期検波した後の信号は、検出共振に起因する信号をS・sinωst、コリオリ力による振動に起因する信号をC(Ω)・cosωdt、参照信号をcosωdt、ωd=2πfd、ωs=2πfsとすると、次式で示される。
Figure 0007226246000001
このため、LPFで|fs-fd|以上の周波数を除去することにより、コリオリ力に起因する振動の振幅(すなわち、角速度)を好適に検出することができる。
第2PLL回路710は、第2取出回路690と接続されており、第2取出回路690から入力された信号の周波数がfsとなるようにして出力する。この場合、第2PLL回路710は、入力される信号と出力される信号の位相差が共振時の位相差(例えば、90°)となるように、周波数を制御する。
第2周波数制御器720は、第2PLL回路710および固定部用検出調整電極541a、541bと接続されており、例えば、周波数カウンタ等を備える構成とされ、第2PLL回路710から出力された信号の周波数を数値化する。そして、第2周波数制御器720は、数値化した周波数が所望の検出共振周波数(すなわち、図中のset point3)となるように、固定部用検出調整電極541a、541bに直流電圧を印加する。これにより、可動部20(すなわち、可動部用検出調整電極241a、241b)と、可動部20を挟むように配置された固定部用検出調整電極541a、541bとの間に電気バネ効果が発生する。そして、角速度センサ1では、電気バネ効果によって検出バネ42a、42bのバネ定数が調整され、可動部20の検出共振周波数が所望のfsに維持される。つまり、角速度センサ1に対して温度変化や衝撃等の外乱が印加されたとしても、可動部20の検出共振周波数が所望のfsに維持される。
第2積算器730では、所定の電圧値(すなわち、図3中のAmplitude)が印加される。そして、固定部用検出励振電極551a、551bには、第2積算器730および第2電圧入力回路680を介し、所定の電圧値を有する周波数fsの交流電圧が入力される。したがって、可動部20は、x軸方向に沿って検出共振する。
ここで、本実施形態では、制御部600は、可動部20を駆動共振および検出共振させる際、検出共振の振幅が駆動共振の振幅より小さくなるようにしている。例えば、制御部600は、第1電圧入力回路610から固定部用駆動電極501a、501bに入力される交流電圧の振幅や、第1電圧電極回路610で付加されるバイアス値を調整することにより、検出共振の振幅が駆動共振の振幅より小さくなるようにしている。
以上が本実施形態における角速度センサシステムの構成である。次に、上記角速度センサシステムを用いた角速度の検出作動について、簡単に説明する。
本実施形態の角速度センサシステムは、上記のように構成されている。このため、角速度センサ1は、固定部用駆動電極501a、501bに制御された電圧値および周波数fdを有する交流電圧が印加されることにより、可動部20がy軸方向に沿って振動する。この際、角速度センサ1では、固定部用駆動モニタ電極521a、521bからの信号に基づいて固定部用駆動調整電極511a、511bに直流電圧を印加し、電気バネ効果を制御することで駆動共振周波数fdが維持される。このため、角速度センサ1は、可動部20がy軸方向に沿って常に、一定かつ所望の振幅であり、一定かつ所望の共振周波数で駆動共振した状態となっている。
また、角速度センサ1は、固定部用検出励振電極551a、551bに所定の振幅および周波数fsを有する交流電圧が印加されることにより、可動部20がx軸方向に沿って振動する。この際、角速度センサ1では、固定部用検出電極531a、531bからの信号に基づいて固定部用検出調整電極541a、541bに直流電圧を印加し、電気バネ効果を制御することで検出共振周波数fsが維持される。このため、角速度センサ1は、可動部20がx軸方向に沿って常に、一定かつ所望の共振周波数で検出共振した状態なっている。つまり、本実施形態の角速度センサシステムでは、可動部20は、駆動共振周波数fdが維持されると共に検出共振周波数fsが維持され、常に、y軸方向に駆動共振すると共にx軸方向に検出共振した状態となっている。
角速度センサ1は、この状態でz軸周りの角速度が印加されると、可動部20がコリオリ力に応じてx軸方向に振動する。そして、制御部600は、固定部用検出電極531a、531bに基づく信号を駆動共振周波数fdで同期検波し、同期検波した信号から|fs-fd|以上の周波数を除去して角速度を検出する。
以上説明したように、本実施形態では、可動部20は、駆動共振周波数fdが維持されると共に検出共振周波数fsが維持され、常に、y軸方向に駆動共振すると共にx軸方向に検出共振した状態となっている。つまり、角速度センサ1に対して温度変化や衝撃等の外乱が印加されたとしても、可動部20は、y軸方向に駆動共振すると共にx軸方向に検出共振した状態となっている。このため、本実施形態の角速度センサシステムでは、温度変化や衝撃等による外乱の影響を低減でき、検出精度が低下することを抑制できる。
また、可動部20は、常に、y軸方向に駆動共振すると共にx軸方向に検出共振した状態となっている。つまり、可動部20を間欠的に振動させる必要がなく、角速度を検出できない期間が構成されない。このため、検出精度が低下することをさらに抑制でき、汎用性が低下することも抑制できる。
さらに、本実施形態では、制御部600は、可動部20を駆動共振および検出共振させる際、検出共振の振幅が駆動共振の振幅より小さくなるようにしている。このため、検出共振の振幅が駆動共振の振幅以上とされている場合と比較して、検出共振が駆動共振に与える影響を低減でき、角速度の検出精度が低下することを抑制できる。
すなわち、本実施形態では、可動部20は、常に、y軸方向に駆動共振すると共にx軸方向に検出共振した状態となっているため、z軸周りの角速度が印加された際、コリオリ力は、y軸方向にも発生し得る。この場合、検出共振の振幅が大きいと、y軸方向へのコリオリ力に起因する振動が大きくなる。したがって、検出共振の振幅を駆動共振の振幅より小さくすることにより、y軸方向へのコリオリ力を小さくでき、角速度の検出精度が低下することを抑制できる。但し、角速度の検出に関する感度は、駆動共振の振幅が大きいほど大きくなるため、駆動共振の振幅は、大きくすることが好ましい。
さらに、本実施形態では、検出バネ42a、42bは、ストレートビーム構造とされており、ハードスプリング効果が発生し易い構造とされている。この場合、上記のように、検出共振の振幅を小さくすることにより、ハードスプリング効果を抑制することもできる。なお、本実施形態では、検出共振の振幅を小さくしても、可動部用検出電極231a、231bおよび固定部用検出電極531a、531bを櫛歯状に形成しているため、対向面積を確保することで感度が低下することを抑制できる。
(第1実施形態の変形例)
第1実施形態の変形例について説明する。まず、上記第1実施形態では、固定部用駆動調整電極511a、511bに電圧を印加し、電気バネ効果によって駆動共振周波数fdを調整すると共に、固定部用検出調整電極541a、541bに電圧を印加し、電気バネ効果によって駆動検出周波数fsを調整する例について説明した。ここで、電気バネ効果は、バネ定数を小さくすることしかできず、共振周波数を小さくすることしかできない。
