JP6975644B2 - 仮想および拡張現実システムおよび方法 - Google Patents

仮想および拡張現実システムおよび方法 Download PDF

Info

Publication number
JP6975644B2
JP6975644B2 JP2017564904A JP2017564904A JP6975644B2 JP 6975644 B2 JP6975644 B2 JP 6975644B2 JP 2017564904 A JP2017564904 A JP 2017564904A JP 2017564904 A JP2017564904 A JP 2017564904A JP 6975644 B2 JP6975644 B2 JP 6975644B2
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
light
pattern
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017564904A
Other languages
English (en)
Other versions
JP2018519542A5 (ja
JP2018519542A (ja
Inventor
マイケル アンソニー クルグ,
ブライアン ティー. ショーウェンゲルト,
マイケル ネビン ミラー,
ビクランジット シン,
クリストフ ぺロス,
ティレール, ピエール サン
ジエ サン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of JP2018519542A publication Critical patent/JP2018519542A/ja
Publication of JP2018519542A5 publication Critical patent/JP2018519542A5/ja
Priority to JP2021181747A priority Critical patent/JP7203927B2/ja
Application granted granted Critical
Publication of JP6975644B2 publication Critical patent/JP6975644B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1833Diffraction gratings comprising birefringent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Processing Or Creating Images (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

