JP7212890B2 - 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置 - Google Patents

酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置 Download PDF

Info

Publication number
JP7212890B2
JP7212890B2 JP2019105364A JP2019105364A JP7212890B2 JP 7212890 B2 JP7212890 B2 JP 7212890B2 JP 2019105364 A JP2019105364 A JP 2019105364A JP 2019105364 A JP2019105364 A JP 2019105364A JP 7212890 B2 JP7212890 B2 JP 7212890B2
Authority
JP
Japan
Prior art keywords
oxide film
gallium oxide
substrate
mist
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019105364A
Other languages
English (en)
Other versions
JP2020198410A (ja
Inventor
達司 永岡
浩之 西中
昌広 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Denso Corp
Original Assignee
Kyoto Institute of Technology NUC
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Denso Corp filed Critical Kyoto Institute of Technology NUC
Priority to JP2019105364A priority Critical patent/JP7212890B2/ja
Priority to CN202010502177.7A priority patent/CN112048759A/zh
Priority to US16/892,789 priority patent/US11373864B2/en
Publication of JP2020198410A publication Critical patent/JP2020198410A/ja
Application granted granted Critical
Publication of JP7212890B2 publication Critical patent/JP7212890B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本明細書に開示の技術は、酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置に関する。
特許文献1には、酸化物膜の成膜方法が開示されている。この成膜方法では、酸化物膜の材料が溶解した溶液のミストを基板の表面に供給する。このとき、ミストを搬送するために、ミストとともに搬送ガスを基板の表面に供給する。基板の表面にミストが付着することによって、基板の表面に酸化物膜がエピタキシャル成長する。
特開2015-070248号公報
ミストを用いる成膜方法において、搬送ガスには、通常、酸素の含有量が少ないガス(例えば、アルゴン、窒素等の不活性ガス)が用いられる。搬送ガスが酸素を多量に含んでいると、ミストが酸化してダストが発生し、酸化物膜の表面にダストが付着するためである。しかしながら、酸素の含有量が少ないガスを搬送ガスとして用いると、エピタキシャル成長する酸化物膜の結晶中に酸素欠損(酸素原子サイトに酸素原子が存在せずに空孔となっている欠陥)が生じやすい。その結果、酸化物膜の結晶性が悪くなる。したがって、本明細書では、酸素欠損が少ない酸化物膜を形成する技術を提案する。
本明細書が開示する酸化物膜の成膜方法は、前記酸化物膜の材料が溶解した溶液のミストを酸素の濃度が21vol%以下の搬送ガスとともに基板の表面に供給することによって前記基板の前記表面に前記酸化物膜をエピタキシャル成長させる工程と、前記酸化物膜をエピタキシャル成長させた後に前記酸化物膜を酸素を含む流体に曝す工程、を有する。
なお、上記流体には、ガス、ミスト等が含まれる。
この成膜方法では、搬送ガスとして、酸素の濃度が21vol%以下のガスを用いる。酸素の濃度が21vol%以下であることは、酸素の濃度が大気中よりも低いことを意味する。搬送ガスに含まれる酸素が少ないので、酸化物膜をエピタキシャル成長させる工程において、ミストが酸化することが抑制される。これによって、ダストの発生が抑制され、酸化物膜の表面にダストが付着することが抑制される。また、搬送ガスに含まれる酸素が少ないので、エピタキシャル成長する酸化物膜中に、酸素欠損が形成される。酸化物膜をエピタキシャル成長させた後に、酸化物膜を酸素原子を含む流体に曝す工程が実施される。この工程で、流体から酸化物膜に酸素原子が供給され、酸化物膜中の酸素欠損が酸素原子によって埋められる。これによって、酸素欠損が減少し、酸化物膜の結晶性が向上する。このように、この製造方法によれば、酸素欠損が少ない酸化物膜を好適に形成することができる。
実施例1の成膜装置の構成を示す図。 実施例2の成膜装置の構成を示す図。 実施例3の成膜装置の構成を示す図。
図1に示す成膜装置10は、基板12の表面に酸化ガリウム膜をエピタキシャル成長させる装置である。酸化ガリウム膜は、半導体膜である。成膜装置10は、酸化ガリウム膜を有する半導体装置の製造に用いられる。成膜装置10は、加熱炉20と貯留槽40を有している。
