JP7135728B2 - 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム - Google Patents
鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム Download PDFInfo
- Publication number
- JP7135728B2 JP7135728B2 JP2018204233A JP2018204233A JP7135728B2 JP 7135728 B2 JP7135728 B2 JP 7135728B2 JP 2018204233 A JP2018204233 A JP 2018204233A JP 2018204233 A JP2018204233 A JP 2018204233A JP 7135728 B2 JP7135728 B2 JP 7135728B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- slab
- solidified shell
- thickness
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Continuous Casting (AREA)
Description
図7に示すように、連続鋳造工程では、浸漬ノズル6から鋳型4内に溶鋼1が注入される。鋳型4内に注入された溶鋼1は、鋳型4で冷却され、その表面から凝固シェル2が形成されて凝固する。表面は凝固シェル2となっているが内部は凝固していない鋼が、鋳型4の下端部から、鋳造速度がコントロールされて連続的に引き出され、ロールにより搬送される。このようにして鋳型4から引き出される過程で、鋳型4の下方に配置される2次冷却部分(冷却スプレーから噴射される冷却水)によって鋼の冷却を進めることで、内部まで鋼が凝固される。
特許文献1には、鋳型内および鋳型の下部の3次元的な溶鋼流速分布を推定し、この流速分布を用いて凝固シェル厚みと溶鋼中の介在物・気泡分布とを計算し、この凝固シェル厚み分布と溶鋼中の介在物・気泡分布とから鋳片の品質を判定することが記載されている。また、特許文献2には、流体解析を行うことにより溶鋼流速、凝固速度、凝固界面におけるArガス気泡の個数密度を得て、これらと、凝固シェルの移動速度とに基づいて、凝固シェル中のArガス気泡の個数密度を導出し、凝固界面での単位面積当たりのピンホールの個数を導出することが記載されている。
<着想>
特許文献1、2に記載のように、気泡等の分布や個数密度を導出すると、溶鋼の流速等を導出するための数値計算に加えて、気泡等の分布や個数密度を導出するための数値計算が必要になり、計算時間が長くなる。このため、オンライン(鋳造の段階)で鋳片の欠陥を推定することが容易ではない。一方で、製品歩留りや製品品質の低下の要因となる欠陥が鋳片に存在するか否かを推定することができれば、操業の変更や、鋳片に対する手入作業の必要性をいち早く判断することができ、製品歩留りや製品品質の低下を抑制することができる。そこで、本発明者らは、特許文献1、2に記載のように、気泡等の分布や個数密度といった、気泡等の詳細な情報を導出せずに、鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを判定することによって鋳片の品質を推定することを着想した。
以上のことから、本発明者らは、溶鋼1の流速と、凝固シェル2の厚みの時間微分値とから、鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを判定することを着想した。以下に説明する実施形態は、以上のような着想に基づいてなされたものである。
また、非特許文献1に記載のように、溶鋼1の流速は、溶鋼1と凝固シェル2との間の熱伝達係数(単位温度差あたりの熱流束)の関数として表される。溶鋼1と凝固シェル2との間の熱伝達係数に基づいて溶鋼1の流速を導出してもよいが、本発明者らは、溶鋼1の流速に代えて、溶鋼1と凝固シェル2との間の熱伝達係数を用いても鋳片の欠陥の推定精度に大きな差が生じないという知見を得た。そこで、計算時間をより短縮するために、本実施形態では、溶鋼1の流速に代えて、溶鋼1と凝固シェル2との間の熱伝達係数を用いる場合を例に挙げて説明する。
また、本実施形態では、鋳片の欠陥がピンホールである場合を例に挙げて説明する。
図1は、連続鋳造設備の鋳型付近の断面の一部(浸漬ノズルを除く右半分)を示す図である。溶鋼1から鋳型4用の冷却水5までの間に凝固シェル2、モールドフラックス層3、および鋳型4の各熱伝導体が存在する。鋳型4には、複数の測温手段である熱電対7が鋳造方向(鋳型4の高さ方向、z軸方向)に位置をずらして埋設されている。また、鋳片の欠陥を推定する装置として機能する鋳片品質推定装置100が装備されている。鋳片品質推定装置100は、例えば、CPU、ROM、RAM、HDD、および各種のインターフェースを備えた情報処理装置、または、専用のハードウェアを用いることにより実現される。
以上のように、複数の熱電対7により測定された温度を用いて、非定常伝熱逆問題解析を行うことにより、鋳型内凝固状態推定量が導出される。ここで、非定常伝熱逆問題とは、計算領域を支配する非定常熱伝導方程式を基にして、当該非定常熱伝導方程式で求める解となる領域内部の温度情報を既知として、領域境界での温度や熱流束や熱伝達係数などの、当該非定常熱伝導方程式を解く際の境界条件または初期条件を推定する問題を指す。これに対して、非定常伝熱順問題は、既知である境界条件を基にして、領域内部の温度情報を推定する問題を指す。