(優先権主張)
本願は、米国特許法§119(e)のもと、2015年6月15日に出願された米国仮特許出願第62/175994号および2015年6月16日に出願された米国仮特許出願第62/180551号の優先権の利益を主張する。上記出願の各々は、それらの全体が参照によって本明細書に援用される。
(参照による援用)
本願は、以下の米国特許および特許出願の各々の全体を参照によって援用する:2002年1月1日発行の米国特許第6,334,960号(発明の名称「Step and Flash Imprint Technology」)、2005年3月29日発行の米国特許第6,873,087号(発明の名称「High−Precision Orientation, Alignment and Gap control Stages for Imprint Lithography Processes」)、2005年5月31日発行の米国特許第6,900, 881号(発明の名称「Step and Repeat Imprint Lithography」)、2006年7月4日発行の米国特許第7,070,405号(発明の名称「Alignment Systems for Imprint Lithography」)、2006年10月17日発行の米国特許第7,122,482号(発明の名称「Methods for Fabricating Patterned Features Utilizing Imprint Lithography」)、2006年11月28日発行の米国特許第7,140,861号(発明の名称「Compliant Hard Template for UV Imprinting」)、2011年12月13日発行の米国特許第8,076,386号(発明の名称「Materials for Imprint Lithography」)、2006年8月29日発行の米国特許第7,098,572号(発明の名称「Apparatus to Control Displacement of a Body Spaced Apart from a Surface」)、2015年3月7日出願の米国特許出願第14/641,376号、2014年11月27日出願の米国特許出願第14/555,585号、2015年4月18日出願の米国特許出願第14/690,401号、2014年3月14日出願の米国特許出願第14/212,961号、2014年7月14日出願の米国特許出願第14/331,218号。
(分野)
本開示は、仮想現実および拡張現実結像および可視化システムに関する。
(関連技術の説明)
現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しており、デジタル的に再現された画像またはその一部が、現実であるように見えるまたは現実として知覚され得る様式でユーザに提示される。仮想現実(すなわち「VR」)シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透明性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実(すなわち「AR」)シナリオは、典型的には、ユーザの周囲の実際の世界の可視化に対する拡張としてのデジタルまたは仮想画像情報の提示を伴う。例えば、図1を参照すると、拡張現実場面(1)が、描写されており、AR技術のユーザには、背景における人々、木々、建物を特徴とする実世界の公園のような設定(6)と、コンクリートプラットフォーム(1120)とが見える。これらのアイテムに加え、AR技術のユーザはまた、実世界プラットフォーム(1120)上に立っているロボット像(1110)と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ(2)とを「見ている」と知覚するが、これらの要素(2、1110)は、実世界には存在しない。ヒトの視知覚系は複雑であるため、他の仮想世界画像要素または実世界画像要素との間における仮想画像要素の快適で、自然のような感覚で、かつ豊かな提示を促進する、VRまたはAR技術の生成は、困難である。
本明細書に開示されるシステムおよび方法は、VRまたはAR技術に関連する種々の課題に対処する。
本開示のシステム、方法、およびデバイスはそれぞれ、いくつかの革新的側面を有し、そのうちのいずれも、本明細書に開示される所望の属性に単独で関与するものではない。
いくつかの実施形態では、ディスプレイシステムが、提供される。ディスプレイシステムは、導波路と、多重化された光流を導波路の中に指向するように構成される画像投入デバイスとを含む。多重化された光流は、異なる光特性を有する複数の光流を含む。導波路は、1つまたは複数の他の光流に対して透過性でありながら、光流の第1のものを選択的に内部結合するように構成される内部結合光学要素を含む。いくつかの実施形態では、導波路は、導波路のスタックの一部であり、これは、1つまたは複数の他の光流に対して透過性でありながら、光流の第2のものを選択的に方向転換するように構成される内部結合光学要素を含む第2の導波路を含むことができる。いくつかの実施形態では、導波路の内部結合光学要素は、光流のうちの少なくとも1つを第2の導波路の内部結合光学要素に伝送するように構成される。
液晶材料を基板上にジェット堆積することと、インプリントパターンを使用して液晶の分子を整合させることとを含む、液晶デバイスを製造する種々の方法が、本明細書に説明される。本明細書に説明される方法を使用して、液晶材料の1つまたはいくつかの層を含むデバイスが、製造されることができる。本明細書に説明される方法を使用して製造される液晶デバイスは、約数ミクロン未満のサイズを有する特徴および/またはパターンを含む、液晶格子を含むことができる。本明細書に説明される方法を使用して製造される液晶デバイスはまた、可視光の波長未満のサイズを有する液晶特徴および/またはパターンを含むことができる、Pancharatnam−Berry Phase Effect(PBPE)構造、メタ表面、またはメタ材料と称されるものを備え得る。ある場合には、これらの構造内の小さなパターン化特徴は、約10nm〜約100nmの幅および約100nm〜約1ミクロンの高さであることができる。ある場合には、これらの構造内の小パターン化特徴は、約10nm〜約1ミクロンの幅および約10nm〜約1ミクロンの高さであることができる。ビーム操向、波面成形、波長および/または偏光の分離、ならびに異なる波長および/または偏光の組み合わせ等の光を操作するための構造は、本明細書ではメタ材料液晶格子とも別様に称される、メタ表面を伴う液晶格子、または、Pancharatnam−Berry Phase Effect(PBPE)構造を伴う液晶格子を含むことができる。PBPE構造を伴う液晶格子は、高回折効率および液晶格子の入射角度に対する低感度とPBPE構造の高波長感度を組み合わせることができる。本明細書に説明される製造の種々の方法を使用して、PBPE構造を伴う液晶格子は、大量生産されることができ、これは、PBPE構造を液晶材料上に堆積させる既存の方法を使用してでは不可能であり得る。本明細書で議論される方法はまた、既存の偏光子より透明な偏光子を製作するために使用されることができる。
本明細書に説明される主題の革新的側面は、液晶デバイスを製造する方法に含まれる。本方法は、液晶材料の層を基板上に堆積することと、インプリントテンプレートを使用して液晶材料の層上にパターンをインプリントすることであって、それによって、液晶材料の分子がパターンに自己整合される、こととを含む。
本方法の種々の実施形態は、液晶材料の屈折率より低い屈折率を有する材料の層を堆積することを含むことができる。低屈折率材料の層は、平坦化テンプレートを使用して平坦化層として構成されることができる。種々の実施形態では、インプリントテンプレートは、表面起伏特徴、約20nm〜約1ミクロンのサイズを有する特徴、約10nm〜約200nmのサイズを有する特徴、PBPE構造、メタ表面、格子アレイ、曲線溝、または曲線弧のうちの少なくとも1つを含むことができる。本方法の種々の実施形態では、液晶材料の層は、液晶材料の層をジェット堆積することによって堆積されることができる。本方法の種々の実施形態は、液晶材料の層にわたって液晶材料の付加的層を堆積すること含むことができる。液晶材料の付加的層は、液晶材料の層のパターンに自己整合されることができる。本方法の種々の実施形態では、パターンが、液晶材料の付加的層上にインプリントされることができる。液晶材料の付加的層上にインプリントされたパターンは、液晶材料の層上にインプリントされたパターンと異なることができる。液晶材料の層上にインプリントされたパターンは、第1の波長に作用するように構成されることができ、液晶材料の付加的層上にインプリントされたパターンは、第2の波長に作用するように構成されることができる。
本明細書に説明される主題の別の革新的側面は、液晶デバイスを製造する方法に含まれ、本方法は、レジストの層を基板上に堆積することと、インプリントテンプレートを使用してレジスト層上にパターンをインプリントすることと、液晶材料の層をパターン化されたレジスト層上に堆積することであって、それによって、液晶材料の分子がパターンに自己整合される、こととを含む。
本方法の種々の実施形態では、レジストの層を堆積することは、レジスト層をジェット堆積することを含むことができる。種々の実施形態では、インプリントテンプレートは、表面起伏特徴、約20nm〜約1ミクロンのサイズを有する特徴、PBPE構造、約10nm〜約200nmのサイズを有する特徴、メタ表面、格子アレイ、曲線溝、または曲線弧のうちの少なくとも1つを含むことができる。本方法の種々の実施形態では、液晶材料の層は、液晶材料の層をジェット堆積することによって堆積されることができる。本方法の種々の実施形態では、液晶材料の層を堆積することは、液晶材料の層をジェット堆積することを含むことができる。本方法の種々の実施形態はさらに、液晶材料の層にわたって液晶材料の付加的層を堆積することを含むことができる。液晶材料の付加的層は、液晶材料の層のパターンに自己整合されることができる。パターンが、液晶材料の付加的層上にインプリントされることができる。液晶材料の付加的層上にインプリントされたパターンは、液晶材料の層上にインプリントされたパターンと異なることができる。液晶材料の層上にインプリントされたパターンは、第1の波長に作用するように構成されることができ、付加的液晶材料の層上にインプリントされたパターンは、第2の波長に作用するように構成されることができる。
本明細書に開示される主題のさらに別の革新的側面は、偏光子を製造する方法を含み、本方法は、ポリマーを備える光学的に透過性の材料の層を基板上に堆積することと、インプリントテンプレートを使用してポリマー層上にパターンをインプリントすることと、偏光子材料の溶液をパターン化されたポリマー層上に堆積することとを含む。
種々の実施形態では、偏光子材料の溶液をパターン化されたポリマー層上に堆積することは、偏光子材料溶液をパターン化されたポリマー層上にジェット堆積することを含むことができる。種々の実施形態では、偏光子材料の溶液をパターン化されたポリマー層上に堆積することは、偏光子材料溶液をパターン化されたポリマー層上にスピンコーティングすることを含むことができる。種々の実施形態では、偏光子材料は、溶媒中のヨウ素および二色性染料の溶液を備えることができる。偏光子は、少なくとも47%の透過率を有することができる。
本明細書に開示される主題のさらに別の革新的側面は、PBPE構造液晶を備える偏光格子の層を備える、液晶デバイスを含む。液晶デバイスはさらに、PBPE構造液晶を備える偏光格子の別の層を備えることができる。液晶デバイスは、多重化された光流からの少なくとも1つの光流を導波路の中に選択的に内部結合し、多重化された光流からの1つまたは複数の他の光流を伝送するように構成されることができる。液晶デバイスは、ディスプレイシステムの導波路内に含まれることができる。液晶デバイスおよび/または導波路は、頭部搭載型ディスプレイの接眼レンズ内に含まれることができる。
本明細書に開示される主題の別の革新的側面は、PBPE構造を含む光学デバイスを製造する方法を含む。本方法は、入射光を伝送および/または反射させることが可能な材料の層を基板上に配置することと、PBPE構造を含むパターンを材料上にインプリントすることとを含む。この材料は、液晶を備えることができる。本方法の種々の実施形態では、材料を配置することは、材料を基板にジェット堆積することを含むことができる。本方法の種々の実施形態では、パターンをインプリントすることは、PBPE構造を含むインプリントテンプレートを使用して材料上にパターンをインプリントすることを含むことができる。材料上にインプリントされたパターンは、光の1つまたは複数の波長に選択的に作用するように構成されることができる。
本明細書に開示される主題のさらに別の革新的側面は、メタ表面を含む光学デバイスを製造する方法を含み、本方法は、入射光を伝送および/または反射させることが可能な材料の層を基板上に配置することと、メタ表面を含むパターンを材料上にインプリントすることとを含む。材料は、液晶を備えることができる。材料は、基板上にジェット堆積されることができる。種々の実施形態では、パターンをインプリントすることは、メタ表面を含むインプリントテンプレートを使用して材料上にパターンをインプリントすることを含むことができる。種々の実施形態では、材料上にインプリントされたパターンは、光の1つまたは複数の波長に選択的に作用するように構成されることができる。
本明細書に開示される主題の別の革新的側面は、液晶デバイスを製造する方法を含む。本方法は、層を基板上に堆積することと、パターンを層上にインプリントテンプレートを使用してインプリントすることと、パターン化された層上に液晶材料の層を堆積させることであって、それにより、液晶材料の分子がパターンに自己整合される、こととを含む。層は、レジスト層を備えることができる。種々の実施形態では、層を堆積することは、層をジェット堆積することを含むことができる。いくつかの実施形態では、インプリントテンプレートは、表面起伏特徴、約10nm〜約200nmのサイズを有する特徴、約20nm〜約1ミクロンのサイズを有する特徴、PBPE構造、メタ表面、格子アレイ、曲線溝、または弧のうちの少なくとも1つを含むことができる。
種々の実施形態では、液晶材料の層を堆積することは、液晶材料の層をジェット堆積することを含むことができる。種々の実施形態では、本方法はさらに、液晶材料の層にわたって液晶材料の付加的層を堆積することを含むことができる。液晶材料の付加的層は、液晶材料の層のパターンに自己整合されることができる。パターンが、液晶材料の付加的層上にインプリントされることができる。液晶材料の付加的層上にインプリントされたパターンは、液晶材料の層上にインプリントされたパターンと異なることができる。液晶材料の層上にインプリントされたパターンは、第1の波長に作用するように構成されことができ、液晶材料の付加的層上にインプリントされたパターンは、第2の波長に作用するように構成されることができる。
本明細書に開示される主題の別の革新的側面は、偏光子を製造する方法を含み、本方法は、光学的に透過性材料の層を基板上に堆積することと、インプリントテンプレートを使用して材料上にパターンをインプリントすることと、偏光子材料の溶液をパターン化されたポリマー層上に堆積することとを含む。
本明細書に開示される主題のさらに別の革新的側面は、液晶デバイスを含む。液晶デバイスは、基板と、基板に隣接する第1の表面および第1の表面と反対の第2の表面を有する液晶材料の層と、第2の表面上の複数の特徴であって、約10nm〜約200nmのサイズを有する複数の特徴とを備える。種々の実施形態では、複数の特徴は、PBPE構造、メタ表面、またはメタ材料のうちの少なくとも1つを備えることができる。種々の実施形態では、複数の特徴は、偏光格子として構成されることができる。液晶デバイスの実施形態は、ディスプレイシステムの導波路とともに含まれることができる。液晶デバイスは、多重化された光流からの少なくとも1つの光流を導波路の中に選択的に内部結合し、多重化された光流からの1つまたは複数の他の光流を伝送するように構成されることができる。液晶デバイスは、頭部搭載型ディスプレイの接眼レンズ内に含まれることができる。
本明細書に開示される主題の別の革新的側面は、基板と、基板に隣接する第1の表面および第1の表面と反対の第2の表面を有する材料であって、約10nm〜約200nmのサイズを有する第2の表面上の複数の特徴を備える材料と、材料の第2の表面上の液晶材料とを備える液晶デバイスを含む。種々の実施形態では、材料は、レジストを備えることができる。種々の実施形態では、複数の特徴は、メタ表面および/またはメタ材料を備えることができる。液晶デバイスの実施形態は、ディスプレイシステムの導波路とともに含まれることができる。液晶デバイスは、多重化された光流からの少なくとも1つの光流を導波路の中に選択的に内部結合し、多重化された光流からの1つまたは複数の他の光流を伝送するように構成されることができる。液晶デバイスは、頭部搭載型ディスプレイの接眼レンズ内に含まれることができる。
本明細書に説明される主題の1つまたは複数の実施形態の詳細は、付随の図面および以下の説明に記載される。他の特徴、側面、および利点は、説明、図面、ならびに請求項から明白となるであろう。以下の図の相対的寸法は、正確な縮尺で描かれない場合があることに留意されたい。
本発明は、例えば、以下を提供する。
(項目1)
液晶デバイスを製造する方法であって、前記方法は、
液晶材料の層を基板上に堆積することと、
インプリントテンプレートを使用して前記液晶材料の層上にパターンをインプリントすることであって、それによって、前記液晶材料の分子が前記パターンに自己整合される、ことと
を含む、方法。
(項目2)
前記液晶材料の屈折率より低い屈折率を有する材料の層を堆積することをさらに含む、項目1に記載の方法。
(項目3)
低屈折率材料の前記層は、平坦化テンプレートを使用して平坦化層として構成される、項目2に記載の方法。
(項目4)
前記インプリントテンプレートは、表面起伏特徴を含む、項目1に記載の方法。
(項目5)
前記インプリントテンプレートは、約20nm〜約1ミクロンのサイズを有する特徴を含む、項目1に記載の方法。
(項目6)
前記インプリントテンプレートは、約10nm〜約200nmのサイズを有する特徴を含む、項目1に記載の方法。
(項目7)
前記インプリントテンプレートは、PBPE構造を含む、項目1に記載の方法。
(項目8)
前記液晶デバイスは、メタ表面を含む、項目1に記載の方法。
(項目9)
前記液晶デバイスは、メタ材料を備える、項目1に記載の方法。
(項目10)
前記インプリントテンプレートは、格子アレイを含む、項目1に記載の方法。
(項目11)
前記インプリントテンプレートは、曲線溝または弧を含む、項目1に記載の方法。
(項目12)
液晶材料の層を堆積することは、前記液晶材料の層をジェット堆積することを含む、項目1に記載の方法。
(項目13)
前記液晶材料の層にわたって液晶材料の付加的層を堆積することをさらに含む、項目1に記載の方法。
(項目14)
前記液晶材料の付加的層は、前記液晶材料の層のパターンに自己整合される、項目13に記載の方法。
(項目15)
パターンが前記液晶材料の付加的層上にインプリントされる、項目13に記載の方法。
(項目16)
前記液晶材料の付加的層上にインプリントされたパターンは、前記液晶材料の層上にインプリントされたパターンと異なる、項目15に記載の方法。
(項目17)
前記液晶材料の層上にインプリントされたパターンは、第1の波長に作用するように構成され、前記液晶材料の付加的層上にインプリントされたパターンは、第2の波長に作用するように構成される、項目15に記載の方法。
(項目18)
液晶デバイスを製造する方法であって、前記方法は、
レジストの層を基板上に堆積することと、
インプリントテンプレートを使用して前記レジスト層上にパターンをインプリントすることと、
液晶材料の層を前記パターン化されたレジスト層上に堆積することであって、それによって、前記液晶材料の分子が前記パターンに自己整合される、ことと
を含む、方法。
(項目19)
レジストの層を堆積することは、前記レジスト層をジェット堆積することを含む、項目18に記載の方法。
(項目20)
前記インプリントテンプレートは、表面起伏特徴を含む、項目18に記載の方法。
(項目21)
前記インプリントテンプレートは、約10nm〜約200nmのサイズを有する特徴を含む、項目18に記載の方法。
(項目22)
前記インプリントテンプレートは、約20nm〜約1ミクロンのサイズを有する特徴を含む、項目18に記載の方法。
(項目23)
前記インプリントテンプレートは、PBPE構造を含む、項目18に記載の方法。
(項目24)
前記液晶デバイスは、メタ表面を含む、項目18に記載の方法。
(項目25)
前記液晶デバイスは、メタ材料を備える、項目18に記載の方法。
(項目26)
前記インプリントテンプレートは、格子アレイを含む、項目18に記載の方法。
(項目27)
前記インプリントテンプレートは、曲線溝または弧を含む、項目18に記載の方法。
(項目28)
液晶材料の層を堆積することは、前記液晶材料の層をジェット堆積することを含む、項目18に記載の方法。
(項目29)
前記液晶材料の層にわたって液晶材料の付加的層を堆積することをさらに含む、項目18に記載の方法。
(項目30)
前記液晶材料の付加的層は、前記液晶材料の層のパターンに自己整合される、項目18に記載の方法。
(項目31)
パターンが、前記液晶材料の付加的層上にインプリントされる、項目18に記載の方法。
(項目32)
前記液晶材料の付加的層上にインプリントされたパターンは、前記液晶材料の層上にインプリントされたパターンと異なる、項目31に記載の方法。
(項目33)
前記液晶材料の層上にインプリントされたパターンは、第1の波長に作用するように構成され、前記液晶材料の付加的層上にインプリントされたパターンは、第2の波長に作用するように構成される、項目31に記載の方法。
(項目34)
偏光子を製造する方法であって、前記方法は、
ポリマーを備える光学的に透過性の材料の層を基板上に堆積することと、
インプリントテンプレートを使用して前記ポリマー層上にパターンをインプリントすることと、
偏光子材料の溶液を前記パターン化されたポリマー層上に堆積することと
を含む、方法。
(項目35)
前記偏光子材料の溶液を前記パターン化されたポリマー層上に堆積することは、前記偏光子材料の溶液を前記パターン化されたポリマー層上にジェット堆積することを含む、項目34に記載の方法。
(項目36)
偏光子材料の溶液を前記パターン化されたポリマー層上に堆積することは、前記偏光子材料の溶液を前記パターン化されたポリマー層上にスピンコーティングすることを含む、項目34に記載の方法。
(項目37)
偏光子材料は、溶媒中のヨウ素および二色性染料の溶液を備える、項目34に記載の方法。
(項目38)
前記偏光子は、少なくとも47%の透過率を有する、項目34に記載の方法。
(項目39)
PBPE構造を備える液晶偏光格子の層を備える液晶デバイス。
(項目40)
PBPE構造を備える液晶偏光格子の別の層をさらに備える、項目39に記載の液晶デバイス。
(項目41)
ディスプレイシステムの導波路内に含まれる、項目39に記載の液晶デバイス。
(項目42)
多重化された光流からの少なくとも1つの光流を前記導波路の中に選択的に内部結合し、前記多重化された光流からの1つまたは複数の他の光流を伝送するように構成される、項目41に記載の液晶デバイス。
(項目43)
前記導波路は、頭部搭載型ディスプレイの接眼レンズ内に含まれる、項目41に記載の液晶デバイス。
(項目44)
PBPE構造を含む光学デバイスを製造する方法であって、前記方法は、
入射光を伝送および/または反射させることが可能な材料の層を基板上に配置することと、
PBPE構造を含むパターンを前記材料上にインプリントすることと
を含む、方法。
(項目45)
前記材料は、液晶を備える、項目44に記載の方法。
(項目46)
前記材料を配置することは、前記材料を前記基板上にジェット堆積することを含む、項目44に記載の方法。
(項目47)
パターンをインプリントすることは、PBPE構造を含むインプリントテンプレートを使用して前記材料上にパターンをインプリントすることを含む、項目44に記載の方法。
(項目48)
前記材料上にインプリントされたパターンは、光の1つまたは複数の波長に選択的に作用するように構成される、項目44に記載の方法。
(項目49)
メタ表面を含む光学デバイスを製造する方法であって、前記方法は、
入射光を伝送および/または反射させることが可能な材料の層を基板上に配置することと、
メタ表面を含むパターンを前記材料上にインプリントすることと
を含む、方法。
(項目50)
前記材料は、液晶を備える、項目49に記載の方法。
(項目51)
前記材料を配置することは、前記材料を前記基板上にジェット堆積することを含む、項目49に記載の方法。
(項目52)
パターンをインプリントすることは、メタ表面を含むインプリントテンプレートを使用して前記材料上にパターンをインプリントすることを含む、項目49に記載の方法。
(項目53)
前記材料上にインプリントされたパターンは、光の1つまたは複数の波長に選択的に作用するように構成される、項目49に記載の方法。
(項目54)
液晶デバイスを製造する方法であって、前記方法は、
層を基板上に堆積することと、
インプリントテンプレートを使用して前記層上にパターンをインプリントすることと、
液晶材料の層を前記パターン化された層上に堆積することであって、それによって、前記液晶材料の分子が前記パターンに自己整合される、ことと
を含む、方法。
(項目55)
前記層は、レジスト層を備える、項目54に記載の方法。
(項目56)
層を堆積することは、前記層をジェット堆積することを含む、項目54に記載の方法。
(項目57)
前記インプリントテンプレートは、表面起伏特徴を含む、項目54に記載の方法。
(項目58)
前記インプリントテンプレートは、約10nm〜約200nmのサイズを有する特徴を含む、項目54に記載の方法。
(項目59)
前記インプリントテンプレートは、約20nm〜約1ミクロンのサイズを有する特徴を含む、項目54に記載の方法。
(項目60)
前記インプリントテンプレートは、PBPE構造またはメタ表面を含む、項目54に記載の方法。
(項目61)
前記インプリントテンプレートは、格子アレイを含む、項目54に記載の方法。
(項目62)
前記インプリントテンプレートは、曲線溝または弧を含む、項目54に記載の方法。
(項目63)
液晶材料の層を堆積することは、前記液晶材料の層をジェット堆積することを含む、項目54に記載の方法。
(項目64)
前記液晶材料の層にわたって液晶材料の付加的層を堆積することをさらに含む、項目54に記載の方法。
(項目65)
前記液晶材料の付加的層は、前記液晶材料の層のパターンに自己整合される、項目54に記載の方法。
(項目66)
パターンが、前記液晶材料の付加的層上にインプリントされる、項目54に記載の方法。
(項目67)
前記液晶材料の付加的層上にインプリントされたパターンは、前記液晶材料の層上にインプリントされたパターンと異なる、項目66に記載の方法。
(項目68)
前記液晶材料の層上にインプリントされたパターンは、第1の波長に作用するように構成され、前記液晶材料の付加的層上にインプリントされたパターンは、第2の波長に作用するように構成される、項目66に記載の方法。
(項目69)
液晶デバイスであって、
基板と、
前記基板に隣接する第1の表面および前記第1の表面と反対の第2の表面を有する液晶材料の層と、
前記第2の表面上の複数の特徴であって、前記複数の特徴は、約10nm〜約200nmのサイズを有する、複数の特徴と
を備える、液晶デバイス。
(項目70)
前記複数の特徴は、PBPE構造を備える、項目69に記載の液晶デバイス。
(項目71)
前記複数の特徴は、メタ表面を備える、項目69に記載の液晶デバイス。
(項目72)
前記複数の特徴は、メタ材料を備える、項目69に記載の液晶デバイス。
(項目73)
前記複数の特徴は、偏光格子として構成される、項目69に記載の液晶デバイス。
(項目74)
ディスプレイシステムの導波路とともに含まれる、項目69に記載の液晶デバイス。
(項目75)
多重化された光流からの少なくとも1つの光流を前記導波路の中に選択的に内部結合し、前記多重化された光流からの1つまたは複数の他の光流を伝送するように構成される、項目74に記載の液晶デバイス。
(項目76)
頭部搭載型ディスプレイの接眼レンズとともに含まれる、項目69に記載の液晶デバイス。
(項目77)
液晶デバイスであって、
基板と、
前記基板に隣接する第1の表面および前記第1の表面と反対の第2の表面を有する材料であって、前記材料は、約10nm〜約200nmのサイズを有する前記第2の表面上の複数の特徴を備える、材料と、
前記材料の前記第2の表面上の液晶材料と
を備える、液晶デバイス。
(項目78)
前記材料は、レジストを備える、項目77に記載の液晶デバイス。
(項目79)
前記複数の特徴は、メタ表面を備える、項目77に記載の液晶デバイス。
(項目80)
前記複数の特徴は、メタ材料を備える、項目77に記載の液晶デバイス。
(項目81)
ディスプレイシステムの導波路とともに含まれる、項目77に記載の液晶デバイス。
(項目82)
多重化された光流からの少なくとも1つの光流を前記導波路の中に選択的に内部結合し、前記多重化された光流からの1つまたは複数の他の光流を伝送するように構成される、項目81に記載の液晶デバイス。
(項目83)
頭部搭載型ディスプレイの接眼レンズとともに含まれる、項目77に記載の液晶デバイス。
図1は、ARデバイスを通した拡張現実(AR)のユーザのビューを図示する。
図2は、装着可能ディスプレイシステムの実施例を図示する。
図3は、ユーザのための3次元画像をシミュレートするための従来のディスプレイシステムを図示する。
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
図5A−5Cは、曲率半径と焦点半径との間の関係を図示する。
図6は、画像情報をユーザに出力するための導波路スタックの実施例を図示する。
図7は、導波路によって出力された出射ビームの実施例を示す。
図8Aは、1つまたは複数の導波路の中への多重化された画像情報の送達の実施例の斜視図を概略的に図示する。
図8Bは、複数の導波路の中への多重化された画像情報の送達の別の実施例の斜視図を概略的に図示する。
図8Cは、図8Bのディスプレイシステムの上から見下ろした図を概略的に図示する。
図8Dは、各導波路からの光を外部結合するための光再指向要素を伴う、図8Cのディスプレイシステムを図示する。
図8Eは、x−yピクセル情報を提供するための光変調デバイスを備える画像投入デバイスを含む、図8Bのディスプレイシステムを図示する。
図9Aは、液晶デバイスを製作する方法の実施形態を図示する。
図9Bおよび図9Cは、上の図9Aまたは下の図9Dに説明される方法に従って液晶デバイスを製作するために使用され得る、インプリントテンプレートの実施形態を図示する。 図9Bおよび図9Cは、上の図9Aまたは下の図9Dに説明される方法に従って液晶デバイスを製作するために使用され得る、インプリントテンプレートの実施形態を図示する。
図9Dは、液晶デバイスを製作する方法の別の実施形態を図示する。
図9E、図9F、図9G、および図9Hは、図9Aまたは図9Dに説明される方法を使用して製造され得る、液晶デバイスの種々の実施形態を図示する。 図9E、図9F、図9G、および図9Hは、図9Aまたは図9Dに説明される方法を使用して製造され得る、液晶デバイスの種々の実施形態を図示する。 図9E、図9F、図9G、および図9Hは、図9Aまたは図9Dに説明される方法を使用して製造され得る、液晶デバイスの種々の実施形態を図示する。 図9E、図9F、図9G、および図9Hは、図9Aまたは図9Dに説明される方法を使用して製造され得る、液晶デバイスの種々の実施形態を図示する。
図9Iは、図9Dに説明される方法に説明されるようなパターンを用いてインプリントされるレジスト層の実施形態を図示する。
図9Jは、複合格子パターンを伴う光学デバイスを生産するために組み合わせられ得る、第1の方向に沿って配向される別個の液滴または区分を有する第1のインプリント構造と、第2の方向に沿って配向される別個の液滴または区分を有する第2のインプリント構造とを図示する。
図9Kおよび図9Lは、本明細書に説明されるジェット堆積およびインプリント方法を使用して製作され得る、異なる偏光子構成を図示する。 図9Kおよび図9Lは、本明細書に説明されるジェット堆積およびインプリント方法を使用して製作され得る、異なる偏光子構成を図示する。
図9Mは、入射光の偏光状態を変化させ得る、光入口表面および光出口表面を有する導波路板の実施形態を図示する。
種々の図面における同様の参照番号および記号は、同様の要素を示す。
(詳細な説明)
本明細書に開示される実施形態は、概して、ディスプレイシステムを含む光学システムを含む。いくつかの実施形態では、ディスプレイシステムは、装着可能であり、ディスプレイシステムは、有利なことに、より没入型のVRまたはAR体験を提供し得る。例えば、導波路のスタックを含むディスプレイは、ユーザまたは視認者の眼の正面に位置付けられて装着されるように構成されてもよい。いくつかの実施形態では、視認者の眼に1つずつの導波路の2つのスタックが、異なる画像を各眼に提供するために利用されてもよい。
図2は、装着可能ディスプレイシステム(80)の実施例を図示する。ディスプレイシステム(80)は、ディスプレイ(62)と、そのディスプレイ(62)の機能をサポートするための種々の機械的および電子的モジュールおよびシステムとを含む。ディスプレイ(62)は、フレーム(64)に結合されてもよく、フレーム(64)は、ディスプレイシステムユーザまたは視認者(60)によって装着可能であり、ディスプレイ(62)をユーザ(60)の眼の正面に位置付けるように構成される。いくつかの実施形態では、スピーカ(66)が、フレーム(64)に結合され、ユーザの外耳道に隣接して位置付けられる(いくつかの実施形態では、示されない別のスピーカが、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供する)。ディスプレイ(62)は、有線導線または無線コネクティビティ等によって、ローカルデータ処理モジュール(70)に作用可能に結合され(68)、ローカルデータ処理モジュール(70)は、種々の構成(例えば、フレーム(64)に固定して取り付けられる、ユーザによって装着されるヘルメットまたは帽子に固定して取り付けられる、ヘッドホン内に埋設される、または別様にユーザ(60)に取り外し可能に取り付けられる(例えば、リュック式構成、ベルト結合式構成において))で搭載されてもよい。
ローカル処理およびデータモジュール(70)は、プロセッサと、不揮発性メモリ(例えば、フラッシュメモリ)等のデジタルメモリとを備えてもよく、両方とも、データの処理、キャッシュ、および記憶を補助するために利用されてもよい。データは、a)画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープ等のセンサ(例えば、フレーム(64)に作用可能に結合され得る、または別様にユーザ(60)に取り付けられ得る)から捕捉されたデータ、および/または、b)処理または読出後にディスプレイ(62)への起こり得る受け渡しのために、遠隔処理モジュール(72)および/または遠隔データリポジトリ(74)を使用して取得および/または処理されたデータを含む。ローカル処理およびデータモジュール(70)は、これらの遠隔モジュール(72、74)が相互に作用可能に結合され、ローカル処理およびデータモジュール(70)に対するリソースとして利用可能であるように、通信リンク(76、78)によって(例えば、有線または無線通信リンクを介して)、遠隔処理モジュール(72)および遠隔データリポジトリ(74)に作用可能に結合されてもよい。
いくつかの実施形態では、遠隔処理モジュール(72)は、データおよび/または画像情報を分析および処理するように構成される、1つまたは複数のプロセッサを備えてもよい。いくつかの実施形態では、遠隔データリポジトリ(74)は、デジタルデータ記憶設備を備えてもよく、これは、インターネットまたは「クラウド」リソース構成における他のネットワーキング構成を通して利用可能であり得る。いくつかの実施形態では、全てのデータが、記憶され、全ての計算は、ローカル処理およびデータモジュール内で行われ、遠隔モジュールからの完全に自律的な使用を可能にする。