貯留槽40は、密閉型の容器である。貯留槽40は、酸化ガリウム膜の原料を水(HO)に溶かした溶液42を貯留している。溶液42の水面42aと貯留槽40の上面の間には、空間44が設けられている。貯留槽40の底面には、超音波振動子48が設置されている。超音波振動子48は、貯留槽40内に貯留されている溶液42に超音波を印加する。溶液42に超音波が印加されると、溶液42の水面42aが振動して、溶液42の上部の空間44に溶液42のミスト(以下、溶液ミスト46という)が発生する。貯留槽40の上面には、ミスト供給路30の上流端が接続されている。貯留槽40の外周壁には、搬送ガス供給路50の下流端が接続されている。搬送ガス供給路50の上流端は、図示しない搬送ガス供給源に接続されている。搬送ガス供給路50には、弁50aが設けられている。弁50aを開くと、搬送ガス供給源から搬送ガス供給路50を介して貯留槽40内の空間44へ第1搬送ガス52が導入される。第1搬送ガス52は、不活性ガスである。第1搬送ガス52中の酸素(O)の濃度は、21vol%以下である。より詳細には、第1搬送ガス52中には、酸素が含まれない。搬送ガス供給路50から空間44内に導入された第1搬送ガス52は、空間44からミスト供給路30へ流れる。このとき、空間44内の溶液ミスト46が、第1搬送ガス52とともにミスト供給路30へ流れる。
ミスト供給路30の途中に、ガス供給路32の下流端が接続されている。ガス供給路32の上流端は、搬送ガス供給路34と酸素ガス供給路36に接続されている。搬送ガス供給路34の上流端は、図示しない搬送ガス供給源に接続されている。搬送ガス供給路34には、弁34aが設けられている。弁34aを開くと、搬送ガス供給源から搬送ガス供給路34とガス供給路32を介してミスト供給路30へ第2搬送ガス35が導入される。第2搬送ガス35は、不活性ガスである。第2搬送ガス35中の酸素の濃度は、21vol%以下である。より詳細には、第2搬送ガス35中には、酸素が含まれない。酸素ガス供給路36の上流端は、図示しない酸素ガス供給源に接続されている。酸素ガス供給路36には、弁36aが設けられている。弁36aを開くと、酸素ガス供給源から酸素ガス供給路36とガス供給路32を介してミスト供給路30へ酸素ガス37(すなわち、O)が導入される。酸素ガス37中における酸素(O)の分圧は、大気中における酸素(O)の分圧よりも高い。
加熱炉20は、インテイク部22と、インテイク部22に繋がっているチャネル部24を有している。インテイク部22の高さは高く、チャネル部24の高さは低い。インテイク部22には、ミスト供給路30の下流端が接続されている。チャネル部24の端部には、排出管28が接続されている。チャネル部24の下面には、基板ステージ26が設けられている。基板ステージ26には、基板12が載置される。基板ステージ26の内部(すなわち、加熱炉20の外壁の内部)に、ヒータ27が配置されている。ヒータ27は、基板12を加熱する。
次に、成膜装置10を用いた成膜方法について説明する。ここでは、基板12として、サファイア基板を用い、基板12上にα型の酸化ガリウム(Ga)の半導体膜を成長させる。溶液42として、水にガリウム化合物(例えば、ガリウムアセチルアセトナート、ガリウムクロライド等)が溶解した水溶液を用いる。また、酸化ガリウムにドーパントとして錫を付与するために、溶液42中にはドーパント材料である錫(II)化合物が溶解している。また、第1搬送ガス52及び第2搬送ガス35としてアルゴン(Ar)を用いる。
まず、基板ステージ26上に基板12を設置する。基板12を設置した後に、成膜工程と酸素アニール工程を実施する。
まず、成膜工程を実施する。成膜工程では、まず、ヒータ27によって、基板12を加熱する。ここでは、基板12の温度を、350~500℃に制御する。基板12の温度が安定したら、超音波振動子48を動作させることによって、貯留槽40の空間44内に溶液ミスト46を発生させる。また、弁50aを開いて、搬送ガス供給路50から貯留槽40に第1搬送ガス52を導入する。すると、溶液ミスト46が第1搬送ガス52とともにミスト供給路30へ流入する。さらに、弁34aを開いて、ガス供給路32からミスト供給路30へ第2搬送ガス35を導入する。その結果、ミスト供給路30内で、溶液ミスト46が希釈される。溶液ミスト46は、第1搬送ガス52及び第2搬送ガス35とともに、加熱炉20内へ流入する。溶液ミスト46は、第1搬送ガス52及び第2搬送ガス35とともに、インテイク部22からチャネル部24へ流れ、排出管28へ排出される。チャネル部24内を溶液ミスト46が流れるときに、溶液ミスト46の一部が基板12の表面に付着する。基板12がヒータ27によって加熱されているので、溶液ミスト46(すなわち、溶液42)が基板12上で化学反応を起こす。その結果、基板12上に、α型の酸化ガリウムが生成される。基板12の表面に継続的に溶液ミスト46が供給されるので、基板12の表面に酸化ガリウム膜(半導体膜)が成長する。基板12の表面に単結晶の酸化ガリウム膜がエピタキシャル成長する。加熱炉20に供給されるガス(すなわち、第1搬送ガス52と第2搬送ガス35)の酸素含有量が少ないので、溶液ミスト46が酸化し難い。より詳細には、溶液ミスト46に含まれる酸化ガリウム化合物とドーパント材料が酸化し難い。このため、成長する酸化ガリウム膜の表面に、ダストが付着することが抑制される。他方、加熱炉20に供給されるガス(すなわち、第1搬送ガス52と第2搬送ガス35)の酸素含有量が少ないので、酸化ガリウム膜が成長するときに、酸化ガリウム膜中に多数の酸素欠損が形成される。また、溶液42がドーパント材料を含むので、酸化ガリウム膜にはドーパント(錫)が取り込まれる。このため、n型の酸化ガリウム膜が形成される。酸化ガリウム膜が形成されたら、超音波振動子48を停止させ、弁36a、50aを閉じて、基板12への溶液ミスト46の供給を停止する。
