JP7000346B2 - 固体電解コンデンサの製造方法 - Google Patents

固体電解コンデンサの製造方法 Download PDF

Info

Publication number
JP7000346B2
JP7000346B2 JP2018558824A JP2018558824A JP7000346B2 JP 7000346 B2 JP7000346 B2 JP 7000346B2 JP 2018558824 A JP2018558824 A JP 2018558824A JP 2018558824 A JP2018558824 A JP 2018558824A JP 7000346 B2 JP7000346 B2 JP 7000346B2
Authority
JP
Japan
Prior art keywords
group
compound
conductive polymer
dielectric film
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018558824A
Other languages
English (en)
Other versions
JPWO2018123179A1 (ja
Inventor
健 川本
結加 新美
俊哉 川崎
義紀 渋谷
健 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2018123179A1 publication Critical patent/JPWO2018123179A1/ja
Application granted granted Critical
Publication of JP7000346B2 publication Critical patent/JP7000346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、微細孔を有する弁金属表面上に導電性高分子を含む固体電解質層を形成する固体電解コンデンサの製造方法に関するものである。
固体電解コンデンサは、弁金属(陽極体)表面に陽極酸化によって誘電体酸化被膜を形成し、その上に陰極材料として電子伝導性の固体電解質を形成した構造を有し、等価直列抵抗(ESR)が低いために高周波特性に優れ、また高温環境下での安定性にも優れている。
陽極体として使用される弁金属の例としては、アルミニウム、タンタル、ニオブ等が知られている。
固体電解質層としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリピロール、ポリフェニレン、ポリ(p-フェニレン-ビニレン)等に代表されるπ共役系高分子に、電子受容性化合物をドーパントとしてドープした導電性高分子材料が開発され、例えば、帯電防止剤、コンデンサの固体電解質、導電性塗料、エレクトロクロミック素子、電極材料、熱電変換材料、透明導電膜、化学センサ、アクチュエータ等への応用が検討されている。中でも、化学的安定性の面からポリチオフェンが有用である。
一般的に固体電解コンデンサの固体電解質層を形成する手法としては、導電性高分子モノマー溶液と酸化剤溶液を細孔内に含浸させて化学重合を行う方法や、導電性高分子の水分散液を細孔内に含浸させて固体電解質層を形成する方法などが知られている。
例えば、特開2003-100561号公報(特許文献1)には、誘電体酸化被膜層を形成した陽極箔とエッチング処理あるいはエッチング後化成処理された陰極箔とをセパレータを介して巻回することにより形成したコンデンサ素子に、導電性高分子の微粒子を分散させた導電性高分子分散水溶液を含浸させて第1の固体電解質層を形成する工程と、この第1の固体電解質層の表面に、複素環式モノマーを含有する溶液と酸化剤を含有する溶液を個々に含浸または複素環式モノマーと酸化剤を含有する混合溶液を含浸することにより第2の固体電解質層を形成する工程とを具備した製造方法が開示されている。この方法により、内部抵抗(ESR)が低く、容量達成率の高い高周波特性に優れた固体電解コンデンサを得ることができる。
特開2005-109252号公報(特許文献2)には、弁金属粉末を焼結してなる焼結体の表面に誘電体酸化皮膜を形成したコンデンサ素子に、固体電解質層として重合性モノマーの化学重合により導電性高分子層を形成した後、このコンデンサ素子を導電性高分子溶液に浸漬、または導電性高分子溶液を塗布し、乾燥させることにより、化学重合による導電性高分子層の上にさらに厚く導電性高分子層を形成する方法が開示されている。この方法により、コンデンサ素子の外周部に導電性高分子層をより厚く形成することができる。特にコンデンサ素子の頂点部位等、化学重合工程によっては導電性高分子層が十分な厚さだけ形成できなかった部分にも十分な厚さの導電性高分子層を形成することができる。このため、コンデンサ素子の導電性高分子層が薄く形成されている部分でのショート発生及び漏れ電流の増大を防止することができる。
特開2002-158144号公報(US 6,614,063;特許文献3)には、重合性モノマーの化学重合により導電性高分子層の固体電解質層を形成する際に発生する残渣による性能低下(ESRの劣化)を解決するために、形成した重合膜をシャワー洗浄した後乾燥して残渣を除去する方法が開示されている。
特開2003-100561号公報 特開2005-109252号公報 特開2002-158144号公報(US 6,614,063)
上記の従来技術においては、低ESR、高容量達成率、低漏れ電流の固体電解コンデンサを得るために、煩雑な導電性高分子の重合工程または成膜工程、さらには精製工程を採らざるを得ない。また、導電性高分子の重合反応の酸化剤として金属化合物を使用しているため、重合後に酸化剤由来の金属不純物が残留して誘電体被膜に破損を生じ、漏れ電流が大きくなるという問題点もある。
本発明の課題は、特に低ESR、高容量達成率、低漏れ電流などの特性が優れた固体電解コンデンサを得るために、導電性高分子を含む固体電解質膜の形成において、煩雑な重合工程、成膜工程及び精製工程を採らずに簡易な工程で導電性高分子を含む固体電解質膜を形成する製造方法を提供することである。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、イソチアナフテン誘導体であるベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド骨格を有する化合物を単独または複数使用してドーパント能と触媒能を有する置換基としてスルホ基を有する化合物の存在下、単独重合または共重合させることにより目的とする導電性高分子(導電性重合体)を得ることができることを見出し、この知見に基づいて本発明の固体電解コンデンサの製造方法を完成させるに至った。
本発明は、下記[1]~[12]の固体電解コンデンサの製造方法に関する。
[1]微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
前記誘電体被膜上に下記一般式(1)
Figure 0007000346000001
[式中、R1、R2、R3、R4、R5、及びR6は、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選択される1価の置換基を表す。R1、R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R1、R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲン原子を表す。kはヘテロ環と置換基R1~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
で示される化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)の存在下で、酸化剤を使用せずに重合させることにより前記導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
[2]前記化合物(A1)が、式(1)中のkが0である化合物である前項1に記載の固体電解コンデンサの製造方法。
[3]一般式(1)中のR1、R2、R3、R4、R5及びR6が、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル基、炭素数1~20の直鎖状または分岐状のアルコキシ基、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、及び(3)ハロゲン原子から選択される1価の置換基である前項1または2に記載の固体電解コンデンサの製造方法。
[4]微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
前記誘電体被膜上に下記一般式(2)
Figure 0007000346000002
[式中、R7はスルホ基である。R2、R3、R4、R5、及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基を表す。R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲンを表す。kはヘテロ環と置換基R2~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
で示される化合物(A2)の少なくとも1種を、酸化剤を使用せずに重合させて前記導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
[5]前記化合物(A2)が、一般式(2)中のkが0である化合物である前項4に記載の固体電解コンデンサの製造方法。
[6]前記化合物(A2)が、一般式(2)中のR2、R3、R4、R5及びR6が、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル基、炭素数1~20の直鎖状または分岐状のアルコキシ基、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、及び(3)ハロゲン原子から選択される1価の置換基である化合物である前項4または5に記載の固体電解コンデンサの製造方法。