「3次元」または「3−D」としての画像の知覚は、視認者の各眼への画像の若干異なる提示を提供することによって達成され得る。図3は、ユーザのために3次元画像をシミュレートするための従来のディスプレイシステムを図示する。眼4および6に1つずつの2つの別個の画像74および76が、ユーザに出力される。画像74および76は、視認者の視線と平行な光学軸またはz−軸に沿って距離10だけ眼4および6から離間される。画像74および76は、平坦であり、眼4および6は、単一の遠近調節された状態をとることによって、画像上に合焦し得る。そのようなシステムは、画像74および76を組み合わせることにより組み合わせられた画像の深度の知覚を提供するために、ヒト視覚系に依拠する。
しかしながら、ヒト視覚系は、より複雑であり、深度の現実的知覚を提供することは、より困難であることを理解されたい。例えば、従来の「3−D」ディスプレイシステムの多くの視認者は、そのようなシステムが不快であることを見出す、または深度の感覚を全く知覚しない場合がある。理論によって限定されるわけではないが、オブジェクトの視認者は、両眼離反運動および遠近調節の組み合わせに起因して、オブジェクトを「3次元」として知覚し得ると考えられる。相互に対する2つの眼の両眼離反運動の移動(すなわち、眼の視線を収束させてオブジェクト上に固定させるための相互に向かった、または相互から離れる瞳孔の転動移動)は、眼の水晶体を集束させる(または「遠近調節」)と密接に関連付けられる。通常条件下では、眼の水晶体の焦点を変化させる、または眼を遠近調節し、1つのオブジェクトから異なる距離における別のオブジェクトに焦点を変化させることは、「遠近調節−両眼離反運動反射」として知られる関係下で、同一距離までの両眼離反運動における整合変化を自動的に生じさせる。同様に、両眼離反運動における変化は、通常条件下では、遠近調節における整合変化を誘起する。本明細書に記載されるように、多くの立体視または「3−D」ディスプレイシステムは、3次元視点がヒト視覚系によって知覚されるように、各眼への若干異なる提示(したがって、若干異なる画像)を使用して、場面を表示する。しかしながら、そのようなシステムは、とりわけ、単に、場面の異なる提示を提供するが、眼が全画像情報を単一の遠近調節された状態において視認すると、「遠近調節−両眼離反運動反射」に対抗して機能するため、多くの視認者にとって不快である。遠近調節と両眼離反運動との間のより優れた整合を提供するディスプレイシステムは、3次元画像のより現実的かつ快適なシミュレーションを形成し得る。
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。図4Aを参照すると、z−軸上の眼4および6からの種々の距離におけるオブジェクトは、それらのオブジェクトに合焦するように、眼(4、6)によって遠近調節される。眼4および6は、特定の遠近調節された状態をとることにより、z−軸に沿った異なる距離におけるオブジェクトに合焦する。その結果、特定の遠近調節された状態は、特定の深度平面におけるオブジェクトまたはオブジェクトの一部に、眼がその深度平面のための遠近調節された状態にあるときに合焦するように、深度平面(14)のうちの特定の1つと関連付けられると言うことができる。いくつかの実施形態では、3次元画像は、眼(4、6)毎に画像の異なる提示を提供することによって、また、深度平面のそれぞれに対応する画像の異なる提示を提供することによってシミュレートされてもよい。
オブジェクトと眼(4または6)との間の距離は、その眼によって視認されるそのオブジェクトからの光の発散の量を変化させることができる。図5A−5Cは、距離と光線の発散との間の関係を図示する。オブジェクトと眼(4)との間の距離は、減少していく距離R1、R2、およびR3の順序で表される。図5A−5Cに示されるように、光線は、オブジェクトまでの距離が減少するにつれてより発散する。距離が増加するにつれて、光線は、よりコリメートされる。換言すると、点(オブジェクトまたはオブジェクトの一部)によって生成される光場は、点がユーザの眼から離れている距離の関数である、球状波面曲率を有すると言うことができる。曲率は、オブジェクトと眼(4)との間の距離の減少に伴って増加する。その結果、異なる深度平面では、光線の発散度もまた、異なり、発散度は、深度平面と視認者の眼4との間の距離の減少に伴って増加する。単眼(4)のみが、図示を明確にするために、図5A−5Cおよび本明細書の他の図に図示されるが、眼(4)に関する議論は、視認者の両眼(4および6)に適用され得ることを理解されたい。
理論によって限定されるわけではないが、ヒトの眼は、典型的には、深度平面の有限遠を解釈することにより、深度知覚を提供することができると考えられる。その結果、知覚された深度の非常に真実味のあるシミュレーションが、これらの限定された数の深度平面のそれぞれに対応する画像の異なる提示を眼に提供することによって達成され得る。
図6は、画像情報をユーザに出力するための導波路スタックの実施例を図示する。ディスプレイシステム1000は、複数の導波路(182、184、186、188、190)を使用して3次元知覚を眼/脳に提供するために利用され得る、導波路のスタックまたはスタックされた導波路アセンブリ(178)を含む。いくつかの実施形態では、ディスプレイシステム(1000)は、図2のシステム(80)であり、図6は、そのシステム(80)のいくつかの部分をより詳細に図式的に示す。例えば、導波路アセンブリ(178)は、図2のディスプレイ(62)の中に統合されてもよい。
図6を継続して参照すると、導波路アセンブリ(178)はまた、複数の特徴(198、196、194、192)を導波路間に含んでもよい。いくつかの実施形態では、特徴(198、196、194、192)は、レンズであってもよい。導波路(182、184、186、188、190)および/または複数のレンズ(198、196、194、192)は、種々のレベルの波面曲率または光線発散を伴って画像情報を眼に送信するように構成されてもよい。各導波路レベルは、特定の深度平面と関連付けられてもよく、その深度平面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス(200、202、204、206、208)は、画像情報を導波路(182、184、186、188、190)の中に投入するために利用されてもよく、画像投入デバイスのそれぞれは、本明細書に説明されるように、眼4に向かう出力のために各個別の導波路にわたって入射光を分散させるように構成されてもよい。光は、画像投入デバイス(200、202、204、206、208)の出力表面(300、302、304、306、308)から出射し、導波路(182、184、186、188、190)の対応する入力縁(382、384、386、388、390)の中に投入される。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波路の中に投入され、クローン化されたコリメートビームの全体場を出力してもよく、クローン化されたコリメートビームは、特定の導波路と関連付けられた深度平面に対応する特定の角度(および発散量)において眼(4)に向かって指向される。
いくつかの実施形態では、画像投入デバイス(200、202、204、206、208)は、それぞれ、対応する導波路(それぞれ、182、184、186、188、190)の中への投入のために画像情報を生成する別々のディスプレイである。いくつかの他の実施形態では、画像投入デバイス(200、202、204、206、208)は、例えば、画像情報を1つまたは複数の光学導管(例えば、光ファイバケーブル)を介して画像投入デバイス(200、202、204、206、208)のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。
コントローラ210は、スタックされた導波路アセンブリ(178)および画像投入デバイス(200、202、204、206、208)の動作を制御する。いくつかの実施形態では、コントローラ210は、例えば、本明細書に開示される種々のスキームのいずれかに従って、導波路(182、184、186、188、190)への画像情報のタイミングおよび供給量を調整する、プログラミング(例えば、非一過性媒体内の命令)を含む。いくつかの実施形態では、コントローラは、単一の一体型デバイスまたは有線もしくは無線通信チャネルによって接続される分散型システムであってもよい。コントローラ210は、いくつかの実施形態では、処理モジュール(70または72)(図2)の一部であってもよい。
導波路(182、184、186、188、190)は、全内部反射(TIR)によって各個別の導波路内で光を伝搬するように構成されてもよい。導波路(182、184、186、188、190)はそれぞれ、主要な上部表面および底部表面ならびにそれらの主要な上部表面と底部表面との間に延在する縁を伴う、平面であってもよい。図示される構成では、導波路(182、184、186、188、190)はそれぞれ、各個別の導波路内で伝搬する光を導波路から再指向し、画像情報を眼4に出力するように構成される、光再指向要素(282、284、286、288、290)を含んでもよい。光のビームは、導波路内を伝搬する光が光再指向要素に当たる場所において導波路によって出力される。光再指向要素(282、284、286、288、290)は、反射および/または回折光学特徴であってもよい。説明の容易性および図面の明確性のために、導波路(182、184、186、188、190)の底部主要表面に配置されて図示されるが、いくつかの実施形態では、光再指向要素(282、284、286、288、290)は、上部および/または底部主要表面に配置されてもよく、かつ/または導波路(182、184、186、188、190)の体積内に直接配置されてもよい。いくつかの実施形態では、光再指向要素(282、284、286、288、290)は、透明基板に取り付けられて導波路(182、184、186、188、190)を形成する材料の層内に形成されてもよい。いくつかの他の実施形態では、導波路(182、184、186、188、190)は、材料のモノリシック部品であってもよく、光再指向要素(282、284、286、288、290)は、材料のその部品の表面上および/またはその内部に形成されてもよい。
図6を継続して参照すると、本明細書に議論されるように、各導波路(182、184、186、188、190)は、光を出力し、特定の深度平面に対応する画像を形成するように構成される。例えば、眼の最近傍の導波路(182)は、そのような導波路(182)の中に投入されたコリメートされた光を眼(4)に送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の上方の導波路(184)は、眼(4)に到達し得る前に、第1のレンズ(192;例えば、負のレンズ)を通過するコリメートされた光を送出するように構成されてもよい。そのような第1のレンズ(192)は、眼/脳が、その次の上方の導波路(184)から生じる光を光学無限遠から眼(4)に向かって内向きにより近い第1の焦点面から生じるように解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の上方の導波路(186)は、眼(4)に到達する前に、その出力光に第1のレンズ(192)および第2のレンズ(194)の両方を通過させる。第1のレンズ(192)および第2のレンズ(194)の組み合わせられた屈折力は、眼/脳が、第3の導波路(186)から生じる光を、次の上方の導波路(184)からの光よりも光学無限遠から人物に向かって内向きにさらに近い第2の焦点面から生じるように解釈するように、別の漸増量の波面曲率を生成するように構成されてもよい。
他の導波路層(188、190)およびレンズ(196、198)も同様に構成され、スタック内の最高導波路(190)は、人物に最も近い焦点面を表す集約焦点力のために、その出力を最高導波路(190)と眼との間のレンズの全てを通して送出する。スタックされた導波路アセンブリ(178)の他側の世界(144)から生じる光を視認/解釈するとき、レンズ(198、196、194、192)のスタックを補償するために、補償レンズ層(180)が、スタックの上部に配置され、下方のレンズスタック(198、196、194、192)の集約力を補償してもよい。そのような構成は、利用可能な導波路/レンズ対と同じ数の知覚される焦点面を提供する。導波路の光再指向要素およびレンズの集束側面は両方とも、静的であってもよい(すなわち、動的または電気活性ではない)。いくつかの代替実施形態では、それらは、電気活性特徴を使用して動的であってもよい。
図6を継続して参照すると、光再指向要素(282、284、286、288、290)は、導波路と関連付けられた特定の深度平面のために、光をその個別の導波路から再指向し、かつ本光を適切な量の発散またはコリメーションを伴って出力するように構成されてもよい。その結果、異なる関連付けられた深度平面を有する導波路は、光再指向要素(282、284、286、288、290)の異なる構成を有してもよく、これは、関連付けられた深度平面に応じて、異なる量の発散を伴う光を出力する。いくつかの実施形態では、本明細書に議論されるように、光再指向要素(282、284、286、288、290)は、体積または表面特徴であってもよく、これは、光を特定の角度において出力するように構成され得る。例えば、光再指向要素(282、284、286、288、290)は、体積ホログラム、表面ホログラム、および/または回折格子であってもよい。回折格子等の光再指向要素は、2015年3月7日に出願された米国特許出願第14/641,376号(参照によってその全体が本明細書に援用される)に説明されている。いくつかの実施形態では、特徴(198、196、194、192)は、レンズではなくてもよい。むしろ、それらは、単に、スペーサ(例えば、クラッディング層および/または空隙を形成するための構造)であってもよい。
いくつかの実施形態では、光再指向要素(282、284、286、288、290)は、回折パターンまたは「回折光学要素」(また、本明細書では、「DOE」とも称される)を形成する回折特徴である。好ましくは、DOEは、ビームの光の一部のみがDOEの各交差点を用いて眼(4)に向かって屈折される一方、残りが全内部反射を介して導波路を通して移動し続けるように、比較的に低回折効率を有する。画像情報を搬送する光は、したがって、様々な場所において導波路から出射するいくつかの関連出射ビームに分割され、その結果、導波路内で跳反するこの特定のコリメートされたビームに関して、眼(4)に向かった非常に均一なパターンの出射放出となる。
いくつかの実施形態では、1つまたは複数のDOEは、能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であってもよい。例えば、切替可能なDOEは、ポリマー分散液晶の層を備えてもよく、その中で微小液滴は、ホスト媒体中に回折パターンを備え、微小液滴の屈折率は、ホスト材料の屈折率に実質的に整合するように切り替えられることができる(その場合、パターンは、入射光を著しく回折させない)、または微小液滴は、ホスト媒体のものに整合しない屈折率に切り替えられることができる(その場合、パターンは、入射光を能動的に回折させる)。
図7は、導波路によって出力された出射ビームの実施例を示す。1つの導波路が図示されるが、導波路のスタック(178)内の他の導波路も同様に機能し得ることを理解されたい。光(400)が、導波路(182)の入力縁(382)において導波路(182)の中に投入され、TIRによって導波路(182)内を伝搬する。光(400)がDOE(282)上に衝突する点では、光の一部は、導波路から出射ビーム(402)として出射する。出射ビーム(402)は、実質的に平行として図示されるが、本明細書に議論されるように、出射ビーム(402)はまた、導波路(182)と関連付けられた深度平面に応じて、ある角度において眼(4)に伝搬するように(例えば、発散出射ビームを形成する)再指向されてもよい。略平行出射ビームは、眼(4)からの遠距離(例えば、光学無限遠)における深度平面に対応する導波路を示し得ることを理解されたい。他の導波路は、より発散する出射ビームパターンを出力してもよく、これは、眼(4)がより近い距離に遠近調節して網膜に合焦することを要求し、光学無限遠より眼(4)に近い距離からの光として脳によって解釈される。
(パートI.多重化された画像情報)
再び図6を参照すると、導波路(182、184、186、188、または190)毎の専用画像投入デバイス(200、202、204、206、または208)の利用は、機械的に複雑であり得、画像投入デバイスおよびその関連接続の全てを収容するために大容積を要求し得る。より小さい形状因子が、装着可能ディスプレイ等のいくつかの用途のために望ましくあり得る。
いくつかの実施形態では、より小さい形状因子は、単一画像投入デバイスを使用し、情報を複数の導波路の中に投入することによって達成されてもよい。画像投入デバイスは、複数の画像情報流(本明細書では、情報流とも称される)を導波路に送達し、これらの情報流は、多重化されることが検討されてもよい。各導波路は、情報流と相互作用して特定の情報流からの画像情報をその導波路の中に選択的に内部結合する、内部結合光学要素を含む。いくつかの実施形態では、内部結合光学要素は、他の情報流のための光が他の導波路に伝搬し続けることを可能にしながら、特定の情報流からの光をその関連付けられた導波路の中に選択的に再指向する。再指向される光は、TIRによってその関連付けられた導波路を通して伝搬するような角度で再指向される。したがって、いくつかの実施形態では、単一画像投入デバイスは、多重化された情報流を複数の導波路に提供し、その複数の導波路の各導波路は、内部結合光学要素を使用して選択的に内部結合する、関連付けられた情報流を有する。
内部結合光学要素と情報流との間の選択的相互作用は、異なる光学特性を伴う情報流を利用することによって促進され得る。例えば、各情報流は、異なる色(異なる波長)および/または異なる偏光(好ましくは、異なる円偏光)の光によって形成されてもよい。順に、内部結合光学要素は、特定の偏光および/または1つもしくは複数の特定の波長の光を選択的に再指向し、それによって、特定の対応、例えば、情報流と導波路との間の1対1の対応を可能にするように構成される。いくつかの実施形態では、内部結合光学要素は、その光の特性、例えば、その光の波長および/または偏光に基づいて光を選択的に再指向するように構成される回折光学要素である。
いくつかの実施形態では、各画像投入デバイスは、それぞれ、2つ、3つ、4つ、またはそれよりも多くの情報流を複数の導波路に提供することによって、画像情報を2つ、3つ、4つ、またはそれよりも多くの導波路のうちの複数に提供する。いくつかの実施形態では、複数のそのような画像投入デバイスは、情報を複数の導波路のそれぞれに提供するために使用されてもよい。
ここで図8Aを参照すると、1つまたは複数の導波路の中への多重化された画像情報の送達の実施例が、斜視図に概略的に図示される。スタック3000は、導波路3002および3004を含み、これは、それぞれ、内部結合光学要素3012および3014を含む。いくつかの実施形態では、導波路3002および3004は、略平面板であってもよく、それぞれ、正面主要表面および背面主要表面と、これらの正面主要表面と背面主要表面との間に延在する縁とを有する。例えば、導波路3002は、正面主要表面3002aおよび背面主要表面3002bを有する。導波路の主要表面は、クラッディング層(図示せず)を含み、各導波路内の光のTIRを促進してもよい。いくつかの実施形態では、導波路のスタック3000は、図6のスタック178に対応し、本明細書に開示されるディスプレイシステム内のスタック178に取って代わるために利用されてもよい。
図8Aを継続して参照すると、光流Aおよび光流Bは、異なる光特性、例えば、異なる波長および/または異なる偏光(好ましくは、異なる円偏光)を有する。光流Aおよび光流Bは、別個の画像情報流を含む。光Aおよび光Bならびにその情報流は、光学導管3024(例えば、光ファイバ)を通して多重化された情報流として画像投入デバイス3021に伝搬される。画像投入デバイスは、光3040(多重化された情報流を組み合わせられた光流Aおよび光流Bとして含む)を導波路スタック3000の中に投入する。
いくつかの実施形態では、画像投入デバイス3021は、ファイバ352のファイバ先端をスタック3000の面積にわたって走査するために使用され得る光ファイバ352に結合される、アクチュエータ3020(圧電アクチュエータ等)を含む。そのような走査ファイバ画像投入デバイスの実施例は、2015年3月7日に出願された米国特許出願第14/641,376号(参照によってその全体が本明細書に援用される)に開示されている。いくつかの他の実施形態では、画像投入デバイス3021は、不動であってもよく、いくつかの実施形態では、光を複数の角度からスタック3000に向かって指向してもよい。
いくつかの実施形態では、各導波路は、内部結合光学要素を含む。例えば、導波路3002は、内部結合光学要素3012を含み、導波路3004は、内部結合光学要素3014を含む。内部結合光学要素3012および3014は、光流Aおよび光流Bのうちの1つを選択的に再指向するように構成される。例えば、内部結合光学要素3012は、光流Aの少なくとも一部を選択的に再指向し、その光流を光導波路3002の中に内部結合してもよい。光流Aの内部結合された部分は、導波路3002を通って光3042として伝搬する。いくつかの実施形態では、光3042は、その導波路の主要表面3002aおよび3002bからのTIRによって導波路3002を通って伝搬する。同様に、内部結合光学要素3014は、光流Bの少なくとも一部を選択的に再指向し、その光流を光導波路3004の中に内部結合してもよい。光流Bの内部結合された部分は、導波路3004を通って光3044として伝搬する。いくつかの実施形態では、光3044は、その導波路の主要表面3004aおよび3004bからのTIRによって導波路3004を通って伝搬する。
図示されるように、いくつかの実施形態では、多重化された光流3040は、光流Aおよび光流Bの両方を同時に含み、上記で議論されるように、光流Aは、導波路3002に内部結合される一方、光流Bは、導波路3004に内部結合されてもよい。いくつかの他の実施形態では、光流Aおよび光流Bは、導波路スタック3000に異なる時間に提供されてもよい。そのような実施形態では、単一導波路のみが、本明細書に議論されるように、これらの情報流を受信するために、利用されてもよい。いずれの場合も、光流Aおよび光流Bは、光学結合器3050によって光学導管3024に結合されてもよい。いくつかの実施形態では、光学結合器3050は、光学導管3024を通した伝搬のために、光流Aおよび光流Bを組み合わせてもよい。
図8Aを継続して参照すると、いくつかの実施形態では、光学部3030が、画像投入デバイス3021と内部結合光学要素3012および3014との間に配置されてもよい。光学部3030は、例えば、光を内部結合光学要素3012および3014上に集束させることによって、例えば、光線を種々の内部結合光学要素3012および3014上に指向することを促進するレンズを含んでもよい。いくつかの実施形態では、光学部は、画像投入デバイス3021の一部であり、例えば、画像投入デバイス3021の端部におけるレンズであってもよい。いくつかの実施形態では、光学部3030は、完全に省略されてもよい。
内部結合光学要素3012および3014は、光流Aおよび光流Bを、それらの光流間で異なる1つまたは複数の光特性に基づいて、選択的に再指向するように構成されることを理解されたい。例えば、光流Aは、光流Bと異なる波長を有してもよく、内部結合光学要素3012および3014は、波長に基づいて、光を選択的に再指向するように構成されてもよい。好ましくは、異なる波長は、異なる色に対応し、これは、同一色の異なる波長を使用することに関する内部結合光学要素の選択性を改良することができる。
いくつかの実施形態では、光流Aは、光流Bと異なる偏光を有してもよく、内部結合光学要素3012および3014は、偏光に基づいて、光を選択的に再指向するように構成されてもよい。例えば、内部結合光学要素3012および3014は、偏光に基づいて、光を選択的に再指向するように構成されてもよい。いくつかの実施形態では、光流Aおよび光流Bは、異なる円偏光を有する。いくつかの実施形態では、光流Aおよび光流Bは、例えば、異なる波長および異なる偏光の両方を含む、光特性における複数の差異を有してもよい。
いくつかの実施形態では、内部結合光学要素3012および3014は、回折格子(例えば、液晶偏光格子等の液晶を備える格子)を含む、回折光学要素である。いくつかの実施形態では、光学要素は、約数ナノメートルまたは数十ナノメートルの特徴サイズを伴うパターンを有する表面等のメタ表面(例えば、PBPEを備える)を含んでもよい。好適な内部結合光学要素3012および3014の実施例は、光学要素2000b、2000d(図9A)および図9E−9Hの光学要素を含む。有利なことに、そのような光学要素は、異なる偏光および/または異なる波長の光を選択的に再指向する際に非常に効率的である。
ここで図8Bを参照すると、複数の導波路の中への多重化された画像情報の送達の別の実施例が、斜視図に概略的に図示される。スタック3000は、画像情報がスタック3000を通して個々の導波路およびユーザの眼に適正に提供される得る限り、2つよりも多くの導波路、例えば、4、6、8、10、12、または他の数の導波路を含むことができることを理解されたい。図示されるスタック3000は、導波路3002および3004に加え、導波路3006および3008を含む。導波路3006および3008は、それぞれ、内部結合光学要素3012および3014を含む。いくつかの実施形態では、導波路3002、3004、3006、および3008は、それぞれが異なる光特性を有する光を再指向および内部結合するように構成され得る内部結合光学要素を除いて、類似し得る。いくつかの他の実施形態では、複数の導波路のための内部結合光学要素は、類似し得る。図8Aに関連する本明細書の全本開示は、図8Bにも適用されるが、図8Bにおける導波路の数は、図8Aのものよりも多いことを理解されたい。
図8Bを継続して参照すると、光流A、B、C、およびDは、異なる光特性、例えば、異なる波長および/または異なる偏光(好ましくは、異なる円偏光)を有する。例えば、光流A、B、C、およびDはそれぞれ、異なる波長の光を含んでもよい。いくつかの他の実施形態では、異なる波長および偏光の種々の組み合わせが可能性として考えられる。例えば、AおよびBは、類似波長および異なる偏光を有してもよく、CおよびDは、類似波長および異なる偏光を有してもよく、AおよびBは、CおよびDと異なる。光流A、B、C、およびDは、光学導管3024を通して多重化された情報流として画像投入デバイス3021に伝搬され、画像投入デバイス3021は、多重化された情報流の光3040を導波路スタック3000の中に投入する。本明細書に議論されるように、多重化された情報流は、全光流を同時に含んでもよい、または光流のうちの1つもしくは複数のものは、スタック3000に異なる時間に指向されてもよい。
いくつかの実施形態では、各導波路は、光をその導波路の中に選択的に内部結合する、内部結合光学要素を含む。例えば、導波路3002は、内部結合光学要素3012を含み、内部結合光学要素3012は、光流Aをその導波路の中に内部結合するように構成されてもよく、これにより、光流Aは、TIRによってその導波路内を光3042として伝搬し、導波路3004は、内部結合光学要素3014を含み、内部結合光学要素3014は、光流Bをその導波路の中に内部結合するように構成されてもよく、これにより、光流Bは、TIRによってその導波路内を光3044として伝搬し、導波路3006は、内部結合光学要素3016を含み、内部結合光学要素3016は、光流Cをその導波路の中に内部結合するように構成されてもよく、これにより、光流Cは、TIRによってその導波路内を光3046として伝搬し、導波路3008は、内部結合光学要素3018を含み、内部結合光学要素3018は、光流Dをその導波路の中に内部結合するように構成されてもよく、これにより、光流Dは、TIRによってその導波路内を光3048として伝搬する。
いくつかの実施形態では、単一光流(例えば、光流A、B、C、またはD)が、単一導波路に内部結合されてもよいことを理解されたい。いくつかの他の実施形態では、複数の光流が、同一導波路に内部結合されてもよい。好ましくは、そのような配列では、光流は、異なる時間に内部結合される。いくつかの実施形態では、そのような時間的に分離された内部結合は、画像投入デバイスが特定の導波路のための情報流を異なる時間に提供すると同時に、複数の異なる光特性(例えば、複数の異なる波長または複数の異なる偏光)に基づいて光を選択的に方向転換させる、内部結合光学要素を使用して達成されてもよい。例えば、光流AおよびBは両方とも、導波路3002に内部結合されてもよく、内部結合光学要素3012は、光流CおよびDが通過することを可能にしながら、光流AおよびBを選択的に内部結合し、光流AおよびBは、光を内部結合光学要素3012に異なる時間に提供する一方、同時に、光流Cおよび/またはDを内部結合光学要素3012に提供する。1つまたは複数の他の導波路が同様に、複数の光流をそれらの導波路に内部結合するように構成されてもよいことを理解されたい。
いくつかの他の実施形態では、複数の光流(例えば、光流Aおよび光流B)が、同時に、内部結合光学要素(例えば、内部結合光学要素3012)に提供されてもよく、内部結合光学要素は、光流Aを内部結合することまたは光流Bを内部結合することの間で選択するように状態を変化させるように構成されてもよい。例えば、いくつかの実施形態では、内部結合光学要素は、電極(例えば、ITO等の透明電極)間に配置される液晶材料から形成される格子であってもよい。液晶は、電圧電位の印加を用いて、状態(例えば、配向)を変化させてもよく、1つの状態は、1つの光流(例えば、光流A)を選択的に内部結合するように構成され、別の状態は、全光流(例えば、光流Aおよび光流Bの両方)に対して透明であるように構成される。いくつかの実施形態では、異なる格子を形成する、切替可能な液晶材料の別の層が、電極間に提供されてもよく、1つの状態は、異なる光流(例えば、光流B)を選択的に内部結合するように構成され、別の状態は、全光流(例えば、光流Aおよび光流Bの両方)に対して透明であるように構成される。いくつかの他の実施形態では、両タイプの液晶材料が、同一レベルであるが、異なる面積内に配置されてもよい。液晶材料は、1つのタイプの材料が光流に対して透明であるとき、他のタイプが特定の光流の光を選択的に内部結合する、かつその逆も同様であるように構成されてもよい。
ここで図8Cを参照すると、図8Bのディスプレイシステムの上から見下ろした概略図が、図示される。上から見下ろした図は、図8Bのスタック3000の上部縁に沿って見下ろされている。図示されるように、いくつかの実施形態では、多重化された光流3040の一部は、導波路3002、3004、3006、および3008のそれぞれの中に内部結合された光3042、3044、3046、および3048として選択的に内部結合される。
本明細書に議論されるように、導波路は、導波路の内側を伝搬した光を出力または外部結合する光再指向要素(例えば、光再指向要素(282、284、286、288、290))を含んでもよく、これにより、外部結合された光が視認者の眼4(図6)に向かって伝搬する。図8Dは、図8Cのディスプレイシステムを図示し、各導波路からの光を外部結合するための光再指向要素を伴う。例えば、導波路3002は、外部結合光再指向要素3062を含み、導波路3004は、外部結合光再指向要素3064を含み、導波路3006は、外部結合光再指向要素3066を含み、導波路3008は、外部結合光再指向要素3068を含む。いくつかの実施形態では、外部結合光再指向要素は、異なる光再指向要素の群を含んでもよく、それぞれ、異なるように機能する。例えば、外部結合光再指向要素3062は、第1の群の光再指向要素3062aおよび第2の群の光再指向要素3062bを含んでもよい。例えば、光再指向要素3062bは、射出瞳エキスパンダ(EPE;少なくとも1つの軸においてアイボックスの寸法を増加させる)であってもよく、光再指向要素3062aは、直交瞳エキスパンダ(OPE;EPEの軸を交差する、例えば、直交する軸においてアイボックスの寸法を増加させる)であってもよい。EPEおよびOPEは、2014年5月30日に出願された米国仮特許出願第62/005,807号(その全開示は、参照によって本明細書に援用される)に開示されている。
画像は、エンコードされたx−yピクセル情報を伴う情報流を使用して、導波路によって形成されることを理解されたい。例えば、異なる色の情報流はそれぞれ、画像のためのx−yピクセル情報に対応するx−yグリッド上の特定の場所の光の強度を示してもよい。理論によって限定されるわけではないが、情報流と導波路との整合は、光の特性を使用して達成され、必ずしも、その光によって提供されるx−yピクセル情報に依存しないことも理解される。その結果、x−yピクセル情報は、光が内部結合光学要素3012、3014、3016、および3018に衝突する前に、光の経路に沿って任意の好適なデバイスを使用して任意の好適な場所にエンコードされ得る。
いくつかの実施形態では、光源(例えば、LEDまたはOLED)がピクセル化され、所望の光特性(例えば、所望の波長および/または偏光)を有する光を出力可能である場合、情報流は、光源から放出されると、所望の光特性およびエンコードされたx−yピクセル情報の両方を有するように形成されてもよい。いくつかの他の実施形態では、所望の光特性を有する光は、光変調デバイスを通過し、光変調デバイスの中でx−yピクセル情報がエンコードされる。図8Eは、図8Bのディスプレイシステムを図示し、x−yピクセル情報を画像情報流に提供するための光変調デバイス3070を示す。いくつかの実施形態では、光変調デバイス3070は、画像投入デバイス3021の一部であってもよく、画像情報を導波路に提供するための走査ファイバまたは1つもしくは複数の定常開口ディスプレイデバイスを使用して、画像情報を提供するように構成されてもよい。いくつかの実施形態では、光変調デバイス3070は、光がデバイスを通過するにつれて光を修正する(例えば、光の強度は、制御可能可変光伝送を有するピクセル要素を通過させることによって修正されてもよい)。いくつかの他の実施形態では、光変調デバイスは、光を選択的に再指向(例えば、反射)させ、導波路スタック3000の中に伝搬させることによって光を修正してもよい。光変調デバイスの実施例は、透過性液晶ディスプレイおよびマイクロミラーデバイス(Texas Instruments, Inc.から利用可能なもの等の「デジタル光処理」または「DLP」システム等)を含む。
(パートII.Pancharatnam−Berry Phase Effect(PBPE)構造を伴う液晶偏光格子)
本節は、液晶、偏光格子、およびPancharatnam−Berry Phase Effect(PBPE)構造、その製作方法、ならびに他の構造および方法に関する。いくつかの実施形態では、高回折効率、入射角度に対する低感度、および高波長感度を有する液晶格子構造を製造するための方法および装置が、提供される。本明細書に説明される種々の方法は、インクジェット技術を使用して、液晶材料の層を堆積させることと、インプリントテンプレートを使用して、液晶材料を整合させることとを含む。
いくつかの実施形態では、本パートIIに開示される液晶、偏光格子、およびPancharatnam−Berry Phase Effect(PBPE)構造は、導波路スタック178(図6)または3000(図8A−8E)の種々の導波路のための光再指向要素を形成するために利用されてもよい。例えば、そのような液晶、偏光格子、およびPancharatnam−Berry Phase Effect(PBPE)構造は、有利なことに、内部結合光学要素3012、3014、3016、および/または3018(図8A−8E)を含む、本明細書に開示される種々の内部結合光学要素を形成するために適用され得る。
種々の結像システムおよび光学信号処理システムは、光学波面、波長、偏光、位相、強度、角度および/または光の他の特性を制御/操作するための液晶デバイスを含むことができる。液晶は、部分的に順序付けられた材料であり、その分子は、多くの場合、ある方向に沿って整合され得る、ロッドまたは板もしくはいくつかの他の形態のように成形される。液晶の分子が配向される方向は、液晶材料に入射する光の特性を制御/操作するために使用され得る、電磁力の印加によって操作されることができる。
液晶デバイスおよび特定の結果として生じる構造を製造する方法が、本明細書に説明される。
以下の詳細な説明は、革新的側面を説明する目的のためにある実施形態を対象とする。しかしながら、本明細書における教示は、多数の異なる方法で適用されることができる。以下の説明から明白となるように、革新的側面は、入射光の1つまたは複数の特性を操作するように構成される、任意の光学構成要素またはデバイス内に実装されてもよい。