次に、酸素アニール工程を実施する。酸素アニール工程では、まず、ヒータ27によって、基板12を加熱する。ここでは、基板12及び酸化ガリウム膜の温度を、約550℃に制御する。すなわち、酸素アニール工程では、成膜工程における基板12の温度よりも高い温度に基板12及び酸化ガリウム膜を加熱する。基板12の温度が安定したら、弁36aを開く。すると、酸素ガス供給路36から、ガス供給路32とミスト供給路30を介して加熱炉20内へ酸素ガス37が流入する。ここでは、0.5L/minの流量で酸素ガス37を供給する。酸素ガス37は、インテイク部22とチャネル部24を通って排出管28へ排出される。酸素ガス37がチャネル部24を流れるので、基板12上の酸化ガリウム膜が酸素ガス37に曝される。すると、酸素ガス37から酸化ガリウム膜中へ酸素原子が拡散する。酸化ガリウム膜中へ拡散した酸素原子は、酸化ガリウム膜中の酸素欠損に入る。酸素欠損に酸素原子が充填されることで、酸素欠損が消滅する。酸化ガリウム膜中で多数の酸素欠損が消滅するので、酸化ガリウム膜中の酸素欠損が大幅に減少する。特に、酸化ガリウム膜を加熱しているので、酸素欠損に酸素原子が入りやすい。したがって、効率的に酸化ガリウム膜中の酸素欠損を減少させることができる。したがって、酸素欠損が少ない酸化ガリウム膜を得ることができる。
以上に説明したように、実施例1の成膜方法によれば、酸素欠損が少ない酸化ガリウム膜を形成することができる。酸化ガリウム膜は半導体であり、酸化ガリウム膜中の酸素欠損はn型のドナーとして機能する。この成膜方法によれば、酸化ガリウム膜中の酸素欠損の密度を低下させることで、酸化ガリウム膜中のキャリア密度に製造誤差が生じることを抑制することができる。したがって、酸化ガリウム膜の特性を正確に制御することができる。
また、実施例1の成膜方法では、共通の加熱炉20内で成膜工程と酸素アニール工程を実施する。このため、成膜工程から酸素アニール工程に移行するときに、酸化ガリウム膜が加熱炉20の外部の雰囲気に曝されない。これによって、酸素欠損に意図しない原子が入ることを防止することができる。
図2に示す実施例2の成膜装置100は、基板112の表面に酸化ガリウム膜をエピタキシャル成長させる装置である。成膜装置100は、酸化ガリウム膜を有する半導体装置の製造に用いられる。成膜装置100は、第1ミスト供給装置191、第2ミスト供給装置192、及び、加熱炉120を有している。
加熱炉120は、上流端120aから下流端120bまで延びる管状炉である。加熱炉120の上流端120aには、溶液ミスト供給路130の下流端が接続されている。加熱炉120の下流端120bには、排出管128が接続されている。加熱炉120内には、基板112を支持するための基板ステージ126が設けられている。基板ステージ126は、加熱炉120の長手方向に対して基板112が傾くように構成されている。加熱炉120の外周壁に沿って、ヒータ127が配置されている。ヒータ127は、加熱炉120の外周壁を加熱し、それによって加熱炉120内の基板112が加熱される。
第1ミスト供給装置191は、貯留槽140、水槽154、及び、超音波振動子148を有している。貯留槽140は、密閉型の容器である。貯留槽140は、酸化ガリウム膜の原料を水(HO)に溶かした溶液142を貯留している。溶液142の水面142aと貯留槽140の上面の間には、空間144が設けられている。貯留槽140の底面は、フィルムにより構成されている。水槽154は、上部が解放された容器であり、内部に水158を貯留している。貯留槽140の底部は、水槽154内の水158に浸漬されている。超音波振動子148は、水槽154の底面に設置されており、水槽154内の水158に超音波振動を加える。超音波振動子148が水槽154内の水158に超音波振動を加えると、水158を介して溶液142に超音波振動が伝わる。すると、溶液142の水面142aが振動して、溶液142の上部の空間144に溶液142のミスト(以下、溶液ミスト146という)が発生する。
貯留槽140の上面には、溶液ミスト供給路130の上流端が接続されている。貯留槽140の外周壁には、搬送ガス供給路150の下流端が接続されている。搬送ガス供給路150の上流端は、図示しない搬送ガス供給源に接続されている。搬送ガス供給路150には、搬送ガス供給源から第1搬送ガス152が供給される。搬送ガス供給路150を介して貯留槽140内の空間144へ第1搬送ガス152が導入される。第1搬送ガス152は、不活性ガスである。第1搬送ガス152中の酸素の濃度は、21vol%以下である。すなわち、第1搬送ガス152中には、酸素が含まれない。搬送ガス供給路150から空間144内に導入された第1搬送ガス152は、空間144から溶液ミスト供給路130へ流れる。このとき、空間144内の溶液ミスト146が、第1搬送ガス152とともに溶液ミスト供給路130へ流れる。
溶液ミスト供給路130の下流端は、加熱炉120の上流端120aに接続されている。溶液ミスト供給路130の途中に、搬送ガス供給路134の下流端が接続されている。搬送ガス供給路134の上流端は、図示しない搬送ガス供給源に接続されている。搬送ガス供給源から搬送ガス供給路134に第2搬送ガス135が供給される。搬送ガス供給路134に流入した第2搬送ガス135は、溶液ミスト供給路130へ流入する。したがって、溶液ミスト供給路130内で、溶液ミスト146が希釈される。第2搬送ガス135は、不活性ガスである。第2搬送ガス135中の酸素の濃度は、21vol%以下である。すなわち、第2搬送ガス35中には、酸素が含まれない。溶液ミスト146は、第2搬送ガス135及び第1搬送ガス152とともに溶液ミスト供給路130を下流端まで流れて、加熱炉120へ流入する。
第2ミスト供給装置192は、貯留槽160、水槽174、及び、超音波振動子168を有している。貯留槽160は、密閉型の容器である。貯留槽160は、水(より詳細には、純水(HO))162を貯留している。水162の水面162aと貯留槽160の上面の間には、空間164が設けられている。貯留槽160の底面は、フィルムにより構成されている。水槽174は、上部が解放された容器であり、内部に水178を貯留している。貯留槽160の底部は、水槽174内の水178に浸漬されている。超音波振動子168は、水槽174の底面に設置されており、水槽174内の水178に超音波振動を加える。超音波振動子168が水槽174内の水178に超音波振動を加えると、水178を介して水162に超音波振動が伝わる。すると、水162の水面162aが振動して、水162の上部の空間164に水162のミスト(以下、水ミスト166という)が発生する。