このため、変形例では、第1実施形態における角速度センサシステムおいて、固定部用駆動調整電極511a、511bにオフセット電圧を印加し、所望とする駆動共振周波数fdを梁寸法等で規定される設計値より小さく設定する。同様に、固定部用検出調整電極541a、541bにオフセット電圧を印加し、所望とする検出共振周波数fsを梁寸法等で規定される設計値より小さく設定する。これにより、固定部用駆動調整電極511a、511bに印加する電圧を小さくすることでバネ定数を大きくすることも可能となる。このため、温度変化や衝撃等の外乱が印加されることによって共振周波数が大きくなった場合にも対応することが可能となり、さらに検出精度が低下することを抑制できる。
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対し、可動部用検出電極231a、231b、可動部用検出励振電極251a、251b、固定部用検出電極531a、531b、および固定部用検出励振電極551a、551bの配置関係を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
本実施形態の角速度センサ1は、図4に示されるように、可動部用検出電極231a、231bは、質量部30におけるy軸方向に沿った一対の一辺30b、30dのうちの一方の一辺30bにそれぞれ備えられている。また、可動部用検出励振電極251a、251bは、質量部30におけるy軸方向に沿った一対の一辺30b、30dのうちの他方の一辺30dにそれぞれ備えられている。つまり、可動部用検出電極231a、231bと可動部用検出励振電極251a、251bとは、質量部30を挟んで配置されている。
なお、本実施形態では、可動部用検出電極231a、231bは、質量部30の一辺30bに形成された可動部用検出調整電極241aを挟むように配置されている。可動部用検出励振電極251a、251bは、質量部30の一辺30dに形成された可動部用検出調整電極241bを挟むように配置されている。
そして、固定部用検出電極531a、531bは、可動部用検出電極231a、231bの櫛歯と噛み合うように配置されている。固定部用検出励振電極551a、551bは、可動部用検出励振電極251a、251bの櫛歯と噛み合うように配置されている。つまり、固定部用検出電極531a、531bと固定部用検出励振電極551a、551bとは、質量部30を挟んで配置されている。
すなわち、可動部用検出電極231a、231bおよび固定部用検出電極531a、531bは、質量部30を基準として一方の側にそれぞれ配置されている。可動部用検出励振電極251a、251bおよび固定部用検出励振電極551a、551bは、質量部30を基準として他方の側にそれぞれ配置されている。
また、可動部用検出電極231a、231bと固定部用検出電極531a、531bとは、x軸方向に沿って隣合う固定部用検出電極531a、531bと、当該固定部用検出電極531a、531bの間に配置される可動部用検出電極231a、231bとの間隔が次のようにされている。
すなわち、可動部用検出電極231aと固定部用検出電極531aは、質量部30側の固定部用検出電極531aと可動部用検出電極231aとの間隔が、質量部30側と反対側の固定部用検出電極531aと可動部用検出電極231aとの間隔より広くなるように形成されている。
一方、可動部用検出電極231bと固定部用検出電極531bは、質量部30側の固定部用検出電極531bと可動部用検出電極231bとの間隔が、質量部30側と反対側の固定部用検出電極531bと可動部用検出電極231bとの間隔より狭くなるように形成されている。つまり、本実施形態では、可動部用検出電極231aおよび固定部用検出電極531aと、可動部用検出電極231bおよび固定部用検出電極531bとは、間隔が広くなる領域と狭くなる領域とが反対となるように形成されている。
同様に、可動部用検出励振電極251a、251bと固定部用検出励振電極551a、551bとは、x軸方向に沿って隣合う固定部用検出励振電極551a、551bと、当該固定部用検出励振電極551a、551bの間に配置される可動部用検出励振電極251a、251bとの間隔が次のようにされている。
すなわち、可動部用検出励振電極251aと固定部用検出励振電極551aは、質量部30側の固定部用検出励振電極551aと可動部用検出励振電極251aとの間隔が、質量部30側と反対側の固定部用検出励振電極551aと可動部用検出励振電極251aとの間隔より広くなるように形成されている。
一方、可動部用検出励振電極251bと固定部用検出励振電極551bは、質量部30側の固定部用検出励振電極551bと可動部用検出励振電極251bとの間隔が、質量部30側と反対側の固定部用検出励振電極551bと可動部用検出励振電極251bとの間隔より狭くなるように形成されている。つまり、本実施形態では、可動部用検出励振電極251aおよび固定部用検出励振電極551aと、可動部用検出励振電極251bと固定部用検出励振電極551bとは、間隔が広くなる領域と狭くなる領域とが反対となるように形成されている。これにより、上記図2に示した制御部600を用いて同様の角速度センサシステムを構成することができる。
これによれば、固定部用検出電極531a、531bと固定部用検出励振電極551a、551bとが質量部30を挟んで配置されている。このため、固定部用検出電極531a、531bと接続される配線等と、固定部用検出励振電極551a、551bと接続される配線等とが近接して配置され難くなる。したがって、互いの配線間の干渉を抑制でき、制御を安定させつつ、検出精度の向上を図ることができる。
(第3実施形態)
第3実施形態について説明する。第3実施形態は、第2実施形態に対し、質量部30の構成を変更したものである。その他に関しては、第2実施形態と同様であるため、ここでは説明を省略する。
本実施形態の角速度センサ1は、図5に示されるように、質量部30は、第1質量部301と第2質量部302とに分割され、x軸方向に沿って配列されている。なお、第1質量部301と第2質量部302とは、同じ大きさとされ、同じ質量とされている。
そして、第1質量部301と第2質量部302とは、第1質量部301と第2質量部302とをx軸方向に変位させるリンクバネ303を介して接続されている。なお、第1質量部301および第2質量部302は、それぞれ検出バネ42a、42bを介して各プレート41a、41bに接続されている。
ここで、可動部20は、質量部30が上記構成とされていることにより、図6Aに示されるように、x軸方向において、第1質量部301と第2質量部302とが同方向に変位する同相モードでの振動が可能となる。また、可動部20は、図6Bに示されるように、第1質量部301と第2質量部302とが逆方向に変位する逆相モードでの振動が可能となる。本実施形態では、可動部20は、角速度が印加されていない場合には逆相モードで振動させられ、角速度が印加されるとコリオリ力によって同相モードの振動が加わる。このため、以下では、質量部30が逆相モードで振動することを非検出モードでの振動ともいい、質量部30が同相モードで振動することを検出モードでの振動ともいう。
そして、可動部20は、上記のような構成とされていることにより、図7に示されるように、検出モードでの検出共振周波数fsと非検出モードでの非検出共振周波数fsaとを有する構成となる。つまり、本実施形態の可動部20は、x軸方向に沿った方向に異なる共振周波数を有する構成となる。なお、図7では、上記図2と同様に、可動部20のy軸方向に沿った振動に関する周波数と振幅との関係を駆動特性と示し、可動部20のx軸方向に沿った振動に関する周波数と振幅との関係を検出特性と示している。また、本実施形態では、駆動共振周波数fdと非検出共振周波数fsaとは、異なる値とされている。