以下により完全に議論されるように、本明細書に説明される革新的側面は、ジェット堆積技術を使用して、液晶デバイスを製作することを含む。例えば、液晶デバイスを製造する方法のある実施形態では、液晶材料の層が、ジェット堆積技術(例えば、インクジェット技術)を使用して、基板上に堆積される。表面起伏特徴(例えば、PBPE構造)が、テンプレートを使用して、ジェット堆積された液晶材料の層内にインプリントされることができる。表面起伏特徴は、特定の光再指向特性を達成するように構成されてもよい(例えば、特定の間隔および/または高さを伴って)。いくつかの他の実施形態では、インプリントは、異なるレベルで繰り返されることにより、連続層状断面を生産することができ、連続層状断面は、組み合わせにおいて、(「バルク」体積位相材料およびデバイス内に存在するような)体積特徴として挙動し得る。種々の実施形態では、これらの表面起伏特徴(および連続層状断面)は、「ブラッグ」構造としてモデル化されることができる。概して、そのような構造は、二元表面起伏特徴を生産するために使用されることができ、二元表面起伏特徴において、回折を生成する、材料/空気界面、レジスト/空気界面、樹脂/空気界面、もしくは液晶材料/空気界面、または、回折を生成する、材料/低屈折率レジスト界面、レジスト/低屈折率レジスト界面、樹脂/低屈折率レジスト界面、もしくは液晶材料/低屈折率レジスト界面が存在する。これらの場合、格子は、ブラッグ構造ではなく、「ラマン・ナス」構造としてモデル化されることができる。液晶材料の分子は、ナノ構造の物理的形状および液晶(LC)材料とのその静電相互作用に起因して、インプリントのプロセスを通して整合される。インプリントパターンを使用した液晶層の整合は、以下により詳細に議論される。
種々の実施形態では、光整合層としての役割を果たすための材料(例えば、ポリマー)の層が、例えば、基板または事前コーティングされた基板上へのインクジェットを介して、ジェット堆積技術(材料のジェットまたは流れが基板上に指向される)を使用して堆積されてもよい。光整合層は、所望のLC配向パターンを組み込むテンプレートを使用して、ナノインプリントによってパターン化される。いくつかの実施形態では、本パターンは、PBPEパターンであり、物理的起伏を備えるテンプレートが、干渉および/またはリソグラフィック技法を用いて作製されてもよい。テンプレートは、軟質ポリマー樹脂上に降下され、UV光が、樹脂を固定状態に硬化させるために使用される。いくつかの実施形態では、毛細管作用が、硬化される前に、テンプレートをポリマー材料で充填させる。テンプレートは、後退され、パターン化され、硬化された樹脂を基板上の定位置に残す。堆積プロセス(例えば、ジェットまたはスピンコーティング)を使用する、第2のステップが、LC(例えば、樹脂中に懸濁されたLC)の層を光整合層の上部に適用する。LCは、その下方の光整合層パターンに整合し、これが生じると、樹脂は、UV光、熱、または両方の組み合わせを使用して定位置に固定される。いくつかの他の実施形態では、溶媒(例えば、樹脂)中に懸濁されたLCが、堆積(例えば、ジェットまたはスピンコーティングを使用して分散)され、ナノインプリントパターン(例えば、PBPEパターン)を含むテンプレートが、LC材料と接触するように降下される。LCは、テンプレートの起伏プロファイルを取り込み(例えば、テンプレート内の開口部の中への毛細管作用によって)、LC材料は、硬化プロセス(例えば、UV、熱、または両方の組み合わせ)を使用して定位置に固定される。結果として生じる構造は、直接、機能要素として使用されてもよい、またはある場合には、低屈折率材料が、インプリントされた液晶材料にわたって堆積され、液晶材料内にインプリントされた表面特徴間の間質区域を充填することができる。
低屈折率材料は、液晶ベースのレジストの粘弾性および化学特性を調整することによって、または低屈折率材料の上部表面と平坦化インプリントテンプレート(例えば、略平面表面を有するテンプレート)を接触させることによって、平坦化層として構成されることができる。いくつかの他の実施形態では、低屈折率材料は、化学および/または機械的平坦化プロセスによって平坦化されることができる。平坦化プロセスは、好ましくは、平滑である平坦化された表面を形成し、粗表面によって生じ得る光学アーチファクトを低減させるように選択される。付加的液晶層等の付加的層が、ジェット技術を使用して、液晶層にわたって堆積されることができる。液晶の異なる層内のPBPE構造は、異なる波長の光を回折、操向、および/または分散させる、または組み合わせるように構成されることができる。例えば、赤色波長、緑色波長、および青色波長が、異なる液晶層内のPBPE構造によって、異なる方向に沿って回折、分散、または再指向されることができる。
異なる液晶層は、好ましくは、十分な構造安定性および接着性を提供し、層が相互にわたってスタックされることを可能にする、材料を用いて形成される。いくつかの実施形態では、光学的に透過性の硬化された構造を形成する重合性材料を含む、有機または無機インプリントレジスト材料が、使用されてもよい。実施例として、液晶層は、アクリル液晶調合物を含むことができる。アクリル液晶層は、相互の上に層をスタックすることを促進する、接着特性を提供することができる。
本明細書に議論されるように、液晶材料および低屈折率材料は両方とも、流動性材料であってもよいことを理解されたい。いくつかの実施形態では、これらの材料は、インプリントテンプレートと接触後、接触テンプレートを除去する前に、それらを不動態化するプロセスを受けてもよい。不動態化プロセスは、本明細書に議論されるように、硬化プロセスを含んでもよい。
別の実施例として、液晶デバイスを製造する方法の別の実施形態では、フォトレジスト材料(例えば、樹脂またはポリマー)の層が、基板上に堆積される。堆積は、スピンコーティングを含む、種々の堆積方法によって遂行されてもよい。より好ましくは、いくつかの実施形態では、堆積は、ジェット技術(例えば、インクジェット技術)を使用して遂行される。フォトレジストは、表面起伏特徴(例えば、PBPE構造)を有するインプリントテンプレートまたは型を用いてインプリントされる。液晶材料の層が、ジェット技術を使用して、フォトレジストのインプリントされた層上に堆積されることができる。インプリントされたフォトレジスト層は、整合層としての役割を果たし、堆積されるにつれて、液晶材料の分子を整合させることができる。付加的液晶層等または液晶を備えない層等の付加的層が、ジェット技術を使用して、液晶層にわたって堆積されることができる。種々の実施形態では、平坦化層が、堆積された液晶層にわたって堆積されることができる。
本明細書で議論される実施形態では、例えば、ドープ液晶、非ドープ液晶等の異なるタイプの液晶材料、および他の非液晶材料が、インクジェット技術を使用して堆積されることができる。インクジェット技術は、薄い制御された(例えば、均一)厚さの堆積された液晶層または平坦化層を提供することができる。インクジェット技術はまた、表面上の異なる区域内に異なる厚さを有する液晶の層または他の層等の異なる厚さの層を提供することができ、異なるパターン高さに適応し、一定残留層厚さをインプリントされたパターンの真下に保つことができる。インクジェット技術は、有利なことに、薄い層、例えば、約10nm〜1ミクロン、または約10nm〜約10ミクロンの厚さを提供することが可能であり、スピンコーティング等の他の技法と比較して、無駄を削減することができる。インクジェット技術は、同一基板上への異なる液晶組成物の堆積を促進することができる。加えて、インクジェットナノインプリントは、非常に薄い残留層厚さを生産することができる。図示される実施形態では、インプリントパターンの下方の均一区域は、残留層に対応することができる。PBPEおよび他の回折構造は、非常に薄いまたはゼロ残留層厚さを伴う、可変かつ時として向上された性能を呈することができる。インクジェットナノインプリントアプローチは、異なるタイプの材料を所与の基板を横断して同時に堆積するために使用されることができ、可変厚材料を単一基板上の異なる区域内に同時に生産するために使用されることができる。これは、特に、レジストの他の材料および/または厚さを要求し得るより従来の回折構造と単一基板内で組み合わせられるとき、PBPE構造にとって有益であり得る。
ジェット技術によって堆積される液晶層は、UV硬化、熱的方法、凍結、焼鈍、および他の方法を使用して硬化されることができる。インプリントテンプレートは、複雑な溝幾何学形状(例えば、複数の段を伴う溝、異なる配向を伴う格子等)を含むことができる。本明細書に説明される方法を使用して製造される液晶デバイスは、異なる配向および異なるPBPE構造を伴う格子を備える、液晶層を含むことができる。
本明細書に説明されるインクジェット技術を使用する製造方法はまた、増加された透過率を有する偏光子ならびに/またはサブ波長特徴および/もしくはメタ材料を備える波長板を製造するように構成されることができる。これらおよび他の側面は、以下で詳細に議論される。
図9Aは、好ましくは、インクジェット技術を使用して、液晶デバイスを製作する方法の実施形態を図示する。図9Aに図示される方法の実施形態では、液晶材料の層2000bが、パネル(i)に示されるように、例えば、インクジェット技術を使用して、基板2000a上に堆積される。液晶材料は、ドープまたは非ドープ液晶材料を含むことができる。種々の実施形態では、液晶材料は、ポリマー安定化ネマチック液晶材料であることができる。基板2000aは、ガラス、プラスチック、サファイア、ポリマー、または任意の他の基板材料を含むことができる。液晶材料の層2000bは、約20ナノメートル〜2ミクロンの厚さを有することができる。いくつかの実施形態では、液晶材料の層2000bは、約0.5ミクロン〜約10ミクロンの厚さを有することができる。
液晶材料の層2000bは、パネル(ii)に示されるように、波長およびサブ波長スケール表面特徴を含む、インプリントパターン2000cを用いてインプリントされることができる。表面特徴は、入射光の位相を直接操作し得る、PBPE構造を含むことができる。いかなる一般性も失うことなく、PBPE構造は、一種の偏光格子構造と見なされることができる。種々の実施形態では、インプリントパターン2000cは、PBPE構造を備える、溝のアレイを含むことができる。溝のアレイは、高回折効率および入射角度に対する低感度を有し得る、液晶格子構造を形成することができる。溝は、約20nm〜約1ミクロンの深度および約20nm〜約1ミクロンの幅を有することができる。いくつかの実施形態では、溝は、約100nm〜約500nmの深度および約200nm〜約5000nmの幅を有することができる。いくつかの実施形態では、溝は、約20nm〜約500nmの深度および約10nm〜約10ミクロンの幅を有することができる。PBPE構造は、位相プロファイルを光学軸の局所配向上に直接エンコードするサブ波長パターンを含むことができる。PBPE構造は、液晶格子構造の表面上に配置されることができる。PBPE構造は、約20nm〜約1ミクロンの特徴サイズを有することができる。いくつかの実施形態では、PBPE構造は、約10nm〜約200nmの特徴サイズを有することができる。いくつかの実施形態では、PBPE構造は、約10nm〜約800nmの特徴サイズを有することができる。種々の実施形態では、下層PBPE構造は、LCの体積配向のための整合層として使用されることができる。体積成分は、この場合、LCが必然的に自らを整合層と整合させるにつれて、自動的に発生する。別の実施形態では、PBPE整合を含む複数の層とLC層とを異なるように整合させ、システムの回折特性を複合体として変化させ、例えば、各サブ層が波長の選択サブセットのみに作用するため、複数の波長作用を多重化することが望ましくあり得る。
種々の実施形態では、インプリントパターン2000cは、例えば、図9Bに示されるように、複数の溝および陥凹を含む積層幾何学形状等の複数の溝またはより複雑なパターン等の単純幾何学的パターンを含むことができる。種々の実施形態では、インプリントパターン2000cは、複数のインプリント層を含むことができ、各インプリント層は、図9Cに示されるように、異なるインプリントパターンを含む。図9Cに示されるインプリントパターンでは、インプリント層2000c−1、インプリント層2000c−2、およびインプリント層2000c−3は、隣接する溝間の空間を徐々に減少させる複数の溝を含む。種々の実施形態では、インプリントパターンは、山形、渦巻、弧等のパターンを含むことができる。インプリントパターンは、電子ビームリソグラフィまたは他のリソグラフィ方法等の方法を使用して、半導体材料または他の構造上に製作されることができる。
図9Aを参照すると、液晶材料の層2000bは、インプリントされたパターンに整合される。隣接する溝間の空間は、材料2000dで充填されることができる。いくつかの実施形態では、充填材料は、パネル(iii)に示されるように、液晶材料の屈折率未満のより低い屈折率を有する透明材料を備えてもよい。そのような構成は、例えば、導波路構造内で使用されることができる。このように、高屈折率差が、液晶格子が高回折効率を有し得るように、液晶格子構造とその周囲との間に得られることができる。前述のように、PBPE LC格子は、材料/空気界面、レジスト/空気界面、樹脂/空気界面、または液晶材料/空気界面を伴って作製されてもよく、空気は、低屈折率「材料」である。しかしながら、ある場合には、可能性として近接触して、材料の別の層を以前にパターン化された層の上に設置することが望ましくあり得、この場合、異なる屈折率をPBPE構造間に保存するのみならず、上記の積層可能層を提供する低屈折率硬化性樹脂を分散および平坦化することが望ましくあり得る。種々の実施形態では、液晶格子は、ブラッグ液晶格子として構成されることができる。種々の実施形態では、低屈折率材料2000dの層は、平坦化層として構成されることができる。そのような実施形態では、低屈折率材料2000dの層は、パネル(iv)に示されるように、別のインプリントパターン2000eによって平坦化されるように構成されることができる。
図9Dは、好ましくは、インクジェット技術を使用して、液晶デバイスを製作する方法の別の実施形態を図示する。図9Aに図示される方法の実施形態では、レジストの層2000fは、パネル(i)に示されるように、インクジェット技術を使用して、基板2000a上に堆積される。レジストは、例えば、有機および無機ベースのインプリント材料、樹脂、またはポリマー等の材料を含むことができる。例えば、レジストは、米国特許第8,076,386号(参照によってその全体が本明細書に援用される)に開示される材料を含むことができる。いくつかの実施形態では、レジスト層9Fは、約20nm〜約1ミクロンの厚さを有することができる。いくつかの実施形態では、レジスト層9Fは、約10nm〜約5ミクロンの厚さを有することができる。レジスト層2000fは、パネル(ii)に示されるように、体積および/または表面特徴を含むインプリントパターン2000cを用いてインプリントされることができる。液晶材料の層2000bは、パネル(iii)に示されるように、インプリントされたレジスト層2000f上にインクジェットによって配置されることができる。インプリントされたレジスト層は、インプリントされたレジスト層2000f上にジェット堆積されるにつれて、液晶材料を整合させる役割を果たすことができる。
上記で説明される方法を使用して製作される液晶デバイスは、UV硬化、熱硬化、凍結、または他の硬化方法を使用して硬化されることができる。
液晶デバイスを製作する方法の別の実施形態は、Jet and FlashTM Imprinting Lithography(J−FIL)を使用して、所望の整合構造をUV硬化性レジスト内にインプリントすることと、液晶ポリマー調合物をインクジェットから分散させることとを含む。液晶ポリマーは、高溶媒含有量を有し、例えば、十分に低粘度を提供し、インクジェットを通した効率的放出を可能にすることができる。種々の実施形態では、液晶ポリマーは、分散されるにつれて、等方性状態にあることができる。いくつかの実施形態では、液晶ポリマーは、溶媒を撥ね飛ばすことによって、レジスト内の整合構造に沿って整合するように構成されることができる。付加的液晶ポリマー層が、前述の方法に従って、配置された液晶ポリマー層の上に配置されることができる。溶媒中の液晶材料の調合および粘度もまた、分散された液晶材料のための迅速乾燥プロセスを達成するために調節されてもよい。
図9E−9Hは、前述の方法を使用して製作される液晶格子の実施形態を図示する。図9Eは、高回折効率、高波長感度、および入射角度に対する低感度を有するPBPE構造を含む、単一層液晶格子を図示する。図9Eに図示される液晶格子は、図9Aに描写されるプロセスを使用して製造されることができる。例えば、液晶ポリマーLCP1が、基板上に堆積されることができ、インプリントテンプレートが、液晶ポリマーLCP1の分子がインプリントされたパターンに自己整合されるように、パターンを液晶ポリマーLCP1上にインプリントするために使用されることができる。パターンは、メタ表面(例えば、PBPE構造)を含むことができる。図9Fは、高回折効率、高波長感度、および入射角度に対する低感度を有するPBPE構造を含む、液晶格子を図示する。図9Fに図示される実施形態では、液晶格子は、図9Dに描写されるプロセスを使用して製造されることができる。例えば、ポリマー(例えば、レジストまたは樹脂)を備える整合層が、基板上に堆積されることができ、インプリントテンプレートが、パターンをポリマー上にインプリントするために使用されることができる。液晶材料の層が、液晶層の分子が整合層上のインプリントされたパターンに整合されるように、整合層上に堆積される。パターンは、メタ表面(例えば、PBPE構造)の一部であることができる。種々の実施形態では、第1の液晶層(LCP1)のPBPE構造は、第2の液体層(LCP2)のための整合構造としての役割を果たすことができる。
図9Gは、高回折効率、高波長感度、および入射角度に対する低感度を有するPBPE構造を含む、3つの層液晶格子を図示する。複数層液晶格子が、図9Aまたは図9Dに描写されるプロセスを使用して製造されることができる。例えば、図9Dのプロセスを使用して、図9Gに図示される複数層液晶格子が、基板上に堆積される第1のインプリントパターンを備える第1の整合層を使用して、第1の液晶層(LCP1)の分子を整合させ、第1の整合層上に堆積される第2のインプリントパターンを備える第2の整合層を使用して、第2の液晶層(LCP2)の分子を整合させ、第2の整合層上に堆積される第3のインプリントパターンを備える第3の整合層を使用して、第3の液晶層(LCP3)の分子を整合させることによって製造されることができる。いくつかの実施形態では、図9Aのプロセスは、整合された液晶分子を有する、第1、第2、および第3の液晶層(それぞれ、LCP1、LCP2、およびLCP3)のうちの1つまたは複数のものを形成するために利用されてもよい。そのような実施形態では、LCP1、LCP2、およびLCP3はそれぞれ、パターンを基板にわたって堆積される液晶層内にインプリントすることによって形成されてもよい。インプリントは、液晶分子をパターンに整合させるパターンを有するインプリントテンプレートを使用して遂行されてもよい。インプリントテンプレートは、続いて、除去されてもよく、充填材が、インプリントテンプレート除去によって残された間隙の中に堆積されてもよい。
図9Gを継続して参照すると、第1、第2、および第3のインプリントパターンはそれぞれ、メタ表面(例えば、PBPE構造)であることができる。第1、第2、および第3のインプリントパターンは、各インプリントパターンが、入射ビーム内の光の異なる波長を選択的に回折/再指向し、1つまたは複数の導波路内に異なる波長のそれぞれを結合するよう構成されるように、異なることができる。いくつかの実施形態では、入射ビーム内の光の異なる波長は、1つまたは複数の導波路の中に同一角度で結合されることができる。しかしながら、いくつかの他の実施形態では、以下に議論されるように、入射ビーム内の光の異なる波長は、1つまたは複数の導波路の中に異なる波長で結合されることができる。いくつかの他の実施形態では、第1の液晶層(LCP1)のPBPE構造は、第2の液体層(LCP2)のための整合構造としての役割を果たすことができ、第2の液体層(LCP2)のための整合構造は、順に、第3の液体層(LCP3)のための整合構造としての役割を果たすことができる。図9Gに図示される実施形態は、光の入射ビーム内の光の異なる波長が空間的に分離されるように異なる出力角度で回折または再指向されるように、異なるPBPE構造を含むことができる。種々の実施形態では、光の入射ビームは、単色性または多色性であることができる。逆に言えば、複数層液晶構造は、図9Hに図示されるように、光の異なる波長を組み合わせるために使用されることができる。
図9Iは、図9Bに図示されるインプリントパターンを用いてインプリントされたレジスト層の断面を図示する。
前述のように、液晶層は、種々の材料を用いて形成されることができる。例えば、いくつかの実施形態では、アクリル液晶調合物が、インクジェットおよびインプリント技術を使用して、ポリマー整合インプリント構造にわたって配置されることができる。アクリル組成物は、異なる液晶層を相互の上にスタックすることを促進することができ、これは、接着剤層を伴わずに相互に接着し、それによって、プロセスをより単純にすることができる。異なる液晶層は、所望の効果、例えば、所望の偏光、回折、操向、または分散効果を達成するためにスタックされることができる。
前述の方法は、線形サブマスタをジェット分配技術(例えば、J−FIL)と併用して、液晶偏光格子およびパターン化された誘導層を製作するために使用されることができる。異なる液晶格子構造は、異なる形状、配向、および/またはピッチを伴う構造を組み合わせることによって製作されることができる。本プロセスは、第1の方向に沿って配向される別個の散液滴または区分を有する第1のインプリント構造と、第2の方向に沿って配向される別個の液滴または区分を有する第2のインプリント構造とを図示する、図9Jを参照してより詳細に説明される。第1および第2のインプリント構造の別個の液滴または区分は、インクジェット技術を使用して分散されることができる。第1および第2のインプリント構造の別個の液滴または区分は、異なる実施形態では、融合することができるか、または融合しないことができる。第1および第2のインプリント構造内の別個の液滴または区分は、組み合わせられ、異なる配向を有する別個の液滴または区分を伴うインプリント構造を生産することができる。液晶材料が、組み合わせられたインプリントパターン上に配置され、異なる配向に沿って整合される分子を伴う液晶格子を生産することができる。別個の区分の異なる配向はともに、凝集体内に、例えば、PBPEのものに類似する、より複雑な格子パターンを生産することができる。
本明細書で議論されるインクジェットおよびインプリント方法は、導波路板、光学リターダ、偏光子等の他の光学要素を製作するためにも使用されることができる。例えば、既存の偏光子より透明な偏光子が、本明細書に説明される方法を使用して製作されることができる。本方法は、ポリマーインプリント等のパターン化された透明または実質的に透明材料を配置することと、例えば、二色性染料を含むヨウ素溶液等の偏光子材料を堆積することとを含む。本方法は、パターンを透明ポリマー上にインプリントすることを含む。パターンは、線形溝、山形、渦巻、弧、または任意の他の単純もしくは複雑なパターンであることができる。例えば、パターンは、周期的線形格子構造であることができる。偏光子材料が、次いで、前述のジェット技術(例えば、J−FIL等)、インプリント平坦化を使用して、またはスピンコーティングによって、パターン化された透明ポリマー上に堆積されることができる。図9Kおよび図9Lは、前述の方法を使用して製作され得る、異なる偏光子構成を図示する。本明細書に説明される技術を使用して製作される偏光子は、既存の偏光子より透明であることができる。そのような構成要素は、本明細書のいずこかに説明されるような拡張および仮想現実のための頭部搭載型ディスプレイ接眼レンズのための導波路スタック等の低消滅率偏光子を利用するデバイスに有用であり得る。
サブ波長スケール格子構造は、複屈折を材料中に誘発することができる。例えば、単次元格子は、人工的な負の単軸方向材料として作用することができ、その光学軸は、格子ベクトルと平行である。そのような複屈折は、形状複屈折と称され得る。故に、サブ波長スケール格子構造を含む基板は、波長板として機能することができる。サブ波長スケール格子構造を含む基板よって提供される遅延の量は、格子パターンの寸法(例えば、高さ、幅、ピッチ等)ならびに材料屈折率に依存し得る。例えば、サブ波長スケール特徴のパターンを備える、より高い屈折率を伴う材料は、サブ波長スケール特徴の類似パターンを備える、より低い屈折率を伴う材料より多くの遅延を提供することができる。例えば、J−FIL等のインクジェットおよびインプリント技術は、任意の画定された区域にわたって、非常に少量の材料廃棄物を伴って、高スループットUltra Violet Nano−Imprint Lithography(UV−NIL)パターン化能力を可能にする。例えば、J−FIL等のインクジェットおよびインプリント技術はまた、インプリントされた層の反復スタックを促進することができる。幾何学形状/配向の変動の有無にかかわらず、そのようなサブ波長スケール格子構造を伴うインプリント層(単層または複数層)は、様々な程度の位相シフトを提供することができる。パターン化された複屈折材料の実施形態は、種々の光学用途において薄膜統合能力を向上させることができる。
サブ波長スケール格子構造を含む基板から出力された光の偏光は、サブ波長スケール格子構造の配向、形状、および/またはピッチに依存し得る。サブ波長スケール格子構造を含む波長板の実施形態もまた、本明細書に説明されるインクジェットおよびインプリント方法を使用して製作されることができる。図9Mは、光入口表面2006および光出口表面2007を有する、導波路板2005の実施形態を図示する。導波路板2005は、入射非偏光光が偏光された光として出力されるように、様々な形状、配向、および/またはピッチを伴う複数のサブ波長スケール格子特徴を含むことができる。種々の実施形態では、波長板2005は、様々な形状、配向、および/またはピッチを伴うサブ波長スケール格子特徴とともにインプリントされた薄い透明フィルム2009a、2009b、および2009cの複数のスタックを含むことができる。格子特徴は、図9Cに示されるように、インプリントテンプレートを使用して、透明フィルム上にインプリントされることができる。種々の実施形態では、透明フィルム2009a、2009b、および2009cは、約1.45〜1.75の屈折率を有する、インプリント可能レジストを備えることができる。複数層構造から出力された光の偏光は、格子構造の形状、配向、および/またはピッチならびに異なる層間の屈折率差に依存することができる。図9Mに図示される実施形態に関して、入射非偏光光は、導波路板2005によって右円偏光光に変換される。他の実施形態では、導波路板は、線形偏光光、左円偏光光、または任意の他の偏光特性を伴う光を提供するように構成されることができる。
革新的側面は、結像システムおよびデバイス、ディスプレイシステムおよびデバイス、空間光変調器、液晶ベースのデバイス、偏光子、導波路板等の種々の用途内に実装される、またはそれと関連付けられてもよいことが検討される。本明細書に説明される構造、デバイス、および方法は、特に、拡張ならびに/または仮想現実のために使用され得る、装着可能ディスプレイ(例えば、頭部搭載型ディスプレイ)等のディスプレイにおける使用を見出し得る。より一般的には、説明される実施形態は、動いている(ビデオ等)か、または不動である(静止画像等)かにかかわらず、かつテキストか、グラフィックか、または写真かにかかわらず、画像を表示するように構成され得る、任意のデバイス、装置、またはシステム内に実装されてもよい。しかしながら、説明される実施形態は、限定ではないが、携帯電話、マルチメディアインターネット対応携帯電話、モバイルテレビ受信機、無線デバイス、スマートフォン、Bluetooth(登録商標)デバイス、携帯情報端末(PDA)、無線電子メール受信機、ハンドヘルドまたはポータブルコンピュータ、ネットブック、ノートブック、スマートブック、タブレット、プリンタ、コピー機、スキャナ、ファックスデバイス、全地球測位システム(GPS)受信機/ナビゲータ、カメラ、デジタルメディアプレーヤ(MP3プレーヤ等)、カムコーダ、ゲームコンソール、腕時計、置き時計、計算機、テレビモニタ、フラットパネルディスプレイ、電子読取デバイス(例えば、電子リーダ)、コンピュータモニタ、自動車用ディスプレイ(走行距離計および速度計ディスプレイ等を含む)、コックピット制御および/またはディスプレイ、カメラビューディスプレイ(車両内のバックカメラのディスプレイ等)、電子写真、電子掲示板または電光サイン、プロジェクタ、建築構造、電子レンジ、冷蔵庫、ステレオシステム、カセットレコーダまたはプレーヤ、DVDプレーヤ、CDプレーヤ、VCR、ラジオ、ポータブルメモリチップ、洗濯機、乾燥機、洗濯乾燥機、駐車メータ、頭部搭載型ディスプレイ、および種々の結像システム等の種々の電子デバイス内に含まれる、またはそれと関連付けられてもよいことが検討される。したがって、本教示は、図に描写される実施形態のみに限定されることを意図するものではなく、代わりに、当業者に容易に明白となるように、広範な可用性を有する。
本開示に説明される実施形態の種々の修正が、当業者に容易に明白となり得、本明細書に定義された一般的原理は、本開示の精神または範囲から逸脱することなく、他の実施形態に適用されてもよい。したがって、請求項は、本明細書に示される実施形態に限定されることを意図するものではなく、本明細書に開示される本開示、原理、および新規特徴に準拠する最広範囲が与えられるべきである。単語「例示的」は、本明細書では排他的に使用され、「実施例、事例、または例証としての役割を果たす」ことを意味する。「例示的」として本明細書に説明される任意の実施形態は、必ずしも、他の実施形態より好ましいまたは有利であるものとして解釈されるものではない。加えて、当業者は、用語「上側」および「下側」、「上方」および「下方」等が、時として、図の説明を容易にするために使用され、適切に配向されたページ上の図の配向に対応する相対的位置を示し、それらの構造が実装される本明細書に説明される構造の適切な配向を反映しない場合があることを容易に理解するであろう。
別個の実施形態の文脈において本明細書に説明されるある特徴はまた、単一の実施形態における組み合わせにおいて実装されることもできる。逆に、単一の実施形態の文脈において説明される種々の特徴もまた、複数の実施形態において別個に、または任意の好適な副次的組み合わせにおいて実装されることができる。さらに、特徴は、ある組み合わせにおいて作用するものとして前述され、さらに、そのようなものとして最初に請求され得るが、請求される組み合わせからの1つまたは複数の特徴は、いくつかの場合では、組み合わせから削除されることができ、請求される組み合わせは、副次的組み合わせまたは副次的組み合わせの変形例を対象としてもよい。
同様に、動作は特定の順序において図面内に描写されているが、これは、望ましい結果を達成するために、そのような動作が示される特定の順序において、もしくは連続的順序において実施される、または全ての例証される動作が実施されることを要求するものとして理解されるべきではない。さらに、図面は、1つよりも多くの例示的プロセスをフロー図の形態で図式的に描写し得る。しかしながら、描写されない他の動作も、概略的に図示される例示的プロセスに組み込まれることができる。例えば、1つまたは複数の付加的動作は、図示される動作のいずれかの前、後、それと同時に、またはその間に行われることができる。ある状況では、マルチタスクおよび並列処理が、有利となり得る。さらに、上記に説明される実装における種々のシステム構成要素の分離は、全ての実装におけるそのような分離を要求するものとして理解されるべきではなく、説明されるプログラム構成要素およびシステムは、概して、単一のソフトウェア製品においてともに統合される、または複数のソフトウェア製品にパッケージ化され得ることを理解されたい。加えて、他の実施形態も、以下の請求項の範囲内にある。ある場合には、請求項に列挙されるアクションは、異なる順序で行われ、依然として、望ましい結果を達成することができる。
本発明の種々の例示的実施形態が、本明細書で説明される。非限定的な意味で、これらの実施例を参照する。それらは、本発明のより広く適用可能な側面を例証するように提供される。種々の変更が、説明される本発明に行われてもよく、本発明の真の精神および範囲から逸脱することなく、均等物が置換されてもよい。加えて、特定の状況、材料、組成物、プロセス、プロセスの行為またはステップを、本発明の目的、精神、または範囲に適合させるように、多くの修正が行われてもよい。さらに、当業者によって理解されるように、本明細書で説明および図示される個々の変形例のそれぞれは、本発明の範囲または精神から逸脱することなく、他のいくつかの実施形態のうちのいずれかの特徴から容易に分離され得るか、またはそれらと組み合わせられ得る、別個の構成要素および特徴を有する。全てのそのような修正は、本開示と関連付けられる請求項の範囲内であることを目的としている。
本発明は、本デバイスを使用して行われ得る方法を含む。本方法は、そのような好適なデバイスを提供する行為を含んでもよい。そのような提供は、エンドユーザによって行われてもよい。換言すると、「提供する」行為は、本方法において必要デバイスを提供するために、取得する、アクセスする、接近する、位置付ける、設定する、起動する、電源投入する、または別様に作用するようにエンドユーザに単に要求する。本明細書に記載される方法は、論理的に可能である記載された事象の任意の順序で、ならびに事象の記載された順序で実行されてもよい。
本発明の例示的側面が、材料選択および製造に関する詳細とともに、上記で記載されている。本発明の他の詳細に関して、これらは、上記の参照された特許および公開に関連して理解されるとともに、概して、当業者によって把握または理解され得る。同じことが、一般的または理論的に採用されるような付加的な行為の観点から、本発明の方法ベースの側面に関して当てはまり得る。
加えて、本発明は、種々の特徴を随意に組み込む、いくつかの実施例を参照して説明されているが、本発明は、本発明の各変形例に関して考慮されるように説明または指示されるものに限定されるものではない。種々の変更が、説明される本発明に行われてもよく、本発明の真の精神および範囲から逸脱することなく、(本明細書に記載されるか、またはいくらか簡潔にするために含まれないかにかかわらず)均等物が置換されてもよい。加えて、値の範囲が提供される場合、その範囲の上限と下限との間の全ての介在値、およびその規定範囲内の任意の他の規定または介在値が、本発明内に包含されることが理解される。
また、本明細書で説明される発明の変形例の任意の随意的な特徴が、独立して、または本明細書で説明される特徴のうちのいずれか1つまたは複数の特徴と組み合わせて、記載および請求され得ることが考慮される。単数形の項目の言及は、複数の同一項目が存在する可能性を含む。より具体的には、本明細書で、およびそれに関連付けられる請求項で使用されるように、「1つの(a、an)」、「該(said)」、および「前記(the)」という単数形は、特に別様に記述されない限り、複数の指示対象を含む。換言すると、冠詞の使用は、上記の説明ならびに本開示と関連付けられる請求項で、対象項目の「少なくとも1つ」を可能にする。さらに、そのような請求項は、任意の随意的な要素を除外するように起草され得ることに留意されたい。したがって、この記述は、請求項要素の記載に関連する「だけ」、「のみ」、および同等物等のそのような排他的用語の使用、または「否定的」制限の使用のための先行詞としての機能を果たすことを目的としている。
そのような排他的用語を使用することなく、本開示と関連付けられる請求項での「備える」という用語は、所与の数の要素がそのような請求項で列挙されるか、または特徴の追加をそのような請求項に記載される要素の性質を変換するものと見なすことができるかにかかわらず、任意の付加的な要素の包含を可能にするものとする。本明細書で特に定義される場合を除いて、本明細書で使用される全ての技術および科学用語は、請求項の有効性を維持しながら、可能な限り広義の一般的に理解されている意味を与えられるものである。
本発明の範疇は、提供される実施例および/または本明細書に限定されるものではなく、むしろ、本開示と関連付けられる請求項の範囲のみによって限定されるものとする。