貯留槽160の上面には、水ミスト供給路180の上流端が接続されている。水ミスト供給路180の下流端は、溶液ミスト供給路130を介して加熱炉120の上流端120aに接続されている。貯留槽160の外周壁には、酸素ガス供給路170の下流端が接続されている。酸素ガス供給路170の上流端は、図示しない酸素ガス供給源に接続されている。酸素ガス供給路170には、酸素ガス供給源から酸素ガス172が供給される。酸素ガス供給路170を介して貯留槽160内の空間164へ酸素ガス172が導入される。酸素ガス供給路170から空間164内に導入された酸素ガス172は、空間164から水ミスト供給路180へ流れる。このとき、空間164内の水ミスト166が、酸素ガス172とともに水ミスト供給路180へ流れる。水ミスト供給路180へ流れた水ミスト166は、酸素ガス172と共に加熱炉120へ流入する。
次に、成膜装置100を用いた成膜方法について説明する。ここでは、基板112として、β型の酸化ガリウムの単結晶により構成された基板を用いる。また、基板112上に、β型の酸化ガリウムの半導体膜をエピタキシャル成長させる。溶液142として、水にガリウム化合物(例えば、塩化ガリウム)が溶解した水溶液を用いる。また、酸化ガリウム膜にドーパントとしてフッ素を付与するために、溶液142中にドーパント材料であるフッ化アンモニウム(NHF)が溶解している。また、第1搬送ガス152、及び、第2搬送ガス135として、窒素を用いる。
まず、基板ステージ126上に基板112を設置する。基板112を設置した後に、成膜工程と、水ミストアニール工程を実施する。
まず、成膜工程を実施する。成膜工程では、まず、ヒータ127によって、基板112を加熱する。ここでは、基板112の温度を、約750℃に制御する。基板112の温度が安定したら、超音波振動子148を動作させることによって、貯留槽140の空間144内に溶液ミスト146を発生させる。また、搬送ガス供給路150から貯留槽140に第1搬送ガス152を導入する。ここでは、5L/minの流量で、第1搬送ガス152を流す。すると、溶液ミスト146が第1搬送ガス152とともに溶液ミスト供給路130へ流入する。さらに、搬送ガス供給路134から溶液ミスト供給路130へ第2搬送ガス135を導入する。ここでは、5L/minの流量で、第2搬送ガス135を流す。その結果、溶液ミスト供給路130内で、溶液ミスト146が希釈される。溶液ミスト146は、第1搬送ガス152及び第2搬送ガス135とともに、加熱炉120内へ流入する。溶液ミスト146は、第1搬送ガス52及び第2搬送ガス35とともに、加熱炉120内を上流端120aから下流端120bまで流れ、排出管128へ排出される。基板ステージ126に支持された基板112は、加熱炉120内を上流端120aから下流端120bに向かって流れる溶液ミスト146が基板112の表面にあたる向きで支持されている。このため、溶液ミスト146の一部が基板112の表面に付着する。基板112がヒータ127によって加熱されているので、溶液ミスト146(すなわち、溶液142)が基板112上で化学反応を起こす。その結果、基板112上に、β型酸化ガリウムが生成される。基板112の表面に継続的に溶液ミスト146が供給されるので、基板112の表面に単結晶のβ型酸化ガリウム膜(半導体膜)がエピタキシャル成長する。この条件によれば、1μm/hour以上の速度(より詳細には、約1.8μm/hourの速度)で酸化ガリウム膜を成長させることができる。加熱炉120内に流入するガス(すなわち、第1搬送ガス152と第2搬送ガス135)の酸素含有量が少ないので、溶液ミスト146が酸化し難い。より詳細には、溶液ミスト146に含まれる酸化ガリウム化合物やドーパント材料が酸化し難い。このため、成長する酸化ガリウム膜の表面に、ダストが付着することが抑制される。また、加熱炉120内に流入するガス(すなわち、第1搬送ガス152と第2搬送ガス135)の酸素含有量が少ないので、ドーパントであるフッ素が酸化ガリウム膜中の酸素サイトに入り易い。したがって、n型の酸化ガリウム膜が成長する。また、加熱炉120内に流入するガス(すなわち、第1搬送ガス152と第2搬送ガス135)の酸素含有量が少ないので、酸化ガリウム膜が成長するときに、酸化ガリウム膜中に酸素欠損が形成される。特に、上記のような速い成膜速度(すなわち、1μm/hour以上の速度)で酸化ガリウム膜を成長させると、多数の酸素欠損が形成される。酸化ガリウム膜が形成されたら、超音波振動子148を停止させ、第1搬送ガス152及び第2搬送ガス135の供給を停止する。
次に、水ミストアニール工程を実施する。水ミストアニール工程では、まず、ヒータ127によって、基板112を加熱する。ここでは、基板112及び酸化ガリウム膜の温度を、約800℃に制御する。すなわち、水ミストアニール工程では、成膜工程における基板112の温度よりも高い温度に基板112及び酸化ガリウム膜を加熱する。基板112の温度が安定したら、超音波振動子168を動作させることによって、貯留槽160の空間164内に水ミスト166を発生させる。また、酸素ガス供給路170から貯留槽160に酸素ガス172を導入する。すると、水ミスト166が酸素ガス172とともに水ミスト供給路180へ流入する。水ミスト166は、酸素ガス172とともに水ミスト供給路180から加熱炉120内へ流入する。水ミスト166は、酸素ガス172とともに加熱炉120内を上流端120aから下流端120bまで流れ、排出管128へ排出される。基板ステージ126に支持された基板112上の酸化ガリウム膜は、水ミスト166及び酸素ガス172に曝される。すると、水ミスト166を構成する水(HO)と酸素ガス172(O)から酸化ガリウム膜中へ酸素原子が拡散する。酸化ガリウム膜中へ拡散した酸素原子は、酸化ガリウム膜中の酸素欠損に入る。酸素欠損に酸素原子が充填されることで、酸素欠損が消滅する。酸化ガリウム膜中で多数の酸素欠損が消滅するので、酸化ガリウム膜中の酸素欠損が大幅に減少する。特に、酸化ガリウム膜を加熱しているので、酸素欠損に酸素原子が入りやすい。したがって、効率的に酸化ガリウム膜中の酸素欠損を減少させることができる。したがって、酸素欠損が少ない酸化ガリウム膜を得ることができる。