さらに、本実施形態では、検出バネ42a、42bとリンクバネ303とは、y軸方向を法線方向とする断面の形状が等しくされている。つまり、検出バネ42a、42bとリンクバネ303とは、撓む方向に沿った断面形状が等しくされている。すなわち、検出バネ42a、42bとリンクバネ303とは、x軸方向に沿った梁幅とz軸方向に沿った梁厚とが等しくされている。このため、温度変化等の影響で梁が膨張した際、検出バネ42a、42bとリンクバネ303とは、変形の差が小さくなる。これにより、温度変化等が発生したとしても、検出共振周波数fsと非検出共振周波数fsaとの関係が変化し難くなる。
なお、本実施形態では、上記第2実施形態と同様に、可動部用検出電極231a、231bおよび固定部用検出電極531a、531bが質量部30に対して一方の側に配置されている。可動部用検出励振電極251a、251bおよび固定部用検出励振電極551a、551bが質量部30に対して他方の側に配置されている。そして、可動部用検出電極231a、231bと固定部用検出電極531a、531bとは、間隔が広くなる領域と狭くなる領域とが反対となるように形成されている。可動部用検出励振電極251a、251bと固定部用検出励振電極551a、551bとは、間隔が広くなる領域と狭くなる領域とが反対となるように形成されている。このため、可動部20が検出モードで振動している際、および非検出モードで振動している際において、好適に差動増幅を得ることができる。
次に、本実施形態の角速度センサシステムについて、図8を参照しつつ、第1実施形態と異なる部分について説明する。なお、図8中のfd、fsaは、周波数を示している。
第2PLL回路710は、第2取出回路690から入力された信号の周波数が非検出モードの非検出共振周波数fsaとなるようにして出力する。
第2周波数制御器720は、第2PLL回路710と接続されており、第2PLL回路710から出力された信号の周波数を数値化する。そして、第2周波数制御器720は、数値化した周波数が所望の非検出共振周波数(すなわち、図中のset poin4)となるように、固定部用検出調整電極541a、541bに直流電圧を印加する。これにより、可動部20(すなわち、可動部用検出調整電極241a、241b)と固定部用検出調整電極541a、541bとの間に電気バネ効果が発生する。そして、角速度センサ1では、電気バネ効果によって検出バネ42a、42b、リンクバネ303のバネ定数が調整され、可動部20の非検出共振周波数がfsaに維持される。このため、可動部20の検出モードの検出共振周波数がfsに維持される。つまり、本実施形態では、検出モードの検出共振周波数fsは、非検出モードの非検出共振周波数fsaが一定に維持されることによって間接的に維持される。
第2積算器730では、所定の電圧値(すなわち、図8中のAmplitude)が印加される。そして、固定部用検出励振電極551a、551bには、第2積算器730および第2電圧入力回路680を介し、所定の振幅を有する周波数fsaの交流電圧が入力される。したがって、可動部20は、x軸方向に沿って非検出モードで検出共振する。
また、第2同期検波回路700は、LPFによって検出共振の影響を低減する。本実施形態では、上記のように、可動部20が非検出共振周波数fsaで検出共振させられるため、LPFでは、駆動共振周波数fdと非検出共振周波数fsaとの差の絶対値(すなわち、|fsa-fd|)以上の周波数を除去する。これにより、角速度が検出される。
以上説明したように、本実施形態では、質量部30は、第1質量部301と第2質量部302とがリンクバネ303を介して接続されており、x軸方向に沿った方向に検出共振周波数fsと非検出共振周波数fsaとを有する構成とされている。制御部600は、可動部20のx軸方向に沿った非検出共振周波数fsaが維持されるようにすることにより、検出共振周波数fsが維持されるようにしている。そして、制御部600は、|fsa-fd|以上の周波数を除去して角速度を検出している。このため、駆動共振周波数fdと検出共振周波数fsが近い場合でも、カットオフ周波数を高くできる。したがって、角速度の検出帯域の向上を図ることができる。
また、本実施形態では、駆動共振周波数fdと検出共振周波数fsとが一致した場合でも、コリオリ力による振動の周波数と、非検出共振周波数fsaとが異なるため、コリオリ力による振動のみを効果的に抽出することができる。
さらに、本実施形態では、検出バネ42a、42bとリンクバネ303は、y軸方向を法線方向とする断面の形状が等しくされている。このため、温度変化等の影響で梁が膨張した際、検出バネ42a、42bとリンクバネ303とは、変形の差が小さくなる。したがって、検出共振周波数fsと非検出共振周波数fsaとの関係が変化し難くなる。これにより、非検出共振周波数fsaを維持することによって検出共振周波数fsも維持されるため、検出精度が低下することをさらに抑制できる。
(第4実施形態)
第4実施形態について説明する。本実施形態は、第3実施形態に対し、第2周波数制御器720の作動を変更したものである。その他に関しては、第3実施形態と同様であるため、ここでは説明を省略する。
本実施形態の角速度センサ1の構成は、上記第3実施形態と同様である。本実施形態の角速度センサシステムについて、図9を参照しつつ、第3実施形態と異なる部分について説明する。なお、図9中のfd、fsaは、周波数を示している。
本実施形態の第2周波数制御器720は、非検出共振周波数fsaから検出共振周波数fsを推定できるように構成されている。具体的には、本実施形態では、検出共振周波数fsと、非検出共振周波数fsaとの関係を実験等によって予め把握する。第2周波数制御器720は、検出共振周波数fsと非検出共振周波数fsaとの関係が予め記憶された記憶部を有する演算器720aを備える構成とする。
そして、第2周波数制御器720は、演算器720aを用い、第2PLL回路710から出力された信号の周波数fsaから検出モードの検出共振周波数fsを推定する。第2周波数制御器720は、推定した周波数が所望の検出共振周波数(すなわち、図9中のset point5)となるように、固定部用検出調整電極541a、541bに直流電圧を印加する。これにより、可動部20(すなわち、可動部用検出調整電極241a、241b)と固定部用検出調整電極541a、541bとの間に発生する電気バネ効果によって検出バネ42a、42b、リンクバネ303のバネ定数が調整され、可動部20の検出共振周波数がfsに維持される。つまり、本実施形態では、上記第3実施形態と比較すると、検出モードの共振周波数fsを直接的に維持する。
以上説明したように、本実施形態では、非検出モードの非検出共振周波数fsaと検出モードの検出共振周波数fsとの関係を予め把握している。このため、リンクバネ303の製造ばらつき等の誤差も加味した関係が把握される。そして、制御部600は、第2PLL回路710から出力された信号から検出モードの検出共振周波数fsを推定し、推定した検出モードの検出共振周波数fsが一定の値に維持されるようにしている。したがって、さらに角速度の検出を高精度に行うことができる。
(第5実施形態)