以上が、特許文献3に記載の鋳型4内の凝固状態の推定方法である。
熱電対7の埋設位置は、鋳造状況を監視するために従来から使用している熱電対7の埋設位置(既存の鋳型4における熱電対7の埋設位置)でも、特許文献3に記載されている熱電対7の埋設位置でもよい。ただし、本実施形態では、鋳片の欠陥がピンホールである場合を例に挙げて説明する。ピンホールの発生要因となる気泡は、湯面下0~100[mm]の範囲内(鋳型4内の溶鋼1の湯面レベルの位置を最高位置とし、鋳型4内の溶鋼1の湯面レベルの位置より100[mm]下方の位置(鋳型4内の溶鋼1の湯面レベルの位置から、鋳型4の高さ方向(z軸方向)に沿って下方に100[mm]離れた位置)を最低位置とする範囲内)で凝固シェル2に捕捉される。従って、この範囲内の熱伝達係数βおよび凝固シェル2の厚みsを導出することができるように、熱電対7の埋設位置がこのような範囲内の位置を含むようにする。
図2は、鋳片品質推定装置100の機能的な構成の一例を示す図である。
[温度取得部201]
温度取得部201は、鋳造方向の埋設位置が相互に異なる複数の熱電対7で測定された温度を取得する。温度取得部201は、取得した温度を用いて補間処理および補外処理の少なくとも何れか一方を行うことにより、鋳造方向における鋳型4の温度分布を導出する。これにより、熱電対7の埋め込み深さ位置での鋳型4の温度Tc(t,z)が得られる。温度取得部201は、複数の熱電対7で測定された温度を0.01[s]以上、20[s]以下の間隔で取得するのが好ましい。複数の熱電対7で測定された温度の取得間隔(サンプリング間隔)を0.01[s]未満とすると、鋳片品質推定装置100のメモリ容量が足りなくなる。このため、処理がオーバーフローを起こす虞がある。また、複数の熱電対7で測定された温度の取得間隔を0.01[s]未満としても、鋳片の欠陥の推定精度は大きく向上しない。
熱流束導出部202は、温度取得部201で得られた、各熱電対7の埋め込み深さ位置での鋳型4の温度Tc(t,z)から式(48)を用いて、鋳型4を通過する熱流束qout(t,z)を導出する。
[鋳型内壁面温度導出部203]
鋳型内壁面温度導出部203は、温度取得部201で得られた、各熱電対7の埋め込み深さ位置での鋳型4の温度Tc(t,z)から式(47)を用いて、鋳型4の内壁面の温度Tm(t,z)を導出する。
熱伝達係数導出部204は、温度取得部201で得られた、熱電対7の埋め込み深さ位置での鋳型4の温度Tcと、熱流束導出部202で得られた、鋳型4を通過する熱流束qoutと、鋳型内壁面温度導出部203で得られた、鋳型4の内壁面の温度Tmとを用いて式(50)の最小化問題を解くことにより、熱伝達係数αest(t,z)、βest(t,z)を同時に導出(決定)する。
凝固シェル厚導出部205は、鋳型内壁面温度導出部203で得られた、鋳型4の内壁面の温度Tmと、熱伝達係数導出部204で得られた、熱伝達係数αest(t,z)、βest(t,z)とを式(46)に適用して、凝固シェル2の厚みsest(t,z)および凝固シェル2の温度Test(t,z,x)を導出する。これにより、熱電対7による温度の測定時刻t、推定位置zpにおける凝固シェル2の厚みsest(t,zp)が得られる。尚、凝固シェル2の温度Test(t,z,x)については必ずしも導出する必要はない。
凝固シェル厚時間微分値導出部206は、時刻tにおける凝固シェル2の厚みsest(t,zp)の時間微分値δtsest(t,zp)を導出する。例えば、凝固シェル厚時間微分値導出部206は、熱電対7において温度を取得する時間隔をΔt、推定位置zpの上方に隣接する凝固シェル2の厚みsestの計算位置をzqとして、以下の式(51)により凝固シェル2の厚みの時間微分値δtsest(t,zp)を導出する。尚、δtは、(sest(t,zp)に対する)時間微分(ラグランジュ微分)を表す記号である。
平均値導出部207は、1つの鋳片に対して熱伝達係数導出部204により導出された熱伝達係数βest(t,zp)の時間平均値を導出する。また、平均値導出部207は、1つの鋳片に対して凝固シェル厚時間微分値導出部206により導出された凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値を導出する。
そして、平均値導出部207は、キャストの開始の時刻からの経過時間と、鋳造速度Vcと、推定位置zp(z軸の座標)とに基づいて、推定位置zpを通過した鋼の長さ(当該キャストにおいて推定位置zpよりも下流側にある鋼の長さ)を特定する。
平均値導出部207は、以上のようにして特定した、鋳片の識別番号、鋳造順、および長さと、推定位置zpを通過した鋼の長さとに基づいて、現時点において、どの識別番号の鋳片(鋼)が推定位置zpを通過したのかを判定することができる。
平均値導出部207は、キャストの開始の時刻から経過時間と、鋳造速度Vcと、推定位置zp(z軸の座標)とに基づいて、推定位置zpを通過した鋼の長さがX1になると、識別番号がi1の鋳片が推定位置zpを通過したと判定する。
平均値導出部207は、識別番号がi1の鋳片が推定位置zpを通過したと判定した時刻から、識別番号がi2の鋳片が推定位置zpを通過したと判定した時刻までの間に熱伝達係数導出部204により導出された熱伝達係数βest(t,zp)の時間平均値を、識別番号がi2の鋳片に対する値として導出する。また、平均値導出部207は、識別番号がi1の鋳片が推定位置zpを通過したと判定した時刻から、識別番号がi2の鋳片が推定位置zpを通過したと判定した時刻までの間に凝固シェル厚時間微分値導出部206により導出された凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値を、識別番号がi2の鋳片に対する値として導出する。尚、チャージとチャージとの間に何れの鋳片にもならない部分が生じる場合には、当該部分の長さを考慮して、各鋳片が推定位置zpを通過したか否かを判定する。