以上に説明したように、実施例2の成膜方法によれば、酸素欠損が少ない酸化ガリウム膜を形成することができる。このため、酸化ガリウム膜の特性を正確に制御することができる。
また、実施例2の成膜方法では、共通の加熱炉120内で成膜工程と水ミストアニール工程を実施する。このため、成膜工程から水ミストアニール工程に切り換えるときに、酸化ガリウム膜が加熱炉120の外部の雰囲気に曝されない。これによって、酸素欠損に意図しない原子が入ることを防止することができる。
また、実施例2の成膜方法では、フッ素をドナーとして用いる。フッ素は、17族であり、酸素サイトに入り易い。このように、17族の元素をドナーとして用いる場合には、酸化ガリウム膜を成長させることで、酸素サイトにドナーがより入り易くなる。なお、15族の元素も、17族の元素と同様に、酸素サイトに入り易い。
図3は、実施例3の成膜装置200を示している。実施例3の成膜装置は、ノズル210から複数の基板212に向かってミストやガスを吐出する。なお、実施例3においては、ミストやガスの供給装置(例えば、貯留槽やガス供給源)についての説明を省略する。
実施例3の成膜装置は、複数の基板212を載置可能な基板ステージ226を有している。基板ステージ226の内部に、基板212を加熱するヒータ227が設置されている。基板ステージ226の中心軸226aの周りに、複数の基板212が配置されている。基板ステージ226は、中心軸226aの回りに回転する。ノズル210は、基板ステージ226上に配置されている。ノズル210と基板ステージ226は、加熱炉内に設置されている。ノズル210は、一方向に長い直方体の形状を有している。ノズル210の下面に、一列に並ぶ複数の吐出口210aが形成されている。矢印280に示すように、ノズル210の吐出口210aから下方向に吐出されたミストやガスは、基板ステージ226の直径方向全体に当たることができる。基板ステージ226が回転した状態でノズル210からミストやガスが吐出されると、基板ステージ226上のすべての基板212にミストやガスがあたる。基板212の移動速度が最大となる部分の移動速度がミストやガスの吐出速度よりも速くなるように基板ステージ226を高速で回転させると、基板212の表面に沿ってガスの層流が生じる。層流に沿ってミストやガスが流れることで、基板212の表面全体が均一に処理される。なお、基板ステージ226を低速で回転させて、ガスの層流を生じさせなくてもよい。
次に、成膜装置200を用いた成膜方法について説明する。ここでは、基板212として、β型酸化ガリウムの単結晶により構成された基板を用いる。また、基板212上に、β型の酸化ガリウムの半導体膜をエピタキシャル成長させる。溶液ミスト用の溶液として、水にガリウム化合物(例えば、塩化ガリウム)が溶解した水溶液を用いる。また、酸化ガリウム膜にドーパントとしてゲルマニウムを付与するために、溶液中にドーパント材料であるβ‐カルボキシエチルゲルマニウムセスキオキシド((GeCHCHCOOH))が溶解している。また、搬送ガスとして、窒素を用いる。
まず、基板ステージ226上に基板212を設置する。基板212を設置した後に、成膜工程と、水蒸気アニール工程を実施する。
まず、成膜工程を実施する。成膜工程では、ヒータ227によって、基板212を加熱する。ここでは、基板212の温度を、約750℃に制御する。基板212の温度が安定したら、基板ステージ226を回転させるとともに、ノズル210から溶液ミストを搬送ガスと共に吐出する。このため、溶液ミストが基板212の表面に付着し、基板212の表面にβ型酸化ガリウム膜(半導体膜)がエピタキシャル成長する。搬送ガスの酸素含有量が少ないので、溶液ミストが酸化し難い。このため、成長する酸化ガリウム膜の表面に、ダストが付着することが抑制される。また、搬送ガスの酸素含有量が少ないので、ドーパントであるゲルマニウムが酸化ガリウム膜中の酸素サイトに入り易い。このため、n型の酸化ガリウム膜が成長する。また、搬送ガスの酸素含有量が少ないので、酸化ガリウム膜が成長するときに、酸化ガリウム膜中に多数の酸素欠損が形成される。酸化ガリウム膜が形成されたら、溶液ミスト及び搬送ガスの吐出を停止する。
次に、水蒸気アニール工程を実施する。水蒸気アニール工程では、まず、ヒータ227によって、基板212を加熱する。ここでは、基板212及び酸化ガリウム膜の温度を、約800℃に制御する。すなわち、水蒸気アニール工程では、成膜工程における基板212の温度よりも高い温度に基板212及び酸化ガリウム膜を加熱する。基板212の温度が安定したら、ノズル210から搬送ガスと共に過熱水蒸気を吐出する。基板212の表面は、過熱水蒸気に曝される。すると、水蒸気(HO)から酸化ガリウム膜中へ酸素原子が拡散する。酸化ガリウム膜中へ拡散した酸素原子は、酸化ガリウム膜中の酸素欠損に入る。加熱炉内の水蒸気の分圧は、大気中の水蒸気の分圧よりも高い。したがって、酸素欠損に酸素原子が入り易い。酸素欠損に酸素原子が充填されることで、酸素欠損が消滅する。酸化ガリウム膜中で多数の酸素欠損が消滅するので、酸化ガリウム膜中の酸素欠損が大幅に減少する。特に、酸化ガリウム膜を加熱しているので、酸素欠損に酸素原子が入りやすい。したがって、効率的に酸化ガリウム膜中の酸素欠損を減少させることができる。したがって、酸素欠損が少ない酸化ガリウム膜を得ることができる。なお、水蒸気アニール工程では、図示しないヒータで水蒸気を加熱してもよい。
以上に説明したように、実施例3の成膜方法によれば、酸素欠損が少ない酸化ガリウム膜を形成することができる。このため、酸化ガリウム膜の特性を正確に制御することができる。