[7]微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
前記誘電体被膜上に、前項1に記載の一般式(1)で示される化合物(A1)の少なくとも1種と、前項4に記載の一般式(2)で示される化合物(A2)の少なくとも1種とを、酸化剤を使用せずに共重合させて導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
[8]微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
前記誘電体被膜上に前項1に記載の一般式(1)で示される化合物(A1)の少なくとも1種と前記化合物(A1)と共重合し得る化合物(D)とを、スルホ基を有する化合物(B)の存在下で、酸化剤を使用せずに共重合させて導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
[9]微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
前記誘電体被膜上に前項4に記載の一般式(2)で示される化合物(A2)の少なくとも1種と前記化合物(A2)と共重合し得る化合物(D)とを、酸化剤を使用せずに共重合させて導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
[10]微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
前記誘電体被膜上に前項1に記載の一般式(1)で示される化合物(A1)の少なくとも1種と、前項4に記載の一般式(2)で示される化合物(A2)の少なくとも1種と、前記化合物(A1)及び前記化合物(A2)と共重合し得る化合物(D)とを、酸化剤を使用せずに共重合させて導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
[11]生成する水を除去しながら重合させて導電性高分子を含む固体電解質層を形成する前項1~10のいずれかに記載の固体電解コンデンサの製造方法。
[12]前記導電性高分子の重合において、水よりも蒸気圧の高い溶媒を使用する前項1~10のいずれかに記載の固体電解コンデンサの製造方法。
本発明によれば、
(1)微細孔を有する弁金属表面の誘電体被膜上に、煩雑な重合工程、成膜工程及び精製工程を採らずに簡易な工程で導電性高分子を含む固体電解質膜を形成することができる。
(2)低ESR、高容量達成率、低漏れ電流の特性に優れた固体電解コンデンサを提供することができる。
以下、本発明を詳細に説明する。
本発明の固体電解コンデンサの製造方法は、陽極体として微細孔を有する弁金属を用意する工程、微細孔を有する弁金属の表面に誘電体被膜を形成する工程、誘電体被膜上に導電性高分子を含む固体電解質層を形成するための重合反応液を付着させる工程、導電性高分子の重合反応を行い誘電体被膜上に固体電解質層を形成する工程、及び固体電解質層の上に導電ペーストにより導体層を形成する工程を含む。
[微細孔を有する弁金属を用意する工程]
本発明の固体電解コンデンサの製造方法で陽極体として使用する弁金属としては、アルミニウム(Al)、ベリリウム(Be)、ビスマス(Bi)、マグネシウム(Mg)、ゲルマニウム(Ge)、ハフニウム(Hf)、ニオブ(Nb)、アンチモン(Sb)、ケイ素(Si)、スズ(Sn)、タンタル(Ta)、チタン(Ti)、バナジウム(V)、タングステン(W)及びジルコニウム(Zr)、並びにこれらの金属の少なくとも1つと他の元素との合金または化合物が挙げられる。これらの中で、アルミニウム、ニオブ、タンタル、ケイ素、タングステンが好ましく、アルミニウム、ニオブ、タンタルがより好ましい。
陽極体の形態は、エッチングを行った圧延箔、微粉の焼結体などのように微細孔を有する成形体の形態であればよい。以下、本明細書においては、微細孔を有する弁金属を多孔性陽極体と呼ぶことがある。
[誘電体被膜の形成工程]
上記の多孔性陽極体は、その外部表面及び微細孔内の金属表面に酸化物からなる誘電体被膜が形成される。誘電体被膜は、以下のように多孔性陽極体の表面(微細孔の内表面を含む)の陽極酸化によって形成することができる。
多孔性陽極体は、例えばリン酸溶液中で電圧を印加することにより陽極酸化(化成処理)され、表面(微細孔の内表面を含む)に誘電体被膜を形成することができる。誘電体被膜の厚さやコンデンサの耐電圧により、化成電圧の大きさを決めることができる。好ましい化成電圧は1~800Vであり、より好ましくは1~300Vであり、より好ましくは1~100Vである。この範囲内で化成処理することは、化成層の厚さや耐電圧の点から望ましい。
[誘電体被膜上に重合反応溶液を付着させる工程]
多孔性陽極体の表面に形成された誘電体被膜の上には、さらに導電性高分子を含む固体電解質層が形成される。そのためには、先ず多孔性陽極体表面の誘電体被膜上に、固体電解質層形成のための重合反応溶液(導電性高分子モノマーを重合させるための反応液)を付着させる。
重合反応溶液を付着させる方法としては、塗布、噴霧、浸漬等の公知の方法が挙げられる。中でも反応溶液を多孔性陽極体にムラなく均一に付着、含浸させることができる点から、浸漬する方法が好ましい。
反応溶液への浸漬時間は、通常1秒~10分間程度であり、好ましくは1秒~5分間であり、より好ましくは1秒~3分間である。この時間範囲内で浸漬することにより、多孔性陽極体の微細孔内に反応溶液がムラなく十分に含浸する。また、溶液の温度は溶液の種類にもよるが通常0~50℃であり、好ましくは5~40℃であり、より好ましくは10~35℃である。この温度範囲内で浸漬することにより、多孔性陽極体内に反応溶液がムラなく十分に含浸する。
[固体電解質層の形成工程]
上記の工程で得られた多孔性陽極体に付着した重合反応溶液から、溶剤の一部または全部を除去しながら導電性高分子モノマーを重合させることにより、誘電体被膜上に導電性高分子を含む固体電解質層を形成させる。
溶剤の除去は、効率の点で加熱処理法によって行うことが好ましく、導電性高分子重合体の酸素による劣化のない条件で行うことが望ましい。加熱条件は、溶剤の沸点や揮発性により決めることができる。
本発明の固体電解コンデンサの製造方法における導電性高分子を含む固体電解質層の形成方法は、以下の(i)~(iii)のいずれかの方法による。
(i)一般式(1)で示される化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)の存在下で酸化剤を使用せずに重合させる。
(ii)一般式(2)で示される化合物(A2)の少なくとも1種を、酸化剤を使用せずに重合させる。
(iii)化合物(A1)の少なくとも1種と(A2)の少なくとも1種とを、酸化剤を使用せずに共重合させる。
<方法(i)>
一般式(1)で示される化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)の存在下、酸化剤を使用せずに微細孔を有する弁金属表面上で重合させ、固体電解質層を形成することにより固体電解コンデンサを製造することができる。
[化合物(A1)]
本発明に用いられる化合物(A1)は、一般式(1)で示される化合物である。
Figure 0007000346000003
一般式(1)中、R1、R2、R3、R4、R5及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選択される1価の置換基を表し、MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲン原子を表す。
置換基R1、R2、R3、R4、R5及びR6として有用な例としては、水素原子、ハロゲン原子、SO2M、アルキル基、アルコキシ基、アルキルエステル基、ニトロ基、シアノ基等が挙げられる。
これらの置換基をさらに詳しく例示すれば、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、アルキル基またはアルキルエステル基の炭化水素鎖としては、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等が挙げられる。アルコキシ基としては、メトキシ、エトキシ、(2-メトキシ)エトキシ、プロポキシ、イソプロポキシ、ヘキシルオキシ、オクチルオキシ、ドデシルオキシ等の基が挙げられる。アルキルエステル基は具体的には、アルキルカルボニルオキシ基及びアルコキシカルボニル基であり、例えばマロン酸エステル基(-OCOCH2CO2H)、フマル酸エステル基(-OCOCH=CHCO2H、二重結合がトランス型)、マレイン酸エステル基(-OCOCH=CHCO2H、二重結合がシス型)等が挙げられる。また、アルキルカルボニルオキシ基及びアルコキシカルボニル基のアルキルがメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等であるものも挙げられる。
さらに、前記以外の置換基の例として、メチルアミノ、エチルアミノ、ジフェニルアミノ、アニリノ等のアミノ基、トリフルオロメチル、クロロフェニル、アセトアミド等の基が挙げられる。
5及びR6は水素原子であることがより好ましい。R1、R2、R3、R4は4つのうち少なくとも2つは水素原子であることがより好ましく、少なくとも3つが水素原子であることがさらに好ましく、全て水素原子であることが特に好ましい。
1、R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。
1、R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。
前記一般式(1)中の置換基R1、R2、R3、R4、R5またはR6の炭化水素鎖が互いに任意の位置で結合して3~7員環の飽和または不飽和炭化水素の環状構造を形成する例としては、下記式(3)~(5)に示す構造等が挙げられる。
Figure 0007000346000004
