JP2012159802A - 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器 - Google Patents

光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器 Download PDF

Info

Publication number
JP2012159802A
JP2012159802A JP2011021114A JP2011021114A JP2012159802A JP 2012159802 A JP2012159802 A JP 2012159802A JP 2011021114 A JP2011021114 A JP 2011021114A JP 2011021114 A JP2011021114 A JP 2011021114A JP 2012159802 A JP2012159802 A JP 2012159802A
Authority
JP
Japan
Prior art keywords
wavelength
sub
light
uneven structure
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011021114A
Other languages
English (en)
Inventor
Hideaki Hirai
秀明 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011021114A priority Critical patent/JP2012159802A/ja
Publication of JP2012159802A publication Critical patent/JP2012159802A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

【課題】サブ波長凹凸構造の構成を適切に設定することにより、第1のサブ波長凹凸構造と第2のサブ波長凹凸構造の有効屈折率差を十分に広くとることができる偏光選択型回折素子(光学素子)を提供する。
【解決手段】回折素子1では、入射光の波長λ以下の周期をもつ第1のサブ波長凹凸構造Aと第2のサブ波長凹凸構造Bとが基板10上に形成されている。第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn1(P偏光)とし、第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn2(P偏光)としたとき、p1>p2、f1<f2、n1(P偏光)=n2(P偏光)を満足する。
【選択図】図1