また、実施例3で使用するドーパント材料であるβ‐カルボキシエチルゲルマニウムセスキオキシド((GeCHCHCOOH))は、有機物であるので、成膜工程後に加熱炉内に残留する場合がある。しかしながら、水蒸気アニール工程で高温の水蒸気を加熱炉内に供給することで、残留した有機物が速やかに酸化され、ガスとして加熱炉外に排出される。このため、水蒸気アニール工程後に基板212を加熱炉から取り出すときに、酸化ガリウム膜に有機物が付着することを抑制できる。このように、水蒸気アニール工程では、加熱炉内をクリーニングする効果も得られる。
なお、他の実施例においては、アクセプタを含むドーパント材料が溶解した溶液を用いて、p型の酸化ガリウム膜をエピタキシャル成長させてもよい。酸素欠損がドナーとして機能するため、アクセプタがドープされた酸化ガリウム膜を形成することで、酸化ガリウム膜がn型化することを防止することができる。
また、上述した実施例1~3では、酸化ガリウム膜をエピタキシャル成長させたが、他の酸化物により構成された膜をエピタキシャル成長させてもよい。また、エピタキシャル成長させる膜は、半導体であってもよいし、絶縁体であってもよいし、導体であってもよい。いずれの酸化物材料であっても、酸素欠損に酸素を充填することで、結晶性の高い膜を形成することができる。
また、上述した実施例1~3の成膜装置に制御装置を付加し、各工程を制御装置によって自動的に行ってもよい。
実施例の各構成要素と請求項の各構成要素との関係について、以下に説明する。実施例1~3の第1搬送ガス、第2搬送ガス、及び、搬送ガスは、請求項の搬送ガスの一例である。実施例1~3の溶液ミストは、請求項の溶液のミストの一例である。実施例1~3の酸素ガス、水ミスト、及び、水蒸気は、請求項の酸素原子を含む流体の一例である。なお、流体は、大気よりも高いモル濃度で酸素原子を含んでいることが好ましい。
本明細書が開示する技術要素について、以下に列記する。なお、以下の各技術要素は、それぞれ独立して有用なものである。
本明細書が開示する一例の成膜方法では、酸化物膜を流体に曝す工程において、基板を加熱してもよい。
この構成によれば、酸素欠損に酸素原子が入りやすくなり、酸素欠損を効率的に減少させることができる。
本明細書が開示する一例の成膜方法では、酸化物膜をエピタキシャル成長させる工程において基板を第1温度に加熱し、酸化物膜を流体に曝す工程において基板を第1温度よりも高い第2温度に加熱してもよい。
この構成によれば、酸素欠損に酸素原子がより入りやすくなり、酸素欠損をより効率的に減少させることができる。
本明細書が開示する一例の成膜方法では、酸化物膜が半導体であってもよい。
酸素欠損は、酸化物半導体中でドナーとして機能する。このため、酸素欠損が生じると、酸化物半導体がn型化し易い。この構成によれば、酸素欠損の少ない酸化物膜(すなわち、酸化物半導体膜)を形成できるので、酸化物膜の特性をより正確に制御することができる。
本明細書が開示する一例の成膜方法では、溶液が、酸化物膜中でドーパントとして機能する原子を含むドーパント材料を含んでいてもよい。酸化物膜をエピタキシャル成長させる工程で、ドーパントを含む酸化物膜をエピタキシャル成長させてもよい。
この構成によれば、ドーパントがドープされた酸化物膜(酸化物半導体膜)を形成することができる。また、この構成によれば、酸化し易いドーパント材料の酸化を抑制できるので、好適にドーパントがドープされた酸化物膜を形成することができる。
本明細書が開示する一例の成膜方法では、ドーパントが、酸化物膜中の酸素原子サイトに置換可能であってもよい。
この構成によれば、酸化物膜が成長するときに、酸化物膜中の酸素原子サイトにドーパントが入りやすい。このため、より多くのドーパントがドープされた酸化物膜を形成することができる。
本明細書が開示する一例の成膜方法では、ドーパントが、17族または15族であってもよい。
本明細書が開示する一例の成膜方法では、ドーパントが、アクセプタであってもよい。
この構成によれば、酸素空孔によって酸化物膜がn型化することを抑制することができる。
本明細書が開示する一例の成膜方法では、流体が、酸素ガス、水蒸気、及び、水のミストの少なくとも1つを含んでもよい。
この構成によれば、酸化物膜に酸素原子を好適に供給することができる。
本明細書が開示する一例の成膜方法では、流体が、酸素ガス、または、水蒸気からなる処理ガスを含んでいてもよい。また、流体中における処理ガスの分圧が、大気中における処理ガスの分圧よりも高くてもよい。
この構成によれば、酸素欠損に酸素原子が入りやすくなり、酸素欠損を効率的に減少させることができる。
以上、実施形態について詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独あるいは各種の組み合わせによって技術有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの1つの目的を達成すること自体で技術有用性を持つものである。
10 :成膜装置
12 :基板
20 :加熱炉
26 :基板ステージ
27 :ヒータ
28 :排出管
30 :ミスト供給路
32 :ガス供給路
34 :搬送ガス供給路
35 :第2搬送ガス
36 :酸素ガス供給路
37 :酸素ガス
40 :貯留槽
42 :溶液
46 :溶液ミスト
48 :超音波振動子
50 :搬送ガス供給路
52 :第1搬送ガス

Claims (11)

  1. 半導体の酸化ガリウム膜の成膜方法であって、
    前記酸化ガリウム膜の材料が溶解した溶液のミストを酸素の濃度が21vol%以下の搬送ガスとともに基板の表面に供給することによって、前記基板の前記表面に前記酸化ガリウム膜をエピタキシャル成長させる工程と、
    前記酸化ガリウム膜をエピタキシャル成長させた後に、前記酸化ガリウム膜を水蒸気と水のミストの少なくとも一方を含む流体に曝す工程、
    を有し、
    前記酸化ガリウム膜を前記流体に曝す前記工程では、前記酸化ガリウム膜と前記基板を加熱する、