Claims (16)

  1. 頭部搭載型ディスプレイのための接眼レンズ構造を製造する方法であって、前記方法は、
    液晶内部結合光学要素を形成することであって、前記液晶内部結合光学要素は、画像情報を含む入射が全内部反射によって透明基板を通って伝搬するように、前記入射光前記透明基板内に再指向するように構成され、前記液晶内部結合光学要素を形成することは、
    レジスト材料を前記透明基板上に堆積することであって、前記レジスト材料を堆積することは、前記レジスト材料をジェット堆積することを含む、ことと、
    インプリントテンプレートを使用して前記レジスト材料上にパターンをインプリントすることであって、前記インプリントテンプレートは、積層幾何学形状を有するインプリントパターンを備える、ことと、
    液晶材料の層を前記パターン化されたレジスト材料上にジェット堆積することであって、それによって、前記液晶材料の分子が前記パターンに自己整合される、ことと、
    前記液晶材料を不動態化プロセスにさらすことによって、前記液晶材料の前記分子を不動態化することと
    を含む、こと
    を含む、方法。
  2. 前記インプリントテンプレートは、表面起伏特徴を含む、請求項1に記載の方法。
  3. 前記インプリントテンプレートは、PBPE構造を含む、請求項1に記載の方法。
  4. 前記インプリントテンプレートは、メタ表面を含む、請求項1に記載の方法。
  5. 前記インプリントテンプレートは、メタ材料を備える、請求項1に記載の方法。
  6. 前記インプリントテンプレートは、格子アレイを含む、請求項1に記載の方法。
  7. 前記インプリントテンプレートは、曲線溝または弧を含む、請求項1に記載の方法。
  8. 前記液晶材料の層にわたって液晶材料の付加的層を堆積することをさらに含む、請求項1に記載の方法。
  9. 前記液晶材料の付加的層は、前記パターンに自己整合される、請求項8に記載の方法。
  10. パターンが、前記液晶材料の付加的層上にインプリントされる、請求項8に記載の方法。
  11. 前記液晶材料の付加的層上にインプリントされたパターンは、前記レジスト材料上にインプリントされたパターンと異なる、請求項10に記載の方法。
  12. 前記レジスト材料上にインプリントされたパターンに整合された前記液晶材料の層は、第1の波長に作用するように構成され、前記液晶材料の付加的層上にインプリントされたパターンは、第2の波長に作用するように構成される、請求項10に記載の方法。
  13. 前記インプリントパターンは、3つの層を備える、請求項1に記載の方法。
  14. 前記レジスト材料を前記基板上に堆積することは、前記レジスト材料の複数の別個の液滴をジェット堆積することを含む、請求項1に記載の方法。
  15. 前記不動態化プロセスは、硬化を含む、請求項1に記載の方法。
  16. 前記硬化は、UV硬化、熱硬化、または凍結を含む、請求項15に記載の方法。
JP2017564904A 2015-06-15 2016-06-14 仮想および拡張現実システムおよび方法 Active JP6975644B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021181747A JP7203927B2 (ja) 2015-06-15 2021-11-08 仮想および拡張現実システムおよび方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562175994P 2015-06-15 2015-06-15
US62/180,551 2015-06-15
US62/175,994 2015-06-15
US201562180551P 2015-06-16 2015-06-16
PCT/US2016/037443 WO2016205249A1 (en) 2015-06-15 2016-06-14 Virtual and augmented reality systems and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021181747A Division JP7203927B2 (ja) 2015-06-15 2021-11-08 仮想および拡張現実システムおよび方法