kは1,3-ジヒドロチオフェン-S-オキシド環と置換基R1~R4を有するベンゼン環(一般式(1))に囲まれた縮合環の数を表し、0~3の整数を表す。溶剤への溶解性の観点から、kは好ましくは0である。
一般式(1)で示される化合物の置換基R1~R6を除いた基本骨格部分の具体例としては、例えば1,3-ジヒドロイソチアナフテン-S-オキシド(kが0である化合物)が挙げられる。
一般式(1)で示される化合物としては、置換基を有してもよいベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド、ナフト[2,3-c]チオフェン-1,3―ジヒドロ-2-オキシドから選ばれる少なくとも1つが好ましく用いられる。
具体例としては、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-メチル-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5,6-ジメチル-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-メタノール-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-ヒドロキシ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-フルオロ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-クロロ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-ブロモ-2-オキシド、ベンゾ[c]チオフェン-1,3-ジヒドロ-5-オール-2-オキシド、ナフト[2,3-c]チオフェン-1,3―ジヒドロ-2-オキシド、ナフト[2,3-c]チオフェン-1,3―ジヒドロ-4-フェニル-2-オキシドが挙げられるが、これに限定されるものではない。
化合物(A1)は、1種単独でまたは2種以上を組み合わせて用いることができる。
化合物(A1)の代わりに、一般式(1-2)で示される化合物の少なくとも1種を使用することも可能である。
Figure 0007000346000005
上記一般式(1-2)中、R1A、R2A、R3A、R4A、R5A、R6A及びkは、それぞれ前記一般式(1)中のR1、R2、R3、R4、R5、R6及びkと同じ意味を表す。
5A及びR6Aは水素原子であることがより好ましい。R1A、R2A、R3A、R4Aは4つのうち少なくとも2つは水素原子であることがより好ましく、少なくとも3つが水素原子であることがさらに好ましく、全て水素原子であることが特に好ましい。
[スルホ基を有する化合物(B)]
スルホ基を有する化合物(B)は、化合物(A1)と共存させることで、ドーパント能や触媒能を持つと考えられる。スルホ基を有する化合物(B)としては、分子内に1つ以上のスルホ基を有する化合物であれば特に限定されない。例えば、低分子スルホン酸、分子内に1つ以上のスルホ基を有するスルホン酸ポリマーが挙げられる。スルホン酸塩の化合物は、イオン交換して用いることができる。
低分子スルホン酸としては、硫酸、アルキルスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、アントラキノンスルホン酸、カンファースルホン酸及びそれらの誘導体等が挙げられる。これらの低分子スルホン酸は、モノスルホン酸でもジスルホン酸でもトリスルホン酸でもよい。アルキルスルホン酸の誘導体としては、2-アクリルアミド-2-メチルプロパンスルホン酸等が挙げられる。ベンゼンスルホン酸の誘導体としては、フェノールスルホン酸、スチレンスルホン酸、トルエンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。ナフタレンスルホン酸の誘導体としては、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、1,3-ナフタレンジスルホン酸、1,3,6-ナフタレントリスルホン酸、6-エチル-1-ナフタレンスルホン酸等が挙げられる。アントラキノンスルホン酸の誘導体としては、アントラキノン-1-スルホン酸、アントラキノン-2-スルホン酸、アントラキノン-2,6-ジスルホン酸、2-メチルアントラキノン-6-スルホン酸等が挙げられる。これらの中でも、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、1,3,6-ナフタレントリスルホン酸、アントラキノンスルホン酸、アントラキノンジスルホン酸、p-トルエンスルホン酸、カンファースルホン酸が好ましい。
分子内に1つ以上のスルホ基を有するポリマーとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸等が挙げられる。これらは単独重合体であってもよいし、2種以上の共重合体であってもよい。これらのうち、導電性付与の点から、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。
スルホ基を有するポリマーの分子量に特に制限はないが、重量平均分子量が1,000,000以下のものが好ましく、より好ましくは500,000であり、さらに好ましくは300,000である。重量平均分子量が1,000,000以下であれば、系への溶解性が良好であるため取扱いが容易である。
スルホ基を有するポリマーは、共役系導電性重合体の熱分解を緩和することができ、共役系導電性重合体を得るための単量体の分散媒中での分散性を向上させ、さらに共役系導電性重合体のドーパントとして機能することが可能である。
これらのスルホ基を有する化合物(B)は1種のみを用いてもよく、2種以上を併用してもよい。
前記方法(i)においては、前記化合物(A1)の少なくとも1種を、スルホ基を有する化合物(B)存在下で重合させることで、導電性高分子を得ることができる。重合時のスルホ基を有する化合物(B)の割合は、前記化合物(A1)100モルに対して好ましくは1~400モル、より好ましくは5~300モル、さらに好ましくは10~250モルである。化合物(B)の割合は、前記化合物(A1)100モルに対して1~400モルであれば、反応率、反応速度の面から好ましい。
<方法(ii)>
一般式(2)で示される化合物(A2)の少なくとも1種を、酸化剤を使用せずに微細孔を有する弁金属表面上で重合させ、固体電解質層を形成することにより固体電解コンデンサを製造することができる。化合物(A2)はスルホ基を有する化合物(B)が存在しなくとも重合が可能である。これは化合物(A2)が導電性高分子の構成単位である他、それ自体がスルホ基を有し、ドーパント能や触媒能も併せ持つためであると推測される。なお、方法(ii)においても、前記化合物(A2)の他に前記スルホ基を有する化合物(B)を含んでいてもよい。
[化合物(A2)]
化合物(A2)は、一般式(2)で示される化合物である。
Figure 0007000346000006
式中、R7はスルホ基である。R2、R3、R4、R5、及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基、(13)スルホ基を表す。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲンを表す。
置換基R2、R3、R4、R5及びR6として有用な例としては、水素原子、ハロゲン原子、SO2M、アルキル基、アルコキシ基、アルキルエステル基、ニトロ基、シアノ基等が挙げられる。
これらの置換基をさらに詳しく例示すれば、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられ、アルキル基またはアルキルエステル基の炭化水素鎖としては、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等が挙げられる。アルコキシ基としては、メトキシ、エトキシ、(2-メトキシ)エトキシ、プロポキシ、イソプロポキシ、ヘキシルオキシ、オクチルオキシ、ドデシルオキシ等の基が挙げられる。アルキルエステル基は具体的には、アルキルカルボニルオキシ基およびアルコキシカルボニル基であり、例えばマロン酸エステル基(-OCOCH2CO2H)、フマル酸エステル基(-OCOCH=CHCO2H、二重結合がトランス型)、マレイン酸エステル基(-OCOCH=CHCO2H、二重結合がシス型)等が挙げられる。また、アルキルカルボニルオキシ基及びアルコキシカルボニル基のアルキルがメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、ドデシル、テトラデシル、シクロペンチル、シクロヘキシル等であるものも挙げられる。
さらに、前記以外の置換基の例として、メチルアミノ、エチルアミノ、ジフェニルアミノ、アニリノ等のアミノ基、トリフルオロメチル、クロロフェニル、アセトアミド等の基が挙げられる。
2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。
前記一般式(2)中の置換基R2、R3、R4、R5またはR6の炭化水素鎖が互いに任意の位置で結合して3~7員環の飽和または不飽和炭化水素の環状構造を形成する例としては、式(6)~(8)に示す構造等が挙げられる。
Figure 0007000346000007
化合物(A2)以外に、一般式(2-2)で示される化合物群から選ばれる少なくとも1種の化合物を使用することも可能である。
Figure 0007000346000008
上記一般式(2-2)中、R7Aはスルホ基である。R2A、R3A、R4A、R5A、R6A及びkは、それぞれ前記一般式(2)中のR2、R3、R4、R5、R6及びkと同じ意味を表す。
5A及びR6Aは水素原子であることがより好ましい。R2A、R3A、R4Aは3つのうち少なくとも2つは水素原子であることがより好ましく、全て水素原子であることが特に好ましい。
kはヘテロ環と置換基R2~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。溶剤への溶解性の観点から、kは好ましくは0である。