Description

本発明は、サブ波長凹凸構造を用いた偏光選択性回折素子としての光学素子、該光学素子を用いた光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ、及び該光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子又はプロジェクタ光学系を有する光学機器に関する。
光ピックアップ光学系、プロジェクタ光学系、アイソレータ、光減衰器、反射型位相変調素子、等の各種の光学機器において、入射光の偏光方向に応じて光路分離を行う偏光選択性又は波長選択性の回折素子が必要とされている。
これに対して、最近では格子周期が使用波長よりも小さな微細周期構造を有するサブ波長凹凸構造を有する光学素子が非特許文献1、非特許文献2などに開示され、注目されてきている。
サブ波長凹凸構造によって複屈折波長板、反射防止構造、偏光分離素子など様々な機能を有することが知られている。そして、それらの機能において入射光の入射角の変化による光学性能変動が少なく、光学的に優れているという報告もなされている。
特許文献1には、高価な複屈折性結晶を用いることなく、複屈折性を得るために、稠密な周期構造を利用した偏光選択性回折素子が開示されている。
図41は特許文献1の実施例の基本構成を示す部分斜視図である。特許文献1の実施例1によれば、使用する光源の光波長は1.3μm、基板の材料としては、上記波長では透明でかつ屈折率がn=3.5と大きいシリコン(Si)結晶を用い、第1の領域のサブ波長凹凸構造と第2の領域のサブ波長凹凸構造のフィリングファクタはそれぞれ0.5(ここで、フィリングファクタはサブ波長凹凸構造のピッチに対する凸部の溝幅比を意味する)、第1の領域のサブ波長凹凸構造と第2の領域のサブ波長凹凸構造のピッチはそれぞれ0.6μm、第1の領域のサブ波長凹凸構造の溝深さはt1=0.162μm、第2の領域のサブ波長凹凸構造の溝深さはt2=0.374μm、となっている。
図41において、符号203は光の進行方向を示す矢印である。
特許文献1によれば、上記のような屈折率、フィリングファクタを有する構造においては、サブ波長凹凸構造の有効屈折率はn//=2.5739、n⊥=1.3598となるものと記載されている。ここで、n//はサブ波長凹凸構造の溝方向と同一方向の偏光方向の光が入射したときに感じる有効屈折率、n⊥はサブ波長凹凸構造の溝方向と直交する方向の偏光方向の光が入射したときに感じる有効屈折率を意味する。
上記の有効屈折率の算出式は
n//=√(t・n+(1-t))・・・式1
n⊥=√(1/((t/n)+(1-t))・・・式2
で定義される、サブ波長凹凸構造の近似式を用いて算出されてなる。
ここでnはサブ波長凹凸構造を形成する材料の屈折率、tはフィリングファクタである。
また、本発明者らが、特許文献2に開示しているような回折格子の溝深さを適宜設定することにより、特定波長λ1は不感帯透過、他の特定波長λ2は±1次光のみ発生するような回折素子を作り出すことが可能である。
とくに回折格子の構造を階段状の構造とすることにより、波長λ2の光に対して所定の次数に偏りをもって回折するようにすることができる。すなわち+1次回折光を−1次回折光に比して強く発生させることができる。
しかしながら、特許文献1のような構成は、作製が難しい構造である。一般にサブ波長凹凸構造の溝作製にはエッチング法を用いる場合が多い。エッチング法は均一な溝深さを形成することを特徴としている方法であるため、特許文献1のようにサブ波長凹凸構造の溝深さが領域ごとに変化した構造においては作製上の課題が予想される。
また、式1、式2は近似式であり、サブ波長凹凸構造のピッチが十分に小さい場合は有効であるが、ピッチが広くなってくると式1、式2で算出される値から大きくずれる。
また、特許文献1では、その用途から材料として高屈折率材料を選択できているが、コンシューマ製品に搭載されている光学機器で使用される可視域の波長帯で透明な材料では屈折率2.5を超えるようなものはなく、第1のサブ波長凹凸構造と第2のサブ波長凹凸構造の有効屈折率差を十分に取れない。
この有効屈折率差が十分に取れないと、第1、第2それぞれのサブ波長凹凸構造の溝深さを深くとる必要があり、作製難度がさらに上がる。
また、特許文献2のような階段状の構造を2段の構造で作れるとさらに生産性が向上する。一般に階段状構造の溝作製にはエッチング法を用いる場合が多い。エッチング法は均一な溝深さを形成することを特徴としている方法であるため、階段構造に比べ2値構造のほうが得意である。
本発明は、このような状況に鑑みてなされたもので、サブ波長凹凸構造の構成を適切に設定することにより、第1のサブ波長凹凸構造と第2のサブ波長凹凸構造の有効屈折率差を十分に広くとることができる偏光選択型回折素子(光学素子)又は波長選択型回折素子の提供を、その主な目的とする。
また、本発明は、光をその偏光方向又は波長方向に応じて特定の次数に回折することができるとともに製造が容易な光学素子、さらには、このような偏光選択型回折素子又は波長選択型回折素子を利用した各種光学機器の提供をその目的とする。
上記目的を達成するために、請求項1記載の発明は、入射光の波長以上の周期をもつ光学素子であり、その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造と第2のサブ波長凹凸構造とで形成されてなり、第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造には、第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn1(P偏光)とし、第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn2(P偏光)としたとき、
p1>p2
f1<f2
n1(P偏光)=n2(P偏光)
を満足することを特徴とする。
請求項2記載の発明は、請求項1記載の光学素子において、前記光学素子のストライプ方向と同一の偏光方向の光が入射したときには、1次回折光が発生せず、前記光学素子のストライプ方向と直交する偏光方向の光が入射したときには、0次回折光が発生しないように第1のサブ波長凹凸構造の溝深さと第2のサブ波長凹凸構造の溝深さとが同一の値に設定されていることを特徴とする。
請求項3記載の発明は、入射光の波長以上の周期をもつ光学素子であり、その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造と第2のサブ波長凹凸構造とで形成されてなり、第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造には、第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn1(λ1、P偏光)とし、
第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn2(λ1、P偏光)としたとき、
p1>p2
f1<f2
n1(λ1、P偏光)=n2(λ1、P偏光)
第1のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2(>λ1)の光が入射したときの有効屈折率をn1(λ2、P偏光)とし、
第2のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2(>λ1)の光が入射したときの有効屈折率をn2(λ2、P偏光)としたとき、
n1(λ2、P偏光)>n2(λ2、P偏光)
を満足することを特徴とする。
請求項4記載の発明は、請求項3記載の光学素子において、波長λ2の光が入射したときには、0次回折光が発生しないように第1のサブ波長凹凸構造の溝深さと第2のサブ波長凹凸構造の溝深さとが同一の値に設定されていることを特徴とする。
請求項5記載の発明は、入射光の波長以上の周期をもつ光学素子であり、その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造、第2のサブ波長凹凸構造、・・・第Nのサブ波長凹凸構造とで形成されてなり、第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第Nのサブ波長凹凸構造には、第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造から第(N−1)のサブ波長凹凸構造は、第1と第Nのサブ波長凹凸構造のストライプ方向とは異なる角度を有し、第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向が入射したときの有効屈折率をn1(P偏光)、第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn2(P偏光)、第Nのサブ波長凹凸構造の周期をpN、フィリングファクタをfN、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をnN(P偏光)としたとき、
p1>p2>・・・>pN
f1<f2<・・・<fN
n1(P偏光)=n2(P偏光)=・・・=nN(P偏光)
を満足することを特徴とする。
請求項6記載の発明は、請求項5記載の光学素子において、所定の偏光方向を所定の次数に偏りをもって回折するように前記溝深さが設定されていることを特徴とする。
請求項7記載の発明は、入射光の波長以上の周期をもつ光学素子であり、その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造、第2のサブ波長凹凸構造、・・・第Nのサブ波長凹凸構造とで形成されてなり、第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第Nのサブ波長凹凸構造には、前記第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造から第(N−1)のサブ波長凹凸構造は、第1と第Nのサブ波長凹凸構造のストライプ方向とは異なる角度を有し、第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn1(λ1、P偏光)、
第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn2(λ1、P偏光)、
・・・第Nのサブ波長凹凸構造の周期をpN、フィリングファクタをfN、前記回折素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をnN(λ1、P偏光)としたとき、
p1>p2>・・・>pN
f1<f2<・・・<fN
n1(λ1、P偏光)=n2(λ1、P偏光)=・・・=nN(λ1、P偏光)
第1のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2の光が入射したときの有効屈折率をn1(λ2、P偏光)、
第2のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2の光が入射したときの有効屈折率をn2(λ2、P偏光)、
・・・第Nのサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2の光が入射したときの有効屈折率をnN(λ2、P偏光)としたとき、
n1(λ2、P偏光)>n2(λ2、P偏光)・・・>nN(λ2、P偏光)
を満足することを特徴とする。
請求項8記載の発明は、請求項7記載の光学素子において、波長λ2の光に対して所定の次数に偏りをもって回折するように前記溝深さが設定されていることを特徴とする。
請求項9記載の発明は、請求項1〜8のうちの何れか1つに記載の光学素子を有し、記録媒体に情報を記録し及び/又は記録媒体に記録されている情報を読み取る光ピックアップである。
請求項10記載の発明は、請求項9記載の光ピックアップを有し、この光ピックアップによって記録媒体の情報の処理を行う光情報処理装置である。
請求項11記載の発明は、請求項1〜8のうちの何れか1つに記載の光学素子と、この光学素子を経た光を減衰させる減衰手段とを有する光減衰器である。
請求項12記載の発明は、請求項1〜8のうちの何れか1つに記載の光学素子と、この光学素子を経た光の偏光方向を変換する変換素子とを有する偏光変換素子である。
請求項13記載の発明は、請求項1〜8のうちの何れか1つに記載の光学素子、または、請求項12記載の偏光変換素子を有し、前記光学素子を経た光を投射するプロジェクタ光学系である。
請求項14記載の発明は、請求項1〜8のうちの何れか1つに記載の光学素子を有し、光を一方向にのみ透過させて逆方向には遮断する機能を有する光アイソレータである。
請求項15記載の発明は、請求項1〜8のうちの何れか1つに記載の光学素子、または、請求項9記載の光ピックアップ、または、請求項10記載の光情報処理装置、または、請求項11記載の光減衰器、または、請求項12記載の偏光変換素子、または、請求項13記載のプロジェクタ光学系を有する光学機器である。
請求項1記載の発明によれば、サブ波長凹凸構造の構成を適切に設定することにより、偏光選択型の回折素子が実現できる。
また、該サブ波長凹凸構造の溝深さは素子内で均一であるため、製造が容易である。そしてフォトリソグラフィとエッチングからなる手法により簡単に多数個同時に製作できる。
また、サブ波長凹凸構造の構成を適切に設定することにより、偏光分離型の回折機能が得られるため、ガラスやプラスチックなど材料選択自由度が広い。すなわち使用条件に応じて材料選択してやればよい。例えば、入射光として短波長の光(エネルギー密度の高い光)を用いる場合はガラスや無機系の材料にサブ波長凹凸構造を形成すればよいし、使用波長の透過率が高い材料を選択するなどといったことも可能である。
そして、本発明においては、サブ波長凹凸構造のピッチとフィリングファクタの特徴的な選択により、第1のサブ波長凹凸構造と、第2のサブ波長凹凸構造の有効屈折率差を最大限に大きくとれる方法を適用しており、溝深さを深くせず生産性の高い偏光選択型回折素子が提供できる。
また、該サブ波長凹凸構造の溝深さは素子内で均一、かつ浅い構造であるため、構造の頑強化される方向である。
また、該サブ波長凹凸構造の溝深さにより、所望の回折効率を容易に得られる。
請求項2記載の発明によれば、サブ波長凹凸構造の溝深さを適切に設定することにより、第1のサブ波長凹凸構造のストライプ方向、ここではP方向とよぶとした場合、P方向の偏光成分の光が入射したときは不感帯で、これとは直交する偏光成分の光(S方向の偏光成分の光とよぶ)が入射したときは、回折する。
請求項3記載の発明によれば、サブ波長凹凸構造の構成を適切に設定することにより、波長選択型の回折素子が実現できる。
また、該サブ波長凹凸構造の溝深さは素子内で均一であるため、製造が容易である。そしてフォトリソグラフィとエッチングからなる手法により簡単に多数個同時に製作できる。
また、サブ波長凹凸構造の構成を適切に設定することにより、偏光分離型の回折機能が得られるため、ガラスやプラスチックなど材料選択自由度が広い。すなわち使用条件に応じて材料選択してやればよい。例えば、入射光として短波長の光(エネルギー密度の高い光)を用いる場合はガラスや無機系の材料にサブ波長凹凸構造を形成すればよいし、使用波長の透過率が高い材料を選択するなどといったことも可能である。
そして、サブ波長凹凸構造のピッチとフィリングファクタの特徴的な選択により、第1のサブ波長凹凸構造と、第2のサブ波長凹凸構造の有効屈折率差を特定波長λ1については同一、特定波長λ2については異なるような方法を適用しているため、サブ波長凹凸構造を利用した波長選択型の回折素子を提供可能となる。
また、該サブ波長凹凸構造の溝深さは素子内で均一であるため、構造の頑強化される方向である。
また、該サブ波長凹凸構造の溝深さにより、所望の回折効率を容易に得られる。
請求項4記載の発明によれば、サブ波長凹凸構造の溝深さを適切に設定することにより、波長λ2の0次光は不感帯で、1次回折光のみ発生するような、回折素子を提供することができる。
請求項5記載の発明によれば、N種のサブ波長凹凸構造を構成する各サブ波長凹凸構造の屈折率が所定の偏光方向と異なる偏光方向について互いに同一となるように、同各サブ波長凹凸構造の形成方向を互いに異ならせるとともに同各サブ波長凹凸構造のフィリングファクタが設定されていることとすれば、各サブ波長凹凸構造の形成方向及びフィリングファクタを適宜設定することで所定の偏光方向と異なる偏光方向については回折することなく、所定の偏光方向を特定の次数に回折し得る。たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を提供することができる。
請求項6記載の発明によれば、前記所定の偏光方向を所定の次数に偏りをもって回折するように前記溝深さが設定されていることとすれば、溝深さの設定により光をその偏光方向に応じて特定の次数に回折し得る。たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を提供することができる。
請求項7記載の発明のによれば、N種のサブ波長凹凸構造を構成する各サブ波長凹凸構造の屈折率が所定の波長の光について互いに同一となるように、同各サブ波長凹凸構造の形成方向を互いに異ならせるとともに同各サブ波長凹凸構造のピッチ、フィリングファクタが設定されていることとすれば、各サブ波長凹凸構造の形成方向、ピッチ、及びフィリングファクタを適宜設定することで所定の波長λ1の光については回折することなく不感帯透過し、所定の波長λ2の光については特定の次数に回折し得る。たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を提供することができる。
請求項8記載の発明によれば、前記所定の波長の光を所定の次数に偏りをもって回折するように前記溝深さが設定されていることとすれば、溝深さの設定により光をその偏光方向に応じて特定の次数に回折し得る、たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を提供することができる。
請求項9、10記載の発明によれば、光をその偏光方向に応じて特定の次数に回折し得る、たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を有する、低廉化、小型化可能な光ピックアップを用い、低廉化、小型化可能な光情報処理装置を提供することができる。
請求項11記載の発明によれば、光をその偏光方向に応じて特定の次数に回折し得る、たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を用いた、低廉化、小型化可能な光減衰器を提供することができる。
請求項12記載の発明によれば、光をその偏光方向に応じて特定の次数に回折し得る、たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を用いた、低廉化、小型化可能な偏光変換素子を提供することができる。
請求項13記載の発明によれば、光をその偏光方向に応じて特定の次数に回折し得る、たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を有する、低廉化、小型化可能なプロジェクタ光学系を提供することができる。