Publications (3)

Publication Number Publication Date
JP2018519542A JP2018519542A (ja) 2018-07-19
JP2018519542A5 JP2018519542A5 (ja) 2019-07-18
JP6975644B2 true JP6975644B2 (ja) 2021-12-01

Family

ID=57546169

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2017564900A Active JP6851992B2 (ja) 2015-06-15 2016-06-14 多重化された光流を内部結合するための光学要素を有するディスプレイシステム
JP2017564904A Active JP6975644B2 (ja) 2015-06-15 2016-06-14 仮想および拡張現実システムおよび方法
JP2021038065A Active JP7119150B2 (ja) 2015-06-15 2021-03-10 多重化された光流を内部結合するための光学要素を有するディスプレイシステム
JP2021181747A Active JP7203927B2 (ja) 2015-06-15 2021-11-08 仮想および拡張現実システムおよび方法
JP2022124125A Active JP7352702B2 (ja) 2015-06-15 2022-08-03 多重化された光流を内部結合するための光学要素を有するディスプレイシステム
JP2022209705A Active JP7403622B2 (ja) 2015-06-15 2022-12-27 仮想および拡張現実システムおよび方法
JP2023149980A Pending JP2023165782A (ja) 2015-06-15 2023-09-15 多重化された光流を内部結合するための光学要素を有するディスプレイシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017564900A Active JP6851992B2 (ja) 2015-06-15 2016-06-14 多重化された光流を内部結合するための光学要素を有するディスプレイシステム

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2021038065A Active JP7119150B2 (ja) 2015-06-15 2021-03-10 多重化された光流を内部結合するための光学要素を有するディスプレイシステム
JP2021181747A Active JP7203927B2 (ja) 2015-06-15 2021-11-08 仮想および拡張現実システムおよび方法
JP2022124125A Active JP7352702B2 (ja) 2015-06-15 2022-08-03 多重化された光流を内部結合するための光学要素を有するディスプレイシステム
JP2022209705A Active JP7403622B2 (ja) 2015-06-15 2022-12-27 仮想および拡張現実システムおよび方法
JP2023149980A Pending JP2023165782A (ja) 2015-06-15 2023-09-15 多重化された光流を内部結合するための光学要素を有するディスプレイシステム

Country Status (11)

Country Link
US (7) US10690826B2 (ja)
EP (5) EP3792682B1 (ja)
JP (7) JP6851992B2 (ja)
KR (6) KR102359038B1 (ja)
CN (4) CN107924103B (ja)
AU (4) AU2016278013B2 (ja)
CA (2) CA2989414A1 (ja)
IL (4) IL295566B2 (ja)
NZ (3) NZ738352A (ja)
TW (4) TWI646375B (ja)
WO (2) WO2016205256A1 (ja)

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2013027004A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Wearable data display
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
WO2013167864A1 (en) 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
US10359736B2 (en) 2014-08-08 2019-07-23 Digilens Inc. Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
WO2016046514A1 (en) 2014-09-26 2016-03-31 LOKOVIC, Kimberly, Sun Holographic waveguide opticaltracker
NZ730509A (en) 2014-09-29 2018-08-31 Magic Leap Inc Architectures and methods for outputting different wavelength light out of waveguides
EP3245444B1 (en) 2015-01-12 2021-09-08 DigiLens Inc. Environmentally isolated waveguide display
EP3245551B1 (en) 2015-01-12 2019-09-18 DigiLens Inc. Waveguide light field displays
CN107533137A (zh) 2015-01-20 2018-01-02 迪吉伦斯公司 全息波导激光雷达
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
NZ773844A (en) 2015-03-16 2022-07-01 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
KR102359038B1 (ko) 2015-06-15 2022-02-04 매직 립, 인코포레이티드 멀티플렉싱된 광 스트림들을 인-커플링하기 위한 광학 엘리먼트들을 가진 디스플레이 시스템
US10552676B2 (en) 2015-08-03 2020-02-04 Facebook Technologies, Llc Methods and devices for eye tracking based on depth sensing
US10459305B2 (en) 2015-08-03 2019-10-29 Facebook Technologies, Llc Time-domain adjustment of phase retardation in a liquid crystal grating for a color display
US10297180B2 (en) * 2015-08-03 2019-05-21 Facebook Technologies, Llc Compensation of chromatic dispersion in a tunable beam steering device for improved display
US10274730B2 (en) 2015-08-03 2019-04-30 Facebook Technologies, Llc Display with an embedded eye tracker
US10338451B2 (en) 2015-08-03 2019-07-02 Facebook Technologies, Llc Devices and methods for removing zeroth order leakage in beam steering devices
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
US10247858B2 (en) 2015-10-25 2019-04-02 Facebook Technologies, Llc Liquid crystal half-wave plate lens
US10416454B2 (en) 2015-10-25 2019-09-17 Facebook Technologies, Llc Combination prism array for focusing light
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US10203566B2 (en) 2015-12-21 2019-02-12 Facebook Technologies, Llc Enhanced spatial resolution using a segmented electrode array
CN109073889B (zh) 2016-02-04 2021-04-27 迪吉伦斯公司 全息波导光学跟踪器
WO2017162999A1 (en) 2016-03-24 2017-09-28 Popovich Milan Momcilo Method and apparatus for providing a polarization selective holographic waveguide device
KR20220040511A (ko) 2016-04-08 2022-03-30 매직 립, 인코포레이티드 가변 포커스 렌즈 엘리먼트들을 가진 증강 현실 시스템들 및 방법들
EP3433658B1 (en) 2016-04-11 2023-08-09 DigiLens, Inc. Holographic waveguide apparatus for structured light projection
KR20210032022A (ko) 2016-05-06 2021-03-23 매직 립, 인코포레이티드 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
EP4235237A1 (en) 2016-05-12 2023-08-30 Magic Leap, Inc. Distributed light manipulation over imaging waveguide
AU2017362344B2 (en) 2016-11-16 2023-09-28 Magic Leap, Inc. Multi-resolution display assembly for head-mounted display systems
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
EP3542213A4 (en) 2016-11-18 2020-10-07 Magic Leap, Inc. WAVE GUIDE LIGHT MULTIPLEXER USING CROSSED GRIDS
IL310194A (en) 2016-11-18 2024-03-01 Magic Leap Inc Liquid crystal refraction lattices vary spatially
JP7019695B2 (ja) 2016-11-18 2022-02-15 マジック リープ, インコーポレイテッド 広入射角範囲の光を再指向するための多層液晶回折格子
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
EP4002000A1 (en) 2016-12-08 2022-05-25 Magic Leap, Inc. Diffractive devices based on cholesteric liquid crystal
CA3046328A1 (en) 2016-12-14 2018-06-21 Magic Leap, Inc. Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
US10371896B2 (en) 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
CN106526867B (zh) * 2017-01-22 2018-10-30 网易(杭州)网络有限公司 影像画面的显示控制方法、装置及头戴式显示设备
US10451799B2 (en) 2017-01-23 2019-10-22 Magic Leap, Inc. Eyepiece for virtual, augmented, or mixed reality systems
US11681153B2 (en) * 2017-01-27 2023-06-20 Magic Leap, Inc. Antireflection coatings for metasurfaces
WO2018140651A1 (en) 2017-01-27 2018-08-02 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
CA3051016C (en) * 2017-02-16 2023-08-15 Magic Leap, Inc. Method and system for display device with integrated polarizer
IL268427B2 (en) 2017-02-23 2024-03-01 Magic Leap Inc Variable focus virtual imagers based on polarization conversion
US10838110B2 (en) * 2017-03-03 2020-11-17 Microsoft Technology Licensing, Llc Metasurface optical coupling elements for a display waveguide
KR20240069826A (ko) 2017-03-21 2024-05-20 매직 립, 인코포레이티드 저-프로파일 빔 스플리터
KR102576133B1 (ko) 2017-03-21 2023-09-07 매직 립, 인코포레이티드 회절 광학 엘리먼트들을 이용한 눈-이미징 장치
EP3602177B1 (en) 2017-03-21 2023-08-02 Magic Leap, Inc. Methods, devices, and systems for illuminating spatial light modulators
US11079603B2 (en) * 2017-03-21 2021-08-03 Magic Leap, Inc. Display system with spatial light modulator illumination for divided pupils
CN110446963B (zh) * 2017-03-21 2021-11-16 奇跃公司 用于光纤扫描投影仪的方法和系统
WO2018175488A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Stacked waveguides having different diffraction gratings for combined field of view
WO2018175780A1 (en) 2017-03-22 2018-09-27 Magic Leap, Inc. Dynamic field of view variable focus display system
KR20190116571A (ko) * 2017-04-04 2019-10-14 레이아 인코포레이티드 멀티레이어 멀티뷰 디스플레이 및 방법
AU2018270948B2 (en) 2017-05-16 2022-11-24 Magic Leap, Inc. Systems and methods for mixed reality
CN111316138B (zh) 2017-05-24 2022-05-17 纽约市哥伦比亚大学理事会 色散工程化介电超表面的宽带消色差平坦光学部件
WO2019005823A1 (en) * 2017-06-26 2019-01-03 The Trustees Of Columbia University In The City Of New York MILLIMETRIC SCALE LENGTH NETWORK COUPLER
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
CN107277496B (zh) * 2017-07-17 2019-05-10 京东方科技集团股份有限公司 近眼光场显示系统及控制电路
KR102060551B1 (ko) * 2017-08-16 2020-02-11 주식회사 엘지화학 회절 격자 도광판용 몰드 기재의 제조방법 및 회절 격자 도광판의 제조방법
KR102718309B1 (ko) 2017-08-31 2024-10-15 메탈렌츠 인코포레이티드 투과성 메타표면 렌즈 통합
GB2566274A (en) * 2017-09-06 2019-03-13 Wave Optics Ltd Display for use in an augmented reality or virtual reality device
CN107561857A (zh) * 2017-09-20 2018-01-09 南方科技大学 一种基于纳米压印制备光学超构表面的方法
JP7280250B2 (ja) 2017-09-21 2023-05-23 マジック リープ, インコーポレイテッド 眼および/または環境の画像を捕捉するように構成される導波管を伴う拡張現実ディスプレイ
CN111386495B (zh) 2017-10-16 2022-12-09 迪吉伦斯公司 用于倍增像素化显示器的图像分辨率的系统和方法
JP6968190B2 (ja) * 2017-11-13 2021-11-17 富士フイルム株式会社 光学素子
JP2021504736A (ja) * 2017-11-21 2021-02-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 導波結合器の製造方法
CN111492313A (zh) * 2017-11-29 2020-08-04 应用材料公司 波导组合器的直接蚀刻制造的方法
KR102717573B1 (ko) 2017-12-11 2024-10-14 매직 립, 인코포레이티드 도파관 조명기
IL274977B2 (en) 2017-12-15 2023-10-01 Magic Leap Inc Eyepieces for an augmented reality display system
JP6975257B2 (ja) 2017-12-28 2021-12-01 富士フイルム株式会社 光学素子および導光素子
KR102043261B1 (ko) * 2017-12-29 2019-11-11 주식회사 세코닉스 이종 렌즈 필름의 제조방법 및 그에 의해 제조된 이종 렌즈 필름
WO2019135796A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Systems and methods for high-throughput recording of holographic gratings in waveguide cells
EP3710876A4 (en) * 2018-01-08 2022-02-09 DigiLens Inc. SYSTEMS AND PROCESSES FOR THE MANUFACTURE OF WAVEGUIDE CELLS
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
EP3710894A4 (en) * 2018-01-08 2021-10-27 Digilens Inc. OPTICAL WAVEGUID MANUFACTURING PROCESSES
US10817052B1 (en) * 2018-01-09 2020-10-27 Facebook Technologies, Llc Eye emulator devices
EP3729176A4 (en) * 2018-02-09 2021-09-22 Vuzix Corporation CIRCULAR POLARIZER IMAGE LIGHT GUIDE
US11828942B2 (en) * 2018-03-12 2023-11-28 Magic Leap, Inc. Tilting array based display
US20190285891A1 (en) * 2018-03-15 2019-09-19 Oculus Vr, Llc Image quality of pancharatnam berry phase components using polarizers
US11846779B2 (en) 2018-03-15 2023-12-19 Meta Platforms Technologies, Llc Display device with varifocal optical assembly
US11175507B2 (en) 2018-03-15 2021-11-16 Facebook Technologies, Llc Polarization-sensitive components in optical systems for large pupil acceptance angles
US11175508B2 (en) 2018-03-15 2021-11-16 Facebook Technologies, Llc Display device with varifocal optical assembly
WO2019178614A1 (en) 2018-03-16 2019-09-19 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
WO2019183399A1 (en) * 2018-03-21 2019-09-26 Magic Leap, Inc. Augmented reality system and method for spectroscopic analysis
FI129359B (en) * 2018-03-28 2021-12-31 Dispelix Oy Diffractive grating
CN110320588A (zh) * 2018-03-30 2019-10-11 中强光电股份有限公司 光波导装置及显示器
CN112119334A (zh) * 2018-04-02 2020-12-22 奇跃公司 具有集成光学元件的波导及其制造方法
WO2019194291A1 (ja) * 2018-04-05 2019-10-10 富士フイルム株式会社 光学素子および導光素子
US10894420B2 (en) 2018-04-11 2021-01-19 Canon Kabushiki Kaisha Ejection-material injecting method, ejection-material ejection apparatus, and imprinting apparatus
US10955606B2 (en) * 2018-05-30 2021-03-23 Applied Materials, Inc. Method of imprinting tilt angle light gratings
CN110687678B (zh) * 2018-07-06 2022-03-08 成都理想境界科技有限公司 一种基于波导的显示模组及其图像生成模组及应用
CN110908109B (zh) * 2018-09-18 2022-03-08 成都理想境界科技有限公司 一种基于波导的显示模组及显示设备
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
KR102710726B1 (ko) * 2018-09-04 2024-09-27 삼성전자주식회사 나노구조체 리플렉터를 구비하는 수직 공진형 표면 발광 레이저 및 이를 채용한 광학 장치
US11141645B2 (en) 2018-09-11 2021-10-12 Real Shot Inc. Athletic ball game using smart glasses
US11103763B2 (en) 2018-09-11 2021-08-31 Real Shot Inc. Basketball shooting game using smart glasses
JP2020042212A (ja) * 2018-09-12 2020-03-19 ソニー株式会社 表示装置、表示制御方法及び記録媒体
CN114624807B (zh) * 2018-10-08 2024-05-28 成都理想境界科技有限公司 一种波导模组、基于波导的显示模组及近眼显示设备
US11119280B2 (en) * 2018-10-26 2021-09-14 Taiwan Semiconductor Manufacturing Co., Ltd. Grating couplers and methods of making same
CN111142255A (zh) * 2018-11-02 2020-05-12 成都理想境界科技有限公司 一种ar光学显示模组及显示设备
CN111142256A (zh) * 2018-11-02 2020-05-12 成都理想境界科技有限公司 一种vr光学显示模组及显示设备
JP2022509083A (ja) 2018-11-20 2022-01-20 マジック リープ, インコーポレイテッド 拡張現実ディスプレイシステムのための接眼レンズ
CN113678053B (zh) * 2019-01-14 2024-05-28 伊奎蒂公司 大衍射光栅图案的数字写入
GB201900652D0 (en) * 2019-01-17 2019-03-06 Wave Optics Ltd Augmented reality system
JP2022520472A (ja) 2019-02-15 2022-03-30 ディジレンズ インコーポレイテッド 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置
EP3914942A4 (en) * 2019-02-22 2022-10-26 Vuzix Corporation PARALLEL PLATE WAVEGUIDES
KR102330600B1 (ko) * 2019-02-22 2021-11-26 주식회사 엘지화학 회절 도광판 및 이를 포함하는 디스플레이 장치
WO2020186113A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic waveguide backlight and related methods of manufacturing
CN109799642B (zh) * 2019-04-03 2022-01-11 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
US20200386947A1 (en) 2019-06-07 2020-12-10 Digilens Inc. Waveguides Incorporating Transmissive and Reflective Gratings and Related Methods of Manufacturing
US10969675B1 (en) * 2019-06-10 2021-04-06 Facebook Technologies, Llc Optical assemblies having scanning reflectors for projecting augmented reality content
US11048087B2 (en) 2019-06-10 2021-06-29 Facebook Technologies, Llc Optical assemblies having polarization volume gratings for projecting augmented reality content
US11181815B1 (en) * 2019-06-11 2021-11-23 Facebook Technologies, Llc Optical devices including reflective spatial light modulators for projecting augmented reality content
CN114286962A (zh) 2019-06-20 2022-04-05 奇跃公司 用于增强现实显示系统的目镜
WO2020263871A1 (en) 2019-06-24 2020-12-30 Magic Leap, Inc. Polymer patterned disk stack manufacturing
CN112130321B (zh) * 2019-06-24 2023-06-27 成都理想境界科技有限公司 一种波导模组及基于波导的近眼显示模组及设备
US11194080B2 (en) 2019-07-08 2021-12-07 Samsung Electronics Co., Ltd. Diffractive optical element and device
US11543696B2 (en) 2019-07-18 2023-01-03 Himax Technologies Limited Optical surface mapping system
CN114502991A (zh) * 2019-07-19 2022-05-13 奇跃公司 具有偏振敏感性降低的衍射光栅的显示设备
WO2021021671A1 (en) 2019-07-26 2021-02-04 Metalenz, Inc. Aperture-metasurface and hybrid refractive-metasurface imaging systems
CN114341729A (zh) 2019-07-29 2022-04-12 迪吉伦斯公司 用于使像素化显示器的图像分辨率和视场倍增的方法和设备
CN110596895B (zh) * 2019-08-09 2021-10-29 成都理想境界科技有限公司 一种近眼显示装置及投影反馈方法
CN110618528A (zh) * 2019-08-09 2019-12-27 成都理想境界科技有限公司 一种近眼显示装置及色彩反馈方法
WO2021041949A1 (en) 2019-08-29 2021-03-04 Digilens Inc. Evacuating bragg gratings and methods of manufacturing
US11448883B2 (en) 2019-09-27 2022-09-20 Microsoft Technology Licensing, Llc Non-linear angular momentum metasurface
US11467406B2 (en) 2019-09-27 2022-10-11 Microsoft Technology Licensing, Llc Field of view expanding system
CN114641713A (zh) * 2019-11-08 2022-06-17 奇跃公司 具有包括多种材料的光重定向结构的超表面以及制造方法
EP4100785A4 (en) * 2020-02-06 2024-03-06 Valve Corporation POLARIZATION MULTIPLEXED OPTICS FOR HEAD-MOUNTED DISPLAY SYSTEMS
US11709363B1 (en) 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
US11669012B2 (en) * 2020-02-21 2023-06-06 Applied Materials, Inc. Maskless lithography method to fabricate topographic substrate
CN111308717B (zh) * 2020-03-31 2022-03-25 京东方科技集团股份有限公司 显示模组及显示方法、显示装置
US11206978B2 (en) * 2020-04-01 2021-12-28 Massachusetts Institute Of Technology Meta-optics-based systems and methods for ocular applications
CN111367004A (zh) * 2020-04-29 2020-07-03 刘奡 一种偏振体全息光栅的喷墨打印制备方法
US11994687B2 (en) * 2020-05-13 2024-05-28 President And Fellows Of Harvard College Meta-optics for virtual reality and augmented reality systems
CN113703080B (zh) * 2020-05-22 2023-07-28 深圳迈塔兰斯科技有限公司 一种超透镜和具有其的光学系统
EP4154050A4 (en) * 2020-05-22 2024-06-05 Magic Leap, Inc. AUGMENTED AND VIRTUAL REALITY DISPLAY SYSTEMS WITH CORRELATED OPTICAL REGIONS
US20230280586A1 (en) * 2020-08-20 2023-09-07 Creal Sa Near-eye image projection system and wearable device comprising said near-eye image projection system
EP4222551A4 (en) 2020-09-29 2024-10-23 Avegant Corp ARCHITECTURE FOR ILLUMINATION OF A SCREENBOARD
US20220146889A1 (en) * 2020-11-06 2022-05-12 Japan Display Inc. Liquid crystal optical element
US12130450B1 (en) * 2020-12-30 2024-10-29 Meta Platforms Technologies, Llc Optical assembly with high-refractive-index Fresnel lens and chromatic aberration corrector
KR20230148823A (ko) 2021-02-26 2023-10-25 이미지아, 인크. 광학 메타렌즈 시스템
WO2022197712A1 (en) * 2021-03-17 2022-09-22 Applied Materials, Inc. Airgap structures for improved eyepiece efficiency
TWI786022B (zh) * 2021-04-01 2022-12-01 友達光電股份有限公司 顯示裝置
EP4327142A1 (en) * 2021-04-21 2024-02-28 Magic Leap, Inc. Imprint lithography using multi-layer coating architecture
US20240198578A1 (en) * 2021-04-30 2024-06-20 Magic Leap, Inc. Imprint lithography process and methods on curved surfaces
WO2023283715A1 (en) * 2021-07-12 2023-01-19 10644137 Canada Inc. Integrated optoelectronic devices for lighting and display applications
WO2023081512A1 (en) * 2021-11-08 2023-05-11 Meta Platforms Technologies, Llc Liquid crystal polarization hologram device with compensated wavy structures
US11754870B2 (en) 2021-11-08 2023-09-12 Meta Platforms Technologies, Llc Liquid crystal polarization hologram device comprising an optic axis with a spatially varying orientation and compensated wavy structures
EP4445192A1 (en) * 2021-12-10 2024-10-16 Snap Inc. Waveguide for an augmented reality or virtual reality
WO2024205646A2 (en) 2022-03-31 2024-10-03 Metalenz, Inc. Polarization sorting metasurface microlens array device
WO2024059751A2 (en) * 2022-09-14 2024-03-21 Imagia, Inc. Materials for metalenses, through-waveguide reflective metasurface couplers, and other metasurfaces
WO2024130250A1 (en) * 2022-12-16 2024-06-20 Magic Leap, Inc. Crystalline waveguides and wearable devices containing the same