欠陥実績取得部208は、連続鋳造設備で実際に製造された鋳片の欠陥の有無を示す情報を欠陥実績情報として取得する。本実施形態では、欠陥がピンホールである場合を例に挙げて説明する。従って、実際に製造された鋳片の欠陥の有無は、例えば、検査員の目視によって判定することができる。尚、鋳片に欠陥があっても、当該欠陥が、製品歩留りや製品品質の観点から問題のない欠陥である場合には、欠陥がないものとして扱ってもよい。即ち、実際に製造された鋳片に、製品歩留りや製品品質の観点から問題のある欠陥がある場合にのみ、実際に製造された鋳片に欠陥があると判定してもよい。本実施形態では、欠陥実績取得部208は、鋳片の識別番号と、当該識別番号の鋳片の欠陥の有無を示す情報とが相互に関連付けられた情報を欠陥実績情報として取得する。欠陥実績情報の取得形態として、例えば、鋳片品質推定装置100に対するオペレータによる入力操作、外部装置からの受信、および鋳片品質推定装置100に接続される可搬型の記憶媒体からの読み取りのうち、少なくとも何れか1つを採用することができる。
実績設定部209は、熱伝達係数βest(t,zp)の時間平均値と、凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値と、欠陥の有無を示す情報とを、鋳片毎(識別番号毎)に相互に関連付けて記憶する。即ち、実績設定部209は、平均値導出部207により導出された、熱伝達係数βest(t,zp)の時間平均値および凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値と、欠陥実績取得部208により取得された、欠陥実績情報とから、同じ識別番号の情報を抽出し、抽出した情報を当該識別番号と関連付ける。
以下の説明では、以上のようにして鋼種別・鋳造速度別・鋳造幅別に分類して記憶される情報を、必要に応じて、実績データと称する。
判定式設定部210は、実績設定部209により、同一の鋼種、同一の鋳造速度、および同一の鋳造幅における実績データとして所定の数以上の実績データが記憶されたか否かを判定する。判定式設定部210は、同一の鋼種、同一の鋳造速度、および同一の鋳造幅における実績データとして所定の数以上の実績データが記憶されている場合、当該鋼種、当該鋳造速度、および当該鋳造幅における実績データを用いて、当該鋼種、当該鋳造速度、および当該鋳造幅における判定式を設定する。ここで、所定の数は、後述する係数kを導出するために必要な数であればよいが、100以上とするのが好ましく、1000以上とするのがより好ましく、10000以上とするのがさらに好ましい。例えば、所定の数は、後述する係数kの値を導出するための公知の線形分類器等のアルゴリズムに応じて定めることができ、多いほどけ分類精度は高まるが計算負荷も高くなる。従って、例えば、実績データに対応する模擬データを用いて、当該アルゴリズムにおける分類精度と計算負荷との関係を調査し、実用的な計算時間内で分類精度が実用上要求される値以上になるように、所定の数を決定することができる。このようにして決定される所定の数は、鋳片品質推定装置100に予め設定されているものとする。
即ち、推定位置zpにおいて計算された溶鋼1の流速v(熱伝達係数β)が、推定位置zpにおいて計算された凝固シェル2の厚みの時間微分値δtsに係数kを乗算することにより導出される溶鋼1の流速v(熱伝達係数β)を上回る(または以上である)場合(即ち、式(52a)、式(52b)、式(53a)、または式(53b)を満たす場合)には、鋳片に欠陥が存在する確率が相対的に低く、そうでない場合には、鋳片に欠陥が存在する確率が相対的に高いと判定することができる。
v≧k・δts ・・・(52b)
β>k・δts ・・・(53a)
β≧k・δts ・・・(53b)
本実施形態では、溶鋼1の流速vに代えて、熱伝達係数βを用いる。従って、式(53a)または式(53b)を用いる。以下の説明では、式(53a)を用いるものとする。
判定式記憶部211は、判定式設定部210により導出された、鋼種別・鋳造速度別・鋳造幅別の係数kの値を記憶する。
判定式記憶部211に、所定の鋼種、所定の鋳造速度、および所定の鋳造幅における係数kの値が記憶された後に、前述したようにして、温度取得部201、熱流束導出部202、鋳型内壁面温度導出部203、熱伝達係数導出部204、凝固シェル厚導出部205、および凝固シェル厚時間微分値導出部206による処理が、熱電対7で測定された温度が取得される度に実行される。そして、平均値導出部207により、熱伝達係数βest(t,zp)の時間平均値と、凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値とが、1つの鋳片毎に導出される。このようにして導出された、熱伝達係数βest(t,zp)の時間平均値および凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値は、欠陥有無判定部212に出力される。
欠陥有無判定部212は、判定式記憶部211に、所定の鋼種、所定の鋳造速度、および所定の鋳造幅における係数kの値が記憶された後に起動する。