請求項14記載の発明によれば、光をその偏光方向に応じて特定の次数に回折し得る、たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な光学素子を用いた、低廉化、小型化可能なアイソレータを提供することができる。
請求項15記載の発明によれば、光をその偏光方向に応じて特定の次数に回折し得る、たとえばフォトリソグラフィ及びエッチングを用いた方法により製造を容易化可能であるとともに同時に多数を製造可能であり、薄型化、軽量化が可能であり、材料選択の自由度が広く、また組み立てを省略した低廉化可能な、ブレーズド型よりも強度を向上可能な光学素子を有する、低廉化、小型化可能な光学機器を提供することができる。
本発明の第1の実施形態に係る光学素子の斜視図である。 同光学素子の回折の様子を説明するための図である。 有効屈折率のフィリングファクタのピッチ依存性を示すグラフである。 図1で示した光学素子の回折効率を示すグラフである。 比較例の回折効率を示すグラフである。 第2の実施形態に係る光学素子の斜視図である。 同光学素子のサブ波長凹凸部の拡大図である。 同光学素子の回折特性の説明図である。 同光学素子の有効屈折率の説明図である。 同光学素子の回折効率を示すグラフである。 第3の実施形態に係る光学素子の斜視図である。 同光学素子の回折の様子を説明するための図である。 有効屈折率のフィリングファクタのピッチ依存性を示すグラフである。 異なる波長についての有効屈折率のフィリングファクタのピッチ依存性を示すグラフである。 同光学素子の回折効率を示すグラフである。 第4の実施形態に係る光学素子の斜視図である。 同光学素子のサブ波長凹凸部の拡大図である。 同光学素子の回折特性の説明図である。 同光学素子の有効屈折率の説明図である。 異なる波長についての同光学素子の有効屈折率の説明図である。 異なる波長についての同光学素子の有効屈折率の説明図である。 同光学素子の回折効率を示すグラフである。 石英を基材とした型の作成方法を説明するための図である。 シリコンを基材とした型の作成方法を説明するための図である。 シリコン膜とモールド型を利用してガラス基板に回折素子を形成する手順を示す図である。 ガラス基板にTiを成膜し、Tiに回折素子を形成する手順を示す図である。 金型を使用しない回折素子の製法を説明するための図である。 反射型回折素子の実施例を説明するための図である。 両面に回折面を設けた実施例を説明するための図である。 光ピックアップの実施例を説明するための図である。 光ピックアップの他の実施例を説明するための図である。 光減衰器の実施例を説明するための図である。 偏光変換素子の実施例を説明するための図である。 プロジェクタ光学系の実施例を説明するための図である。 プロジェクタ光学系の他の実施例を説明するための図である。 光アイソレータの実施例を説明するための図である。 光アイソレータを用いた光学機器の構成図である。 図36で示した光アイソレータの変形例を示す図である。 光アイソレータの他の実施例を説明するための図である。 光アイソレータの別の実施例を説明するための図である。 従来の偏光選択性回折素子の構造を示す斜視図である。
以下、本発明の実施形態を図を参照して説明する。
図1はこの発明の回折素子(光学素子と同義;以下同じ)の実施例1を示している。回折素子1では、入射光の波長λ以下の周期をもつ第1のサブ波長凹凸構造Aと第2のサブ波長凹凸構造Bとが基板10上に形成されている。サブ波長凹凸構造はA、Bを一組として回折素子上に波長以上の周期(回折格子周期とよぶこととする)で連続的に形成されている。
サブ波長凹凸構造A、Bはそれぞれ溝方向、ピッチ、フィリングファクタが異なっている。一方、サブ波長凹凸構造A、Bの溝深さは等しく設定されている。
そして、回折素子1に入射した光束は偏光方向により透過、もしくは±1次回折するように設定されている。
図1の斜視図部分は、図1の左上に平面的に表示された回折素子1に形成されているサブ波長凹凸構造の拡大図であり、回折素子1に形成されている回折格子周期の2.5周期分を示している。
図1に示すように、波長以上の周期構造に、サブ波長凹凸構造A、Bが重畳された構造となっている。サブ波長凹凸構造AはP偏光方向に溝方向をもつ波長以下の周期を有する。またサブ波長凹凸構造BはS偏光方向に溝方向をもつ波長以下の周期を有する。
図1の符号を用いて説明すると、Kは、回折素子1に形成されている波長以上の周期構造の周期(回折格子周期)を表す。
L1は、後述するサブ波長凹凸構造Aが形成されている領域の幅である。L2は、後述するサブ波長凹凸構造Bが形成されている領域の幅である。
q1は、サブ波長凹凸構造Aの周期を表す。
m1は、サブ波長凹凸構造Aの凸部の幅である。
m1/q1は、サブ波長凹凸構造Aのフィリングファクタである。
なおq1とm1の値は、溝方向に垂直に切り出した断面での値である。
q2は、サブ波長凹凸構造Bの周期を表す。
m2は、サブ波長凹凸構造Bの凸部の幅である。
m2/q2は、サブ波長凹凸構造Bのフィリングファクタである。なおq2とm2の値は、溝方向に垂直に切り出した断面での値である。
d1、d2は、サブ波長凹凸構造A、Bかつ回折構造の溝深さを表し、本発明においてはサブ波長凹凸構造A、Bのいずれにおいても等しいことを特徴としている。
(機能について)
回折素子1は、図1に示すように、波長以上の周期Kを有する周期構造に、さらに波長よりも短い周期q1、q2有するサブ波長凹凸構造が形成されてなる。波長以上の周期構造に応じて入射光は回折し、サブ波長凹凸構造によってP、Sいずれの偏光成分で回折するかの偏光選択性を出している。
これにより、図2に示すように、回折素子1はS偏光成分の光が入射したときは回折し、P偏光成分の光に対しては不感帯透過する。
(サブ波長凹凸構造が呈する構造複屈折特性について)
各回折素子面に形成されているサブ波長凹凸構造は、一般に知られている構造性複屈折を呈する(発現する)。
構造性複屈折とは、屈折率の異なる2種類の媒質を光の波長よりも短い周期でストライプ状に配置したとき、ストライプに平行な偏光成分(TE波)とストライプに垂直な偏光成分(TM波)とで屈折率が異なり、複屈折作用が生じることをいう。
ここで、屈折率の異なる2種類の媒質として、空気と屈折率nの媒質を想定して、サブ波長凹凸構造の周期以上の波長をもつ光が垂直入射したと仮定する。このときの入射光の偏光方向がサブ波長凹凸構造の溝に平行(TE方向)であるか垂直(TM方向)であるかによってサブ波長凹凸構造の有効屈折率は異なる。入射光の偏光方向がサブ波長凹凸構造の溝に平行である場合をn(TE)、垂直である場合をn(TM)と表す。
従来技術においては式1、式2を用いて有効屈折率を算出しているが、本発明においてはFDTD法を用いて算出された有効屈折率を用いてなる。FDTD法とは、電磁場の物理法則であるMaxwellの方程式を厳密に計算する方法であり、時間領域差分法(Finite Difference Time Domain method)のことである。計算負荷が高いため、従来は適用困難であり、従来技術で提示されるような近似式で有効屈折率を求められていたが、近年マシンパワーの向上に伴いPCにFDTDを用いた有効屈折率算出が可能となった。
(偏光選択型の回折素子)
周期が入射光の波長λ以下のサブ波長凹凸構造は入射光を回折することはなく(入射光はそのまま透過する)、入射光に対して複屈折特性を示す。すなわち、入射光の偏光方向に応じて異なる屈折率を示す。
図3は、横軸:フィリングファクタに対する偏光方向別の屈折率を示す図である。また、凡例の欄に記載されてなるとおり、同図ではサブ波長凹凸構造のピッチも併せて変化している。
従来技術の式1、式2の近似式では現れないピッチサイズに伴う変化がFDTD法を用いることで確認できる。なお計算にはn=2.313、波長405nmを用いた。また、凡例に記載した数値は、ピッチの波長比の値を示している。
例えば0.10は、0.10λのことであり、波長405nmのときは実ピッチとしては41nmである。このようにサブ波長凹凸構造の屈折率は図3に示すようにフィリングファクタ、ピッチ、TEかTMかに応じて変化する。
n=2.313の媒質に、
サブ波長凹凸構造Aのピッチ:q1=0.54λ ここで波長λ=405nm
サブ波長凹凸構造Bのピッチ:q2=0
サブ波長凹凸構造Aのフィリングファクタ:t1=0.26
サブ波長凹凸構造Bのフィリングファクタ:t2=0.80
とし、
偏光方向に対してサブ波長凹凸構造A、Bの溝方向をP偏光方向に対して0度、90度とした場合、
サブ波長凹凸構造AのP方向の有効屈折率:n1(P偏光)=1.70
サブ波長凹凸構造AのS方向の有効屈折率:n1(S偏光)=1.136
サブ波長凹凸構造BのP方向の有効屈折率:n2(P偏光)=1.70
サブ波長凹凸構造BのS方向の有効屈折率:n2(S偏光)=2.194
となり、有効屈折率n1(P偏光)、n2(P偏光)は等しい値を有する。
このような構造とすることにより、図2(a)に示すように、回折構造の周期方向に平行なP偏光をもつ入射光に対しては、この回折素子1は一様な屈折率をもつ板状体となるから、この入射光は回折素子1を通過し、回折現象は生じない。
一方、回折構造の周期に垂直なS偏光をもつ入射光に対しては、回折素子1は回折格子周期で屈折率が変化した回折素子となる。したがって、図2(b)に示すように、このような入射光は回折される。
このようにして、回折素子1は偏光分離素子の機能をもつことになる。
(溝深さと回折効率)
回折素子1の回折効率はサブ波長凹凸構造の溝深さ(回折構造の溝深さとも表現できる)により調整可能である。図4は入射光の偏光方向に対する±1次回折光の回折効率(実線で示す)および0次光の透過効率(破線で示す)を示している。
すなわち、図4は、
n=2.313の媒質に、
サブ波長凹凸構造Aのピッチ:q1=0.54λ ここで波長λ=405nm
サブ波長凹凸構造Bのピッチ:q2=0.10λ
サブ波長凹凸構造Aのフィリングファクタ:t1=0.26
サブ波長凹凸構造Bのフィリングファクタ:t2=0.80
とし、
サブ波長凹凸構造A、Bの溝方向をP偏光方向に対して0度、90度とし、
回折格子周期K=5μm
サブ波長凹凸構造A、Bの幅をそれぞれ2.5μmとした場合の溝深さdに対する回折効率の変化を示した図である。
図4から明らかなように、特に溝深さとして0.196μmを選択した場合は、P偏光による回折光は発生せず不感帯透過し、S偏光に対しては±1次回折する回折素子が実現可能である。
(回折角について)
なお図2において符号αは第1の回折格子面によるレーザ光の回折角を示す。回折角度αは、回折格子周期Kとし、使用波長λ1とした場合、下式を満足する値として求められる。
sin(α)=λ1/K
使用用途に応じてKを選択すればよい。
(従来技術との比較)
なお従来技術で示されているようにサブ波長凹凸構造A、Bが同一のピッチを有する場合を計算してみる。
n=2.313の媒質に、
サブ波長凹凸構造Aのピッチ:q1=0.10λ
サブ波長凹凸構造Bのピッチ:q2=0.10λ
とし、
有効屈折率n1(P偏光)、n2(P偏光)は等しい値を有するためには、
サブ波長凹凸構造Aのフィリングファクタ:t1=0.35
サブ波長凹凸構造Bのフィリングファクタ:t2=0.73
で、
サブ波長凹凸構造AのTE方向の有効屈折率:n1(P偏光)=1.584
サブ波長凹凸構造AのTM方向の有効屈折率:n1(S偏光)=1.196
サブ波長凹凸構造BのTM方向の有効屈折率:n2(P偏光)=1.584
サブ波長凹凸構造BのTE方向の有効屈折率:n2(S偏光)=2.056
となり、有効屈折率n1(S偏光)、n2(S偏光)の差はΔn=0.86となり、本発明の実施例の差:Δn=1.058に比べ狭くなる。
さらに、この有効屈折率において、図4と同様に回折効率の溝深さ依存性を算出したグラフを図5に示す。効率のカーブが図4に比べ、深溝の方向にシフトしていることが確認できる。
図6乃至図10に基づいて回折素子の実施例2を示す。図6は素子全体構成図、図7はSWS部の拡大図である。
回折素子10では、入射光の波長λ以下の周期をもつ5種類のサブ波長凹凸構造21、22、23、24、25が基板11上に形成されている。サブ波長凹凸構造は21、22、23、24、25を一組として回折素子上に波長以上の周期(回折格子周期とよぶこととする)で連続的に形成されている。サブ波長凹凸構造21、22、23、24、25はそれぞれ溝方向、溝の凹と凸の幅の比(フィリングファクタとよぶ)が異なっている。一方、サブ波長凹凸構造21、22、23、24、25の溝深さは等しく設定されている。
そして、この回折素子10に入射した光束は偏光方向により回折方向が異なり、且つ各偏光方向の光束の回折する方向が特定の次数のみに回折されるように設定されている。
図7は回折素子10に形成されているサブ波長凹凸構造(SWS部)の拡大図であり、回折素子10に形成されている回折格子周期の1周期分を示している。
図6、図7に記載されている符号について説明する。波長以上の周期構造に、サブ波長凹凸構造21、22、23、24、25が重畳された構造となっている。サブ波長凹凸構造21はP偏光方向に溝方向をもつ波長以下の周期を有する。またサブ波長凹凸構造25はS偏光方向に溝方向をもつ波長以下の周期を有する。またサブ波長凹凸構造22、23、24は、サブ波長凹凸構造21、25の間の溝方向をもつ波長以下の周期を有する。
符号Pnは、回折素子に形成されている波長以上の周期構造の周期(回折格子周期)を表す。
L1は、後述するサブ波長凹凸構造21が形成されている領域の幅である。L2は、後述するサブ波長凹凸構造22が形成されている領域の幅である。L3は、後述するサブ波長凹凸構造23が形成されている領域の幅である。L4は、後述するサブ波長凹凸構造24が形成されている領域の幅である。L5は、後述するサブ波長凹凸構造25が形成されている領域の幅である。
p1は、サブ波長凹凸構造21の周期を表す。
q1は、サブ波長凹凸構造21の凸部の幅である。
q1/p1は、サブ波長凹凸構造21のフィリングファクタである。なおp1とq1の値は、溝方向に垂直に切り出した断面での値である。
p2は、サブ波長凹凸構造22の周期を表す。
q2は、サブ波長凹凸構造22の凸部の幅である。
q2/p2は、サブ波長凹凸構造22のフィリングファクタである。なおp2とq2の値は、溝方向に垂直に切り出した断面での値である。
p3は、サブ波長凹凸構造23の周期を表す。
q3は、サブ波長凹凸構造23の凸部の幅である。
q3/p3は、サブ波長凹凸構造23のフィリングファクタである。
なおp3とq3の値は、溝方向に垂直に切り出した断面での値である。
p4は、サブ波長凹凸構造24の周期を表す。
q4は、サブ波長凹凸構造24の凸部の幅である。
q4/p4は、サブ波長凹凸構造24のフィリングファクタである。なおp4とq4の値は、溝方向に垂直に切り出した断面での値である。
p5は、サブ波長凹凸構造25の周期を表す。
q5は、サブ波長凹凸構造25の凸部の幅である。
q5/p5は、サブ波長凹凸構造25のフィリングファクタである。なおp5とq5の値は、溝方向に垂直に切り出した断面での値である。
dは、サブ波長凹凸構造21、22、23、24、25かつ回折構造の溝深さを表し、本発明においてはサブ波長凹凸構造21、22、23、24、25のいずれにおいても等しいことを特徴としている。
(機能について)
回折素子10は、図7に示すように、波長以上の周期Pnを有する周期構造に、さらに波長よりも短い周期q1、q2、q3、q4、q5を有するサブ波長凹凸構造が形成されてなる。波長以上の周期構造に応じて入射光は回折し、サブ波長凹凸構造によってP.Sいずれの偏光成分で回折するかの偏光選択性を出している。
これにより、図8に示すように回折素子10はS偏光成分の光が入射したときは回折し、P偏光成分の光に対しては不感帯透過する。
(サブ波長凹凸構造が呈する構造複屈折特性について)
以上、サブ波長凹凸構造21、22、23、24、25のうちの回折構造のストライプ方向と平行なサブ波長凹凸構造21、直交するサブ波長凹凸構造25の有効屈折率については実施例1の回折素子で説明したとおりであるが、本実施例においては、サブ波長凹凸構造21と25の間には入射光の回折構造のストライプ方向には平行でも直交もしないサブ波長凹凸構造22、23、24が形成されてなる。
サブ波長凹凸構造22、23、24の溝方向、フィリングファクタ、ピッチの実施例について説明する。
まずサブ波長凹凸構造23は、P偏光方向に対して45度の方向にある。或いはサブ波長凹凸構造21と25の中間の溝方向を有するとも表現できる。このような溝方向で、かつサブ波長凹凸構造のピッチがサブ波長凹凸構造21と25の略中間値(詳細にはFDTD法で算出する)、サブ波長凹凸構造23のフィリングファクタとしてサブ波長凹凸構造21、25と同じフィリングファクタを選択した(t1=t5=t3となる)場合においては、その有効屈折率はサブ波長凹凸構造21と25の中間値とすることができる。
同様に、サブ波長凹凸構造22は、P偏光方向に対して22.5度の方向にある。或いはサブ波長凹凸構造21と23の中間の溝方向を有するとも表現できる。このような溝方向で、かつサブ波長凹凸構造のピッチがサブ波長凹凸構造21と23の略中間値(詳細にはFDTD法で算出する)、サブ波長凹凸構造22のフィリングファクタとしてサブ波長凹凸構造21、23と同じフィリングファクタを選択した(t1=t3=t2となる)場合においては、その有効屈折率はサブ波長凹凸構造21と23の中間値とすることができる。
同様に、サブ波長凹凸構造24は、P偏光方向に対して67.5度の方向にある。或いはサブ波長凹凸構造23と25の中間の溝方向を有するとも表現できる。このような溝方向で、かつサブ波長凹凸構造のピッチがサブ波長凹凸構造23と25の略中間値(詳細にはFDTD法で算出する)、サブ波長凹凸構造24のフィリングファクタとしてサブ波長凹凸構造23、25と同じフィリングファクタを選択した(t3=t5=t4となる)場合においては、その有効屈折率はサブ波長凹凸構造23と25の中間値とすることができる。
(偏光選択型の回折素子)
周期が入射光の波長λ以下のサブ波長凹凸構造は入射光を回折することはなく(入射光はそのまま透過する)、入射光に対して複屈折特性を示す。すなわち、入射光の偏光方向に応じて異なる屈折率を示す。
図9は、横軸:フィリングファクタに対する偏光方向別の屈折率を示す図である。また、凡例の欄に記載されてなるとおり、同図ではサブ波長凹凸構造の溝方向とピッチも併せて変化させている。
従来技術の式1、式2の近似式では現れないピッチサイズに伴う変化がFDTD法を用いることで確認できる。なお計算にはn=2.313、波長405nmを用いた。また、凡例に記載したピッチは、波長比の値を示している。例えば0.10λは、波長405nmにおいての実ピッチとしては41nmである。このようにサブ波長凹凸構造の屈折率は図9に示すようにフィリングファクタ、ピッチ、溝方向の角度に応じて変化する。
n=2.313の媒質に、
サブ波長凹凸構造21のピッチ:q1=0.54λ ここで波長λ=405nm
サブ波長凹凸構造22のピッチ:q2=0.43λ
サブ波長凹凸構造23のピッチ:q3=0.32λ
サブ波長凹凸構造24のピッチ:q4=0.21λ
サブ波長凹凸構造25のピッチ:q5=0.10λ
サブ波長凹凸構造21のフィリングファクタ:t1=0.26
サブ波長凹凸構造22のフィリングファクタ:t2=0.36
サブ波長凹凸構造23のフィリングファクタ:t3=0.55
サブ波長凹凸構造24のフィリングファクタ:t4=0.71
サブ波長凹凸構造25のフィリングファクタ:t5=0.80
とし、