第5実施形態について説明する。第5実施形態は、第1実施形態に対し、制御部600に第1FtR(Force to Rebalanceの略)制御器および第2FtR制御器等を追加したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
本実施形態の角速度センサ1の構成は、上記第1実施形態と同様である。本実施形態の角速度センサシステムについて、図10を参照しつつ、第1実施形態と異なる部分について説明する。なお、図10中のfd、fsは、周波数を示し、X、Yは、信号の種類を示している。
本実施形態の制御部600には、図10に示されるように、第1FtR制御器740、第2FtR制御器750、第1加算器760、第2加算器770、第3積算器780、第4積算器790が追加されている。
第1FtR制御器740および第2FtR制御器750は、第2同期検波回路700と接続されている。第1加算器760は、第3積算器780を介して第1FtR制御器740および第1PLL回路630と接続されていると共に、第4積算器790を介して第2FtR制御器750および第1PLL回路630と接続されている。第2加算器770は、第1加算器760と接続されていると共に、第2積算器730を介して第2PLL回路710と接続されている。
ここで、以下では、第2同期検波回路700から出力される信号において、参照信号と同位相成分の振幅量をx出力とし、参照信号と位相が90°異なる成分の振幅量をY出力とする。
第1FtR制御器740は、第2同期検波回路700からX出力が入力され、第3積算器780を介して当該X出力を0にフィードバック制御する(すなわち、図10中のset point(0))周波数fdの交流電圧を出力する。そして、第1FtR制御器740から出力された信号に基づいて角速度が検出される。
また、第2FtR制御器750は、第2同期検波回路700からY出力が入力され、第4積算器790を介して当該Y出力を0にフィードバック制御する(すなわち、図10中のset point(0))周波数fdの交流電圧を出力する。第4積算器790から出力される信号は、第3積算器780から出力される信号と位相が90°異なっている。なお、後述するように、本実施形態は、上記第3実施形態に適用することも可能である。そして、駆動共振周波数fdと検出共振周波数fsとが一致する場合には、第2FtR制御器750から出力される信号に基づいて角速度が検出される。
第1加算器760は、第1FtR制御器740および第1PLL回路630から第3積算器780を介して入力される信号と、第2FtR制御器750および第1PLL回路630から第4積算器790を介して入力される信号とを加算し、第2加算器770に出力する。なお、第4積算器790には、第1PLL回路630から出力される信号と位相が90°異なる信号が入力される。
第2加算器770は、第2PLL回路710から第2積算器730を介して入力される信号と、第1加算器760から入力される信号とを加算し、第2電圧入力回路680に出力する。これにより、固定部用検出励振電極551a、551bには、質量部30をx軸方向に沿って周波数fdで振動させない交流電圧と、質量部30を周波数fsで振動させる交流電圧とを重ね合わせた交流電圧が印加される。つまり、固定部検出励振電極551a、551bには、コリオリ力をキャンセルする電圧を含む交流電圧が印加されることになる。このため、可動部20は、質量部30のx軸方向に沿った周波数fdの振動振幅が常に0となるように制御された状態となる。
以上説明したように、本実施形態では、第1FtR制御器740および第2FtR制御器750等を備え、質量部30のx軸方向に沿った周波数fdの振動振幅が常に0となるようにフィードバック制御している。このため、角速度センサ1において、振動子となる可動部20のQ値を高くした場合や、駆動共振周波数fdと検出共振周波数fsとの差が小さい場合においても応答性を高くできる。
(第6実施形態)
第6実施形態について説明する。第6実施形態は、第5実施形態に対し、可動部用FtR電極および固定部用FtR電極を備えたものである。その他に関しては、第5実施形態と同様であるため、ここでは説明を省略する。
まず、本実施形態の角速度センサ1の構成について説明する。本実施形態の角速度センサ1には、図11に示されるように、可動部用FtR電極部260a、260bおよび固定部用FtR電極部560a、560bが備えられている。
可動部用FtR電極部260a、260bは、質量部30のうちのy軸方向に沿った各一辺30b、30dに備えられている。そして、可動部用FtR電極部260a、260bは、可動部用FtR電極261a、261bと、当該可動部用FtR電極261a、261bを支持する支持部262a、262bを有する構成とされている。具体的には、支持部262a、262bは、質量部30からx軸方向に沿って突出するように形成されている。可動部用FtR電極261a、261bは、支持部262a、262bからy軸方向に沿って延設されるように、支持部262a、262bに備えられている。なお、可動部用FtR電極261a、261bは、支持部262a、262bの両側に延設されている。
固定部用FtR電極部560a、560bは、可動部用FtR電極261a、261bの櫛歯と噛み合うようにy軸方向に延設された固定部用FtR電極561a、561bと、固定部用FtR電極561a、561bを支持する支持部562a、562bとを有する構成とされている。
また、可動部用FtR電極261a、261bと固定部用FtR電極561a、561bとの間隔の関係は、可動部用検出電極231a、231bと固定部用検出電極531a、531bとの間隔の関係等と同じとされている。すなわち、可動部用FtR電極261a、261bと固定部用FtR電極561a、561bは、質量部30側の固定部用FtR電極561a、561bと可動部用FtR電極261aとの間隔が、質量部30側と反対側の固定部用FtR電極561a、561bと可動部用FtR電極261a、261bとの間隔より広くなるように形成されている。
次に、本実施形態の角速度センサシステムについて、図12を参照しつつ、第5実施形態と異なる部分について説明する。なお、図12中のfd、fsは、周波数を示している。
上記のように、本実施形態では、角速度センサ1に固定部用FtR電極561a、561bが形成されており、当該固定部用FtR電極561a、561bに所定の電圧を印加できるようになっている。このため、制御部600は、上記第5実施形態と比較すると、第2加算器770を備えず、第3電圧入力回路800を備えた構成とされている。
第3電圧入力回路800は、第1電圧入力回路610および第2電圧入力回路680と同様に、バイアス付加回路、位相反転回路、非反転回路等を有する構成とされており、各固定部用FtR電極561a、561bに接続されている。また、第3電圧入力回路800には、第1加算器760と接続されている。
そして、第3電圧入力回路800は、入力された信号に所定のバイアスを付加しつつ、位相を180°反転した信号と非反転の信号の2種類の信号を生成し、各固定部用FtR電極561a、561bの一方に反転信号を入力し、他方に非反転信号を入力する。これにより、可動部20は、質量部30のx軸方向に沿った周波数fdの振動振幅が0となるようにフィードバック制御された状態となる。