    成膜方法。
  2. 前記搬送ガスが酸素を含まない、請求項1の成膜方法。
  3. 前記酸化ガリウム膜をエピタキシャル成長させる前記工程では、前記基板を第1温度に加熱し、
    前記酸化ガリウム膜を前記流体に曝す前記工程では、前記基板を前記第1温度よりも高い第2温度に加熱する、請求項1または2の成膜方法。
  4. 前記酸化ガリウム膜を前記流体に曝す前記工程において、前記酸化ガリウム膜の結晶性が向上する、請求項1~3のいずれか一項の成膜方法。
  5. 前記溶液が、前記酸化ガリウム膜中でドーパントとして機能する原子を含むドーパント材料を含んでおり、
    前記酸化ガリウム膜をエピタキシャル成長させる前記工程で、前記ドーパントを含む前記酸化ガリウム膜をエピタキシャル成長させる、
    請求項4の成膜方法。
  6. 前記ドーパントが、前記酸化ガリウム膜中の酸素サイトに置換可能である、請求項5の成膜方法。
  7. 前記ドーパントが、17族または15族である、請求項5または6の成膜方法。
  8. 前記ドーパントが、アクセプタである、請求項5~7のいずれか一項の成膜方法。
  9. 前記流体が、水蒸気を含み、
    前記流体中における水蒸気の分圧が、大気中における水蒸気の分圧よりも高い、請求項1~8のいずれか一項の成膜方法。
  10. 半導体の酸化ガリウム膜を有する半導体装置の製造方法であって、
    前記酸化ガリウム膜の材料が溶解した溶液のミストを酸素の濃度が21vol%以下の搬送ガスとともに基板の表面に供給することによって、前記基板の前記表面に前記酸化ガリウム膜をエピタキシャル成長させる工程と、
    前記酸化ガリウム膜をエピタキシャル成長させた後に、前記酸化ガリウム膜を水蒸気と水のミストの少なくとも一方を含む流体に曝す工程、
    を有し、
    前記酸化ガリウム膜を前記流体に曝す前記工程では、前記酸化ガリウム膜と前記基板を加熱する、
    製造方法。
  11. 半導体の酸化ガリウム膜の成膜装置であって、
    前記酸化ガリウム膜の材料が溶解した溶液のミストを酸素の濃度が21vol%以下の搬送ガスとともに供給するミスト供給装置と、
    水蒸気と水のミストの少なくとも一方を含む流体を供給する流体供給装置と、
    前記ミスト供給装置と前記流体供給装置を制御する制御装置、
    を有しており、
    前記制御装置が、
    前記ミスト供給装置から前記ミストを前記搬送ガスとともに基板の表面に供給することによって、前記基板の前記表面に前記酸化ガリウム膜をエピタキシャル成長させる工程と、
    前記酸化ガリウム膜をエピタキシャル成長させた後に、前記流体供給装置から前記酸化ガリウム膜に前記流体を供給することによって、前記酸化ガリウム膜を前記流体に曝す工程、
    を実施し、
    前記酸化ガリウム膜を前記流体に曝す前記工程では、前記酸化ガリウム膜と前記基板を加熱する、
    成膜装置。
JP2019105364A 2019-06-05 2019-06-05 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置 Active JP7212890B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019105364A JP7212890B2 (ja) 2019-06-05 2019-06-05 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置
CN202010502177.7A CN112048759A (zh) 2019-06-05 2020-06-04 氧化膜的成膜方法、半导体装置的制造方法及氧化膜的成膜装置
US16/892,789 US11373864B2 (en) 2019-06-05 2020-06-04 Method of forming oxide film, method of manufacturing semiconductor device, and apparatus configured to form oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019105364A JP7212890B2 (ja) 2019-06-05 2019-06-05 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置

Publications (2)

Publication Number Publication Date
JP2020198410A JP2020198410A (ja) 2020-12-10
JP7212890B2 true JP7212890B2 (ja) 2023-01-26

Family

ID=73609173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019105364A Active JP7212890B2 (ja) 2019-06-05 2019-06-05 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置

Country Status (3)

Country Link
US (1) US11373864B2 (ja)
JP (1) JP7212890B2 (ja)
CN (1) CN112048759A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7066658B2 (ja) * 2019-06-14 2022-05-13 信越化学工業株式会社 酸化物半導体膜の製造方法
JP7514478B2 (ja) 2020-12-04 2024-07-11 株式会社デンソー ウエハ処理装置及びウエハ処理方法
TW202235663A (zh) * 2021-03-02 2022-09-16 日商信越化學工業股份有限公司 製膜方法、製膜裝置及積層體