サブ波長凹凸構造21、22、23、24、25の溝方向をP偏光方向に対して0度、22.5度、45度、67.5度、90度とした場合、
サブ波長凹凸構造21のP方向の有効屈折率:n1(P偏光)=1.705
サブ波長凹凸構造21のS方向の有効屈折率:n1(S偏光)=1.128
サブ波長凹凸構造22のP方向の有効屈折率:n2(P偏光)=1.705
サブ波長凹凸構造22のS方向の有効屈折率:n2(S偏光)=1.363
サブ波長凹凸構造23のP方向の有効屈折率:n3(P偏光)=1.705
サブ波長凹凸構造23のS方向の有効屈折率:n3(S偏光)=1.705
サブ波長凹凸構造24のP方向の有効屈折率:n4(P偏光)=1.705
サブ波長凹凸構造24のS方向の有効屈折率:n4(S偏光)=2.003
サブ波長凹凸構造25のP方向の有効屈折率:n5(P偏光)=1.705
サブ波長凹凸構造25のS方向の有効屈折率:n5(S偏光)=2.194
となり、有効屈折率n1(P偏光)、n2(P偏光)、n3(P偏光)、n4(P偏光)、n5(P偏光)は等しい値を有する。
このような構造とすることにより、図8(a)に示すように、回折構造の周期方向に平行なP偏光をもつ入射光に対しては、この回折素子10は一様な屈折率をもつ板状体となるから、この入射光は回折素子1を通過し、回折現象は生じない。
一方、回折構造の周期に垂直なS偏光をもつ入射光に対しては、回折素子10は回折格子周期で屈折率が変化した回折素子となる。したがって、図8(b)に示すように、このような入射光は回折される。
このようにして、回折素子10は偏光分離素子の機能をもつことになる。
(溝深さと回折効率)
回折素子1の回折効率はサブ波長凹凸構造の溝深さ(回折構造の溝深さとも表現できる)により調整可能である。図10は入射光の偏光方向に対する±1次回折光の回折効率(実線で示す)および0次光の透過効率(破線で示す)を示している。
すなわち、図10は、
n=2.313の媒質に、
サブ波長凹凸構造21のピッチ:q1=0.54λ ここで波長λ=405nm
サブ波長凹凸構造22のピッチ:q2=0.43λ
サブ波長凹凸構造23のピッチ:q3=0.32λ
サブ波長凹凸構造24のピッチ:q4=0.21λ
サブ波長凹凸構造25のピッチ:q5=0.10λ
サブ波長凹凸構造21のフィリングファクタ:t1=0.26
サブ波長凹凸構造22のフィリングファクタ:t2=0.36
サブ波長凹凸構造23のフィリングファクタ:t3=0.55
サブ波長凹凸構造24のフィリングファクタ:t4=0.71
サブ波長凹凸構造25のフィリングファクタ:t5=0.80
とし、
偏光方向に対してサブ波長凹凸構造21、22、23、24、25の溝方向をP偏光方向に対して0度、22.5度、45度、67.5度、90度とし、
回折格子周期P=5μm
サブ波長凹凸構造21、22、23、24、25の幅をそれぞれ1μmとした場合の溝深さdに対する回折効率の変化を示した図である。
同図から明らかなように、かかる光学素子10では+1次回折光と−1次回折光の回折効率は異なり、たとえば溝深さdが0.2μm<d≦0.4μmの範囲では+1次回折光にその大半を集中している。このことから、領域分割されたサブ波長凹凸構造の溝深さdを適宜設定することにより特定の次数の光のみに偏りをもって回折させることが可能であることがわかる。このことは、他の次数の回折光についても同様に可能である。すなわち、所定の偏光成分を所定の次数に偏りを持って回折するように溝深さdが設定される。
このように、光学素子10に入射した光束は偏光方向により回折方向が異なり、且つ各偏光方向の光束の回折する方向が特定の次数のみに回折されるように設定される。
(回折角について)
なお図8において符号αは第1の回折格子面によるレーザ光の回折角を示す。回折角度αは、回折格子周期Pnとし、使用波長λ1とした場合、下式を満足する値として求められる。
sin(α)=λ1/Pn
使用用途に応じてPnを選択すればよい。
図11乃至図15に基づいて回折素子の実施例3を示す。
図11は本実施例の回折素子を示している。図1の構成と同様である。回折素子1では、入射光の波長λ以下の周期をもつ第1のサブ波長凹凸構造Aと、第2のサブ波長凹凸構造Bとが基板10上に形成されている。
サブ波長凹凸構造はA、Bを一組として回折素子上に波長以上の周期(回折格子周期とよぶこととする)で連続的に形成されている。サブ波長凹凸構造A、Bはそれぞれ溝方向、ピッチ、フィリングファクタが異なっている。一方、サブ波長凹凸構造A、Bの溝深さは等しく設定されている。
回折素子1に入射した光束は波長により透過、もしくは±1次回折するように設定されている。
図11の斜視図部分は、図11の左上に平面的に表示された回折素子1に形成されているサブ波長凹凸構造の拡大図であり、回折素子1に形成されている回折格子周期の2.5周期分を示している。
図11に示すように、波長以上の周期構造に、サブ波長凹凸構造A、Bが重畳された構造となっている。サブ波長凹凸構造AはP偏光方向に溝方向をもつ波長以下の周期を有する。またサブ波長凹凸構造BはS偏光方向に溝方向をもつ波長以下の周期を有する。
図11の符号を用いて説明すると、Kは、回折素子に形成されている波長以上の周期構造の周期(回折格子周期)を表す。
L1は、後述するサブ波長凹凸構造Aが形成されている領域の幅である。
L2は、後述するサブ波長凹凸構造Bが形成されている領域の幅である。
q1は、サブ波長凹凸構造Aの周期を表す。
m1は、サブ波長凹凸構造Aの凸部の幅である。
m1/q1は、サブ波長凹凸構造Aのフィリングファクタである。なおq1とm1の値は、溝方向に垂直に切り出した断面での値である。
q2は、サブ波長凹凸構造Bの周期を表す。
m2は、サブ波長凹凸構造Bの凸部の幅である。
m2/q2は、サブ波長凹凸構造Bのフィリングファクタである。なおq2とm2の値は、溝方向に垂直に切り出した断面での値である。
d1、d2は、サブ波長凹凸構造A、Bかつ回折構造の溝深さを表し、本発明においてはサブ波長凹凸構造A、Bのいずれにおいても等しいことを特徴としている。
(機能について)
回折素子1は、図11に示すように、波長以上の周期Kを有する周期構造に、さらに波長よりも短い周期q1、q2有するサブ波長凹凸構造が形成されてなる。波長以上の周期構造に応じて入射光は回折し、どの波長で回折するかの波長選択性を出している。これにより、図12に示すように回折素子1は波長λ2の光が入射したときは回折し、波長λ1の光に対しては不感帯透過する。
サブ波長凹凸構造が呈する構造複屈折特性については上記の通りである。
(波長選択型の回折素子)
周期が入射光の波長λ以下のサブ波長凹凸構造は入射光を回折することはなく(入射光はそのまま透過する)、入射光に対して複屈折特性を示す。すなわち、入射光の偏光方向に応じて異なる屈折率を示す。
図13、図14は、横軸:フィリングファクタに対する偏光方向別の屈折率を示す図である。また、凡例の欄に記載されてなるとおり、同図ではサブ波長凹凸構造のピッチも併せて変化している。
従来技術の式1、式2の近似式では現れないピッチサイズに伴う変化がFDTD法を用いることで確認できる。
図13は波長λ1=405nmのグラフであり、図14は波長λ2=650nmの場合である。なお図13の計算にはn=2.313、波長405nmを用いた。図14の計算にはn=2.149、波長650nmを用いた。また、それぞれの図で凡例に記載した数値は、ピッチの値である。
このようにサブ波長凹凸構造の屈折率は図15に示すようにフィリングファクタ、ピッチ、TEかTMかに応じて変化する。
波長λ1=405nmで n=2.313
波長λ2=650nmで n=2.149の媒質に、
サブ波長凹凸構造Aのピッチ:q1=40nm
サブ波長凹凸構造Bのピッチ:q2=220nm
サブ波長凹凸構造Aのフィリングファクタ:t1=0.62
サブ波長凹凸構造Bのフィリングファクタ:t2=0.62
とし、
偏光方向に対してサブ波長凹凸構造A、Bの溝方向をP偏光方向に対して0度、90度とした場合、波長λ1の光に対しては、
サブ波長凹凸構造AのP方向の有効屈折率:n1(λ1、P偏光)=1.92
サブ波長凹凸構造AのS方向の有効屈折率:n1(λ1、S偏光)=1.96
サブ波長凹凸構造BのP方向の有効屈折率:n2(λ1、P偏光)=1.92
サブ波長凹凸構造BのS方向の有効屈折率:n2(λ1、S偏光)=2.11
となり、有効屈折率n1(λ1、P偏光)とn2(λ1、P偏光)は等しい値を有する。
波長λ2の光に対しては、
サブ波長凹凸構造AのP方向の有効屈折率:n1(λ2、P偏光)=1.80
サブ波長凹凸構造AのS方向の有効屈折率:n1(λ2、S偏光)=1.40
サブ波長凹凸構造BのP方向の有効屈折率:n2(λ2、P偏光)=1.53
サブ波長凹凸構造BのS方向の有効屈折率:n2(λ2、S偏光)=1.87
となり、有効屈折率n1(λ2、P偏光)、n2(λ2、S偏光)は異なる値を有する。
このような構造とすることにより、図12(a)に示すように、回折構造の周期方向に平行なP偏光をもつ波長λ1の入射光に対しては、この回折素子1は一様な屈折率をもつ板状体となるから、この入射光は回折素子1を通過し、回折現象は生じない。
一方、波長λ2の入射光に対しては回折する。回折構造のストライプ方向と同一なP偏光を入射させるか、垂直なS偏光を入射させても回折するが、有効屈折率差は異なる。すなわち、
P偏光方向の光が入射したときは、有効屈折率差:Δn=1.80-1.53
S偏光方向の光入射したときは、有効屈折率差:Δn=1.87-1.40
となる。有効屈折率差が大きいほど、同一の回折効率の光を得るためにはサブ波長凹凸構造の溝深さとしては浅溝ですみ、生産性は高くなる。
このようにして、回折素子1は波長選択性、さらには偏光選択性を有する回折素子の機能をもつことになる。
(溝深さと回折効率)
回折素子1の回折効率はサブ波長凹凸構造の溝深さ(回折構造の溝深さとも表現できる)により調整可能である。図15は入射光の偏光方向に対する±1次回折光の回折効率(実線で示す)および0次光の透過効率(破線で示す)を示している。
すなわち、図15は、
波長λ1=405nmで n=2.313
波長λ2=650nmで n=2.149の媒質に、
サブ波長凹凸構造Aのピッチ:q1=40nm
サブ波長凹凸構造Bのピッチ:q2=220nm
サブ波長凹凸構造Aのフィリングファクタ:t1=0.62
サブ波長凹凸構造Bのフィリングファクタ:t2=0.62
とし、
入射光として、波長λ1のP偏光方向の光、波長λ2のP偏光方向の光を入射させた場合、サブ波長凹凸構造A、Bの溝方向をP偏光方向に対して0度、90度とし、回折格子周期K=5μum、サブ波長凹凸構造A、Bの幅をそれぞれ2.5μmとした場合の溝深さdに対する回折効率の変化を示した図である。
特に、溝深さとして0.196μmを選択した場合は、P偏光による回折光は発生せず不感帯透過し、S偏光に対しては±1次回折する回折素子が実現可能である。
(回折角について)
なお、図12において符号αは第1の回折格子面によるレーザ光の回折角を示す。回折角度αは、回折格子周期Kとし、使用波長λ1とした場合、下式を満足する値として求められる。
sin(α)=λ2/K
使用用途に応じてKを選択すればよい。
図16乃至図22に基づいて回折素子の実施例4を示す。図16は素子全体構成図で図6と同じ図、図17はSWS部の拡大図で図7と同じ図である。
回折素子10では、入射光の波長λ以下の周期をもつ5種類のサブ波長凹凸構造21、22、23、24、25が基板11上に形成されている。サブ波長凹凸構造は21、22、23、24、25を一組として回折素子上に波長以上の周期(回折格子周期とよぶこととする)で連続的に形成されている。サブ波長凹凸構造21、22、23、24、25はそれぞれ溝方向、溝の凹と凸の幅の比(フィリングファクタとよぶ)が異なっている。一方、サブ波長凹凸構造21、22、23、24、25の溝深さは等しく設定されている。
回折素子10に入射した光束は波長および偏光方向により回折方向が異なり、且つ特定の次数のみに回折されるように設定されている。
図17は回折素子10に形成されているサブ波長凹凸構造の拡大図であり、回折素子10に形成されている回折格子周期の1周期分を示している。
図16、図17に記載されている符号について説明する。波長以上の周期構造に、サブ波長凹凸構造21、22、23、24、25が重畳された構造となっている。サブ波長凹凸構造21はP偏光方向に溝方向をもつ波長以下の周期を有する。またサブ波長凹凸構造25はS偏光方向に溝方向をもつ波長以下の周期を有する。またサブ波長凹凸構造22、23、24は、サブ波長凹凸構造21、25の間の溝方向をもつ波長以下の周期を有する。
Pnは、回折素子に形成されている波長以上の周期構造の周期(回折格子周期)を表す。
L1は、後述するサブ波長凹凸構造21が形成されている領域の幅である。
L2は、後述するサブ波長凹凸構造22が形成されている領域の幅である。
L3は、後述するサブ波長凹凸構造23が形成されている領域の幅である。
L4は、後述するサブ波長凹凸構造24が形成されている領域の幅である。
L5は、後述するサブ波長凹凸構造25が形成されている領域の幅である。
p1は、サブ波長凹凸構造21の周期を表す。
q1は、サブ波長凹凸構造21の凸部の幅である。
q1/p1は、サブ波長凹凸構造21のフィリングファクタである。なおp1とq1の値は、溝方向に垂直に切り出した断面での値である。
p2は、サブ波長凹凸構造22の周期を表す。
q2は、サブ波長凹凸構造22の凸部の幅である。
q2/p2は、サブ波長凹凸構造22のフィリングファクタである。なおp2とq2の値は、溝方向に垂直に切り出した断面での値である。
p3は、サブ波長凹凸構造23の周期を表す。
q3は、サブ波長凹凸構造23の凸部の幅である。
q3/p3は、サブ波長凹凸構造23のフィリングファクタである。なおp3とq3の値は、溝方向に垂直に切り出した断面での値である。
p4は、サブ波長凹凸構造24の周期を表す。
q4は、サブ波長凹凸構造24の凸部の幅である。
q4/p4は、サブ波長凹凸構造24のフィリングファクタである。なおp4とq4の値は、溝方向に垂直に切り出した断面での値である。
p5は、サブ波長凹凸構造25の周期を表す。
q5は、サブ波長凹凸構造25の凸部の幅である。
q5/p5は、サブ波長凹凸構造25のフィリングファクタである。なおp5とq5の値は、溝方向に垂直に切り出した断面での値である。
dは、サブ波長凹凸構造21、22、23、24、25かつ回折構造の溝深さを表し、本発明においてはサブ波長凹凸構造21、22、23、24、25のいずれにおいても等しいことを特徴としている。
(機能について)
回折素子10は、図17に示すように、波長以上の周期Pnを有する周期構造に、さらに波長よりも短い周期q1、q2、q3、q4、q5を有するサブ波長凹凸構造が形成されてなる。波長以上の周期構造に応じて入射光は回折し、サブ波長凹凸構造によっていずれの波長で回折するかの波長選択性を出している。
これにより、図18に示すように回折素子10は波長λ2の光が入射したときは回折し、波長λ1のP偏光成分の光に対しては不感帯透過する。
(サブ波長凹凸構造が呈する構造複屈折特性について)
以上、サブ波長凹凸構造21、22、23、24、25のうちの回折構造のストライプ方向と平行なサブ波長凹凸構造21、直交するサブ波長凹凸構造25の有効屈折率については実施例3の回折素子で説明したとおりであるが、本実施例においては、サブ波長凹凸構造21と25の間には入射光の回折構造のストライプ方向には平行でも直交もしないサブ波長凹凸構造22、23、24が形成されてなる。
サブ波長凹凸構造22、23、24の溝方向、フィリングファクタ、ピッチの実施例について説明する。
まずサブ波長凹凸構造23は、P偏光方向に対して45度の方向にある。或いはサブ波長凹凸構造21と25の中間の溝方向を有するとも表現できる。このような溝方向で、かつサブ波長凹凸構造のピッチがサブ波長凹凸構造21と25の略中間値(詳細にはFDTD法で算出する)、サブ波長凹凸構造23のフィリングファクタとしてサブ波長凹凸構造21、25と同じフィリングファクタを選択した(t1=t5=t3となる)場合においては、その有効屈折率はサブ波長凹凸構造21と25の中間値とすることができる。
同様に、サブ波長凹凸構造22は、P偏光方向に対して22.5度の方向にある。或いはサブ波長凹凸構造21と23の中間の溝方向を有するとも表現できる。このような溝方向で、かつサブ波長凹凸構造のピッチがサブ波長凹凸構造21と23の略中間値(詳細にはFDTD法で算出する)、サブ波長凹凸構造22のフィリングファクタとしてサブ波長凹凸構造21、23と同じフィリングファクタを選択した(t1=t3=t2となる)場合においては、その有効屈折率はサブ波長凹凸構造21と23の中間値とすることができる。
同様に、サブ波長凹凸構造24は、P偏光方向に対して67.5度の方向にある。或いはサブ波長凹凸構造23と25の中間の溝方向を有するとも表現できる。このような溝方向で、かつサブ波長凹凸構造のピッチがサブ波長凹凸構造23と25の略中間値(詳細にはFDTD法で算出する)、サブ波長凹凸構造24のフィリングファクタとしてサブ波長凹凸構造23、25と同じフィリングファクタを選択した(t3=t5=t4となる)場合においては、その有効屈折率はサブ波長凹凸構造23と25の中間値とすることができる。
(波長選択型の回折素子)
周期が入射光の波長λ以下のサブ波長凹凸構造は入射光を回折することはなく(入射光はそのまま透過する)、入射光に対して複屈折特性を示す。すなわち、入射光の偏光方向に応じて異なる屈折率を示す。
図19、20、21は、横軸:フィリングファクタに対する偏光方向別の屈折率を示す図である。また、凡例の欄に記載されてなるとおり、同図ではサブ波長凹凸構造の溝方向とピッチも併せて変化させている。
波長λ1=405nmで n=2.313
波長λ2=650nmで n=2.149の媒質に、
サブ波長凹凸構造21のピッチ:q1=40nm
サブ波長凹凸構造22のピッチ:q2=85nm
サブ波長凹凸構造23のピッチ:q3=130nm
サブ波長凹凸構造24のピッチ:q4=175nm
サブ波長凹凸構造25のピッチ:q5=220nm
サブ波長凹凸構造21のフィリングファクタ:t1=0.62
サブ波長凹凸構造22のフィリングファクタ:t2=0.62
サブ波長凹凸構造23のフィリングファクタ:t3=0.62
サブ波長凹凸構造24のフィリングファクタ:t4=0.62
サブ波長凹凸構造25のフィリングファクタ:t5=0.62
とし、
サブ波長凹凸構造21、22、23、24、25の溝方向をP偏光方向に対して0度、22.5度、45度、67.5度、90度とした場合、
波長λ=405nmのP偏光方向の光が入射した場合は、図19から、
サブ波長凹凸構造21のP方向の有効屈折率:n1(λ1、P偏光)=1.92
サブ波長凹凸構造22のP方向の有効屈折率:n2(λ1、P偏光)=1.92
サブ波長凹凸構造23のP方向の有効屈折率:n3(λ1、P偏光)=1.92
サブ波長凹凸構造24のP方向の有効屈折率:n4(λ1、P偏光)=1.92
サブ波長凹凸構造25のP方向の有効屈折率:n5(λ1、P偏光)=1.92
が得られる。
また、λ=660nmのP偏光方向の光が入射した場合は、図20から、
サブ波長凹凸構造21のS方向の有効屈折率:n1(λ2、P偏光)=1.80
サブ波長凹凸構造22のS方向の有効屈折率:n2(λ2、P偏光)=1.74
サブ波長凹凸構造23のS方向の有効屈折率:n3(λ2、P偏光)=1.67
サブ波長凹凸構造24のS方向の有効屈折率:n4(λ2、P偏光)=1.60