一般式(2)で示される化合物の置換基R2~R7を除いた基本骨格部分の具体例としては、例えば1,3-ジヒドロイソチアナフテン-S-オキシド(kが0である化合物)挙げられる。
一般式(2)で示される化合物としては、例えば、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4-スルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5,6-ジスルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4,5-ジスルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4,6-ジスルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-4,7-ジスルホン酸等が挙げられる。
5及びR6は水素原子であることがより好ましい。R2、R3、R4は3つのうち少なくとも1つは水素原子であることがより好ましく、少なくとも2つが水素原子であることがさらに好ましく、全て水素原子であることが特に好ましい。
具体的には、例えば、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5,6-ジスルホン酸が挙げられる。
化合物(A2)は、1種単独でまたは2種以上を組み合わせて用いることができる。
<方法(iii)>
前記化合物(A1)の少なくとも1種及び前記化合物(A2)の少なくとも1種を、酸化剤を使用せずに微細孔を有する弁金属表面上で共重合させて、固体電解質層を形成することにより固体電解コンデンサを製造することができる。なお、方法(iii)においても、前記スルホ基を有する化合物(B)を含んでいてもよい。
重合時の化合物(A2)の割合は、前記化合物(A1)100モルに対して好ましくは1~400モル、より好ましくは5~300モル、さらに好ましくは10~250モルである。化合物(B)の割合は、前記化合物(A1)100モルに対して1~400モルであれば、反応率、反応速度の面から好ましい。
化合物(A1)及び化合物(A2)を任意の比率で共重合させることで、導電性高分子の溶剤親和性、溶解性等、目的に応じた性能が容易に調節可能となる。
例えば、化合物(A1)としてベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドと、化合物(A2)としてベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸との共重合を行うと、これら2つは水溶性の程度が異なるため、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの割合が高くなるにつれ、生成する導電性高分子の水溶性が低下し、不溶化する。
また、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの割合が高くなるにつれ、ポリイソチアナフテン骨格中の結晶化領域が大きくなり、電導度が向上する傾向がある。
以下は方法(i)~(iii)に共通の内容である。
[溶媒(C)]
本発明による重合において、物質拡散の観点では溶媒を使用することが好ましい。使用される溶媒は用いるモノマーが溶解する溶媒であれば良く、特に限定されない。例えば、水、メタノール、エタノール、イソプロパノール、トルエン、ブタノール、酢酸、無水酢酸、ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、プロピレンカーボネート、スルホラン、N-メチルピロリドン、ジメチルスルホラン、ブタンジオール、エチレングリコール、ジエチレングリコール、グリセロール(グリセリン)、ジグリセロール(ジグリセリン)、ポリエチレングリコールなどが挙げられる。
工業的な取扱いの容易さの観点では、水、メタノール、エタノール、イソプロパノール、ジメチルホルムアミド、エチレングリコール、ジメチルスルホキシドが好ましく、さらに水、エタノール、イソプロパノール、エチレングリコール、ジメチルスルホキシドがより好ましい。
後述のように重合反応で発生する水を揮発させながら反応させる場合、水よりも高沸点の溶媒を、溶媒の一部または全部に使用することが好ましい。
水よりも高沸点の溶媒としては、沸点が105℃以上のものが好ましい。具体的には、例えば、トルエン(沸点:111℃)、ブタノール(沸点:118℃)、酢酸(沸点:118℃)、無水酢酸(沸点:140℃)、ジメチルホルムアミド(沸点:153℃)、ジメチルスルホキシド(沸点:189℃)、γ-ブチロラクトン(沸点:203℃)、プロピレンカーボネート(沸点:240℃)、スルホラン(沸点:285℃)、N-メチルピロリドン(沸点:202℃)、ジメチルスルホラン(沸点:233℃)、ブタンジオール(沸点:230℃)、エチレングリコール(沸点:198℃)、ジエチレングリコール(沸点:244℃)、グリセロール(グリセリン、沸点:290℃)、ジグリセロール(ジグリセリン、沸点:265℃(15mmHg))、ポリエチレングリコールなどが挙げられる。なお、ポリエチレングリコールは、ポリエチレグリコール400、ポリエチレングリコール600、ポリエチレングリコール1500(ポリエチレングリコールの後の数字は分子量を表す。)などのように常圧下では沸点が存在しないものもあるが、減圧下で揮発するものも含めるものとする。また、沸点を示す際に、圧力を括弧書きで付記していないものは常圧下での沸点である。これらの水よりも高沸点の溶媒のうち、取扱いや乾燥の容易さ、耐酸性という観点から、水と混和し、共沸しないエチレングリコール、またはジメチルスルホキシドが好ましい。
より高沸点の溶媒を溶媒の一部または全部に使用することにより、重合反応で発生する水が揮発する際も物質の拡散が妨げられることなく、反応率が改善すると推測される。
反応系における溶媒(C)の割合は好ましくは5~99質量%であり、より好ましくは30~95質量%である。反応系における溶媒(C)の割合が5~99質量%であれば、反応率や反応速度が良好である。
溶液の固形分濃度は組成によっても異なるが、重合後の固形分で0.01~60質量%が好ましく、より好ましくは0.1~50質量%であり、さらに好ましくは1~30質量%である。溶液の濃度をこの範囲にすると、適切な反応速度で重合を行うことができ、導電性重合体の製造を安定的にかつ経済的な時間で行うことができ、溶液の保存安定性が向上する。
また、後述のようにモノマー溶液とドーパント、触媒溶液を分け、重合時に混合して使用する場合の各溶液の濃度上限値はこの限りではなく、いずれの溶液も0.01~100質量%の間で使用することができる。
また、水よりも高沸点の溶媒は、溶媒(C)全量に対して0.1~99.5質量%が好ましく、より好ましくは1~80質量%であり、さらに好ましくは5~70質量%である。反応系における溶媒(C)の割合が0.1~99.5質量%であれば、生産性良く反応が可能である。
重合時に添加する電導度向上剤は水と混合した際、水と共沸するもの等を用いるとよい。これらの溶媒は1種単独でまたは2種以上を組み合わせてもよい。
[化合物(A1)及び(A2)と共重合し得る化合物(D)]
方法(i)から(iii)においては、化合物(A1)及び/または(A2)と、化合物(A1)及び(A2)と共重合し得る化合物(D)を共重合させることができる。方法(i)においてはスルホ基を有する化合物(B)の存在下で化合物(A1)と(D)を、方法(ii)においては化合物(A2)と(D)を、方法(iii)においては化合物(A1)と(A2)と(D)を、それぞれ共重合できる。
化合物(D)としてはイソチアナフテン、イソベンゾフラン、イソベンゾインドリン、イソベンゾセレナフェン、イソベンゾテレナフェン、チオフェン、ピロール、フラン、セレノフェン、テルロフェン、アニリン、ベンゼン、ナフト[2,3-c]チオフェン、アントラ[2,3-c]チオフェン、ナフタセノ[2,3-c]チオフェン、ペンタセノ[2,3-c]チオフェン、ペリロ[2,3-c]チオフェン、アセナフト[2,3-c]チオフェン等の芳香族化合物、1,3-ジヒドロイソチアナフテン、1,3-ジヒドロナフト[2,3-c]チオフェン、1,3-ジヒドロアントラ[2,3-c]チオフェン、1,3-ジヒドロナフタセノ[2,3-c]チオフェン、1,3-ジヒドロペンタセノ[2,3-c]チオフェン、1,3-ジヒドロペリロ[2,3-c]チオフェン、1,3-ジヒドロアセナフト[2,3-c]チオフェン等の共重合時にπ共役系を形成し得る化合物、チエノ[c]ピリジン、チエノ[c]ピラジン、チエノ[c]ピリダジン、チエノ[c]キノキサリン、1,3-ジヒドロチエノ[c]ピリジン、1,3-ジヒドロチエノ[c]ピラジン、1,3-ジヒドロチエノ[c]ピリダジン、1,3-ジヒドロチエノ[c]キノキサリン等縮合環に窒素を含んだ化合物、及びそれらの各種置換基、例えば(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、ハロゲンから選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基を有する誘導体が挙げられる。ここで好ましい置換基としては、前記置換基R2、R3、R4、R5及びR6において示したものと同じものが挙げられる。