以上説明したように、本実施形態では、角速度センサ1に可動部用FtR電極261a、261b、および固定部用FtR電極561a、561bが備えられている。このため、固定部用検出励振電極551a、551bに印加する交流電圧と固定部用FtR電極561a、561bに印加する交流電圧を別々に制御すればよいため、制御を安定させつつ、検出精度の向上を図ることができる。
(第7実施形態)
第7実施形態について説明する。第7実施形態は、第1実施形態に対し、制御部600に第3同期検波回路を追加したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
本実施形態の角速度センサシステムについて、図13を参照しつつ、第1実施形態と異なる部分について説明する。なお、図13中のfd、fsは、周波数を示している。
本実施形態の制御部600には、第3同期検波回路810、第2振幅制御器820、第5積算器830が追加されている。なお、図13中では、図3に示される振幅制御器660を第1振幅制御器660として示している。
第3同期検波回路810は、第2取出回路690および第2PLL回路710と接続されており、第2PLL回路710から出力される信号を参照信号とし、第2取出回路690から出力された信号を同期検波する。そして、第3同期検波回路810は、参照信号と同じ周波数成分の振幅量を第2振幅制御器820に出力すると共に、参照信号と同じ周波数の信号を第5積算器830に出力する。
第2振幅制御器820は、第3同期検波回路810と接続されており、第3同期検波回路810から振幅量が入力されると、所望の検出共振の振幅量(すなわち、図13中のset point6)となるように、電圧値を調整して第5積算器830に出力する。これにより、固定部用検出励振電極551a、551bには、第5積算器830および第2電圧入力回路680を介し、制御された電圧値を有する周波数fsの交流電圧が入力される。したがって、可動部20は、x軸方向に沿って一定の振幅で検出共振する。
これによれば、温度変化や衝撃等が印加されたとしても、検出共振の振幅を一定に維持することができる。このため、検出共振周波数fsを高精度に検出でき、所望の検出共振周波数fsを維持し易い。したがって、さらに角速度の検出精度を向上できる。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
例えば、上記各実施形態では、駆動バネ調整部が可動部用駆動調整電極211a、211bと固定部用駆動調整電極511a、511bで構成され、電気バネ効果によって駆動バネ43a、43bのバネ定数を調整する例について説明した。しかしながら、駆動バネ調整部は、駆動バネ43a、43bのバネ定数が調整されるものであれば、他の構成とされていてもよい。例えば、駆動バネ調整部は、電磁力により、駆動バネ43a、43bのバネ定数を調整するもので構成されていてもよい。また、駆動バネ調整部は、温度を変化させることで駆動バネ43a、43bの物性値を変化させたり、形状を変形させることにより、駆動バネ43a、43bのバネ定数を調整するもので構成されていてもよい。
同様に、上記各実施形態では、検出バネ調整部が可動部用検出調整電極241a、241bと固定部用検出調整電極541a、541bで構成され、電気バネ効果によって検出バネ42a、42bのバネ定数を調整する例について説明した。しかしながら、検出バネ調整部は、検出バネ42a、42bのバネ定数が調整されるものであれば、他の構成とされていてもよい。すなわち、検出バネ調整部は、上記駆動バネ調整部と同様に、電磁力で検出バネ42a、42bのバネ定数を調整するもので構成されていてもよいし、温度で検出バネ42a、42bのバネ定数を調整するもので構成されていてもよい。
さらに、上記各実施形態では、角速度センサ1に、例えば、例えば、可動部用検出電極231aおよび固定部用検出電極531aと、可動部用検出電極231bおよび固定部用検出電極531bとを備え、固定部用検出電極531a、531bの信号を差動増幅する例について説明した。しかしながら、角速度センサ1は、可動部用検出電極231aおよび固定部用検出電極531aと、可動部用検出電極231bおよび固定部用検出電極531bのいずれか一方のみを備える構成としてもよい。また、他の可動部用検出励振電極251a、251bおよび固定部用検出励振電極551a、551b等も同様であり、いずれか一方のみを備える構成としてもよい。
また、上記各実施形態において、可動部20を駆動共振および検出共振させる際、検出共振の振幅が駆動共振の振幅と等しくされていてもよいし、大きくされていてもよい。
さらに、上記各実施形態において、可動部用駆動調整電極部210a、210bおよび固定部用駆動調整電極部510a、510bの形状は適宜変更可能である。例えば、図14Aに示されるように、固定部用駆動調整電極部510a、510bは、プレート41a、41b側から複数のスリット513a、513bが形成されていてもよい。これによれば、スリット513a、513bによってダンピングを低減できる。また、固定部用駆動調整電極部510a、510bは、例えば、半導体層12に対してDRIE(Deep Reactive Ion Etchingの略)が行われて形成される。この場合、スリット513a、513bが形成されることにより、DRIEを行う際のガスの流動性を向上でき、加工精度の向上を図ることができる。このため、検出精度がばらつくことを抑制できると共に、検出精度の向上を図ることができる。
また、図14Bに示されるように、可動部用駆動調整電極部210a、210bは、プレート41a、41bからy軸方向に沿って突出する櫛歯状の可動部用駆動調整電極211a、211bを有する構成とされていてもよい。そして、固定部用駆動調整電極部510a、510bは、可動部用駆動調整電極211a、211bの櫛歯と噛み合うようにy軸方向に延設された櫛歯状の固定部用駆動調整電極511a、511bと、固定部用駆動調整電極511a、511bを支持する支持部512a、512bとを有する構成とされていてもよい。これによれば、さらにダンピングを低減しつつ、加工精度の向上を図ることができる。
さらに、図14Cに示されるように、可動部用駆動調整電極部210a、210bは、可動部用駆動調整電極211a、211bと、当該可動部用駆動調整電極211a、211bを支持する支持部212a、212bとを有する構成とされていてもよい。具体的には、支持部212a、212bは、プレート41a、41bからy軸方向に沿って突出するように形成される。そして、可動部用駆動調整電極211a、211bは、支持部212a、212bからx軸方向に沿って延設されるように、支持部212a、212bに備えられる。この場合、固定部用駆動調整電極部510a、510bは、可動部用駆動調整電極211a、211bの櫛歯と噛み合うようにx軸方向に延設された櫛歯状の固定部用駆動調整電極511a、511bと、固定部用駆動調整電極511a、511bを支持する支持部512a、512bとを有する構成とされる。これによれば、可動部用駆動調整電極211a、211bと固定部用駆動調整電極511a、511bとの対向面積を大きくし易いため、可動部用駆動調整電極211a、211bと固定部用駆動調整電極511a、511bとの間隔を大きくしても所望の電気バネ効果を発生させることができる。このため、駆動振動を大きくしても可動部用駆動調整電極211a、211bと固定部用駆動調整電極511a、511bとが接触することを抑制でき、感度を大きくすることができる。