欠陥有無判定部212は、現時点において、どの識別番号の鋳片(鋼)が推定位置zpを通過したのかを判定する。この判定は、[平均値導出部207]の項で説明した方法と同じ方法で実現することができるので、ここでは、その詳細な説明を省略する。そして、欠陥有無判定部212は、現時点において推定位置zpを通過した鋳片の鋼種および鋳造幅と、現時点における鋳造速度とを取得する。鋼種および鋳造幅は、識別番号を参照することによって、鋳片品質推定装置100に予め設定されている鋼種の情報と鋳造幅の情報の中から現時点において推定位置zpを通過した鋳片に関するものを取得する。鋳造速度は、ロール54の回転数(回転速度)に基づいて欠陥有無判定部212が導出しても、外部装置から取得されるようにしてもよい。
欠陥有無判定部212は、以上のような判定を、平均値導出部207から、熱伝達係数βest(t,zp)の時間平均値および凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値が出力される度に実行する。従って、推定対象の鋳片が製造される前に、欠陥有無判定部212によって、当該鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかが判定される。
出力部213は、欠陥有無判定部212による判定の結果を示す情報を欠陥有無情報として出力する。本実施形態では、鋳片の識別番号と、当該識別番号の鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを示す情報とを含む情報を欠陥有無情報とする。欠陥有無情報の出力の形態としては、例えば、コンピュータディスプレイへの表示、外部装置への送信、および鋳片品質推定装置100の外部または内部の記憶媒体への記憶のうち、少なくとも何れか1つを採用することができる。
図3は、鋳片に欠陥が存在するか否かを判定するための判定式(式(53a))の一例をグラフ化して示す図である。図3の横軸は、凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値であり、縦軸は、熱伝達係数βest(t,zp)の時間平均値である。
ここでは、IF鋼のスラブを調査対象とし、凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値および熱伝達係数βest(t,zp)の時間平均値は、長辺において導出(後述する第7の変形例)した。鋳造幅は、1000~1200[mm]であり、鋳造速度は、1.0~1.1[m/min]であり、スラブの数は、137873枚である。推定対象の欠陥をピンホールとし、連続鋳造設備で実際に製造されたスラブにピンホールが存在するか否かを目視で観察することにより判定した。
図4のフローチャートを参照しながら、鋳片に欠陥が存在するか否かを判定するための判定式(式(53a))を設定する際の鋳片品質推定装置100の動作の一例を説明する。尚、前述した計算で使用する既知の値については、図4のフローチャートの開始前に得られているものとする。
まず、ステップS401において、温度取得部201は、鋳造方向の位置が異なる複数の熱電対7で測定された温度を取得し、各熱電対7の埋め込み深さ位置での鋳型4の温度Tc(t,z)を取得する。
次に、ステップS403において、鋳型内壁面温度導出部203は、ステップS401で得られた、各熱電対7の埋め込み深さ位置での鋳型4の温度Tc(t,z)から式(47)を用いて、鋳型4の内壁面の温度Tm(t,z)を導出する。
次に、ステップS407において、平均値導出部207は、熱伝達係数βest(t,zp)および凝固シェル2の厚みsest(t,zp)の時間微分値δtsest(t,zp)のデータとして、1つの鋳片に対するデータが得られたか否かを判定する。この判定の結果、1つの鋳片に対するデータが得られていない場合、処理は、ステップS401に戻る。そして、1つの鋳片に対するデータが得られるまで、ステップS401~S407の処理が繰り返し実行される。
次に、ステップS409において、欠陥実績取得部208は、欠陥実績情報(鋳片の識別番号と、当該識別番号の鋳片の欠陥の有無を示す情報)を取得する。
この判定の結果、所定の実績データが記憶されていない場合、処理は、ステップS401に戻る。そして、所定の実績データが記憶されるまで、ステップS401~S411の処理が繰り返し実行される。
そして、所定の実績データが記憶されると、処理は、ステップS412に進む。ステップS412において、判定式設定部210は、ステップS410で記憶された実績データ(熱伝達係数βest(t,zp)の時間平均値および凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値)を用いて、係数kを導出することを、鋼種別・鋳造速度別・鋳造幅別に行う。
一方、ステップS509の判定の結果、鋳片に欠陥が存在する確率が高い場合、処理は、ステップS511に進む。ステップS511において、出力部213は、推定対象の鋳片の識別番号と、当該識別番号の鋳片に欠陥が存在する確率が高いことを示す情報とを含む情報を欠陥有無情報として出力する。そして、図5のフローチャートによる処理が終了する。
一方、鋳片の識別番号と、当該識別番号の鋳片に欠陥が存在する確率が低いことを示す情報とを含む情報が出力された場合、作業者は、当該鋳片に対し、表層除去装置56により、表層の除去(溶削や研削)を行う必要があると判断する。この場合、表層除去装置56により、当該鋳片に対し、表層の除去(溶削や研削)が行われる。