例えば、1,3-ジヒドロイソチアナフテン、4-メチル-1,3-ジヒドロイソチアナフテン、5-メチル-1,3-ジヒドロイソチアナフテン、4,5-ジメチル-1,3-ジヒドロイソチアナフテン、5,6-ジメチル-1,3-ジヒドロイソチアナフテン、4,7-ジメチル-1,3-ジヒドロイソチアナフテン、5-フルオロ-1,3-ジヒドロイソチアナフテン、5-クロロ-1,3-ジヒドロイソチアナフテン、5-ブロモ-1,3-ジヒドロイソチアナフテン、5-ヒドロキシ-1,3-ジヒドロイソチアナフテン、5-カルボキシ-1,3-ジヒドロイソチアナフテン、ピロール、3-メチルピロール、3,4-ジメチルピロール、3-フルオロピロール、3-クロロピロール、3-ブロモピロール、N-メチルピロール、3-ヒドロキシピロール、3-カルボキシピロール、イソインドール、4-メチルイソインドール、5-メチルイソインドール、4,5-ジメチルイソインドール、5,6-ジメチルイソインドール、4,7-ジメチルイソインドール、5-フルオロイソインドール、5-クロロイソインドール、5-ブロモイソインドール、5-ヒドロキシイソインドール、5-カルボキシイソインドール2,3-ジヒドロイソインドール、4-メチル-2,3-ジヒドロイソインドール、5-メチル-2,3-ジヒドロイソインドール、4,5-ジメチル-2,3-ジヒドロイソインドール、5,6-ジメチル-2,3-ジヒドロイソインドール、4,7-ジメチル-2,3-ジヒドロイソインドール、5-フルオロ-2,3-ジヒドロイソインドール、5-クロロ-2,3-ジヒドロイソインドール、5-ブロモ-2,3-ジヒドロイソインドール、5-ヒドロキシ-2,3-ジヒドロイソインドール、5-カルボキシ-2,3-ジヒドロイソインドールフラン、3-メチルフラン、3,4-ジメチルフラン、3-フルオロフラン、3-クロロフラン、3-ブロモフラン、イソベンゾフラン、4-メチルイソベンゾフラン、5-メチルイソベンゾフラン、4,5-ジメチルイソベンゾフラン、5,6-ジメチルイソベンゾフラン、4,7-ジメチルイソベンゾフラン、5-フルオロイソベンゾフラン、5-ヒドロキシイソベンゾフラン、5-カルボキシイソベンゾフラン1,3-ジヒドロベンゾ[c]セレノフェン、4-メチル-1,3-ジヒドロベンゾ[c]セレノフェン、5-メチル-1,3-ジヒドロベンゾ[c]セレノフェン、4,5-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン、5,6-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン、4,7-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン、5-フルオロ-1,3-ジヒドロベンゾ[c]セレノフェン、5-クロロ-1,3-ジヒドロベンゾ[c]セレノフェン、5-ブロモ-1,3-ジヒドロベンゾ[c]セレノフェン、5-ヒドロキシ-1,3-ジヒドロベンゾ[c]セレノフェン、5-カルボキシ-1,3-ジヒドロベンゾ[c]セレノフェン1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、4-メチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-メチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、4,5-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5,6-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、4,7-ジメチル-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-フルオロ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-クロロ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-ブロモ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-ヒドロキシ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、5-カルボキシ-1,3-ジヒドロベンゾ[c]セレノフェン-2-オキシド、ベンゾ[c]セレノフェン、4-メチル-ベンゾ[c]セレノフェン、5-メチル-ベンゾ[c]セレノフェン、4,5-ジメチル-ベンゾ[c]セレノフェン、5,6-ジメチル-ベンゾ[c]セレノフェン、4,7-ジメチル-ベンゾ[c]セレノフェン、5-フルオロ-ベンゾ[c]セレノフェン、5-クロロ-ベンゾ[c]セレノフェン、5-ブロモ-ベンゾ[c]セレノフェン、5-ヒドロキシ-ベンゾ[c]セレノフェン、5-カルボキシ-ベンゾ[c]セレノフェン等が挙げられる。
化合物(A1)及び(A2)と共重合し得る化合物(D)は、化合物(A1)及び化合物(A2)のモル数の合計に対して、200モル%以下を用いることが好ましく、100モル%以下であることがより好ましく、50モル%以下であることがさらに好ましい。200モル%以下であれば、反応率、及び反応速度が適切である。
[添加剤]
本発明による効果を阻害しない範囲内で、反応時にその他の機能を有する添加剤を混合してもよい。例えば、導電性高分子に塗工性や含浸性、浸透性等の機能性を付与するため、界面活性剤、増粘剤、チクソ剤、レオロジーコントロール剤等を添加してもよい。成膜時の結着性や耐熱性を向上させるため、結着剤等を添加してもよい。成膜した際の応力を緩和する性能を有する成分を使用してもよい。
これら添加剤は置換基を有していてもよい。例えば、ドデシルベンゼンスルホン酸、ポリビニルアルコール、ポリ(N-ビニルアセトアミド)、ポリアクリルアミド、ポリアクリル酸などが挙げられる。添加剤は1種単独でまたは2種以上を組み合わせて用いることができる。
なお、従来技術における固体電解質層形成のための導電性高分子の重合工程においては通常酸化剤が使用されているが、本発明の導電性高分子の重合工程においては酸化剤を使用しない。ここで、従来技術で使用される酸化剤としては、例えば、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、エチレンジアミン四酢酸鉄、塩化第二銅、塩化第一銅、エチレンジアミン四酢酸銅、塩化アルミニウム等の金属系酸化剤;ヨウ素、臭素等のハロゲン類;2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン、テトラクロロ-1,2-ベンゾキノン、テトラクロロ-1,4-ベンゾキノン、テトラシアノ-1,4-ベンゾキノン等のキノン類;硫酸、発煙硫酸、三酸化硫黄、クロロ硫酸、フルオロ硫酸、アミド硫酸、過硫酸、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素等の無機酸化剤が挙げられる。
これらの酸化剤は、重合反応後に不純物として残留すると固体電解質層の導電率を低下させる。また、金属系酸化剤が残留すると、誘電体層を破損したり、漏れ電流が大きくなるという悪影響を及ぼす。そのためこれらの酸化剤を使用した場合には、反応後にこれらを除去する精製工程が必要となる。
本発明では触媒能を有するスルホ基を有する化合物(B)の存在下で重合を行うか、あるいは触媒能を有する置換基(スルホ基)を有する化合物(A)を重合させるため、酸化剤を用いた場合に必要な反応後の精製工程を省略することができる。
なお、本発明では、上記の酸化剤以外の不純物成分についてはコンデンサ特性に悪影響を及ぼさないものであればその使用が妨げられるものではない。
[重合条件]
上記の方法における重合時の温度は特に限定はないが、10~300℃が好ましく、より好ましくは20~180℃であり、さらに好ましくは60~180℃である。重合時の温度が10~300℃であれば、反応速度、反応率、及び粘度が適切であり、副反応を抑制することができ、導電性高分子の製造を安定的かつ工業的に適した時間で行うことができ、さらに得られる導電性重合体の導電率も高くなる傾向がある。コンデンサ特性という観点では、漏れ電流を小さくする点から望ましい。重合時の加熱処理は、公知のホットプレート、ヒータ、クーラ、オーブン及び熱風乾燥器等を用いることができる。必要に応じ、上記範囲内で温度を変化させながら重合を行ってもよい。加熱処理を行う雰囲気は特に限定されないが大気下が好ましい。加熱処理時の圧力は特に限定されないが、大気圧下が好ましく、迅速に行うために減圧下で行ってもよい。また、溶媒を揮発させる場合は重合温度以下でもよく、減圧下や乾燥気流中で溶剤を揮発させ、その後重合温度に上げてもよい。
また、陽極体の種類に応じて、上記の誘電体被膜上に重合反応溶液を付着させる工程と固体電解質層の形成工程を各々2回以上繰り返してもよい。この場合、反応溶液を付着させるごとに加熱処理を行い、分散媒を一部または全部除去してもよく、または反応溶液を複数回連続して付着させ、最後に加熱処理を行って溶液を除去してもよい。
上記重合における雰囲気は特に限定はなく、大気下でもよく、窒素、アルゴン等の不活性ガス雰囲気でもよい。また、反応圧力に特に限定はないが、常圧が好ましい。
反応時間に特に制限はなく、化合物の化学構造や反応温度、反応圧力などによって異なるため一概には規定できないが、5秒~5時間が好ましく、より好ましくは30秒~2時間であり、さらに好ましくは1分~1時間である。この時間範囲内で加熱処理を行うことは溶剤を十分に揮発させる点、多孔性陽極体内での反応効率の点、副反応を抑制する点、漏れ電流を小さくする点で望ましい。
反応時のpHは1~7が好ましく、より好ましくは1~5であり、さらに好ましくは1~3である。pHが1以上であれば陽極体等への負荷が少なく、pHが7以下であれば反応率及び反応速度が適切である。
上記の方法(i)~(iii)において、化合物(A1)、化合物(A2)、スルホ基を有する化合物(B)から選択された化合物、並びに任意成分である溶媒(C)、化合物(A1)及び(A2)と共重合し得る化合物(D)、及び添加剤の、反応系への添加の順序及び方法に特に制限はない。例えば、多孔性陽極体の誘電体被膜上に各化合物を順に浸漬または塗布することによっても重合は可能である。
本発明の導電性高分子の製造方法では、反応系内から副生成物を除去しながら反応させることが好ましい。副生成物の除去方法は、揮発(留去)法、吸着法、その他の分離法により行うことができる。具体的には、化合物(A1)及び化合物(A2)の重合では、副生成物として水が発生するので、この水を留去しながら反応を行うと、重合速度が上がり、反応率も高くなる。また、反応系を均一に保持できる観点から、水よりも沸点の高い溶媒を使用することが好ましい。
固体電解質層の形成後、精製を行う場合は任意の溶媒を浸透等させて洗浄を行ってもよいが、本発明の固体電解質層形成のための導電性高分子の重合工程においては酸化剤(Fe(III)系化合物など)を使用していないため、精製工程を行わなくとも高いコンデンサ特性が得られる。