サブ波長凹凸構造25のS方向の有効屈折率:n5(λ2、P偏光)=1.53
となる。
また、λ=660nmのS偏光方向の光が入射した場合は、図21から、
サブ波長凹凸構造21のS方向の有効屈折率:n1(λ2、S偏光)=1.40
サブ波長凹凸構造22のS方向の有効屈折率:n2(λ2、S偏光)=1.52
サブ波長凹凸構造23のS方向の有効屈折率:n3(λ2、S偏光)=1.63
サブ波長凹凸構造24のS方向の有効屈折率:n4(λ2、S偏光)=1.75
サブ波長凹凸構造25のS方向の有効屈折率:n5(λ2、S偏光)=1.87
となる。
このような構造とすることにより、図18(a)に示すように、波長λ1:λ=405nmのP偏光をもつ入射光に対しては、この回折素子10は一様な屈折率をもつ板状体となるから、この入射光は回折素子1を通過し、回折現象は生じない。
一方、波長λ2:λ=650nmのP偏光をもつ入射光に対しては、回折素子10は回折格子周期で屈折率が変化した回折素子となる。したがって、図18(b)に示すように、このような入射光は回折される。
波長λ2:λ=650nmのS偏光をもつ入射光に対しては、回折素子10は回折格子周期で屈折率が変化した回折素子となり、回折光が発生するが、その回折光は図18(b)とは反対の次数の回折光が強く発生する。
このように、波長λ2の入射光に対しては回折する。回折構造のストライプ方向と同一なP偏光を入射させるか、垂直なS偏光を入射させても回折するが、有効屈折率差は異なる。すなわち、サブ波長凹凸構造21と25に着目すると、
P偏光方向の光が入射したときは、有効屈折率差:Δn=1.80-1.53
S偏光方向の光入射したときは、有効屈折率差:Δn=1.87-1.40
となる。有効屈折率差が大きいほど、同一の回折効率の光を得るためにはサブ波長凹凸構造の溝深さとしては浅溝ですみ、生産性は高くなる。
(溝深さと回折効率)
回折素子1の回折効率はサブ波長凹凸構造の溝深さ(回折構造の溝深さとも表現できる)により調整可能である。図22は入射光の偏光方向に対する±1次回折光の回折効率(実線で示す)および0次光の透過効率(破線で示す)を示している。
すなわち、図22は、
波長λ2:λ=650nm、屈折率n=2.149で、
サブ波長凹凸構造21のピッチ:q1=40nm
サブ波長凹凸構造22のピッチ:q2=85nm
サブ波長凹凸構造23のピッチ:q3=130nm
サブ波長凹凸構造24のピッチ:q4=175nm
サブ波長凹凸構造25のピッチ:q5=220nm
サブ波長凹凸構造21のフィリングファクタ:t1=0.62
サブ波長凹凸構造22のフィリングファクタ:t2=0.62
サブ波長凹凸構造23のフィリングファクタ:t3=0.62
サブ波長凹凸構造24のフィリングファクタ:t4=0.62
サブ波長凹凸構造25のフィリングファクタ:t5=0.62
とし、
偏光方向に対してサブ波長凹凸構造21、22、23、24、25の溝方向をP偏光方向に対して0度、22.5度、45度、67.5度、90度とし、
回折格子周期P=5μm
サブ波長凹凸構造21、22、23、24、25の幅をそれぞれ1μmとした場合の溝深さdに対する回折効率の変化を示した図である。
同図から明らかなように、かかる光学素子10では+1次回折光と−1次回折光の回折効率は異なり、たとえば溝深さdが1.5um<d≦2.5umの範囲では+1次回折光にその大半を集中している。このことから、領域分割されたサブ波長凹凸構造の溝深さdを適宜設定することにより特定の次数の光のみに偏りをもって回折させることが可能であることがわかる。
このことは、他の次数の回折光についても同様に可能である。すなわち、所定の偏光成分を所定の次数に偏りを持って回折するように溝深さdが設定される。
このように、光学素子10に入射した光束は波長、偏光方向により回折方向が異なり、且つ各偏光方向の光束の回折する方向が特定の次数のみに回折されるように設定される。
(回折角について)
なお図18において符号αは第1の回折格子面によるレーザ光の回折角を示す。回折角度αは、回折格子周期Pnとし、使用波長λ1とした場合、下式を満足する値として求められる。
sin(α)=λ2/Pn
使用用途に応じてPnを選択すればよい。
<回折素子の作製方法>
(石英を基材とした型)
上記各実施例で示した回折素子の作製手順を説明する。
素子の作製の説明に先立って型の作成方法を説明する。
図23は石英を基材とした型の作成方法を説明するための図である。同図(a)において、石英材料を基板とし、その表面に電子線描画用のレジストを所定の厚さに塗布し、プリベークする。予め設計されたプログラムにより、回折格子の諸元に対応したピッチ・線幅に描画する。
同図(b)において、レジストに対し、現像およびリンスを行うことにより、レジスト上にサブ波長凹凸構造が形成される。溝の底は石英基材が露出している。
同図(c)において、サブ波長凹凸構造のレジストパターンをマスクとして石英のドライエッチングを行う。エッチングには、RIENLD、TCP等のエッチング装置にて、CF4、CF3ガスを用いる。基板にバイアスをかけることで、面に垂直にエッチングを進行させる。
同図(d)において、レジストを剥離する。剥離の方法はドライエッチング装置内で、酸素ガスを導入し、酸素ガスプラズマ中でレジスト除去を行う方法と、基板を装置から取り出してCAROS洗浄で除去する方法とがある。
完成したものを石英型として用いる。
(シリコンを基材とした型)
図24はシリコンを基材とした型の作成方法を説明するための図である。
同図(a)において、シリコン(110)を基板とし、その表面に電子線描画用のレジストを所定の厚さに塗布し、プリベークする。予め設計されたプログラムにより、回折格子の諸元に対応したピッチ・線幅に描画する。
同図(b)において、レジストに対し、現像およびリンスを行うことにより、レジスト上にサブ波長凹凸構造が形成される。溝の底はシリコン基材が露出している。
同図(c)において、サブ波長凹凸構造のレジストパターンをマスクとしてシリコンのアルカリウェットエッチング(KOH溶液使用)を行う。シリコン基板は{111}面の壁として、ピッチを維持したまま深さ方向にエッチングされる。
なお、ボッシュプロセス用いたドライエッチングでも同様の構造を制作できる。
同図(d)において、レジストを剥離する。
完成したものをシリコン型として用いる。
このようにして作られた石英型、あるいはシリコン型を便宜上、金型と呼ぶことがある。
(モールド型を利用して回折格子作製)
図25はシリコン膜とモールド型を利用してガラス基板に回折素子を形成する手順を示す図である。
同図(a)において、ガラス基板表面にシリコン膜(Si膜)を形成する。形成方法としては、スパッタリング法を次のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:7〜8×10―4Torr
3.成膜速度 :0.5〜1.0Å/sec
4.RFパワー:100〜200W
同図(b)において、Si膜上にUV硬化樹脂を塗布し、上からモールドで押圧する。モールド型としてはシリコン型、石英型ともに使用しうるが、微細構造を形成するナノインプリントにおいては、石英金型の方が光透過性なので適している。UV硬化樹脂はグランディックRC8790(大日本インキ製)を用いる。
同図(c)において、モールド背面からUV(紫外線)を照射し、樹脂を固める。モールド型としてシリコン金型を用いる場合は、UVをガラス基板側から与える。
同図(d)において、モールド型を離型する。UV硬化樹脂に凸状の微細構造が形成されている。
同図(e)において、ドライエッチングで、Siが露出するまで樹脂を除去する。
ドライエッチングは以下の条件で行う。
1.ガス種 :酸素ガス(O
2.ガス流入量 :20sccm
3.圧力 :0.4Pa
4.樹脂エッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :60W
同図(f)において、ガラスが露出するまでSiと樹脂をドライエッチングする。
ドライエッチングは以下の条件で行う。
1.ガス種 :SF6、CHF3
2.ガス流入量
SF6 :20sccm
CHF3: 5sccm
3.圧力 :0.3Pa
4.樹脂エッチング速度: 5nm/sec
Siエッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :50W
同図(g)において、ガラス溝が所望の深さになるまでドライエッチングする。
ドライエッチングは以下の条件で行う。
1.ガス種 :CHF3、Ar
2.ガス流入量
Ar : 5sccm
CHF3:20sccm
3.圧力 :0.3Pa
4.Siエッチング速度: 4nm/sec
ガラスエッチング速度:12nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
同図(h)において、最上部に残ったSi膜を剥離処理により除去する。シリコンマスクはアルカリ(KOH)液でウェット剥離する。
同図(i)の状態になって回折素子完成。ガラス基板自身の片面が回折素子になっている。
(モールド型を利用して回折格子作製)
図26はガラス基板にTiを成膜し、Tiに回折素子を形成する手順を示す図である。
同図(a)において、ガラス基板表面にTi膜(5酸化タンタル膜)を形成する。
形成方法としては、スパッタリング法を次のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:5〜8×10―4Torr
3.成膜速度 :0.7〜1.0Å/sec
4.RFパワー:300〜500W
同図(b)において、Ti膜上にUV硬化樹脂を塗布し、上からモールド型で押圧する。モールド型としてはシリコン型、石英型ともに使用しうるが、微細構造を形成するナノインプリントにおいては、石英金型の方が光透過性なので適している。UV硬化樹脂はグランディックRC8790(大日本インキ製)を用いる。
同図(c)において、モールド背面からUV(紫外線)を照射し、樹脂を固める。モールド型としてシリコン金型を用いる場合は、UVをガラス基板側から与える。
同図(d)において、モールド型を離型する。UV硬化樹脂に凸状の微細構造が形成されている。
同図(e)において、Tiが露出するまで樹脂をドライエッチングする。
ドライエッチングは以下の条件で行う。
1.ガス種 :酸素ガス(O
2.ガス流入量 :20sccm
3.圧力 :0.4Pa
4.樹脂エッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :60W
同図(f)において、Ti溝が所望の深さになるまでドライエッチングする。
ドライエッチングは以下の条件で行う。
1.ガス種 :CHF3、Ar
2.ガス流入量
Ar : 5sccm
CHF3:20sccm
3.圧力 :0.3Pa
4.Ti2O5エッチング速度: 8nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
最後に、最上部に残った樹脂マスクを酸素ガス(プラズマ)中でドライエッチングによる剥離処理により除去する。
同図(g)の状態になって回折素子完成。ガラス基板上の5酸化タンタルが回折素子を形成している。
(モールド型を利用せずに回折格子作製)
図27は金型を使用しない回折素子の製法を説明するための図である。
同図(a)において、ガラス基板表面にシリコン膜(Si膜)を形成する。形成方法としては、スパッタリング法を次のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:7〜8×10―4Torr
3.成膜速度 :0.5〜1.0Å/sec
4.RFパワー:100〜200W
同図(b)において、Si膜上に電子線用レジストを塗布する。
同図(c)において、「高精度微細幅露光装置」によって、I線ステッパを使用する。露光後、現像工程を経て部分的にレジストを除去し、Siを露出させる。残っているレジストは、以後のエッチング用マスクパターンとなる。
同図(d)において、ガラスが露出するまでSiをドライエッチングする。
ドライエッチングは以下の条件で行う。
1.ガス種 :SF6、CHF3
2.ガス流入量
SF6 :20sccm
CHF3: 5sccm
3.圧力 :0.4Pa
4.Siエッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :50W
同図(e)において、ガラス溝が所望の深さになるまでドライエッチングする。
ドライエッチングは以下の条件で行う。
1.ガス種 :CHF3、Ar
2.ガス流入量
Ar : 5sccm
CHF3:20sccm
3.圧力 :0.3Pa
4.ガラスエッチング速度:12nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
同図(f)において、最上部に残ったSi膜を剥離処理により除去する。シリコンマスクはアルカリ(KOH)液でウェット剥離する。
同図(g)の状態になって回折素子完成。ガラス基板自身の片面が回折素子になっている。
上記実施例では回折格子周期が一定の構造の場合について説明したが、これに限定されるものではなく、不等間隔の周期構造であってもよい。この場合、その最小間隔(周期)が入射光の波長λ以上であればよい。不等間隔の周期構造とすることにより、レンズ機能をもった回折素子が実現できる。
上記実施例では回折構造のパタンが直線の場合について説明したが、これに限定されるものではなく、曲線状のパタンであってもよい。このような曲線状のパタンとすることによりレンズ機能や収差補正などの用途に適用可能となる。
上記実施例では、5種類のサブ波長凹凸構造を有する回折素子について説明したが、5種類に限定されるものでなく、3種類以上であればよい。この種類の数に応じて特定の次数の回折光の最大回折効率(すなわち特定の溝深さを設定することにより発生する回折光の強度)が決まる。領域の数を多いほど回折効率は大きくなる。
上記実施例では透過型の回折素子について説明したが、反射型の回折素子であってもよい。すなわち図28に示すように、ガラス基板の片側の面に回折構造を設け、回折構造の下地に反射層をつけてやることにより反射型回折素子30としてもよい。
サブ波長凹凸構造として回折素子の実施例2を適用すると、図28のように入射ランダム偏光のうち、P偏光成分は回折面を不感帯透過しそのまま反射面を正反射し、S偏光成分は回折して往路と同一方向に反射回折する構成を示している。目的に応じて各偏光成分の光量比、反射回折光の方向を任意に設定することが可能である。
上記実施例では基板の一表面上にサブ波長凹凸構造を形成した例について説明したが、これに限られるものではなく、基板のもう一方の面に同一或いは異なるサブ波長凹凸構造を形成してやってもよい。
例えば、図29に示すように、基板両面に回折構造を形成し、一方の面はP偏光のみに回折する構造とし、もう一方の面はS偏光のみに回折する構造を形成し、各々異なる回折方向となるようにサブ波長凹凸構造の溝方向およびフィリングファクタを設定することにより、P偏光S偏光ともに回折する回折素子20を作ることが可能である。分離角が大きくできる効果を有する。
上記実施例では、サブ波長凹凸構造が平板上に形成された場合について説明したが、これに限られるものではなく、レンズのような曲面上に形成してやってもよい。
次に、上記各実施例で示した回折素子を用いた光学機器に関する実施例を示す。なお、本発明の回折素子の適用は、これらの図に示した構成に限定されるものではない。また、上述の光学素子もその機能に応じて適宜採用され得る。
(回折素子を用いた光学機器の実施例1:光ピックアップ)
図30は、光ディスク等の光学的記録媒体としての光記録媒体である記録媒体に情報を記録し、また記録媒体41に記録されている情報を読み取って、かかる情報の処理を行う光情報処理装置の一部を示している。この光情報処理装置50は、かかる記録や読み取りを行うための光ピックアップ40を備えている。
光ピックアップ40は、光源としての半導体レーザ42と、半導体レーザ42から出射された出射光であるレーザ光を記録媒体41に導く光ピックアップ光学系43と、光ピックアップ43によって記録媒体41に導かれ記録媒体41を経て再度光ピックアップ43を経たレーザ光を受光する受光素子44とを有している。
光ピックアップ光学系43は、半導体レーザ42から出射されたレーザ光を直線偏光とする偏光分離素子として機能する光学素子10と、光学素子10を経たレーザ光をコリメートするコリメータレンズ45と、コリメータレンズ45でコリメートされたレーザ光を円偏光に変換する1/4波長板46と、1/4波長板46を経たレーザ光を記録媒体41上に集光する対物レンズ47とを有し、対物レンズ47によって記録媒体41上に集光することで記録媒体41に対する情報の記録・再生を行う。
記録媒体41で反射した光は対物レンズ47を再度透過し、続く1/4波長板46によって往路とは直交する円偏光に変換され、コリメータレンズ45を経てから再度光学素子10に入射し、往路とは異なる方向に偏光回折されて受光素子44に導かれる。なお光学素子10と受光素子44との間には集光レンズ等の受光光学系を設けてもよい。
受光素子44により記録媒体41からの情報信号や、対物レンズ47を支持する不図示のアクチュエータを動作させるためのサーボ信号が形成される。サーボ信号は、例えば非点収差法によるフォーカシング・エラー信号およびプッシュプル法によるトラッキング・エラー信号などが生成されることが一般に知られている。
このように、光学素子10は、光ピックアップ光学系43において、半導体レーザ42から出射された光と、記録媒体41から反射された光を受光素子44に導くための光とについての光路分岐素子として機能し、半導体レーザ42への戻り光を防止する光アイソレータとして使用可能である。
光学素子10としては、実施例2の回折素子を適用すればよい。
このように光ピックアップ用の偏光分離素子として、光学素子10を用いた場合、三角プリズムをはり合わせたキューブ型の偏光分離素子に比べ光学系がコンパクト化される。とくに光ピックアップ光学系の場合、近年のノートPCなどへの適用を考えると小型化は光学素子に求められる重要事項である。光学素子10は特定次数の光のみを回折可能な偏光分離素子であるため、かかる光ピックアップに関して高効率な偏向光学系を実現可能としている。
その他、光学素子10は、近年大容量光媒体として注目されてなるホログラフィを利用して光記録媒体に情報を記録する光ピックアップに用いられても良い。光学素子10は、このようなホログラフィ用光ピックアップにおいて、入射光を入射光の光軸と異なる2つの直交する直線偏光の光に光路を分離する偏光分離素子として用いられ得る。
(回折素子を用いた光学機器の実施例2:光ピックアップ)
図31に示すように、光ピックアップ40は、光源としての半導体レーザ42a、42bと、半導体レーザ42a、42bから出射された出射光であるレーザ光を記録媒体41に導く光ピックアップ光学系43と、光ピックアップ43によって記録媒体41に導かれ記録媒体41を経て再度光ピックアップ43を経たレーザ光を受光する受光素子44a、44bとを有している。
ここで半導体レーザ42aは波長405nmの光を出射する半導体レーザであり、半導体レーザ42bは波長650nmの光を出射する半導体レーザである。また受光素子44aは波長405nmのレーザ光を受光するために設置されたものであり、受光素子44bは波長650nmのレーザ光を受光するために備えられている。
また記録媒体41は、本実施例では波長405nmのレーザ光で読み書きされる所謂Blu−rayディスクもしくは波長650nmのレーザ光で読み書きされるDVDディスクのいずれかである。