以上のようにすれば、鋳片の欠陥の有無を検査する工程を省略することができる。
尚、全ての鋳片を、ピンホールの有無の検査対象とせずに、一部の鋳片のみを、ピンホールの有無の検査対象とする場合には、当該一部の鋳片以外の鋳片に対してのみ、鋳片の識別番号と、当該識別番号の鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを示す情報を出力する構成を採用することができる。このようにする場合には、式(53a)を満足しない場合であっても、ピンホールの有無の検査対象ではない鋳片に対しては、(検査自体が行われないので)表層の除去(溶削や研削)は行われない。ただし、ピンホールの有無の検査対象であるか否かに関わらず、鋳片の識別番号と、当該識別番号の鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを示す情報を出力する構成を採用し、検査対象ではない鋳片に対しても、表層の除去(溶削や研削)を行うようにしてもよい。
以上のように本実施形態では、鋳片品質推定装置100は、kを予め設定される正の係数として、熱伝達係数βと、凝固シェル2の厚みの時間微分値δtsとの関係が、β>k・δtsを満足する場合に、鋳片に欠陥が存在する確率は相対的に低いと判定し、そうでない場合には、当該鋳片に欠陥が存在する確率は相対的に高いと判定する。従って、欠陥の個数密度や分布を導出するための数値計算が不要になるため、計算時間を短くすることができ、鋳片に欠陥が存在するか否かをオンライン(鋳造段階)で推定することができる。また、熱伝達係数βと、凝固シェル2の厚みの時間微分値δtsとを指標とするので、鋳片に欠陥が存在するか否かを高精度に推定することができる。
また、本実施形態では、モールドフラックス層3および凝固シェル2にそれぞれ熱抵抗があるという条件の下で、熱伝達係数βおよび凝固シェル2の厚みsを導出する。具体的には、鋳造方向の埋設位置が相互に異なる複数の熱電対7で測定された温度を用いて、熱伝達係数α、βを、逆問題を解くことにより導出し、熱伝達係数α、βを用いて、凝固シェル2の厚みsを導出する。従って、モールドフラックス層3および凝固シェル2の影響を考慮して、熱伝達係数βおよび凝固シェル2の厚みsの時間微分値を導出することができる。よって、鋳片に欠陥が存在するか否かの推定精度をより向上させることができる。
また、以上のような推定の結果に応じて、表層の除去(溶削や研削)を行うか否かを切り替えることで、作業負荷を軽減することができる。
[第1の変形例]
本実施形態では、溶鋼1の流速vそのものではなく、溶鋼1の流速を反映する指標χの一例として熱伝達係数βを用いて、鋳片の欠陥の有無の推定を行う場合を例に挙げて説明した。しかしながら、熱伝達係数β(溶鋼1の流速を反映する指標χ)に代えて溶鋼1の流速vを用いてもよい。このようにする場合には、式(53a)、式(53b)ではなく、式(52a)または式(52b)を用いる。尚、非特許文献1に記載されているように、溶鋼1の流速vは、熱伝達係数βの関数として表されるので、例えば、熱伝達係数βを用いて溶鋼1の流速vを導出することができる。また、溶鋼1の流速を反映する指標χとして熱伝達係数β以外の指標を用いてもよい。
本実施形態では、1つの鋳片毎に、熱伝達係数βest(t,zp)および凝固シェル2の厚みの時間微分値δtsest(t,zp)の時間平均値を用いる場合を例に挙げて説明した。しかしながら、1つの鋳片毎に時間平均値をとる必要はない。例えば、チャージ単位で時間平均値をとってもよい。このようにする場合、当該チャージに含まれる複数の鋳片における欠陥の有無を推定することができる。
本実施形態では、推定位置zpが固定である場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はない。例えば、鋳型4の高さ方向(z軸方向)の位置であって、各時刻tにおいて、湯面下0~100[mm]の範囲内で熱伝達係数βest(t,z)が最大となる位置を推定位置zpとしてもよい。また、推定位置zpは、複数であってもよい。
本実施形態では、鋳片に欠陥が存在するか否かを判定するための判定式が、式(52a)、式(52b)、式(53a)、または式(53b)で表される場合を例に挙げて説明した。しかしながら、鋳片に欠陥が存在するか否かを判定するための判定式は、これらに限定されない。例えば、切片が0以外の値となるようにしてもよい(各式のk・δtsをk・δts+b(b≠0)としてもよい)。また、溶鋼1の流速v(熱伝達係数β)と、凝固シェル2の厚みの時間微分値δtsとの関係を非線形な関係として表現してもよい。このようにする場合、例えば、公知の非線形分類器のアルゴリズムを用いることができる。また、不等式の形ではなく、例えば、式(52a)、式(52b)、式(53a)、または式(53b)を満足しない範囲(第1の範囲)を示す情報と、鋳片に欠陥が存在する確率が相対的に高いことを示す情報とを相互に関連づけると共に、式(52a)、式(52b)、式(53a)、または式(53b)を満足する範囲(第2の範囲)を示す情報と、鋳片に欠陥が存在する確率が相対的に低いことを示す情報とを相互に関連づけて記憶するテーブルを予め作成しておいてもよい。このようにする場合、鋳片品質推定装置100は、当該テーブルを用いて、鋳片に欠陥が存在する確率は相対的に高いのかそれとも低いのかを判定する。