[重合前の反応溶液の保管方法]
上記重合前の反応溶液の保管温度は特に限定はしないが、通常、-30~50℃であり、好ましくは-20~40℃であり、より好ましくは-10~30℃である。溶液の保管温度をこの範囲にすると、保管中に強酸の効果によって重合が進行する速度を和らげることができる。保管時の雰囲気は特に限定はなく、大気下でもよく、窒素、アルゴン等の不活性雰囲気でも良い。これらの中で、窒素、アルゴンが好ましい。
また、モノマー溶液とドーパント、触媒溶液を分け、重合時に混合して使用する場合の温度範囲はこの限りではなく、より広い温度範囲で安定的な保管が可能である。
本発明における固体電解質層の形成は、本発明の方法と従来の固体電解質層の形成方法とを組み合わせて行ってもよい。すなわち、誘電体被膜を表面に有する多孔性陽極体の上に本発明の方法で固体電解質層を一部形成した後に、導電性高分子分散液(例えば、ポリ(3、4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)水分散液など)を含浸させる方法、または電解重合法により固体電解質層を形成してもよい。また、上記とは逆に、上記従来の方法で固体電解質層を一部形成した後に、本発明の方法で固体電解質層を形成してもよい。
本発明の固体電解質層の形成方法は、電解質に導電性高分子の固体電解質層と電解液を併用するハイブリッド電解コンデンサの製造にも用いることができる。
[導電体層の形成]
上記のように形成された固体電解質層の上には、陰極リードとの良好な電気的接触を得るために導電体層を形成することが好ましい。導電体層の例としては、カーボンペースト層、銀ペースト層、金属メッキ層、金属蒸着層、導電樹脂フィルムなどが挙げられる。
[コンデンサ素子の作製]
上記導電体層に陰極リードが電気的に接続され、陰極リードの一部がコンデンサの外装の外部に露出して陰極外部端子となる。一方、陽極体には、陽極リード線を介して陽極リードが電気的に接続され、陽極リードの一部がコンデンサの外装の外部に露出して陽極外部端子となる。陰極リード及び陽極リードの取り付けには通常のリードフレームを用いることができる。次いで、樹脂等による封止によって外装を形成してコンデンサを得ることができる。
以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1:誘電体被膜を表面に有する多孔性陽極体の形成
本発明における固体電解コンデンサに用いる、誘電体被膜を表面に有する多孔性陽極体は、特開2011-77257号公報に開示の方法にならい製造した。すなわち、コンデンサ用ニオブ粉末を用い、陽極体表面に五酸化二ニオブを有する誘電体被膜が形成された多孔性陽極体を作製した。
この多孔性陽極体は、EIAJ規格RC2361A(2000年2月改正)に記載の方法に準拠した40%硫酸中での静電容量は37.9μFであった。
[重合反応溶液の調製]
ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド(Oxideと略記)2.5gをエタノール74.2gに溶解させ、p-トルエンスルホン酸一水和物(TSAと略記)1.56gを添加し、重合反応溶液(「Oxide/TSA 2/1」と略記。「2/1」はモル比を表す。以下同様)とした。
[固体電解質層の形成]
室温(25℃)の大気下で、上記方法で得られた多孔性陽極体を、重合反応溶液(Oxide/TSA 2/1)に10秒間浸漬した後、150℃の熱風乾燥器で乾燥した。この含浸操作を3回繰り返した。その後、リン酸(0.1質量%)水溶液中で温度80℃、電圧20Vの下、再化成を実施した。次いで陽極リード線に接触させないように固体電解質層が形成された陽極体にカーボンペーストを塗布して乾燥させ、さらに、陰極の接点をとるために銀ペーストを塗布して乾燥させた。
得られた固体電解コンデンサの120Hzでの静電容量(μF)をLCRメーター(アジレント・テクノロジー株式会社、4284A)を用いて測定した。測定結果を表1に示す。
実施例2:
ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド3.2gをエタノール74.5gに溶解させ、p-トルエンスルホン酸一水和物0.80gを添加し、重合反応溶液(「Oxide/TSA 5/1」と略記)とした。上記溶液の調製以外は実施例1と同様にしてコンデンサを作製し、静電容量を測定した。測定結果を表1に示す。
比較例1:
ジヒドロイソチアナフテン(DHITN)2.5gをエタノール77.4gに溶解させ、p-トルエンスルホン酸一水和物(TSA)1.75gを添加し、重合反応溶液(「DHITN/TSA 2/1」と略記)とした。上記溶液の調製以外は実施例1と同様にしてコンデンサを作製し、静電容量を測定した。測定結果を表1に示す。
比較例2:
ジヒドロイソチアナフテン(DHITN)3.2gをエタノール74.5gに溶解させ、p-トルエンスルホン酸一水和物(TSA)0.89gを添加し、重合反応溶液(「DHITN/TSA 5/1」と略記)とした。上記溶液の調製以外は実施例1と同様にしてコンデンサを作製し、静電容量を測定した。測定結果を表1に示す。
実施例3:
含浸操作の回数を10回にしたこと以外は実施例1と同様にしてコンデンサを作製し、静電容量を測定した。測定結果を表1に示す。
実施例4:
含浸操作の回数を10回にしたこと以外は実施例2と同様にしてコンデンサを作製し、静電容量を測定した。測定結果を表1に示す。
比較例3:
含浸操作の回数を10回にしたこと以外は比較例1と同様にしてコンデンサを作製し、静電容量を測定した。測定結果を表1に示す。
比較例4:
含浸操作の回数を10回にしたこと以外は比較例2と同様にしてコンデンサを作製し、静電容量を測定した。測定結果を表1に示す。
Figure 0007000346000009
表1において、実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、実施例4と比較例4をそれぞれ比較することにより、本発明のベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドを用いて単独重合により固体電解質層を形成する方が、ジヒドロイソチアナフテンを用いるより大きな容量が得られることがわかる。
実施例5:重合反応溶液調製用水溶液の作製
ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸ナトリウム塩35.9gをイオン交換水266gに添加、溶解後、陽イオン交換樹脂(H型)を詰めたカラムに通し、ナトリウムを水素にイオン交換し、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸水溶液とした。また、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド17.3gをイオン交換水133gに溶解させ、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液とした。
上記で調製したベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸(SH-Oxideと略記)水溶液を22g、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液を5g、エチレングリコール27gを混合して、重合反応溶液(「SH-Oxide/Oxide 7/3」と略記)とした。
[固体電解質層の形成]
25℃の大気下で、上記方法で得られた多孔性陽極体を、上記重合反応溶液(SH-Oxide/Oxide 7/3)に10秒間浸漬した後、120℃の熱風乾燥機で乾燥した。この含浸操作を10回繰り返した。その後、リン酸(0.1質量%)水溶液中で20℃、電圧20Vの下、再化成を実施した。次いで陽極リード線に接触させないように多孔性陽極体にカーボンペーストを塗布して乾燥させ、さらに、陰極の接点をとるために銀ペーストを塗布して乾燥させた。
得られた固体電解コンデンサの120Hzでの静電容量(μF)と100kHzでの等価直列抵抗〔ESR〕(Ω)を、前記LCRメーターを用いて測定した。測定結果を表2に示す。
実施例6:
ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸水溶液を19g、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液を10g、エチレングリコール29gを混合して重合反応溶液(「SH-Oxide/Oxide 5/5」と略記)を調製した。それ以外は実施例5と同様にしてコンデンサを作製し、電気特性(静電容量とESR)を測定した。測定結果を表2に示す。
実施例7:
ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸水溶液を8.0g、ベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド水溶液を10g、エチレングリコール18gを混合して重合反応溶液(「SH-Oxide/Oxide 3/7」と略記)を調製した。それ以外は実施例5と同様にコンデンサを作製し、電気特性を測定した。測定結果を表2に示す。
比較例5:
重合反応溶液を市販されているポリ(3、4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)分散液(PEDOT/PSS分散液)に変更した以外は実施例5と同様にしてコンデンサを作製し、電気特性を測定した。測定結果を表2に示す。
Figure 0007000346000010
表2から、本発明のベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシド-5-スルホン酸とベンゾ[c]チオフェン-1,3-ジヒドロ-2-オキシドの共重合により固体電解質層を形成する実施例5~7の方が、PEDOT/PSS分散液を用いる比較例5よりも高い容量が得られ、特に実施例5では極めて低いESR値が得られることがわかる。