まずBlu−rayディスクに読み書きする場合について説明する。光ピックアップ光学系43は、半導体レーザ42aから出射されたレーザ光は光学素子10aを不感帯透過し、光学素子10aを経たレーザ光をコリメートするコリメータレンズ45と、コリメータレンズ45でコリメートされたレーザ光を円偏光に変換する1/4波長板46と、1/4波長板46を経たレーザ光を記録媒体41上に集光する対物レンズ47とを有し、対物レンズ47によって記録媒体41上に集光することで記録媒体41に対する情報の記録・再生を行う。なおコリメータレンズ45と1/4波長板46の間には光路を切り替える偏光ビームスプリッタが配置されている。記録媒体41で反射した光は対物レンズ47を再度透過し、続く1/4波長板46によって往路とは直交する円偏光に変換され、偏光ビームスプリッタ11を反射せずに透過して光学素子10bを不感帯透過して受光素子44aに導かれる。
なお光学素子10bと受光素子44aとの間には集光レンズ等の受光光学系を設けてもよい。受光素子44aにより記録媒体41からの情報信号や、対物レンズ47を支持する不図示のアクチュエータを動作させるためのサーボ信号が形成される。サーボ信号は、例えば非点収差法によるフォーカシング・エラー信号およびプッシュプル法によるトラッキング・エラー信号などが生成されることが一般に知られている。
次にDVDディスクに読み書きする場合について説明する。光ピックアップ光学系43は、半導体レーザ42bから出射されたレーザ光は光学素子10aを回折し、光学素子10aを経たレーザ光をコリメートするコリメータレンズ45と、コリメータレンズ45でコリメートされたレーザ光を円偏光に変換する1/4波長板46と、1/4波長板46を経たレーザ光を記録媒体41上に集光する対物レンズ47とを有し、対物レンズ47によって記録媒体41上に集光することで記録媒体41に対する情報の記録・再生を行う。
なおコリメータレンズ45と1/4波長板46の間には光路を切り替える偏光ビームスプリッタ11が配置されている。記録媒体41で反射した光は対物レンズ47を再度透過し、続く1/4波長板46によって往路とは直交する円偏光に変換され、偏光ビームスプリッタ11を反射せずに透過して光学素子10bを回折して受光素子44bに導かれる。なお光学素子10bと受光素子44aとの間には集光レンズ等の受光光学系を設けてもよい。受光素子44bにより記録媒体41からの情報信号や、対物レンズ47を支持する不図示のアクチュエータを動作させるためのサーボ信号が形成される。サーボ信号は、例えば非点収差法によるフォーカシング・エラー信号およびプッシュプル法によるトラッキング・エラー信号などが生成されることが一般に知られている。
このように、光学素子10a、10bは、光ピックアップ光学系43において、半導体レーザ42aから出射された光と、半導体レーザ42bから出射された光を合成したり、分岐したりするように機能する。
光学素子10a、bとしては、実施例4の回折素子を適用すればよい。
このように光ピックアップ用の偏光分離素子として、光学素子10a、bを用いた場合、三角プリズムをはり合わせたキューブ型のダイクロイックプリズムに比べ光学系がコンパクト化される。とくに光ピックアップ光学系の場合、近年のノートPCなどへの適用を考えると小型化は光学素子に求められる重要事項である。光学素子10a、bは特定次数の光のみを回折可能な波長選択性分離素子であるため、かかる光ピックアップに関して高効率な偏向光学系を実現可能としている。
(回折素子を用いた光学機器の実施例3:光減衰器)
図32は、直線透過光の効率が変化する液晶素子及びこれを用いた電圧可変の光減衰器を示している。
液晶素子60は、一対の電極付き基板61と、これら基板61間に位置する液晶セルとしての液晶層62と、液晶層62を構成する液晶をかかる基板61間に封入して液晶層62を形成するシール63とを有している。
光減衰器70は、液晶素子60と、基板61間に電圧を印加して液晶層62を形成する液晶の配向を制御する電圧印加部71と、液晶素子60の両側に設けられた光学素子10とを有している。
このような光減衰器70において、液晶素子60へ入射する、直交した偏光方向を有する2つの直線偏光は、第1の偏光性ビームスプリッタとして機能する偏光性回折構造である一方の光学素子10により偏光方向に応じて進行経路が互いに異なって液晶層62を透過し、液晶層62が特定のリタデーション値を有するとき第2の偏光性ビームスプリッタとして機能する偏光性回折構造である他方の光学素子10を透過する2つの直線偏光は液晶素子60の入射光と同じ進行方向に互いに揃って出射するようになっている。
したがって、光減衰器70において、互いに揃って出射するように電圧印加部71により液晶素子60に電圧を印加した場合が直線透過光は最大となり、回折によって直進方向から光がずれると直線透過光は減衰される。液晶素子60は光学素子10を経た光を減衰させる減衰手段として機能する。
光学素子10としては、実施例2の回折素子を適用すればよい。
このように光学素子10を光減衰器70に適用する場合、液晶層62を挟持するガラス基板11の表面に偏光分岐を行う回折構造12を形成するだけで同機能が実現され、部品点数を最小限に抑えることが可能である。
(回折素子を用いた光学機器の実施例4:偏光変換素子)
図33は、ランダム偏光を一偏光方向に揃える偏光変換素子を示している。
偏光変換素子80は、光学素子10と、光学素子10に対して入射光を入射させる開口部81を形成する遮光部材82と、光学素子10の出射側の、開口部81に対する対向位置において基板11上に形成された1/2波長板83と、光学素子10の出射側に1/2波長板83を挟むようにして基板11上に形成されたプリズム84とを有している。
偏光変換素子80において、開口部81から入射されるランダムな偏光方向を有する光束は、偏光分離を行う回折構造12に入射し、P偏光成分は0次回折光として回折せずに直進し、S偏光成分は1次回折光として回折分離される。回折構造12を直進したP偏光成分は、光学素子10を透過した後、1/2波長板83で偏光方向をS偏光に変換され射出する。よって1/2波長板83は光学素子10を経た光の偏光成分を変換する変換素子として機能している。
一方、回折構造12に入射したS偏光成分は回折構造12で回折した後、プリズム84で偏向され、1/2波長板83を通過した光束と射出方向が揃えられS偏光のまま射出する。よってプリズム84は偏光変換素子80への光束の入射方向と射出方向をほぼ平行とする偏向部材たる光学部材として機能している。
このようにして、偏光変換素子80により、ランダムな偏光方向を有する光束は、射出時にはS偏光成分に揃った光束として射出することになる。
光学素子10としては、実施例2の回折素子を適用すればよい。
(偏光変換素子の変形例)
偏光変換素子80は、1/2波長板83、プリズム84に代えて、これらと同機能の回折構造12を備えた構成としてもよく、この場合、一枚のガラス基板11の各面に回折構造12を形成するだけで偏光変換素子80が実現される。
このように光学素子10を偏光変換素子に適用することにより、簡易な構成で高精度な偏光変換素子が実現される。
(回折素子を用いた光学機器の実施例5:プロジェクタ)
図34は、被投影体としてのスクリーンに所定の画像を投影して画像を形成する画像形成装置としての投影装置たる光学機器であるプロジェクタの一部を示している。このプロジェクタ90は、P偏光成分とS偏光成分とを含む光束を出射する光源部92と、光源部92から出射された光束を用いて画像をスクリーン91に投影するためのプロジェクタ光学系93と、プロジェクタ光学系93によってスクリーン91に投影する画像を処理するパーソナルコンピュータ等によって構成される画像処理部94とを有している。
プロジェクタ光学系93は、光源部92とスクリーン91との間に位置する光学素子10と、光源部92からの光束のうち光学素子10と反対側に射出した光束を光学素子10側に反射させる反射鏡95と、光学素子10からの出射光を与えられた画像信号に基づいて変調する、液晶素子等から成る光変調手段としての液晶パネル96と、液晶パネル96を経た光をスクリーン91上に結像させる等の機能を有する投射光学系97とを有し、光学素子10により変調された光束をスクリーン91に投写し、スクリーン91上に、液晶パネル96によって調整された画像を形成する。光学素子10はプロジェクタ光学系93におけるキーパーツとなっている。
プロジェクタ光学系93は、上述した種々の光学素子、光減衰器70、偏光変換素子80等を適宜組み込むことが可能であり、プロジェクタ90は、上述した種々の光学素子、光ピックアップ40、光情報処理装置50、光減衰器70、偏光変換素子80等を適宜組み込むことが可能である。
図35は、被投影体としてのスクリーンに所定の画像を投影して画像を形成する画像形成装置としての投影装置たる光学機器であるプロジェクタの一部を示している。
このプロジェクタ90は、青色領域(波長405nm〜波長500nmのいずれかを中心波長とする)の半導体レーザ92a、緑色領域(波長500nm〜波長600nmのいずれかを中心波長とする)の半導体レーザ92b、赤色領域(波長600nm〜波長700nmのいずれかを中心波長とする)の半導体レーザ92cを具備し、その後段に光学素子10c、コリメートレンズ45、光走査素子97を具備している。
光学素子10cは回折素子の実施例2で説明した回折素子の変形例である。また光走査素子97は電気的に駆動するMEMS素子である。
光学素子10cに形成された回折構造のストライプ方向をP方向とした場合、半導体レーザ92aのP偏光成分の光が光学素子10cに入射するように配置され、半導体レーザ92bのP偏光成分の光が光学素子10bに入射するように配置され、半導体レーザ92cのS偏光成分の光が光学素子10cに入射するように配置されてなる。
実施例4の回折素子を使うと、特定波長λ1のP偏光成分は不感帯透過、特定波長λ2のP偏光成分を+1次回折、特定波長λ2のS偏光成分を−1次回折する素子を実現できる。
ここで波長λ2の代わりに波長λ3(>λ2)の波長のS偏光成分の光を入射させた場合も−1次回折させることができる。本実施例はこのような配置例を用いたものである。
半導体レーザ92a、92b、92cの各レーザから出射された光束を用いて画像をスクリーン91に投影するためのプロジェクタ光学系93と、プロジェクタ光学系93によってスクリーン91に投影する画像を処理するパーソナルコンピュータ等によって構成される画像処理部94とを有している。そして各半導体レーザの出力および光走査素子97を出力したい画像信号に基づいて変調することで画像を形成する。
このようにプロジェクタ光学系の光路合成素子として、光学素子10c用いた場合、三角プリズムをはり合わせたキューブ型のダイクロイックプリズムに比べ光学系がコンパクト化される。とくにプロジェクタ光学系の場合、近年のモバイル型、すなわち携帯電話への搭載などへの適用を考えると小型化は光学素子に求められる重要事項である。光学素子10cは特定次数の光のみを回折可能な波長選択性分離素子であるため、かかるプロジェクタ光学系に関して高効率な偏向光学系を実現可能としている。
(回折素子を用いた光学機器の実施例6:光アイソレータ)
図36は、本発明の光アイソレータの実施例を示す概略構成図である。なお便宜上、紙面垂直方向の偏光方向をP偏光、紙面内での偏光方向をS偏光と呼ぶこととする。
この光アイソレータは、透過回折型の偏光フィルタ51、45度ファラデー回転子53、透過回折型の第2の偏光フィルタ52をこの順で平行に並べて接着剤等により互いに固定配備して成ると共に、全体が入射光の光軸に対して略垂直入射するように設置されている。
このうち、第1の偏光フィルタ51及び第2の偏光フィルタ52は、それぞれの透過偏光方向が互いに45度の角度を成すように設定されており、その構造は、入射光の波長以上の周期をもつ回折素子であり、その回折構造の一周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するようなパタンが重畳されてなり、2種類のサブ波長凹凸構造の有効屈折率が、S偏光方向の入射光に対しては、同一で不感帯透過となり、P偏光方向の入射光に対しては位相差がπとなり、回折するように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されている。
半導体プロセスにより大面積一括生産することが可能であり、光学研磨を必要としない。45度ファラデー回転子53は、GdBiFeガーネット厚膜から成り、光の進行方向に沿った磁場Hが印加される。
それぞれの偏光フィルタとして、実施例1の回折素子を適用すればよい。
(回折素子を用いた光学機器の実施例7)
図37は、このような光アイソレータを使用した光学系装置(光学機器)の構成を例示した側面図である。この光学系装置は、レーザダイオード54からのレーザ光をレンズ55を通して略平行光とされ、光アイソレータ56に入射させ、光アイソレータ56を通過した透過光をその後、レンズ57により集光され光ファイバ端58に結合させるように各部がレーザ光の光軸に合わせられて配備されている。
(光アイソレータの光路)
図36、37において、入射光は、第1の偏光フィルタ51に入射した後、第1の偏光フィルタ51の第1面(回折構造が形成された面)においてP偏光成分は回折される、S偏光成分についてはその殆どが0次透過(不感帯透過)する。この0次透過したS偏光成分の光が45度ファラデー回転子53に垂直入射し、ファラデー回転子53によってその偏光方向を+45゜回転されて、出射側に配置された第2の偏光フィルタ52の方向へ減衰することなく出射される。
そして第一の偏光フィルタ同様に使用しない一方の偏光方向の光は回折され、後続の光ファイバ端58に入射させる偏光方向の光は回折されずに不感帯透過する。
また逆方向の光については、出射側の偏光フィルタ52を0次透過した偏光成分が、ファラデー回転子の非可逆的作用によってその偏光方向を-45゜回転されて入射側の偏光フィルタ51の光源からの0次透過する入射時の偏光方向と直交するため回折される。
偏光フィルタ51、52で回折される回折光は0次透過光に対して十分な角度、すなわち順方向の光については光ファイバ端58、逆方向の光についてはレーザダイオード54へ入射しないような角度に設定されてなる。
例えば±1次の回折光の角度が10度以上となるように回折構造のピッチが設定されてなる。
(偏光フィルタについての他の実施例:両面化)
なお、一般に光アイソレータに用いられる反射型偏光子の仕様として消光比が使用される。使用する偏光方向であるS偏光の透過率、使用しない偏光方向であるP偏光方向の透過率の比で表される。
本発明においてはS偏光方向の0次光の回折効率と、P偏光方向の0次光の回折効率の比で表現される。
一般に偏光フィルタの消光比は高いことが望まれる。本発明の偏光フィルタとしては図36のような片面にのみ回折構造が形成されたものに限定されるものではなく、図38のような両面に回折構造が形成されたものであってもよい。
このような構造とすることにより、消光比は2乗倍大きくできる。特許文献1のような複屈折材料を用いた構造では消光比を上げるには偏光子を2枚にする必要があり、アイソレータとしての厚みが増してしまうが、本発明においては回折構造を形成するだけで消光比を上げることが可能である。
それぞれの偏光フィルタとして、実施例1の回折素子を適用すればよい。
以上のように回折を利用した表面構造のみでアイソレータを実現することが可能である。従来の光アイソレータに対して光学的な特性を損うこと無く低価格で製造上において量産可能な偏光フィルタを備えた光アイソレータを提供できる。
具体的には、従来の複屈折単結晶のプリズム、金属粒子を含むガラスなどを用いずに実現できる。またフォトニック結晶方式に比べ、高屈折率媒質及び低屈折率媒質から成る多層膜を形成する必要もなく、さらに安価に作製できる。
表面のみで偏光フィルタ機能が得られるため、複数の材料を用いる必要もない。
サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、使用する波長に応じて高透過率な基板材料に回折構造を形成してやってもよいし、基板の表面に別の材料を塗布してその表面に回折構造を形成してやってもよい。ハイパワーのレーザなどに対しては耐光性のある材料表面に構造を形成すればよい。
製造方法は大面積で光学研磨を必要としないものであるため、光学的な特性を損うこと無く製造上において低価格で量産可能である。
不要な偏光方向の光は回折させる方式であるため、アイソレータを斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現する。
(回折素子を用いた光学機器の実施例8:光アイソレータの他実施例)
さらに本発明では回折構造のみで偏光フィルタ機能を実現できるため、図39のようなアイソレータ構造であってもよい。
すなわち、ファラデー回転子53の入射側の表面に偏光フィルタ51の機能を有する回折構造53aが形成されたものや、出射側の表面に偏光フィルタ52の機能を有する回折構造53bが形成されたものであってもよい。
回折構造はファラデー回転子53の表面に直接加工されたものでもよいし、ファラデー回転子53の表面に別材料を塗布した後にその表面に回折構造が形成されたものであってもよい。
それぞれの偏光フィルタとして、実施例1の回折素子を適用すればよい。
偏光子、ファラデー回転子、偏光子のような構成に比べ、一体化された構成であるため、ハンドリングがしやすく、また光学系としてコンパクト化できる。
サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、ファラデー回転子に直接回折構造を形成(加工)してやってもよいし、ファラデー回転子の表面に別材料を塗布してその表面に回折構造を形成(加工)してやってもよい。
さらに図40のように、図36の構成と組み合わせた構成であってもよい。ファラデー回転子の両面に別材料を塗布してその表面にサブ波長凹凸構造を重畳した回折構造を形成するとともに、各々の回折構造に対向するようにサブ波長凹凸構造が形成された偏光フィルタを配置してもよい。対向する構造の隙間にはギャップを保持する保持材を設ければよい。
なお、外側の偏光フィルタの回折構造を対向させずに配置してもよいが、対向させるとアイソレータとしては回折構造が外に露出しない構成となるため、緩衝による破損や、ゴミなどの影響を受けないという効果がある。さらに外側の表面を研磨することにより任意の薄型化や任意の光路長調整が可能である。
それぞれの偏光フィルタとして、実施例1の回折素子を適用すればよい。
なお、図36、図39に示した光アイソレータのファラデー回転子の代わりに波長板のような偏光回転素子を用いてもよい。磁場印加などが不要なため構造をシンプルにできる。
なお波長板としては、水晶などの複屈折材料を用いてもよいし、本実施例の偏光フィルタで用いているサブ波長凹凸構造によっても実現することが可能である。
また、偏光フィルタとしてはファラデー回転子の手前側だけに設けたものであってもよい。消光比は落ちるが薄型化、低コスト化といった目的には有効である。
1、10、20、30 光学素子
40 光ピックアップ
56 光アイソレータ
70 光減衰器
80 偏光変換素子
90 プロジェクタ光学系
特開平2−096103号公報 特開2005−339718号公報
「光学」27巻1号(1998)p.p12−17 「O plus E」No.136(1991年3月)p.p86−90