そして、上記各実施形態を適宜組み合わせることもできる。例えば、上記第2実施形態を第5~第7実施形態に組合せ、可動部用検出電極231a、231b、可動部用検出励振電極251a、251b、固定部用検出電極531a、531b、および固定部用検出励振電極551a、551bの配置関係を変更してもよい。また、上記第3、第4実施形態を第5~第7実施形態に組合せ、質量部30を第1質量部301、第2質量部302、リンクバネ303を有する構成としてもよい。また、上記第5、第6実施形態を第7実施形態に組合せ、第1FtR制御器740および第2FtR制御器750等を有する構成としてもよい。そして、上記各実施形態を組み合わせたもの同士をさらに組み合わせてもよい。
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
1 角速度センサ
42a、42b 検出バネ
43a、43b 駆動バネ
201a、201b 可動部用駆動電極
231a、231b 可動部用検出電極
241a、241b 可動部用検出調整電極(検出バネ調整部)
251a、251b 可動部用検出励振電極
301a、301b 固定部用駆動電極
531a、531b 固定部用検出電極
541a、541b 固定部用検出励振電極
551a、551b 固定部用検出調整電極(検出バネ調整部)

Claims (13)

  1. 角速度を検出する角速度センサシステムであって、
    駆動バネ(43a、43b)および検出バネ(42a、42b)と、前記駆動バネおよび前記検出バネを介して支持され、前記駆動バネの変形によって第1方向に振動可能とされると共に、前記第1方向に振動している際に角速度が印加されると、コリオリ力による前記検出バネの変形によって前記第1方向と直交する第2方向に振動可能とされている質量部(30)と、可動部用駆動電極(201a、201b)と、可動部用検出電極(231a、231b)と、を有する可動部(20)と、
    前記可動部用駆動電極と対向して配置された固定部用駆動電極(501a、501b)と、
    前記可動部用検出電極と対向して配置された固定部用検出電極(531a、531b)と、を有する角速度センサ(1)と、
    所定の処理を行う制御部(600)と、を備え、
    前記角速度センサは、
    前記可動部に可動部用検出励振電極(251a、251b)が備えられ、
    前記可動部用検出励振電極と対向する固定部用検出励振電極(551a、551b)と、
    前記駆動バネのバネ定数を変化させる駆動バネ調整部(211a、211b、511a、511b)と、
    前記検出バネのバネ定数を変化させる検出バネ調整部(241a、241b、541a、541b)と、を有し、
    前記制御部は、
    前記固定部用駆動電極に所定の電圧を印加することによって前記可動部を前記第1方向に振動させつつ、前記固定部用検出励振電極に所定の電圧を印加することによって前記可動部を前記第2方向にも振動させ、
    前記可動部における前記第1方向に沿った方向の第1共振周波数(fd)および前記可動部における前記第2方向に沿った方向の第2共振周波数(fs、fsa)を取得し、前記第1共振周波数が一定の値に維持されるように前記駆動バネ調整部を制御して前記駆動バネのバネ定数を調整すると共に、前記第2共振周波数が一定の値に維持されるように前記検出バネ調整部を制御して前記検出バネのバネ定数を調整し、
    前記固定部用検出電極からの信号を前記第1共振周波数で同期検波した結果に基づいて角速度を検出し、
    前記可動部は、前記第2共振周波数として、検出共振周波数(fs)と、前記検出共振周波数および前記第1共振周波数と異なる非検出共振周波数(fsa)とを有する構成とされ、
    さらに、前記制御部は、前記第2共振周波数としての前記非検出共振周波数を取得し、前記非検出共振周波数が一定の値に維持されるように前記検出バネ調整部を制御して前記検出バネのバネ定数を調整する角速度センサシステム。
  2. 角速度を検出する角速度センサシステムであって、
    駆動バネ(43a、43b)および検出バネ(42a、42b)と、前記駆動バネおよび前記検出バネを介して支持され、前記駆動バネの変形によって第1方向に振動可能とされると共に、前記第1方向に振動している際に角速度が印加されると、コリオリ力による前記検出バネの変形によって前記第1方向と直交する第2方向に振動可能とされている質量部(30)と、可動部用駆動電極(201a、201b)と、可動部用検出電極(231a、231b)と、を有する可動部(20)と、
    前記可動部用駆動電極と対向して配置された固定部用駆動電極(501a、501b)と、
    前記可動部用検出電極と対向して配置された固定部用検出電極(531a、531b)と、を有する角速度センサ(1)と、
    所定の処理を行う制御部(600)と、を備え、
    前記角速度センサは、
    前記可動部に可動部用検出励振電極(251a、251b)が備えられ、
    前記可動部用検出励振電極と対向する固定部用検出励振電極(551a、551b)と、
    前記駆動バネのバネ定数を変化させる駆動バネ調整部(211a、211b、511a、511b)と、
    前記検出バネのバネ定数を変化させる検出バネ調整部(241a、241b、541a、541b)と、を有し、
    前記制御部は、
    前記固定部用駆動電極に所定の電圧を印加することによって前記可動部を前記第1方向に振動させつつ、前記固定部用検出励振電極に所定の電圧を印加することによって前記可動部を前記第2方向にも振動させ、
    前記可動部における前記第1方向に沿った方向の第1共振周波数(fd)および前記可動部における前記第2方向に沿った方向の第2共振周波数(fs、fsa)を取得し、前記第1共振周波数が一定の値に維持されるように前記駆動バネ調整部を制御して前記駆動バネのバネ定数を調整すると共に、前記第2共振周波数が一定の値に維持されるように前記検出バネ調整部を制御して前記検出バネのバネ定数を調整し、
    前記固定部用検出電極からの信号を前記第1共振周波数で同期検波した結果に基づいて角速度を検出し、
    前記可動部は、前記第2共振周波数として、検出共振周波数(fs)と、前記検出共振周波数および前記第1共振周波数と異なる非検出共振周波数(fsa)を有する構成とされ、
    さらに、前記制御部は、前記第2共振周波数としての前記非検出共振周波数とを取得すると共に前記非検出共振周波数から前記検出共振周波数を推定し、推定した前記検出共振周波数が一定の値に維持されるように前記検出バネ調整部を制御して前記検出バネのバネ定数を調整する角速度センサシステム。
  3. 前記質量部は、前記第2方向に沿って配列された第1質量部(301)および第2質量部(302)と、前記第1質量部と前記第2質量部とを連結すると共に前記第1質量部および前記第2質量部を前記第2方向に沿って変位させるリンクバネ(303)とを有する構成とされ、
    前記検出共振周波数は、前記第2方向において、前記第1質量部と前記第2質量部とが同方向に振動する同相モードの共振周波数であり、
    前記非検出共振周波数は、前記第2方向において、前記第1質量部と前記第2質量部とが逆方向に振動する逆相モードの共振周波数であり、
    前記可動部は、前記角速度が印加されていない際には前記逆相モードで振動させられ、前記角速度が印加されると前記同相モードの振動が加わる請求項またはに記載の角速度センサシステム。