Family Cites Families (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900A (en) 1849-11-27 Improvement in processes for the manufacture of sugar
US881A (en) 1838-08-13 Sawtee
JPS556384A (en) 1978-06-29 1980-01-17 Nitto Electric Ind Co Ltd Color polarizer
EP0107092A3 (en) * 1982-09-29 1985-08-21 Honeywell Inc. Method and apparatus for generating multicolor and/or threedimensional pictures
US4693544A (en) 1982-12-14 1987-09-15 Nippon Sheet Glass Co., Ltd. Optical branching device with internal waveguide
GB8318863D0 (en) * 1983-07-12 1983-08-10 Secr Defence Thermochromic liquid crystal displays
JPS62269174A (ja) 1986-05-18 1987-11-21 Ricoh Co Ltd カラ−複写機における光路分割・色分解光学装置
US4991924A (en) 1989-05-19 1991-02-12 Cornell Research Foundation, Inc. Optical switches using cholesteric or chiral nematic liquid crystals and method of using same
JPH0384516A (ja) 1989-08-29 1991-04-10 Fujitsu Ltd 3次元表示装置
US5082354A (en) 1989-08-29 1992-01-21 Kaiser Aerospace And Electronics Corporation Optical switch and color selection assembly
GB2249387B (en) 1990-10-11 1995-01-25 Holtronic Technologies Ltd Apparatus for and a method of transverse position measurement in proximity lithographic systems
DE69221102T2 (de) 1991-12-20 1998-01-08 Fujitsu Ltd Flüssigkristall-Anzeigevorrichtung mit verschiedenen aufgeteilten Orientierungsbereichen
US6222525B1 (en) 1992-03-05 2001-04-24 Brad A. Armstrong Image controllers with sheet connected sensors
US6219015B1 (en) 1992-04-28 2001-04-17 The Board Of Directors Of The Leland Stanford, Junior University Method and apparatus for using an array of grating light valves to produce multicolor optical images
FR2707781B1 (fr) 1993-07-16 1995-09-01 Idmatic Sa Carte souple équipée d'un dispositif de contrôle de validité.
JP3326444B2 (ja) 1993-08-09 2002-09-24 株式会社ニコン 位置合わせ方法及びパターンの継ぎ合わせ精度測定方法
US5544268A (en) 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
WO1996027148A1 (en) 1995-02-28 1996-09-06 Philips Electronics N.V. Electro-optical device
US5825448A (en) 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US5670988A (en) 1995-09-05 1997-09-23 Interlink Electronics, Inc. Trigger operated electronic device
JP3649818B2 (ja) 1996-09-19 2005-05-18 富士通ディスプレイテクノロジーズ株式会社 液晶表示装置
US5915051A (en) 1997-01-21 1999-06-22 Massascusetts Institute Of Technology Wavelength-selective optical add/drop switch
US6181393B1 (en) 1997-12-26 2001-01-30 Kabushiki Kaisha Toshiba Liquid crystal display device and method of manufacturing the same
JP3393072B2 (ja) * 1998-08-27 2003-04-07 日本電信電話株式会社 表示装置
US6188462B1 (en) 1998-09-02 2001-02-13 Kent State University Diffraction grating with electrically controlled periodicity
US6785447B2 (en) 1998-10-09 2004-08-31 Fujitsu Limited Single and multilayer waveguides and fabrication process
US6690845B1 (en) 1998-10-09 2004-02-10 Fujitsu Limited Three-dimensional opto-electronic modules with electrical and optical interconnections and methods for making
US6334960B1 (en) 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
GB9917658D0 (en) 1999-07-29 1999-09-29 Tech 21 Limited 3D Visualisation methods
US6723396B1 (en) * 1999-08-17 2004-04-20 Western Washington University Liquid crystal imprinting
JP2001091715A (ja) 1999-09-27 2001-04-06 Nippon Mitsubishi Oil Corp 複合回折素子
US6873087B1 (en) 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
GB9928126D0 (en) 1999-11-30 2000-01-26 Secr Defence Bistable nematic liquid crystal device
US7460200B2 (en) 2000-03-27 2008-12-02 Helwett-Packard Development Company, L.P. Liquid crystal alignment
US6577365B1 (en) 2000-04-14 2003-06-10 International Business Machines Corporation Method and apparatus to form liquid crystal alignment layer
EP1306715B1 (en) 2000-07-05 2008-05-14 Sony Corporation Image display element, and image display device
IL137625A0 (en) 2000-08-01 2001-10-31 Sensis Ltd Detector for an electrophoresis apparatus
AU2002241777A1 (en) 2000-11-03 2002-06-03 Actuality Systems, Inc. Three-dimensional display systems
US6795138B2 (en) * 2001-01-11 2004-09-21 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and novel process for its manufacture
EP1227347A1 (en) * 2001-01-29 2002-07-31 Rolic AG Optical device and method for manufacturing same
US6735224B2 (en) 2001-03-01 2004-05-11 Applied Optoelectronics, Inc. Planar lightwave circuit for conditioning tunable laser output
GB2374081B (en) 2001-04-06 2004-06-09 Central Research Lab Ltd A method of forming a liquid crystal polymer layer
KR100701442B1 (ko) 2001-05-10 2007-03-30 엘지.필립스 엘시디 주식회사 잉크젯 방식 액정 도포방법
US6873914B2 (en) * 2001-11-21 2005-03-29 Icoria, Inc. Methods and systems for analyzing complex biological systems
US6542671B1 (en) 2001-12-12 2003-04-01 Super Light Wave Corp. Integrated 3-dimensional multi-layer thin-film optical couplers and attenuators
US6998196B2 (en) * 2001-12-28 2006-02-14 Wavefront Technology Diffractive optical element and method of manufacture
GB0201132D0 (en) * 2002-01-18 2002-03-06 Epigem Ltd Method of making patterned retarder
JP3768901B2 (ja) 2002-02-28 2006-04-19 松下電器産業株式会社 立体光導波路の製造方法
US7027671B2 (en) * 2002-03-18 2006-04-11 Koninklijke Philips Electronics N.V. Polarized-light-emitting waveguide, illumination arrangement and display device comprising such
WO2003091767A1 (fr) 2002-04-26 2003-11-06 Nitto Denko Corporation Procede de production d'un film birefringent
GB0215153D0 (en) 2002-07-01 2002-08-07 Univ Hull Luminescent compositions
US6900881B2 (en) 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US7070405B2 (en) * 2002-08-01 2006-07-04 Molecular Imprints, Inc. Alignment systems for imprint lithography
US6982818B2 (en) 2002-10-10 2006-01-03 Nuonics, Inc. Electronically tunable optical filtering modules
AU2003278314A1 (en) 2002-10-17 2004-05-04 Zbd Displays Ltd. Liquid crystal alignment layer
JP3551187B2 (ja) 2002-11-28 2004-08-04 セイコーエプソン株式会社 光学素子及び照明装置並びに投射型表示装置
TW556031B (en) 2003-01-17 2003-10-01 Chunghwa Picture Tubes Ltd Non-rubbing liquid crystal alignment method
JP2004247947A (ja) 2003-02-13 2004-09-02 Olympus Corp 光学装置
US7341348B2 (en) 2003-03-25 2008-03-11 Bausch & Lomb Incorporated Moiré aberrometer
US20040224261A1 (en) * 2003-05-08 2004-11-11 Resnick Douglas J. Unitary dual damascene process using imprint lithography
AU2004252482B2 (en) 2003-06-06 2011-05-26 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US7400447B2 (en) 2003-09-03 2008-07-15 Canon Kabushiki Kaisha Stereoscopic image display device
WO2005024469A2 (en) 2003-09-04 2005-03-17 Sioptical, Inc. Interfacing multiple wavelength sources to thin optical waveguides utilizing evanescent coupling
US8009358B2 (en) * 2003-10-17 2011-08-30 Explay Ltd. Optical system and method for use in projection systems
US7122482B2 (en) 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography
WO2005052674A1 (ja) 2003-11-27 2005-06-09 Asahi Glass Company, Limited 光学的等方性を有する液晶を用いた光学素子
US7385660B2 (en) 2003-12-08 2008-06-10 Sharp Kabushiki Kaisha Liquid crystal display device for transflector having opening in a first electrode for forming a liquid crystal domain and openings at first and second corners of the domain on a second electrode
US7430355B2 (en) 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US8053171B2 (en) 2004-01-16 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and EL television
US8076386B2 (en) 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
GB2411735A (en) 2004-03-06 2005-09-07 Sharp Kk Control of liquid crystal alignment in an optical device
US20050232530A1 (en) * 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
US7140861B2 (en) 2004-04-27 2006-11-28 Molecular Imprints, Inc. Compliant hard template for UV imprinting
US20050238801A1 (en) 2004-04-27 2005-10-27 Chia-Te Lin Method for fabricating an alignment layer for liquid crystal applications
JP2005316314A (ja) 2004-04-30 2005-11-10 Casio Comput Co Ltd 撮像装置
JP4631308B2 (ja) 2004-04-30 2011-02-16 ソニー株式会社 画像表示装置
WO2005120834A2 (en) * 2004-06-03 2005-12-22 Molecular Imprints, Inc. Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing
JP2005352321A (ja) 2004-06-11 2005-12-22 Dainippon Printing Co Ltd 偏光板、これを用いた液晶表示素子、およびこれらの製造方法
USD514570S1 (en) 2004-06-24 2006-02-07 Microsoft Corporation Region of a fingerprint scanning device with an illuminated ring
JP2006030752A (ja) 2004-07-20 2006-02-02 Matsushita Electric Ind Co Ltd 回折素子の製造方法、光ヘッド装置および光ディスク装置
JP2008509438A (ja) 2004-08-06 2008-03-27 ユニヴァーシティ オブ ワシントン 可変固定視距離で走査される光表示装置
TWI247136B (en) 2004-09-17 2006-01-11 Ind Tech Res Inst Optical device and method of making the same
JP2006095722A (ja) 2004-09-28 2006-04-13 Canon Inc 光学素子及び光学素子の成形方法
JP4720424B2 (ja) * 2004-12-03 2011-07-13 コニカミノルタホールディングス株式会社 光学デバイスの製造方法
US7206107B2 (en) * 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
ATE552524T1 (de) 2004-12-13 2012-04-15 Nokia Corp System und verfahren zur strahlerweiterung mit nahem brennpunkt in einer anzeigeeinrichtung
JP4813372B2 (ja) 2004-12-16 2011-11-09 富士フイルム株式会社 光学補償シート、その製造方法、偏光板及び液晶表示装置
US7585424B2 (en) 2005-01-18 2009-09-08 Hewlett-Packard Development Company, L.P. Pattern reversal process for self aligned imprint lithography and device
JP4985799B2 (ja) 2005-01-31 2012-07-25 旭硝子株式会社 偏光回折素子および積層光学素子
JP2006261088A (ja) * 2005-02-17 2006-09-28 Mitsubishi Electric Corp 導光体及びこれを用いた光源装置、液晶表示装置、導光体の製造方法
CN101846811A (zh) 2005-03-01 2010-09-29 荷兰聚合物研究所 介晶膜中的偏振光栅
US8537310B2 (en) 2005-03-01 2013-09-17 North Carolina State University Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
JP2006269770A (ja) 2005-03-24 2006-10-05 Kyoto Univ 有機配向膜及びそれを用いた有機半導体デバイス
US7573640B2 (en) 2005-04-04 2009-08-11 Mirage Innovations Ltd. Multi-plane optical apparatus
ES2563755T3 (es) 2005-05-18 2016-03-16 Visual Physics, Llc Presentación de imágenes y sistema de seguridad micro-óptico
CN100440000C (zh) * 2005-08-17 2008-12-03 财团法人工业技术研究院 用于液晶显示器的光学元件及其制作方法
US20080043334A1 (en) 2006-08-18 2008-02-21 Mirage Innovations Ltd. Diffractive optical relay and method for manufacturing the same
US11428937B2 (en) 2005-10-07 2022-08-30 Percept Technologies Enhanced optical and perceptual digital eyewear
US8696113B2 (en) 2005-10-07 2014-04-15 Percept Technologies Inc. Enhanced optical and perceptual digital eyewear
US20070081123A1 (en) 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
JP2007265581A (ja) 2006-03-30 2007-10-11 Fujinon Sano Kk 回折素子
ITTO20060303A1 (it) * 2006-04-26 2007-10-27 Consiglio Nazionale Ricerche Lettera di incarico segue
US20080043166A1 (en) * 2006-07-28 2008-02-21 Hewlett-Packard Development Company Lp Multi-level layer
CN101573665A (zh) 2006-10-27 2009-11-04 伊利诺伊大学评议会 用于通过油墨光刻生成图案的器件和方法
US20100277803A1 (en) * 2006-12-14 2010-11-04 Nokia Corporation Display Device Having Two Operating Modes
US8160411B2 (en) 2006-12-28 2012-04-17 Nokia Corporation Device for expanding an exit pupil in two dimensions
WO2008081071A1 (en) 2006-12-28 2008-07-10 Nokia Corporation Light guide plate and a method of manufacturing thereof
CN101222009A (zh) 2007-01-12 2008-07-16 清华大学 发光二极管
US7394841B1 (en) 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications
JP4765962B2 (ja) * 2007-02-27 2011-09-07 セイコーエプソン株式会社 液晶装置の製造方法
ATE529769T1 (de) 2007-04-16 2011-11-15 Univ North Carolina State Chirale flüssigkristallpolarisationsgitter mit leichter drehung und herstellungsverfahren dafür
WO2008130561A1 (en) 2007-04-16 2008-10-30 North Carolina State University Multi-layer achromatic liquid crystal polarization gratings and related fabrication methods
WO2008152436A1 (en) 2007-06-14 2008-12-18 Nokia Corporation Displays with integrated backlighting
US20140300695A1 (en) 2007-08-11 2014-10-09 Massachusetts Institute Of Technology Full-Parallax Acousto-Optic/Electro-Optic Holographic Video Display
WO2009037706A1 (en) * 2007-09-18 2009-03-26 Mirage Innovations Ltd. Slanted optical device
US8355610B2 (en) 2007-10-18 2013-01-15 Bae Systems Plc Display systems
JP4395802B2 (ja) 2007-11-29 2010-01-13 ソニー株式会社 画像表示装置
US8508848B2 (en) 2007-12-18 2013-08-13 Nokia Corporation Exit pupil expanders with wide field-of-view
KR101330860B1 (ko) 2007-12-27 2013-11-18 아사히 가라스 가부시키가이샤 액정 소자 및 광 헤드 장치 및 가변 광 변조 소자
JP2009181104A (ja) 2008-02-01 2009-08-13 Dic Corp 光配向性基板、光学異方体及び液晶表示素子
JP5189888B2 (ja) 2008-05-01 2013-04-24 住友化学株式会社 位相差層の製造方法
US8757812B2 (en) 2008-05-19 2014-06-24 University of Washington UW TechTransfer—Invention Licensing Scanning laser projection display devices and methods for projecting one or more images onto a surface with a light-scanning optical fiber
WO2010014624A2 (en) * 2008-07-28 2010-02-04 Pixel Qi Corporation Diffractive liquid crystal display
JP5651595B2 (ja) 2008-10-09 2015-01-14 ノース・キャロライナ・ステイト・ユニヴァーシティ 複数の偏光回折格子配置を有する偏光無依存型液晶ディスプレイ装置及び関連装置
EP2373924B2 (en) 2008-12-12 2022-01-05 BAE Systems PLC Improvements in or relating to waveguides
CN101441367B (zh) 2008-12-29 2011-05-11 昆山龙腾光电有限公司 一种用于印刷配向膜的压印板
JP5333261B2 (ja) 2009-03-11 2013-11-06 Jsr株式会社 偏光性回折素子
AU2010238336B2 (en) 2009-04-14 2014-02-06 Bae Systems Plc Optical waveguide and display device
CN101556356B (zh) 2009-04-17 2011-10-19 北京大学 一种光栅耦合器及其在偏振和波长分束上的应用
JP2010271565A (ja) 2009-05-22 2010-12-02 Seiko Epson Corp 頭部装着型表示装置
JP5609871B2 (ja) 2009-07-08 2014-10-22 旭硝子株式会社 ジ(メタ)アクリレート化合物、重合性液晶性組成物、光学異方性材料、光学素子および光情報記録再生装置
US8178011B2 (en) 2009-07-29 2012-05-15 Empire Technology Development Llc Self-assembled nano-lithographic imprint masks
JP2011071500A (ja) 2009-08-31 2011-04-07 Fujifilm Corp パターン転写装置及びパターン形成方法
US8233204B1 (en) 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
US11320571B2 (en) 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
JP5059079B2 (ja) 2009-10-21 2012-10-24 キヤノン株式会社 積層型回折光学素子および光学系
JP2011112831A (ja) 2009-11-26 2011-06-09 Hitachi Maxell Ltd 積層グレーティング素子およびその製造方法
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
US8467133B2 (en) 2010-02-28 2013-06-18 Osterhout Group, Inc. See-through display with an optical assembly including a wedge-shaped illumination system
US20120206485A1 (en) 2010-02-28 2012-08-16 Osterhout Group, Inc. Ar glasses with event and sensor triggered user movement control of ar eyepiece facilities
US20110213664A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
JP5631776B2 (ja) * 2010-03-03 2014-11-26 株式会社東芝 照明装置およびこれを備えた液晶表示装置
WO2011107831A1 (en) 2010-03-04 2011-09-09 Nokia Corporation Optical apparatus and method for expanding an exit pupil
JP2011186092A (ja) * 2010-03-05 2011-09-22 Hyogo Prefecture 高分子液晶の配向制御方法
WO2011129404A1 (ja) * 2010-04-15 2011-10-20 旭硝子株式会社 液晶素子を製造する方法及び液晶素子
JP5767858B2 (ja) 2010-05-21 2015-08-19 株式会社有沢製作所 光回折素子、光ピックアップ及び光回折素子の製造方法
NL2006747A (en) 2010-07-26 2012-01-30 Asml Netherlands Bv Imprint lithography alignment method and apparatus.
WO2012062681A1 (de) * 2010-11-08 2012-05-18 Seereal Technologies S.A. Anzeigegerät, insbesondere ein head-mounted display, basierend auf zeitlichen und räumlichen multiplexing von hologrammkacheln
US9304319B2 (en) 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
KR101997852B1 (ko) 2010-12-24 2019-10-01 매직 립, 인코포레이티드 인체공학적 머리 장착식 디스플레이 장치 및 광학 시스템
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
US8508681B2 (en) 2010-12-30 2013-08-13 Smartershade, Inc. Variable transmission window
CN103328176B (zh) * 2011-01-14 2015-07-29 吉坤日矿日石能源株式会社 微细图案转印用模具的制造方法及使用该模具的衍射光栅的制造方法、以及具有该衍射光栅的有机el元件的制造方法
JP2012159802A (ja) 2011-02-02 2012-08-23 Ricoh Co Ltd 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器
EP2671141B1 (en) * 2011-02-02 2016-05-25 FlatFrog Laboratories AB Optical incoupling for touch-sensitive systems
WO2012111558A1 (ja) 2011-02-15 2012-08-23 シャープ株式会社 液晶表示装置
JP2012198261A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp 導光板及びこれを備える虚像表示装置
US9046729B2 (en) 2011-03-24 2015-06-02 The Hong Kong University Of Science And Technology Cholesteric liquid crystal structure
CN103635891B (zh) 2011-05-06 2017-10-27 奇跃公司 大量同时远程数字呈现世界
US20120287674A1 (en) * 2011-05-13 2012-11-15 Flex Lighting Ii, Llc Illumination device comprising oriented coupling lightguides
AU2012296482A1 (en) * 2011-08-17 2014-02-27 Pixeloptics, Inc. Moisture-resistant electronic spectacle frames
US8548290B2 (en) 2011-08-23 2013-10-01 Vuzix Corporation Dynamic apertured waveguide for near-eye display
US10795448B2 (en) 2011-09-29 2020-10-06 Magic Leap, Inc. Tactile glove for human-computer interaction
US8903207B1 (en) * 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
GB201117480D0 (en) * 2011-10-10 2011-11-23 Palikaras George Filter
US8885161B2 (en) 2011-10-12 2014-11-11 Spectroclick, Inc. Energy dispersion device
TWI437332B (zh) 2011-10-27 2014-05-11 Far Eastern New Century Corp A method for preparing composite phase difference plate
RU2621633C2 (ru) 2011-10-28 2017-06-06 Мэджик Лип, Инк. Система и способ для дополненной и виртуальной реальности
WO2013066306A1 (en) 2011-10-31 2013-05-10 Hewlett-Packard Development Company, L.P. Luminescent stacked waveguide display
CN107664847B (zh) * 2011-11-23 2021-04-06 奇跃公司 三维虚拟和增强现实显示系统
JP2013120350A (ja) 2011-12-08 2013-06-17 Asahi Glass Co Ltd 光学異方性膜
US9575366B2 (en) 2011-12-29 2017-02-21 The Hong Kong University Of Science And Technology Fast switchable and high diffraction efficiency grating ferroelectric liquid crystal cell
JP6001874B2 (ja) 2012-02-17 2016-10-05 日東電工株式会社 光学積層体及び光学積層体の製造方法
JP5957972B2 (ja) * 2012-03-07 2016-07-27 セイコーエプソン株式会社 虚像表示装置
US8848289B2 (en) 2012-03-15 2014-09-30 Google Inc. Near-to-eye display with diffractive lens
WO2013144898A2 (en) 2012-03-29 2013-10-03 Ecole Polytechnique Federale De Lausanne (Epfl) Methods and apparatus for imaging with multimode optical fibers
EP2841991B1 (en) 2012-04-05 2020-01-08 Magic Leap, Inc. Wide-field of view (fov) imaging devices with active foveation capability
CN106125308B (zh) 2012-04-25 2019-10-25 罗克韦尔柯林斯公司 用于显示图像的装置和方法
CN102683803B (zh) 2012-04-28 2015-04-22 深圳光启高等理工研究院 一种基于超材料卫星天线的商业液晶显示屏
US20130314765A1 (en) * 2012-05-25 2013-11-28 The Trustees Of Boston College Metamaterial Devices with Environmentally Responsive Materials
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
KR102217788B1 (ko) 2012-06-11 2021-02-18 매직 립, 인코포레이티드 도파관 리플렉터 어레이 프로젝터를 이용한 다중 깊이면 3차원 디스플레이
US9671566B2 (en) * 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
CN102768439B (zh) 2012-06-14 2014-12-10 北京京东方光电科技有限公司 一种母板取向膜的制作方法及转印版、取向液
WO2014016403A1 (de) 2012-07-27 2014-01-30 Seereal Technologies S.A. Polarisationsgitter für schräge einfallswinkel
US8911080B2 (en) 2012-08-27 2014-12-16 Johnson & Johnson Vision Care, Inc. Usage compliance indicator for contact lenses
US8885997B2 (en) * 2012-08-31 2014-11-11 Microsoft Corporation NED polarization system for wavelength pass-through
WO2014037036A1 (en) 2012-09-05 2014-03-13 Seereal Technologies S.A. Controllable diffraction device for a light modulator device
WO2014043196A1 (en) 2012-09-11 2014-03-20 Magic Leap, Inc Ergonomic head mounted display device and optical system
US9345402B2 (en) 2012-09-11 2016-05-24 Augmented Vision, Inc. Compact eye imaging and eye tracking apparatus
WO2014062615A2 (en) 2012-10-15 2014-04-24 North Carolina State University Direct write lithography for the fabrication of geometric phase holograms
JP2014092611A (ja) 2012-11-01 2014-05-19 Polatechno Co Ltd 有機el表示装置用円偏光板及び有機el表示装置
US9933684B2 (en) * 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9671538B2 (en) 2012-11-19 2017-06-06 The Arizona Board Of Regents On Behalf Of The University Of Arizona Optical elements comprising cholesteric liquid crystal polymers
WO2014091204A1 (en) 2012-12-10 2014-06-19 Bae Systems Plc Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same
US9134526B2 (en) 2012-12-19 2015-09-15 Pixtronix, Inc. Display device incorporating multiple dielectric layers
NZ710096A (en) 2013-01-15 2018-11-30 Magic Leap Inc Ultra-high resolution scanning fiber display
US8873149B2 (en) 2013-01-28 2014-10-28 David D. Bohn Projection optical system for coupling image light to a near-eye display
KR102067759B1 (ko) 2013-02-15 2020-01-17 삼성전자주식회사 파이버 스캐닝 프로젝터
EP2967322A4 (en) 2013-03-11 2017-02-08 Magic Leap, Inc. System and method for augmented and virtual reality
CN105229499B (zh) * 2013-03-13 2018-12-04 北卡罗莱纳州立大学 具有几何相位全息图的偏振转换系统
NZ751593A (en) 2013-03-15 2020-01-31 Magic Leap Inc Display system and method
EP3296797B1 (en) 2013-03-25 2019-11-06 North Inc. Method for displaying an image projected from a head-worn display with multiple exit pupils
CN104321682B (zh) 2013-03-28 2017-09-22 松下知识产权经营株式会社 图像显示装置
WO2014172252A1 (en) * 2013-04-15 2014-10-23 Kent State University Patterned liquid crystal alignment using ink-jet printed nanoparticles and use thereof to produce patterned, electro-optically addressable devices; ink-jet printable compositions
JP2014224846A (ja) * 2013-05-15 2014-12-04 セイコーエプソン株式会社 表示装置
DE102013105246B4 (de) 2013-05-22 2017-03-23 Leonhard Kurz Stiftung & Co. Kg Optisch variables Element
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
US10262462B2 (en) 2014-04-18 2019-04-16 Magic Leap, Inc. Systems and methods for augmented and virtual reality
US9664905B2 (en) 2013-06-28 2017-05-30 Microsoft Technology Licensing, Llc Display efficiency optimization by color filtering
US10295338B2 (en) 2013-07-12 2019-05-21 Magic Leap, Inc. Method and system for generating map data from an image
KR102089661B1 (ko) 2013-08-27 2020-03-17 삼성전자주식회사 와이어 그리드 편광판 및 이를 구비하는 액정 표시패널 및 액정 표시장치
JP6187045B2 (ja) * 2013-08-30 2017-08-30 セイコーエプソン株式会社 光学デバイス及び画像表示装置
KR102341870B1 (ko) 2013-10-16 2021-12-20 매직 립, 인코포레이티드 조절가능한 동공간 거리를 가지는 가상 또는 증강 현실 헤드셋들
JP6268941B2 (ja) * 2013-11-06 2018-01-31 凸版印刷株式会社 偽造防止用デバイスおよびその製造方法
JP6287095B2 (ja) * 2013-11-19 2018-03-07 セイコーエプソン株式会社 光学デバイス及び電子機器
KR102067229B1 (ko) 2013-11-27 2020-02-12 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR102378457B1 (ko) 2013-11-27 2022-03-23 매직 립, 인코포레이티드 가상 및 증강 현실 시스템들 및 방법들
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
CN106030375B (zh) 2013-12-19 2019-10-18 Bae系统公共有限公司 波导的改进
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
CN106233189B (zh) 2014-01-31 2020-06-26 奇跃公司 多焦点显示系统和方法
EP4071537B1 (en) 2014-01-31 2024-07-10 Magic Leap, Inc. Multi-focal display system
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
AU2015255652B2 (en) 2014-05-09 2018-03-29 Google Llc Systems and methods for using eye signals with secure mobile communications
USD759657S1 (en) 2014-05-19 2016-06-21 Microsoft Corporation Connector with illumination region
CA2950432C (en) 2014-05-30 2022-01-04 Magic Leap, Inc. Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
USD752529S1 (en) 2014-06-09 2016-03-29 Comcast Cable Communications, Llc Electronic housing with illuminated region
WO2016019123A1 (en) 2014-07-31 2016-02-04 North Carolina State University Bragg liquid crystal polarization gratings
US10746994B2 (en) 2014-08-07 2020-08-18 Microsoft Technology Licensing, Llc Spherical mirror having a decoupled aspheric
KR102213662B1 (ko) 2014-08-22 2021-02-08 삼성전자주식회사 음향광학 소자 어레이
KR102508041B1 (ko) 2014-08-29 2023-03-08 스미또모 가가꾸 가부시키가이샤 광학 필름의 제조 방법
US20160077338A1 (en) 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US9494799B2 (en) 2014-09-24 2016-11-15 Microsoft Technology Licensing, Llc Waveguide eye tracking employing switchable diffraction gratings
NZ730509A (en) 2014-09-29 2018-08-31 Magic Leap Inc Architectures and methods for outputting different wavelength light out of waveguides
US20160097930A1 (en) 2014-10-06 2016-04-07 Steven John Robbins Microdisplay optical system having two microlens arrays
US10359686B2 (en) 2014-11-24 2019-07-23 Lensvector Inc. Liquid crystal beam control device with improved zone transition and method of manufacture thereof
US20160161648A1 (en) 2014-12-03 2016-06-09 Teledyne Scienlific & Imaging. LLC Method of fabricating large area birefringent grating films
EP3245551B1 (en) 2015-01-12 2019-09-18 DigiLens Inc. Waveguide light field displays
US10108011B2 (en) * 2015-01-20 2018-10-23 Microsoft Technology Licensing, Llc Microsphere spaced waveguide display
CN104597565A (zh) * 2015-01-25 2015-05-06 上海理湃光晶技术有限公司 增强现实的齿形镶嵌平面波导光学器件
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
JP2016170315A (ja) 2015-03-13 2016-09-23 日本電信電話株式会社 領域分割波長板およびその製造方法
NZ773844A (en) 2015-03-16 2022-07-01 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
US10591869B2 (en) 2015-03-24 2020-03-17 Light Field Lab, Inc. Tileable, coplanar, flat-panel 3-D display with tactile and audio interfaces
CA2981652C (en) * 2015-04-02 2023-08-22 University Of Rochester Freeform nanostructured surface for virtual and augmented reality near eye display
USD758367S1 (en) 2015-05-14 2016-06-07 Magic Leap, Inc. Virtual reality headset
KR102359038B1 (ko) 2015-06-15 2022-02-04 매직 립, 인코포레이티드 멀티플렉싱된 광 스트림들을 인-커플링하기 위한 광학 엘리먼트들을 가진 디스플레이 시스템
KR20170000656A (ko) 2015-06-24 2017-01-03 안동대학교 산학협력단 누리관총채벌레의 사육방법 및 이를 이용한 총채벌레류의 방제방법
KR102390375B1 (ko) 2015-08-26 2022-04-25 삼성전자주식회사 백라이트 유닛 및 이를 포함한 입체 영상 표시 장치
JP6876683B2 (ja) 2015-09-23 2021-05-26 マジック リープ, インコーポレイテッドMagic Leap,Inc. 軸外イメージャを用いた眼の撮像
AU2016349891B9 (en) 2015-11-04 2021-05-06 Magic Leap, Inc. Dynamic display calibration based on eye-tracking
KR102404944B1 (ko) 2015-11-06 2022-06-08 삼성디스플레이 주식회사 표시 기판 및 이를 포함하는 액정 표시 장치
DE102015122055B4 (de) 2015-12-17 2018-08-30 Carl Zeiss Ag Optisches System sowie Verfahren zum Übertragen eines Quellbildes
USD805734S1 (en) 2016-03-04 2017-12-26 Nike, Inc. Shirt
USD794288S1 (en) 2016-03-11 2017-08-15 Nike, Inc. Shoe with illuminable sole light sequence
CN105842897B (zh) 2016-05-30 2019-01-29 深圳市华星光电技术有限公司 液晶显示母板及其配向方法
US20170373459A1 (en) 2016-06-27 2017-12-28 University Of Central Florida Research Foundation, Inc. Volume polarization grating, methods of making, and applications
JP2018004950A (ja) 2016-07-01 2018-01-11 フォーブ インコーポレーテッド 映像表示システム、映像表示方法、映像表示プログラム
US10551622B2 (en) 2016-10-26 2020-02-04 Microsoft Technology Licensing, Llc Field of view tiling in waveguide-based near-eye displays
JP7019695B2 (ja) 2016-11-18 2022-02-15 マジック リープ, インコーポレイテッド 広入射角範囲の光を再指向するための多層液晶回折格子
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
EP3542213A4 (en) 2016-11-18 2020-10-07 Magic Leap, Inc. WAVE GUIDE LIGHT MULTIPLEXER USING CROSSED GRIDS
IL310194A (en) 2016-11-18 2024-03-01 Magic Leap Inc Liquid crystal refraction lattices vary spatially
EP4002000A1 (en) 2016-12-08 2022-05-25 Magic Leap, Inc. Diffractive devices based on cholesteric liquid crystal
CA3046328A1 (en) 2016-12-14 2018-06-21 Magic Leap, Inc. Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
US10746999B2 (en) 2016-12-28 2020-08-18 Magic Leap, Inc. Dual depth exit pupil expander
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
US11681153B2 (en) 2017-01-27 2023-06-20 Magic Leap, Inc. Antireflection coatings for metasurfaces
US11243450B2 (en) 2017-01-30 2022-02-08 The Charles Stark Draper Laboratory, Inc. Saw modulator having optical power component for extended angular redirection of light
IL268427B2 (en) 2017-02-23 2024-03-01 Magic Leap Inc Variable focus virtual imagers based on polarization conversion
WO2018175488A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Stacked waveguides having different diffraction gratings for combined field of view
KR102576133B1 (ko) 2017-03-21 2023-09-07 매직 립, 인코포레이티드 회절 광학 엘리먼트들을 이용한 눈-이미징 장치
JP7280250B2 (ja) 2017-09-21 2023-05-23 マジック リープ, インコーポレイテッド 眼および/または環境の画像を捕捉するように構成される導波管を伴う拡張現実ディスプレイ
WO2020069026A1 (en) 2018-09-26 2020-04-02 Magic Leap, Inc. Diffractive optical elements with optical power