Claims (8)

  1. 微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
    前記誘電体被膜上に下記一般式(2)
    Figure 0007000346000011

    [式中、Rはスルホ基である。R2、R3、R4、R5、及びR6はそれぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO2M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、スルホ基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選ばれる1価の置換基を表す。R2、R3、R4、R5及びR6が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R2、R3、R4、R5及びR6が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO-Na+、O-Li+及びO-+から選択されるアルカリ金属アルコキシド、O-NH4 +で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲンを表す。kはヘテロ環と置換基R2~R4を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
    で示される化合物(A2)の少なくとも1種を、酸化剤を使用せずに重合させて前記導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
  2. 前記化合物(A2)が、一般式(2)中のkが0である化合物である請求項に記載の固体電解コンデンサの製造方法。
  3. 前記化合物(A2)が、一般式(2)中のR2、R3、R4、R5及びR6が、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル基、炭素数1~20の直鎖状または分岐状のアルコキシ基、または炭素数1~20の直鎖状または分岐状のアルキルエステル基、及び(3)ハロゲン原子から選択される1価の置換基である化合物である請求項またはに記載の固体電解コンデンサの製造方法。
  4. 微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
    前記誘電体被膜上に、下記一般式(1)
    Figure 0007000346000012

    [式中、R 1 、R 2 、R 3 、R 4 、R 5 、及びR 6 は、それぞれ独立して、(1)水素原子、(2)炭素数1~20の直鎖状または分岐状のアルキル、炭素数1~20の直鎖状または分岐状のアルコキシ、または炭素数1~20の直鎖状または分岐状のアルキルエステル基(アルキルカルボニルオキシ基またはアルコキシカルボニル基)、(3)SO 2 M、(4)ハロゲン原子、(5)カルボキシ基、(6)ホスホニル基、(7)ニトロ基、(8)シアノ基、(9)1級、2級または3級アミノ基、(10)トリハロメチル基、(11)フェニル基、及び(12)アルキル基、ヒドロキシ基、アルコキシ基、アルキルエステル基、カルボニル基、及びハロゲン原子から選択される少なくとも1つで置換されたフェニル基からなる群から選択される1価の置換基を表す。R 1 、R 2 、R 3 、R 4 、R 5 及びR 6 が表す置換基中の炭化水素鎖は互いに任意の位置で結合して、当該置換基が結合している炭素原子と共に、少なくとも1つの3~7員環の飽和、または不飽和炭化水素の環状構造を形成する2価鎖を少なくとも1つ形成してもよい。R 1 、R 2 、R 3 、R 4 、R 5 及びR 6 が表すアルキル基、アルコキシ基、アルキルエステル基、またはそれらによって形成される環状炭化水素鎖には、カルボニル、エーテル、エステル、アミド、スルフィド、スルフィニル、スルホニル及びイミノから選択される少なくとも1つの結合を含んでもよい。MはOH、またはO - Na + 、O - Li + 及びO - + から選択されるアルカリ金属アルコキシド、O - NH 4 + で表されるアンモニウムアルコキシド、炭素数1~20の直鎖状または分岐状のアルコキシ基、塩素、フッ素、臭素、及びヨウ素から選択されるハロゲン原子を表す。kはヘテロ環と置換基R 1 ~R 4 を有するベンゼン環に囲まれた縮合環の数を表し、0~3の整数である。]
    で示される化合物(A1)の少なくとも1種と、請求項に記載の一般式(2)で示される化合物(A2)の少なくとも1種とを、酸化剤を使用せずに共重合させて導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
  5. 微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
    前記誘電体被膜上に請求項に記載の一般式(2)で示される化合物(A2)の少なくとも1種と前記化合物(A2)と共重合し得る化合物(D)とを、酸化剤を使用せずに共重合させて導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
  6. 微細孔を有する弁金属を用意する工程、前記弁金属表面に誘電体被膜を形成する工程、前記誘電体被膜上に導電性高分子モノマーを含む重合反応液を付着させる工程、及び前記導電性高分子モノマーを重合させることにより前記誘電体被膜上に導電性高分子を含む固体電解質層を形成する工程を含む固体電解コンデンサの製造方法であって、
    前記誘電体被膜上に請求項に記載の一般式(1)で示される化合物(A1)の少なくとも1種と、請求項に記載の一般式(2)で示される化合物(A2)の少なくとも1種と、前記化合物(A1)及び前記化合物(A2)と共重合し得る化合物(D)とを、酸化剤を使用せずに共重合させて導電性高分子を含む固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
  7. 生成する水を除去しながら重合させて導電性高分子を含む固体電解質層を形成する請求項1~のいずれかに記載の固体電解コンデンサの製造方法。
  8. 前記導電性高分子の重合において、水よりも蒸気圧の高い溶媒を使用する請求項1~のいずれかに記載の固体電解コンデンサの製造方法。
JP2018558824A 2016-12-28 2017-09-29 固体電解コンデンサの製造方法 Active JP7000346B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016254979 2016-12-28
JP2016254979 2016-12-28
PCT/JP2017/035431 WO2018123179A1 (ja) 2016-12-28 2017-09-29 固体電解コンデンサの製造方法