本実施形態では、鋳片に存在する欠陥が、ピンホールである場合を例に挙げて説明した。しかしながら、鋳片に存在する欠陥は、ピンホールに限定されない。例えば、ピンホールが存在する可否かに加えてまたは代えて、凝固シェル2に巻き込まれる物質(非金属介在物やモールドフラックス(パウダー))が鋳片に存在するか否かを推定してもよい。このようにする場合、凝固シェル2に巻き込まれる物質の種類毎に、鋳片に欠陥が存在するか否かを判定するための判定式(本実施形態の例では、係数k)を事前に設定する。非金属介在物やモールドフラックス(パウダー)が凝固シェル2に巻き込まれる位置は、湯面下0~100[mm]の位置に限らず、それよりも下の領域になることもある。従って、湯面下0~100[mm]よりも下の位置における熱伝達係数βest(t,z)および凝固シェル2の厚みsest(t,z)を導出してもよい。
β>k1・δts ・・・(54a)
β>k2・δts ・・・(54b)
前述したように、モールドフラックス層3および凝固シェル2にそれぞれ熱抵抗があるという条件の下で、熱伝達係数βおよび凝固シェル2の厚みsを導出すれば、モールドフラックス層3および凝固シェル2の影響を考慮することができるので好ましい。しかしながら、必ずしもこのようにして熱伝達係数βおよび凝固シェル2の厚みsを導出する必要はない。例えば、特許文献1に記載のようにして溶鋼1の流速vおよび凝固シェル2の厚みsを導出してもよい。
本実施形態では、鋳型4の幅(鋳造幅)方向(x軸方向)および鋳造方向(z軸方向)の2方向からなる2次元断面上で鋳型4の短辺における溶鋼1の凝固状態を推定する場合を例に挙げて説明した。しかしながら、必ずしも鋳型4の短辺における溶鋼1の凝固状態を推定しなくてもよい。例えば、鋳型4の厚み方向(y軸方向)および鋳造方向(z軸方向)の2方向からなる2次元断面上で鋳型4の長辺における溶鋼1の凝固状態を推定することもできる。また、鋳片は、スラブに限らず、ブルーム、ビレット等、連続鋳造設備で製造される鋳片であれば、どのような鋳片であってもよい。
尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
Claims (12)
- 連続鋳造設備で製造される鋳片に欠陥が存在するか否かを推定する鋳片品質推定方法であって、
鋳型に埋設された複数の測温手段であって、鋳造方向における位置が相互に異なる複数の測温手段で測定された温度を取得する温度取得工程と、
前記温度取得工程により取得された温度を用いて、前記鋳型内の溶鋼の流速を反映する指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを導出する導出工程と、
前記導出工程により導出された、前記鋳型内の溶鋼の流速を反映する前記指標、および、前記鋳型内の凝固シェルの厚みの時間微分値に基づいて、前記鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを判定する判定工程と、を有し、
前記判定工程は、前記導出工程により導出された、前記鋳型内の溶鋼の流速を反映する前記指標、および、前記鋳型内の凝固シェルの厚みの時間微分値が、予め設定されている第1の範囲および第2の範囲の何れの範囲に含まれるかによって、前記鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを判定し、
前記第1の範囲は、前記鋳型内の溶鋼の流速を反映する前記指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを用いて規定される範囲であって、前記鋳片に欠陥が存在する確率が相対的に高いことを示す範囲であり、
前記第2の範囲は、前記鋳型内の溶鋼の流速を反映する前記指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを用いて規定される範囲であって、前記鋳片に欠陥が存在する確率が相対的に低いことを示す範囲であることを特徴とする鋳片品質推定方法。 - 前記判定工程は、前記導出工程により導出された、前記鋳型内の溶鋼の流速を反映する前記指標、および、前記鋳型内の凝固シェルの厚みの時間微分値が、前記鋳型内の溶鋼の流速を反映する前記指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを変数として含む不等式を満足するか否かを判定することによって、前記鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを判定し、
前記第1の範囲および前記第2の範囲は、前記不等式によって定められる範囲であることを特徴とする請求項1に記載の鋳片品質推定方法。 - 前記不等式は、以下の(A)式または(B)式であり、
前記判定工程は、kを0を上回る係数として、前記導出工程により導出された、前記鋳型内の溶鋼の流速を反映する前記指標χ、および、前記鋳型内の凝固シェルの厚みの時間微分値δtsが、以下の(A)式または(B)式を満足する場合に、前記鋳片に欠陥が存在する確率が相対的に低いと判定し、そうでない場合に、前記鋳片に欠陥が存在する確率が相対的に高いと判定することを特徴とする請求項2に記載の鋳片品質推定方法。
χ>k・δts ・・・(A)
χ≧k・δts ・・・(B) - 前記鋳型内の溶鋼の流速を反映する前記指標は、前記鋳型内の溶鋼と凝固シェルとの間の熱伝達係数であることを特徴とする請求項1~3の何れか1項に記載の鋳片品質推定方法。
- 前記鋳型内の凝固シェルと前記鋳型との間にはモールドフラックス層が存在し、