Claims (15)

  1. 入射光の波長以上の周期をもつ光学素子であり、
    その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造と第2のサブ波長凹凸構造とで形成されてなり、
    第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造には、第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、
    第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn1(P偏光)とし、
    第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn2(P偏光)としたとき、
    p1>p2
    f1<f2
    n1(P偏光)=n2(P偏光)
    を満足することを特徴とする光学素子。
  2. 請求項1記載の光学素子において、
    前記光学素子のストライプ方向と同一の偏光方向の光が入射したときには、1次回折光が発生せず、
    前記光学素子のストライプ方向と直交する偏光方向の光が入射したときには、0次回折光が発生しないように第1のサブ波長凹凸構造の溝深さと第2のサブ波長凹凸構造の溝深さとが同一の値に設定されていることを特徴とする光学素子。
  3. 入射光の波長以上の周期をもつ光学素子であり、
    その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造と第2のサブ波長凹凸構造とで形成されてなり、
    第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造には、第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、
    第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn1(λ1、P偏光)とし、
    第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn2(λ1、P偏光)としたとき、
    p1>p2
    f1<f2
    n1(λ1、P偏光)=n2(λ1、P偏光)
    第1のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2(>λ1)の光が入射したときの有効屈折率をn1(λ2、P偏光)とし、
    第2のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2(>λ1)の光が入射したときの有効屈折率をn2(λ2、P偏光)としたとき、
    n1(λ2、P偏光)>n2(λ2、P偏光)
    を満足することを特徴とする光学素子。
  4. 請求項3記載の光学素子において、
    波長λ2の光が入射したときには、0次回折光が発生しないように第1のサブ波長凹凸構造の溝深さと第2のサブ波長凹凸構造の溝深さとが同一の値に設定されていることを特徴とする光学素子。
  5. 入射光の波長以上の周期をもつ光学素子であり、
    その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造、第2のサブ波長凹凸構造、・・・第Nのサブ波長凹凸構造とで形成されてなり、
    第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第Nのサブ波長凹凸構造には、第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造から第(N−1)のサブ波長凹凸構造は、第1と第Nのサブ波長凹凸構造のストライプ方向とは異なる角度を有し、
    第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向が入射したときの有効屈折率をn1(P偏光)、第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をn2(P偏光)、第Nのサブ波長凹凸構造の周期をpN、フィリングファクタをfN、前記光学素子のストライプ方向と同一方向の偏光方向の光が入射したときの有効屈折率をnN(P偏光)としたとき、
    p1>p2>・・・>pN
    f1<f2<・・・<fN
    n1(P偏光)=n2(P偏光)=・・・=nN(P偏光)
    を満足することを特徴とする光学素子。
  6. 請求項5記載の光学素子において、
    所定の偏光方向を所定の次数に偏りをもって回折するように前記溝深さが設定されていることを特徴とする光学素子。
  7. 入射光の波長以上の周期をもつ光学素子であり、
    その1周期は、入射光の波長以下の周期をもつ第1のサブ波長凹凸構造、第2のサブ波長凹凸構造、・・・第Nのサブ波長凹凸構造とで形成されてなり、
    第1のサブ波長凹凸構造には、前記光学素子のストライプ方向と同一方向のサブ波長凹凸構造が形成されてなり、第Nのサブ波長凹凸構造には、前記第1のサブ波長凹凸構造のストライプ方向とは直交する方向のサブ波長凹凸構造が形成されてなり、第2のサブ波長凹凸構造から第(N−1)のサブ波長凹凸構造は、第1と第Nのサブ波長凹凸構造のストライプ方向とは異なる角度を有し、
    第1のサブ波長凹凸構造の周期をp1、フィリングファクタをf1、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn1(λ1、P偏光)、
    第2のサブ波長凹凸構造の周期をp2、フィリングファクタをf2、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をn2(λ1、P偏光)、
    ・・・第Nのサブ波長凹凸構造の周期をpN、フィリングファクタをfN、前記回折素子のストライプ方向と同一方向の偏光方向の波長λ1の光が入射したときの有効屈折率をnN(λ1、P偏光)としたとき、
    p1>p2>・・・>pN
    f1<f2<・・・<fN
    n1(λ1、P偏光)=n2(λ1、P偏光)=・・・=nN(λ1、P偏光)
    第1のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2の光が入射したときの有効屈折率をn1(λ2、P偏光)、
    第2のサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2の光が入射したときの有効屈折率をn2(λ2、P偏光)、
    ・・・第Nのサブ波長凹凸構造に、前記光学素子のストライプ方向と同一方向の偏光方向の波長λ2の光が入射したときの有効屈折率をnN(λ2、P偏光)としたとき、
    n1(λ2、P偏光)>n2(λ2、P偏光)・・・>nN(λ2、P偏光)
    を満足することを特徴とする光学素子。
  8. 請求項7記載の光学素子において、
    波長λ2の光に対して所定の次数に偏りをもって回折するように前記溝深さが設定されていることを特徴とする光学素子。
  9. 請求項1〜8のうちの何れか1つに記載の光学素子を有し、記録媒体に情報を記録し及び/又は記録媒体に記録されている情報を読み取る光ピックアップ。
  10. 請求項9記載の光ピックアップを有し、この光ピックアップによって記録媒体の情報の処理を行う光情報処理装置。
  11. 請求項1〜8のうちの何れか1つに記載の光学素子と、この光学素子を経た光を減衰させる減衰手段とを有する光減衰器。
  12. 請求項1〜8のうちの何れか1つに記載の光学素子と、この光学素子を経た光の偏光方向を変換する変換素子とを有する偏光変換素子。
  13. 請求項1〜8のうちの何れか1つに記載の光学素子、または、請求項12記載の偏光変換素子を有し、前記光学素子を経た光を投射するプロジェクタ光学系。
  14. 請求項1〜8のうちの何れか1つに記載の光学素子を有し、光を一方向にのみ透過させて逆方向には遮断する機能を有する光アイソレータ。
  15. 請求項1〜8のうちの何れか1つに記載の光学素子、または、請求項9記載の光ピックアップ、または、請求項10記載の光情報処理装置、または、請求項11記載の光減衰器、または、請求項12記載の偏光変換素子、または、請求項13記載のプロジェクタ光学系を有する光学機器。
JP2011021114A 2011-02-02 2011-02-02 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器 Pending JP2012159802A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011021114A JP2012159802A (ja) 2011-02-02 2011-02-02 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011021114A JP2012159802A (ja) 2011-02-02 2011-02-02 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器