Also Published As

Publication number Publication date
IL295566B2 (en) 2024-01-01
EP3308219A4 (en) 2019-03-13
IL292858B2 (en) 2023-12-01
JP7352702B2 (ja) 2023-09-28
US10254454B2 (en) 2019-04-09
US20170010466A1 (en) 2017-01-12
TWI646375B (zh) 2019-01-01
KR20230025933A (ko) 2023-02-23
TWI702448B (zh) 2020-08-21
JP2021103312A (ja) 2021-07-15
EP4431998A2 (en) 2024-09-18
EP3308219B1 (en) 2024-08-07
JP2018521350A (ja) 2018-08-02
IL292858A (en) 2022-07-01
CN107924103A (zh) 2018-04-17
IL256276B (en) 2022-09-01
TW201712419A (zh) 2017-04-01
JP7403622B2 (ja) 2023-12-22
NZ738362A (en) 2019-08-30
US20210341661A1 (en) 2021-11-04
US20190227211A1 (en) 2019-07-25
US20200271840A1 (en) 2020-08-27
KR20220136498A (ko) 2022-10-07
KR102449800B1 (ko) 2022-09-29
WO2016205256A1 (en) 2016-12-22
EP4249965A2 (en) 2023-09-27
EP3308219A1 (en) 2018-04-18
JP2022169572A (ja) 2022-11-09
CN115390250A (zh) 2022-11-25
EP3308220A4 (en) 2019-01-09
TW201713999A (zh) 2017-04-16
IL256272B (en) 2022-06-01
IL295566A (en) 2022-10-01
IL256272A (en) 2018-02-28
EP3792682A1 (en) 2021-03-17
JP2023165782A (ja) 2023-11-17
US20210199868A1 (en) 2021-07-01
CN113608350A (zh) 2021-11-05
US11067732B2 (en) 2021-07-20
EP3308220B1 (en) 2020-11-18
EP3308220A1 (en) 2018-04-18
JP2018519542A (ja) 2018-07-19
CA2989414A1 (en) 2016-12-22
JP6851992B2 (ja) 2021-03-31
US20170010488A1 (en) 2017-01-12
KR20240014621A (ko) 2024-02-01
TWI644150B (zh) 2018-12-11
KR102499306B1 (ko) 2023-02-10
NZ738352A (en) 2019-07-26
JP2023029474A (ja) 2023-03-03
AU2021273613A1 (en) 2021-12-16
WO2016205249A1 (en) 2016-12-22
US11733443B2 (en) 2023-08-22
IL256276A (en) 2018-02-28
JP7203927B2 (ja) 2023-01-13
TW201921056A (zh) 2019-06-01
CN107924085B (zh) 2022-09-02
CN107924103B (zh) 2021-06-22
CN107924085A (zh) 2018-04-17
NZ754828A (en) 2021-07-30
IL295566B1 (en) 2023-09-01
AU2016278006B2 (en) 2021-09-02
CA2989409A1 (en) 2016-12-22
AU2022200110A1 (en) 2022-02-03
KR102630100B1 (ko) 2024-01-25
KR20220018099A (ko) 2022-02-14
US10690826B2 (en) 2020-06-23
TWI702451B (zh) 2020-08-21
KR20180019181A (ko) 2018-02-23
JP2022023220A (ja) 2022-02-07
JP7119150B2 (ja) 2022-08-16
AU2016278006A1 (en) 2018-01-18
AU2016278013B2 (en) 2021-10-21
IL292858B1 (en) 2023-08-01
AU2016278013A1 (en) 2018-01-18
EP4249965A3 (en) 2023-12-27
US10948642B2 (en) 2021-03-16
KR102359038B1 (ko) 2022-02-04
US11789189B2 (en) 2023-10-17
KR20180018766A (ko) 2018-02-21
EP3792682B1 (en) 2023-08-09
TW201917476A (zh) 2019-05-01
US20230384499A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP6975644B2 (ja) 仮想および拡張現実システムおよび方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6975644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150