  4. 前記検出バネと前記リンクバネとは、前記第1方向を法線方向とする断面の形状が同じとされている請求項に記載の角速度センサシステム。
  5. 前記制御部は、前記固定部用検出電極からの信号を前記第1共振周波数で同期検波した後、前記非検出共振周波数と前記第1共振周波数との差の絶対値以上の周波数成分をカットした信号に基づいて前記角速度を検出する請求項ないしのいずれか1つに記載の角速度センサシステム。
  6. 前記駆動バネ調整部は、前記可動部に備えられた可動部用駆動調整電極(211a、211b)と、前記可動部用駆動調整電極と対向して配置された固定部用駆動調整電極(511a、511b)とを含む構成とされ、
    前記検出バネ調整部は、前記可動部に備えられた可動部用検出調整電極(241a、241b)と、前記可動部用検出調整電極と対向して配置された固定部用検出調整電極(541a、541b)とを含む構成とされ、
    前記制御部は、前記可動部用駆動調整電極と前記固定部用駆動調整電極との間の電位差を調整することによって前記駆動バネのバネ定数を調整すると共に、前記可動部用検出調整電極と前記固定部用検出調整電極との間の電位差を調整することによって前記検出バネのバネ定数を調整する請求項1ないしのいずれか1つに記載の角速度センサシステム。
  7. 前記制御部は、前記第1共振周波数が前記可動部の構造で規定される設計値よりも小さくなるように前記固定部用駆動調整電極にオフセット電圧を印加すると共に、前記第2共振周波数が前記可動部の構造で規定される設計値よりも小さくなるように前記固定部用検出調整電極にオフセット電圧を印加する請求項に記載の角速度センサシステム。
  8. 前記制御部は、前記可動部を前記第1方向に振動させつつ、前記第2方向に振動させる際、前記第1方向の振幅が前記第2方向の振幅よりも大きくなるようにする請求項1ないしのいずれか1つに記載の角速度センサシステム。
  9. 前記可動部用検出電極と前記可動部用検出励振電極とは、前記質量部を挟んで反対側に配置されている請求項1ないしのいずれか1つに記載の角速度センサシステム。
  10. 前記制御部は、前記同期検波した後の信号を用い、前記角速度が印加されることによって発生するコリオリ力をキャンセルする電圧を生成するFtR制御器(740)を有し、当該電圧に基づいて前記角速度を検出すると共に、前記電圧を用いて前記可動部における前記第2方向への振動を低減させる請求項1ないしのいずれか1つに記載の角速度センサシステム。
  11. 前記可動部に備えられた可動部用FtR電極(261a、261b)と、前記可動部用FtR電極と対向する固定部用FtR電極(561a、561b)と、を有し、
    前記制御部は、前記電圧を用いて前記可動部用FtR電極と前記固定部用FtR電極との電位差を調整することにより、前記可動部における前記第2方向への振動を低減させる請求項1に記載の角速度センサシステム。
  12. 角速度を検出する角速度センサであって、
    駆動バネ(43a、43b)および検出バネ(42a、42b)と、前記駆動バネおよび前記検出バネを介して支持され、前記駆動バネの変形によって第1方向に振動可能とされると共に、前記第1方向に振動している際に角速度が印加されると、コリオリ力による前記検出バネの変形によって前記第1方向と直交する第2方向に振動可能とされている質量部(30)と、可動部用駆動電極(201a、201b)と、可動部用検出電極(231a、231b)と、を有する可動部(20)と、
    前記可動部用駆動電極と対向して配置された固定部用駆動電極(501a、501b)と、
    前記可動部用検出電極と対向して配置された固定部用検出電極(531a、531b)と、を備え、
    前記可動部には、可動部用検出励振電極(251a、251b)が備えられ、
    前記可動部用検出励振電極と対向する固定部用検出励振電極(551a、551b)と、
    前記駆動バネのバネ定数を変化させる駆動バネ調整部(211a、211b、511a、511b)と、
    前記検出バネのバネ定数を変化させる検出バネ調整部(241a、241b、541a、541b)と、を有し、
    前記固定部用駆動電極に所定の電圧が印加されることによって前記可動部が前記第1方向に振動しつつ、前記固定部用検出励振電極に所定の電圧が印加されることによって前記可動部が前記第2方向にも振動し、
    前記可動部における前記第1方向に沿った方向の第1共振周波数(fd)が一定の値に維持されるように、前記駆動バネ調整部が制御されて前記駆動バネのバネ定数が調整され、
    前記可動部における前記第2方向に沿った方向の第2共振周波数(fs、fsa)が一定の値に維持されるように、前記検出バネ調整部が制御されて前記検出バネのバネ定数が調整され、
    前記固定部用検出電極からの信号に基づいて角速度が検出され
    前記質量部は、前記第2方向に沿って配列された第1質量部(301)および第2質量部(302)と、前記第1質量部と前記第2質量部とを連結すると共に前記第1質量部および前記第2質量部を前記第2方向に沿って変位させるリンクバネ(303)とを有する構成とされ、
    前記可動部は、前記第2共振周波数として、前記第1質量部と前記第2質量部とが前記第2方向において同方向に振動する同相モードの検出共振周波数と、前記第1質量部と前記第2質量部とが前記第2方向において逆方向に振動する逆相モードの非検出共振周波数とを有し、
    前記検出バネ調整部が制御される際、前記第2共振周波数として、前記検出共振周波数または前記非検出共振周波数が一定の値に維持されるように、前記検出バネのバネ定数が調整される角速度センサ。
  13. 前記検出バネと前記リンクバネとは、前記第1方向を法線方向とする断面の形状が同じとされている請求項1に記載の際の角速度センサ。
JP2019196694A 2019-10-29 2019-10-29 角速度センサおよび角速度センサシステム Active JP7226246B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019196694A JP7226246B2 (ja) 2019-10-29 2019-10-29 角速度センサおよび角速度センサシステム
PCT/JP2020/040470 WO2021085485A1 (ja) 2019-10-29 2020-10-28 角速度センサおよび角速度センサシステム
CN202080074706.6A CN114599936A (zh) 2019-10-29 2020-10-28 角速度传感器及角速度传感器系统
US17/730,752 US11852482B2 (en) 2019-10-29 2022-04-27 Angular velocity sensor and angular velocity sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019196694A JP7226246B2 (ja) 2019-10-29 2019-10-29 角速度センサおよび角速度センサシステム

Publications (2)

Publication Number Publication Date
JP2021071325A JP2021071325A (ja) 2021-05-06
JP7226246B2 true JP7226246B2 (ja) 2023-02-21

Family