前記導出工程は、前記温度取得工程により取得された温度を用いて、前記モールドフラックス層を挟む前記凝固シェルと前記鋳型との間の熱伝達係数αと、前記溶鋼と前記凝固シェルとの間の熱伝達係数βとを逆問題を解くことにより導出し、熱伝達係数αおよび熱伝達係数βに基づいて前記凝固シェルの厚みを導出し、前記凝固シェルの厚みに基づいて前記凝固シェルの厚みの時間微分値を導出することを特徴とする請求項1~4の何れか1項に記載の鋳片品質推定方法。 - 前記判定工程は、実際に前記鋳片が製造される前に、当該鋳片に欠陥が存在する確率が相対的に高いのかそれとも低いのかを判定することを特徴とする請求項1~5の何れか1項に記載の鋳片品質推定方法。
- 前記鋳型内の溶鋼の流速を反映する前記指標に代えて、前記鋳型内の溶鋼の流速を用いることを特徴とする請求項1~6の何れか1項に記載の鋳片品質推定方法。
- 前記欠陥は、ピンホール、非金属介在物、およびモールドフラックスの少なくとも何れか1つを含むことを特徴とする請求項1~7の何れか1項に記載の鋳片品質推定方法。
- 前記欠陥は、ピンホールを含み、
前記導出工程は、前記鋳型の湯面レベルの位置を最高位置とし、前記鋳型の湯面レベルの位置より100[mm]下方の位置を最低位置とする範囲内の何れかの位置において、前記鋳型内の溶鋼の流速を反映する前記指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを導出することを特徴とする請求項8に記載の鋳片品質推定方法。 - 連続鋳造設備により製造された鋳片の表層を除去する表層除去工程を含む鋼材の製造方法であって、
請求項8または9に記載の鋳片品質推定方法により、前記鋳片に欠陥が存在する確率が相対的に低いと判定された場合には、前記表層除去工程において、当該鋳片の表層を除去せず、請求項8または9に記載の鋳片品質推定方法により、前記鋳片に欠陥が存在する確率が相対的に高いと判定された場合には、前記表層除去工程において、当該鋳片の表層を除去することを特徴とする鋼材の製造方法。 - 連続鋳造設備で製造される鋳片に欠陥が存在するか否かを推定する鋳片品質推定装置であって、
鋳型に埋設された複数の測温手段であって、鋳造方向における位置が相互に異なる複数の測温手段で測定された温度を取得する温度取得手段と、
前記温度取得手段により取得された温度を用いて、前記鋳型内の溶鋼の流速を反映する指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを導出する導出手段と、
前記導出手段により導出された、前記鋳型内の溶鋼の流速を反映する前記指標、および、前記鋳型内の凝固シェルの厚みの時間微分値に基づいて、前記鋳片に欠陥が存在する確率が相対的に高いかそれとも低いかを判定する判定手段と、を有し、
前記判定手段は、前記導出手段により導出された、前記鋳型内の溶鋼の流速を反映する前記指標、および、前記鋳型内の凝固シェルの厚みの時間微分値が、予め設定されている第1の範囲および第2の範囲の何れの範囲に含まれるかによって、前記鋳片に欠陥が存在する確率が相対的に高いかそれとも低いかを判定し、
前記第1の範囲は、前記鋳型内の溶鋼の流速を反映する前記指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを用いて規定される範囲であって、前記鋳片に欠陥が存在する確率が相対的に高いことを示す範囲であり、
前記第2の範囲は、前記鋳型内の溶鋼の流速を反映する前記指標と、前記鋳型内の凝固シェルの厚みの時間微分値とを用いて規定される範囲であって、前記鋳片に欠陥が存在する確率が相対的に低いことを示す範囲であることを特徴とする鋳片品質推定装置。 - 請求項1~9の何れか1項に記載の鋳片品質推定方法の各工程をコンピュータに実行させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018204233A JP7135728B2 (ja) | 2018-10-30 | 2018-10-30 | 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018204233A JP7135728B2 (ja) | 2018-10-30 | 2018-10-30 | 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020069494A JP2020069494A (ja) | 2020-05-07 |
JP7135728B2 true JP7135728B2 (ja) | 2022-09-13 |
Family
ID=70548871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018204233A Active JP7135728B2 (ja) | 2018-10-30 | 2018-10-30 | 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7135728B2 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006122961A (ja) | 2004-10-29 | 2006-05-18 | Nippon Steel Corp | ストランドプール内流動制御方法ならびに装置 |
JP2010227944A (ja) | 2009-03-26 | 2010-10-14 | Jfe Steel Corp | 鋼鋳片の連続鋳造方法 |
WO2015115651A1 (ja) | 2014-01-31 | 2015-08-06 | 新日鐵住金株式会社 | 連続鋳造における鋳造状態の判定方法、装置及びプログラム |