Publications (1)

Publication Number Publication Date
JP2012159802A true JP2012159802A (ja) 2012-08-23

Family

ID=46840350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021114A Pending JP2012159802A (ja) 2011-02-02 2011-02-02 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器

Country Status (1)

Country Link
JP (1) JP2012159802A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215518A (ja) * 2013-04-26 2014-11-17 日本電信電話株式会社 性能可変回折格子
WO2017150568A1 (ja) * 2016-03-02 2017-09-08 有限会社オートクローニング・テクノロジー 光学素子
WO2021124380A1 (ja) * 2019-12-16 2021-06-24 日本分光株式会社 反射型の偏光分離回折素子、および、これを備えた光学測定装置
JP2022023220A (ja) * 2015-06-15 2022-02-07 マジック リープ, インコーポレイテッド 仮想および拡張現実システムおよび方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004621A (ja) * 2002-03-25 2004-01-08 Sanyo Electric Co Ltd 微細構造を有する素子およびその製造方法
US20040223156A1 (en) * 2003-05-06 2004-11-11 Mcgrew Stephen P. Optically variable form birefringent structure and method and system and method for reading same
US20060126183A1 (en) * 2002-06-28 2006-06-15 Erez Hasman Geometrical phase optical elements with space-variant subwavelenght gratings
JP2009223938A (ja) * 2008-03-14 2009-10-01 Ricoh Co Ltd 光ピックアップおよびこれを用いる光情報処理装置
JP2010164749A (ja) * 2009-01-15 2010-07-29 Ricoh Co Ltd 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、光学機器
JP2010261999A (ja) * 2009-04-30 2010-11-18 Ricoh Co Ltd 光学素子、偏光フィルタ、光アイソレータ、光学装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004621A (ja) * 2002-03-25 2004-01-08 Sanyo Electric Co Ltd 微細構造を有する素子およびその製造方法
US20060126183A1 (en) * 2002-06-28 2006-06-15 Erez Hasman Geometrical phase optical elements with space-variant subwavelenght gratings
US20040223156A1 (en) * 2003-05-06 2004-11-11 Mcgrew Stephen P. Optically variable form birefringent structure and method and system and method for reading same
JP2009223938A (ja) * 2008-03-14 2009-10-01 Ricoh Co Ltd 光ピックアップおよびこれを用いる光情報処理装置
JP2010164749A (ja) * 2009-01-15 2010-07-29 Ricoh Co Ltd 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、光学機器
JP2010261999A (ja) * 2009-04-30 2010-11-18 Ricoh Co Ltd 光学素子、偏光フィルタ、光アイソレータ、光学装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215518A (ja) * 2013-04-26 2014-11-17 日本電信電話株式会社 性能可変回折格子
JP2022023220A (ja) * 2015-06-15 2022-02-07 マジック リープ, インコーポレイテッド 仮想および拡張現実システムおよび方法
JP7203927B2 (ja) 2015-06-15 2023-01-13 マジック リープ, インコーポレイテッド 仮想および拡張現実システムおよび方法
US11733443B2 (en) 2015-06-15 2023-08-22 Magic Leap, Inc. Virtual and augmented reality systems and methods
US11789189B2 (en) 2015-06-15 2023-10-17 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams
WO2017150568A1 (ja) * 2016-03-02 2017-09-08 有限会社オートクローニング・テクノロジー 光学素子
JPWO2017150568A1 (ja) * 2016-03-02 2019-02-14 有限会社オートクローニング・テクノロジー 光学素子
US11125925B2 (en) 2016-03-02 2021-09-21 Photonic Lattice, Inc. Optical element
WO2021124380A1 (ja) * 2019-12-16 2021-06-24 日本分光株式会社 反射型の偏光分離回折素子、および、これを備えた光学測定装置
JP6896262B1 (ja) * 2019-12-16 2021-06-30 日本分光株式会社 反射型の偏光分離回折素子、および、これを備えた光学測定装置

Similar Documents

Publication Publication Date Title
JP5218079B2 (ja) 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、光学機器
JP2004219977A (ja) 位相補正素子および光ヘッド装置
JP2010261999A (ja) 光学素子、偏光フィルタ、光アイソレータ、光学装置
JPWO2007055245A1 (ja) 偏光分離素子及びその製造方法、並びに、当該偏光分離素子を備えた光ピックアップ、光デバイス、光アイソレータ及び偏光ホログラム
JP5353666B2 (ja) ワイヤグリッド型偏光子および光ヘッド装置
JP2012159802A (ja) 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器
JP4518009B2 (ja) 3波長用回折素子、位相板付3波長用回折素子および光ヘッド装置
JP4300784B2 (ja) 光ヘッド装置
JP5767858B2 (ja) 光回折素子、光ピックアップ及び光回折素子の製造方法
JP5195024B2 (ja) 回折素子、光減衰器、光ヘッド装置および投射型表示装置
JP4843819B2 (ja) 偏光素子および偏光素子を含む光学系
JP5417815B2 (ja) 回折素子、光ヘッド装置および投射型表示装置
JPH10302291A (ja) 偏光分離素子とその偏光分離素子を用いた光ヘッド
JP2003288733A (ja) 開口制限素子および光ヘッド装置
JP5131244B2 (ja) 積層位相板及び光ヘッド装置
JP2012009096A (ja) 波長選択波長板、波長選択回折素子および光ヘッド装置
JP3711652B2 (ja) 偏光回折素子及びそれを用いた光ヘッド装置
JP2004077806A (ja) 位相板光学素子
JP2010164752A (ja) 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、光学機器
JP2011233208A (ja) 波長選択波長板、波長選択回折素子および光ヘッド装置
JP4337510B2 (ja) 回折素子および光ヘッド装置
JP2002365416A (ja) 偏光性回折素子および光ヘッド装置
JP2007317326A (ja) 回折格子とその製造方法、及び光ピックアップ装置
JP2006114201A (ja) 偏光回折素子及び光ヘッド装置
JP2010153039A (ja) 3波長用回折素子、位相板付3波長用回折素子および光ヘッド装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150317