CN117836466A (zh) * 2022-02-04 2024-04-05 株式会社村田制作所 雾化cvd成膜装置和成膜方法
JP2023157126A (ja) * 2022-04-14 2023-10-26 国立研究開発法人理化学研究所 不純物ドープ半導体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070248A (ja) 2013-10-01 2015-04-13 株式会社Flosfia 酸化物薄膜及びその製造方法
JP2016146442A (ja) 2015-01-29 2016-08-12 株式会社Flosfia 成膜装置および成膜方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793732B2 (ja) * 2011-07-27 2015-10-14 高知県公立大学法人 ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
JP2013140201A (ja) * 2011-12-28 2013-07-18 Ricoh Opt Ind Co Ltd 金属酸化膜による光学薄膜の形成方法および光学素子
JP6357811B2 (ja) * 2014-03-10 2018-07-18 富士ゼロックス株式会社 表示制御装置及びプログラム
US10043664B2 (en) * 2014-09-02 2018-08-07 Flosfia Inc. Multilayer structure, method for manufacturing same, semiconductor device, and crystalline film
US20160222511A1 (en) * 2015-01-29 2016-08-04 Flosfia Inc. Apparatus and method for forming film
EP3125296B1 (en) * 2015-07-30 2020-06-10 Ricoh Company, Ltd. Field-effect transistor, display element, image display device, and system
JP2018137394A (ja) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070248A (ja) 2013-10-01 2015-04-13 株式会社Flosfia 酸化物薄膜及びその製造方法
JP2016146442A (ja) 2015-01-29 2016-08-12 株式会社Flosfia 成膜装置および成膜方法

Also Published As

Publication number Publication date
US20200388491A1 (en) 2020-12-10
US11373864B2 (en) 2022-06-28
JP2020198410A (ja) 2020-12-10
CN112048759A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
JP7212890B2 (ja) 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置
JP2006041481A (ja) 被処理体の熱処理装置、熱処理方法及び記憶媒体
CN104947081B (zh) 成膜装置和成膜方法
JP7216371B2 (ja) 酸化物膜の成膜方法、半導体装置の製造方法、及び、酸化物膜の成膜装置
JP7130962B2 (ja) 成膜方法及び成膜装置
JP2020196930A (ja) ミスト生成装置、成膜装置、及び成膜装置を用いた成膜方法
US20200173054A1 (en) Film formation apparatus
JP2013222884A (ja) 気相成長装置および成膜方法
JP2019142756A (ja) 成膜方法
KR100652908B1 (ko) 동일 챔버에서의 산화물층 및 실리콘층의 성장
US20130160802A1 (en) Processes and systems for reducing undesired deposits within a reaction chamber associated with a semiconductor deposition system
JP7514478B2 (ja) ウエハ処理装置及びウエハ処理方法
JP7115688B2 (ja) 成膜装置及び半導体装置の製造方法
US20220157598A1 (en) Method for forming film and manufacturing semiconductor device
JP2004349492A (ja) 窒化物の気相成長装置
JP5045033B2 (ja) 気相成長装置及び化合物半導体膜の成長方法
JP2023027494A (ja) 成膜装置と半導体装置の製造方法
JP2020120034A (ja) 成膜装置と半導体装置の製造方法
JP2020011858A (ja) 成膜方法、及び、半導体装置の製造方法
JP7174950B2 (ja) 成膜方法
JP2017178767A (ja) 結晶製造方法及び気相成長装置
JP7240673B2 (ja) 成膜方法
JP6258720B2 (ja) ハイドライド気相成長装置、およびこれを用いた基板処理方法
JP4961888B2 (ja) 気相成長装置、及び化合物半導体膜の成長方法
JP2016096177A (ja) ハイドライド気相成長装置および成膜方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7212890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150