Publications (2)

Publication Number Publication Date
JPWO2018123179A1 JPWO2018123179A1 (ja) 2019-10-31
JP7000346B2 true JP7000346B2 (ja) 2022-01-19

Family

ID=62710245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018558824A Active JP7000346B2 (ja) 2016-12-28 2017-09-29 固体電解コンデンサの製造方法

Country Status (6)

Country Link
US (1) US11183340B2 (ja)
EP (1) EP3564976A4 (ja)
JP (1) JP7000346B2 (ja)
KR (1) KR102324388B1 (ja)
CN (1) CN110121757B (ja)
WO (1) WO2018123179A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527574B (zh) * 2017-12-25 2022-12-09 昭和电工株式会社 固体电解电容器制造用分散液组合物和固体电解电容器的制造方法
DE112020002426T5 (de) * 2019-05-17 2022-01-27 Avx Corporation Festelektrolytkondensator
US20230144698A1 (en) * 2020-03-31 2023-05-11 Dover Europe Sarl Ink Compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012394A (ja) 1997-11-28 2000-01-14 Showa Denko Kk 固体電解コンデンサ及びその製造方法
JP2010195980A (ja) 2009-02-26 2010-09-09 Waseda Univ ポリチオフェン又はチオフェン共重合体の溶液又は分散液並びにその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255486A (ja) 1992-03-13 1993-10-05 Unitika Ltd ベンゾ[cチオフェン構造を有する導電性高分子の合成方法
JP3541429B2 (ja) 1993-05-31 2004-07-14 昭和電工株式会社 スルホン酸基を有する縮合ヘテロ環式化合物及びその製造方法
US6351370B1 (en) * 1998-03-19 2002-02-26 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6466421B1 (en) 1998-05-21 2002-10-15 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
JP2001006983A (ja) 1999-06-22 2001-01-12 Showa Denko Kk 固体電解コンデンサ及びその製造方法
US6614063B2 (en) 1999-12-03 2003-09-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
JP2002158144A (ja) 2000-01-17 2002-05-31 Matsushita Electric Ind Co Ltd 固体電解コンデンサの製造方法および固体電解コンデンサ
JP4329299B2 (ja) 2001-07-16 2009-09-09 パナソニック株式会社 固体電解コンデンサの製造方法
JP2005109252A (ja) 2003-09-30 2005-04-21 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP5341699B2 (ja) 2009-09-30 2013-11-13 昭和電工株式会社 固体電解コンデンサの製造方法
JP5952551B2 (ja) 2011-12-12 2016-07-13 Necトーキン株式会社 導電性高分子組成物およびその製造方法、導電性高分子材料の製造方法、導電性基材の製造方法、電極の製造方法、電子デバイスの製造方法並びに固体電解コンデンサの製造方法
JP6142280B2 (ja) 2012-08-31 2017-06-07 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012394A (ja) 1997-11-28 2000-01-14 Showa Denko Kk 固体電解コンデンサ及びその製造方法
JP2010195980A (ja) 2009-02-26 2010-09-09 Waseda Univ ポリチオフェン又はチオフェン共重合体の溶液又は分散液並びにその製造方法

Also Published As

Publication number Publication date
CN110121757A (zh) 2019-08-13
KR102324388B1 (ko) 2021-11-10
JPWO2018123179A1 (ja) 2019-10-31
US20200090874A1 (en) 2020-03-19
EP3564976A4 (en) 2020-09-23
EP3564976A1 (en) 2019-11-06
WO2018123179A1 (ja) 2018-07-05
KR20190071790A (ko) 2019-06-24
US11183340B2 (en) 2021-11-23
CN110121757B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
JP2021036603A (ja) コンデンサアノードに使用するための鎖に結合した対イオンを有する導電性ポリマーと、鎖に結合していない対イオンを有する導電性ポリマーの混合物を含む分散液
JP7181873B2 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
JP7000346B2 (ja) 固体電解コンデンサの製造方法
JPH07142292A (ja) タンタル固体電解コンデンサ及びその製造方法
JP2009209259A (ja) 導電性高分子およびそれを用いた固体電解コンデンサ
JP2005116777A (ja) 固体電解コンデンサ
WO2010110200A1 (ja) 導電性コーティング組成物及び導電性コーティング膜の製造方法
WO2014155603A1 (ja) 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサ並びに固体電解コンデンサの製造方法
JP2014037504A (ja) 導電性組成物及び導電性被膜
JP7019602B2 (ja) ポリイソチアナフテン系導電性重合体の製造方法
JP2011071178A (ja) 固体電解コンデンサの製造方法
JP2004265941A (ja) 固体電解コンデンサ及びその製造方法
JP4035639B2 (ja) 固体電解コンデンサ及びその製造方法
JP2014225538A (ja) 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサの製造方法
JP2014192423A (ja) 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサの製造方法
JP2014037508A (ja) 導電性組成物及び導電性被膜
JP5522674B2 (ja) 導電性高分子製造用モノマー組成物、導電性高分子、それを固体電解質として用いた固体電解コンデンサおよびその製造方法
JP2010037466A (ja) 導電性高分子形成用電解重合液、導電性高分子、それを用いた固体電解コンデンサ及びその製造方法
JP6125301B2 (ja) 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサの製造方法
JP2006054449A (ja) コンデンサ素子の製造方法
JP2015199787A (ja) 導電性高分子溶液およびその製造方法、導電性高分子材料、ならびに固体電解コンデンサ
JP5481639B2 (ja) 導電性高分子製造用酸化剤とそれを用いた固体電解コンデンサ及びその製造方法
JP2023056135A (ja) 導電性高分子分散液の製造方法及び固体電解コンデンサの製造方法
JP2011108835A (ja) 固体電解コンデンサ及びその製造方法
JP2000269086A (ja) 固体電解コンデンサ用電解質形成用組成物、該組成物を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7000346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350