ID=75713660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019196694A Active JP7226246B2 (ja) 2019-10-29 2019-10-29 角速度センサおよび角速度センサシステム

Country Status (4)

Country Link
US (1) US11852482B2 (ja)
JP (1) JP7226246B2 (ja)
CN (1) CN114599936A (ja)
WO (1) WO2021085485A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327944A (ja) 2006-05-09 2007-12-20 Seiko Epson Corp 検出装置、ジャイロセンサ及び電子機器
JP2008008884A (ja) 2006-06-29 2008-01-17 Honeywell Internatl Inc 時間で変動する電圧を使用したmems慣性センサのフォース・リバランシング
JP2008014727A (ja) 2006-07-04 2008-01-24 Toyota Motor Corp 加速度角速度センサ
JP2018028473A (ja) 2016-08-18 2018-02-22 セイコーエプソン株式会社 回路装置、物理量検出装置、電子機器及び移動体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603501B2 (ja) * 1996-09-25 2004-12-22 株式会社村田製作所 角速度検出装置
US7444869B2 (en) 2006-06-29 2008-11-04 Honeywell International Inc. Force rebalancing and parametric amplification of MEMS inertial sensors
KR101208278B1 (ko) * 2011-05-20 2012-12-05 삼성전기주식회사 각속도 센서
JP6191151B2 (ja) * 2012-05-29 2017-09-06 株式会社デンソー 物理量センサ
JP2014149218A (ja) * 2013-02-01 2014-08-21 Hitachi Automotive Systems Ltd 慣性力検出装置
JP6318552B2 (ja) * 2013-10-31 2018-05-09 セイコーエプソン株式会社 角速度センサー、電子機器および移動体
EP2955497B1 (en) * 2014-06-09 2019-01-02 Nxp B.V. Force sensor with compensation
US10545167B2 (en) * 2015-10-20 2020-01-28 Analog Devices, Inc. Multiple-axis resonant accelerometers
JP2017187445A (ja) 2016-04-08 2017-10-12 旭化成株式会社 角速度センサおよびその感度調整方法
JP6627663B2 (ja) * 2016-07-01 2020-01-08 株式会社デンソー 物理量センサ
CN109794329B (zh) * 2018-12-17 2019-12-17 东北大学 一种双质体四机驱动圆周运动高频振动磨机的参数确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327944A (ja) 2006-05-09 2007-12-20 Seiko Epson Corp 検出装置、ジャイロセンサ及び電子機器
JP2008008884A (ja) 2006-06-29 2008-01-17 Honeywell Internatl Inc 時間で変動する電圧を使用したmems慣性センサのフォース・リバランシング
JP2008014727A (ja) 2006-07-04 2008-01-24 Toyota Motor Corp 加速度角速度センサ
JP2018028473A (ja) 2016-08-18 2018-02-22 セイコーエプソン株式会社 回路装置、物理量検出装置、電子機器及び移動体

Also Published As

Publication number Publication date
US20220252398A1 (en) 2022-08-11
CN114599936A (zh) 2022-06-07
WO2021085485A1 (ja) 2021-05-06
US11852482B2 (en) 2023-12-26
JP2021071325A (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
JP4075022B2 (ja) 角速度センサ
JP6143430B2 (ja) バイアス補正機能を備えた振動型ジャイロ
JP3489487B2 (ja) 角速度検出装置
JP5615383B2 (ja) 補正ユニットを有するコリオリジャイロスコープおよび直交バイアスを低減するための方法
US9885576B2 (en) Angular velocity sensor
KR100592985B1 (ko) 진동형 각속도 센서
JP5773844B2 (ja) 出力安定性に優れた振動型ジャイロ
JP2000329562A (ja) 角速度センサ装置
US8794069B2 (en) Angular velocity sensor
TW201522911A (zh) 具三條靈敏軸的轉速感測器及製造此轉速感測器的方法
CN109444466B (zh) Fm惯性传感器和用于操作fm惯性传感器的方法
JP2001264072A (ja) 角速度センサ
JP7226246B2 (ja) 角速度センサおよび角速度センサシステム
JP2015203604A (ja) 高性能化が図られた振動型ジャイロ
JP4911690B2 (ja) 振動ジャイロ用振動子
RU2344374C1 (ru) Электродная структура для микромеханического гироскопа и микромеханический гироскоп с этой структурой (варианты)
JP2001264071A (ja) 振動子駆動装置
JP2000009470A (ja) 角速度センサ
JP7352739B2 (ja) 振動型ジャイロ素子及びこれを備えた角速度センサ
JP2013108929A (ja) 高精度化された振動型ジャイロ
JP5287790B2 (ja) 角速度センサ
JP2000074676A (ja) 角速度センサ
WO2018092449A1 (ja) ジャイロセンサ及び電子機器
JP2004301575A (ja) 角速度センサ
JP2008175679A (ja) 振動ジャイロ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R151 Written notification of patent or utility model registration

Ref document number: 7226246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151