JP2015157309A (ja) | 2014-02-25 | 2015-09-03 | 新日鐵住金株式会社 | 鋼の連続鋳造方法 |
-
2018
- 2018-10-30 JP JP2018204233A patent/JP7135728B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006122961A (ja) | 2004-10-29 | 2006-05-18 | Nippon Steel Corp | ストランドプール内流動制御方法ならびに装置 |
JP2010227944A (ja) | 2009-03-26 | 2010-10-14 | Jfe Steel Corp | 鋼鋳片の連続鋳造方法 |
WO2015115651A1 (ja) | 2014-01-31 | 2015-08-06 | 新日鐵住金株式会社 | 連続鋳造における鋳造状態の判定方法、装置及びプログラム |
JP2015157309A (ja) | 2014-02-25 | 2015-09-03 | 新日鐵住金株式会社 | 鋼の連続鋳造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020069494A (ja) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7091901B2 (ja) | 鋳造状態判定装置、鋳造状態判定方法、およびプログラム | |
JP2020157333A (ja) | 学習モデル作成装置、鋳片品質推定装置、学習モデル作成方法、鋳片品質推定方法、およびプログラム | |
EP3100802B1 (en) | Method, device and program for determining casting state in continuous casting | |
JP6220457B2 (ja) | 異鋼種の連続鋳造方法 | |
JP5387508B2 (ja) | 連続鋳造方法、連続鋳造の制御装置及びプログラム | |
JP2007330977A (ja) | 鋳造シミュレーション方法、その装置、そのプログラム、及び当該プログラムを記録した記録媒体、並びに鋳造方法 | |
JP4105839B2 (ja) | 連続鋳造における鋳型内鋳造異常検出方法 | |
JP6354850B2 (ja) | 連続鋳造鋳型内の湯面レベル検出装置、方法およびプログラム | |
JP7135728B2 (ja) | 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム | |
JP5408040B2 (ja) | 連続鋳造方法、連続鋳造の制御装置及びプログラム | |
JP7335499B2 (ja) | 連続鋳造鋳型内可視化装置、方法、およびプログラム | |
JP5387507B2 (ja) | 連続鋳造方法、連続鋳造の制御装置及びプログラム | |
JP2019217510A (ja) | 連続鋳造鋳型内可視化装置、方法、およびプログラム | |
Zappulla et al. | Simulation of longitudinal surface defect in steel continuous casting | |
JP6781409B2 (ja) | 温度推定方法および温度推定装置 | |
JP7332875B2 (ja) | 連続鋳造鋳型内可視化装置、方法、およびプログラム | |
JP2021102223A (ja) | 鋳造制御システム、鋳造制御方法、およびプログラム | |
EP4442387A1 (en) | Continuous casting start timing determination method, continuous casting facility operation method, slab manufacturing method, determining device, continuous casting start determination system, and display terminal device | |
JP4828366B2 (ja) | 鋳型の熱流束に基づく縦割検知方法及び連続鋳造方法 | |
JP2007275938A (ja) | スラグ流出検知方法、溶融金属の注入制御方法、スラグ流出検知装置、溶融金属の注入制御装置、プログラム及びコンピュータ読み取り可能な記録媒体 | |
JP2020106496A (ja) | 品質予測装置、品質予測方法、およびプログラム | |
JP2005007460A (ja) | 連続鋳造鋼片の表面欠陥検知方法 | |
JP7014203B2 (ja) | 連続鋳造における鋳造鋳片のクレータエンド位置の推定方法およびその装置 | |
JP7073932B2 (ja) | 鋳片の凝固完了位置検知方法及び鋳片の凝固完了位置検知装置 | |
JP2021102221A (ja) | 連続鋳造鋳型内可視化装置、方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210603 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220815 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7135728 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |