JP2010261999A - 光学素子、偏光フィルタ、光アイソレータ、光学装置 - Google Patents
光学素子、偏光フィルタ、光アイソレータ、光学装置 Download PDFInfo
- Publication number
- JP2010261999A JP2010261999A JP2009110415A JP2009110415A JP2010261999A JP 2010261999 A JP2010261999 A JP 2010261999A JP 2009110415 A JP2009110415 A JP 2009110415A JP 2009110415 A JP2009110415 A JP 2009110415A JP 2010261999 A JP2010261999 A JP 2010261999A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- incident light
- polarization direction
- sub
- polarizing filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
【課題】回折を利用した表面構造のみで偏光回折機能を実現することができ、光学的な特性を損うこと無く低価格で製造上において量産可能な光学素子(偏光フィルタ)と、その光学素子(偏光フィルタ)を有する光アイソレータ及び光学装置を提供する。
【解決手段】特定の偏光方向の入射光は0次透過し、特定の偏光方向とは直交する偏光方向の入射光に対しては回折させる光学素子であり、入射光の波長以上の周期をもつ回折素子1からなり、その1周期は入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造[1],[2]が隣り合わせに直交するように形成されてなり、2種類のサブ波長凹凸構造の有効屈折率が、特定の偏光方向の入射光に対しては同一となり、特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタl1/q1,l2/q2および溝深d1,d2さが決定されている。
【選択図】図4
【解決手段】特定の偏光方向の入射光は0次透過し、特定の偏光方向とは直交する偏光方向の入射光に対しては回折させる光学素子であり、入射光の波長以上の周期をもつ回折素子1からなり、その1周期は入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造[1],[2]が隣り合わせに直交するように形成されてなり、2種類のサブ波長凹凸構造の有効屈折率が、特定の偏光方向の入射光に対しては同一となり、特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタl1/q1,l2/q2および溝深d1,d2さが決定されている。
【選択図】図4
Description
本発明は、光を偏光方向に応じて回折し得る光学素子及びその光学素子からなる偏光フィルタと、その偏光フィルタを有し、光を一方向にのみ透過させて逆方向には遮断する機能を有する光アイソレータと、その光アイソレータを有し、主として光通信機器や光情報処理機器等に用いられる光学装置に関する。
光回路素子の一つである光アイソレータは、入射と出射の一対の端子を持ち、入射側から射出側に進む順方向の光は低損失で、出射側から入射側に戻る逆方向の光は高損失の特性を持たせて、光を決められた方向にのみ通過させる光受動部品である。
光アイソレータの構成としては、例えば、偏光面を45°回転するファラデー回転子を、透過軸が互いに45°ずれた二つの偏光子で挟んだ光学系などが挙げられる。これは順方向の光については、入射側の偏光子により取り出された偏光成分が、ファラデー回転子によってその偏光方向を+45°回転されて、出射側の偏光子の方向と一致して減衰することなく出ていく。しかし、逆方向の光については、出射側の偏光子により取り出された偏光成分が、ファラデー回転子の非可逆的作用によってその偏光方向を−45°回転されて入射側の偏光子の方向と直交して減衰されて出ていかない。この例のような入射光の偏光方向を予め入射側の偏光子の偏光方向と一致させておく型の光アイソレータを偏光依存型光アイソレータという。
光アイソレータの構成としては、例えば、偏光面を45°回転するファラデー回転子を、透過軸が互いに45°ずれた二つの偏光子で挟んだ光学系などが挙げられる。これは順方向の光については、入射側の偏光子により取り出された偏光成分が、ファラデー回転子によってその偏光方向を+45°回転されて、出射側の偏光子の方向と一致して減衰することなく出ていく。しかし、逆方向の光については、出射側の偏光子により取り出された偏光成分が、ファラデー回転子の非可逆的作用によってその偏光方向を−45°回転されて入射側の偏光子の方向と直交して減衰されて出ていかない。この例のような入射光の偏光方向を予め入射側の偏光子の偏光方向と一致させておく型の光アイソレータを偏光依存型光アイソレータという。
従来、この種の光アイソレータの偏光子の材料としては、複屈折単結晶のプリズム、金属粒子を含むガラス、誘電体及び金属の複合多層膜等が挙げられる。例えば特許文献1(特開2006−113360号公報)には、両面に金属粒子拡散層が形成されたポーラコア(登録商標)からなる入射側偏光子11、磁性ガーネット厚膜12、及び出射側の金属粒子拡散層が研磨により除去されたポーラコア(登録商標)からなる出射側偏光子13(0.5mm厚の標準品の片側を研磨して0.2mmとしたもの)がこの順で配置固定されて構成されるもので、永久磁石4から印加される磁界により磁性ガーネット厚膜12が光信号の偏波面を回転させるファラデー回転子の作用を有し、入射側偏光子11、出射側偏光子13が或る一定方向の偏光のみを通過させる作用を有する構成の光アイソレータ付き光端末が記載されている。
一方で、特許文献1で用いられている偏光子は材料自体が高価である上、その製造に際して切断や光学研磨等の加工工程を要することにより製造コストを低減化することが困難となっているため、光アイソレータ全体の価格を高める要因となっている。実際に、既存の光アイソレータでは、製造コストの約50%以上を偏光子が占めることがある。
そこで、そのような問題点を解決すべくなされたものとして、特許文献2(特開2000−180789号公報)に記載の光アイソレータが挙げられる。
特許文献2に記載の光アイソレータは、フォトニック結晶から成る反射型の第1の偏光子、光透過性平行平板、平行平板の45度ファラデー回転子、フォトニック結晶から成る反射型の第2の偏光子をこの順で平行に並べて固定配備して成るものであるが、課題として、光学系全体を入射光の光軸に対して傾けて設置させる必要がある。これは光アイソレータに反射型の偏光子を用いているためであり、このように光学系を斜めに配置することは、光学系全体としてのレイアウトが煩雑となる。
特許文献2に記載の光アイソレータは、フォトニック結晶から成る反射型の第1の偏光子、光透過性平行平板、平行平板の45度ファラデー回転子、フォトニック結晶から成る反射型の第2の偏光子をこの順で平行に並べて固定配備して成るものであるが、課題として、光学系全体を入射光の光軸に対して傾けて設置させる必要がある。これは光アイソレータに反射型の偏光子を用いているためであり、このように光学系を斜めに配置することは、光学系全体としてのレイアウトが煩雑となる。
本発明は、上記のような従来技術の問題点に鑑みなされたものであり、回折を利用した表面構造のみで偏光回折機能を実現することができ、光学的な特性を損うこと無く低価格で製造上において量産可能な光学素子と、その光学素子からなる偏光フィルタを提供することを目的とする。
また、本発明は、上記の偏光フィルタを用いることにより、従来の複屈折単結晶のプリズム、金属粒子を含むガラスなどを用いずに実現することができ、また、入射光に対して斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現することができる光アイソレータを提供すること、及び、その光アイソレータを有する光学装置を提供することを目的とする。
また、本発明は、上記の偏光フィルタを用いることにより、従来の複屈折単結晶のプリズム、金属粒子を含むガラスなどを用いずに実現することができ、また、入射光に対して斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現することができる光アイソレータを提供すること、及び、その光アイソレータを有する光学装置を提供することを目的とする。
上記の目的を達成するため、本発明では以下のような解決手段を採っている。
本発明の第1の手段は、特定の偏光方向の入射光は主として0次透過し、前記特定の偏光方向とは直交する偏光方向の入射光に対しては回折させる光学素子であって、前記入射光の波長以上の周期をもつ回折素子からなり、その1周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するように形成されてなり、前記2種類のサブ波長凹凸構造の有効屈折率が、前記特定の偏光方向の入射光に対しては同一となり、かつ前記特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されていることを特徴とする(請求項1)。
また、本発明の第2の手段は、偏光フィルタであって、第1の手段に記載の光学素子からなることを特徴とする(請求項2)。
本発明の第1の手段は、特定の偏光方向の入射光は主として0次透過し、前記特定の偏光方向とは直交する偏光方向の入射光に対しては回折させる光学素子であって、前記入射光の波長以上の周期をもつ回折素子からなり、その1周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するように形成されてなり、前記2種類のサブ波長凹凸構造の有効屈折率が、前記特定の偏光方向の入射光に対しては同一となり、かつ前記特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されていることを特徴とする(請求項1)。
また、本発明の第2の手段は、偏光フィルタであって、第1の手段に記載の光学素子からなることを特徴とする(請求項2)。
本発明の第3の手段は、第1の偏光フィルタと、偏光方向回転子と、第2の偏光フィルタとをこの順で平行に並べて固定配備して成る光アイソレータにおいて、前記第1、第2の偏光フィルタは、特定の偏光方向の入射光は主として0次透過し、前記特定の偏光方向とは直交する偏光方向の入射光に対しては回折させるものであって、前記第1、第2の偏光フィルタは、入射光の波長以上の周期をもつ回折素子であり、その1周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するように形成されてなり、前記2種類のサブ波長凹凸構造の有効屈折率が、前記特定の偏光方向の入射光に対しては同一となり、かつ前記特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されていることを特徴とする(請求項3)。
本発明の第4の手段は、偏光方向回転子の少なくとも一方の面に偏光フィルタが形成されてなる光アイソレータにおいて、前記偏光フィルタは、特定の偏光方向の入射光は主として0次透過し、前記特定の偏光方向とは直交する偏光方向の入射光に対しては回折させるものであって、前記偏光フィルタは、入射光の波長以上の周期をもつ回折素子であり、その1周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するように形成されてなり、前記2種類のサブ波長凹凸構造の有効屈折率が、前記特定の偏光方向の入射光に対しては同一となり、かつ前記特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されていることを特徴とする(請求項4)。
本発明の第5の手段は、光学装置であって、第3または第4の手段の光アイソレータを有することを特徴とする(請求項5)。
本発明の第1、第2の手段によれば、回折を利用した表面構造のみで偏光回折機能を実現することが可能であるので、光学的な特性を損うこと無く低価格で製造上において量産可能な光学素子と、その光学素子からなる偏光フィルタを提供することができる。
本発明の第3の手段では、光学的な特性を損うこと無く低価格で製造上において量産可能な偏光フィルタを備えた光アイソレータを提供することができる。
具体的には、従来の複屈折単結晶のプリズム、特許文献1に記載されているような金属粒子を含むガラスなどを用いずに光アイソレータを実現することができる。また、特許文献2に記載されているようなフォトニック結晶方式に比べ、高屈折率媒質及び低屈折率媒質から成る多層膜を形成する必要もなく、さらに安価に作製できる。
さらには、表面のみで偏光フィルタ機能が得られるため、複数の材料を用いる必要もない。また、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、使用する波長に応じて高透過率な基板材料に回折構造を形成してやってもよいし、基板の表面に別の材料を塗布してその表面に回折構造を形成してやってもよい。ハイパワーのレーザなどに対しては耐光性のある材料表面に構造を形成すればよい。
製造方法は大面積で光学研磨を必要としないものであるため、光学的な特性を損うこと無く製造上において低価格で量産可能である
また、不要な偏光方向の光は回折させる方式であるため、アイソレータを斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現することができる。
具体的には、従来の複屈折単結晶のプリズム、特許文献1に記載されているような金属粒子を含むガラスなどを用いずに光アイソレータを実現することができる。また、特許文献2に記載されているようなフォトニック結晶方式に比べ、高屈折率媒質及び低屈折率媒質から成る多層膜を形成する必要もなく、さらに安価に作製できる。
さらには、表面のみで偏光フィルタ機能が得られるため、複数の材料を用いる必要もない。また、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、使用する波長に応じて高透過率な基板材料に回折構造を形成してやってもよいし、基板の表面に別の材料を塗布してその表面に回折構造を形成してやってもよい。ハイパワーのレーザなどに対しては耐光性のある材料表面に構造を形成すればよい。
製造方法は大面積で光学研磨を必要としないものであるため、光学的な特性を損うこと無く製造上において低価格で量産可能である
また、不要な偏光方向の光は回折させる方式であるため、アイソレータを斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現することができる。
本発明の第4の手段の光アイソレータによれば、第3の手段と同様の効果に加え、偏光子、ファラデー回転子、偏光子のような構成に比べ、一体化された構成であるため、ハンドリングがしやすく、また光学系としてコンパクト化できる。
サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、ファラデー回転子に直接回折構造を形成(加工)してやってもよいし、ファラデー回転子の表面に別材料を塗布してその表面に回折構造を形成(加工)してやってもよい。
サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、ファラデー回転子に直接回折構造を形成(加工)してやってもよいし、ファラデー回転子の表面に別材料を塗布してその表面に回折構造を形成(加工)してやってもよい。
本発明の第5の手段の光学装置によれば、第3または第4の手段の光アイソレータを有するので、光学的な特性を損うこと無く低価格で製造可能な光学装置を提供することができる。
以下、本発明を実施するための形態を、図示の実施例に基づいて詳細に説明する。
[実施例1]
(光アイソレータの構成例)
図1は本発明の第1の実施例の光アイソレータの構成例を示す概略構成図である。同図において、符号1、2は本発明の光学素子からなる第1の偏光フィルタ、第2の偏光フィルタであり、符号3は45度ファラデー回転子である。図1の例では、第1の偏光フィルタ1、第2の偏光フィルタ2は、片面に回折面(回折構造)が形成されている。
なお、便宜上、紙面垂直方向の偏光方向をP偏光、紙面内での偏光方向をS偏光と呼ぶこととする。
(光アイソレータの構成例)
図1は本発明の第1の実施例の光アイソレータの構成例を示す概略構成図である。同図において、符号1、2は本発明の光学素子からなる第1の偏光フィルタ、第2の偏光フィルタであり、符号3は45度ファラデー回転子である。図1の例では、第1の偏光フィルタ1、第2の偏光フィルタ2は、片面に回折面(回折構造)が形成されている。
なお、便宜上、紙面垂直方向の偏光方向をP偏光、紙面内での偏光方向をS偏光と呼ぶこととする。
図1に示す光アイソレータは、透過回折型の第1の偏光フィルタ1、45度ファラデー回転子3、透過回折型の第2の偏光フィルタ2をこの順で平行に並べて接着剤等により互いに固定配備して成ると共に、全体が入射光の光軸に対して略垂直入射するように設置されている。
このうち、第1の偏光フィルタ1及び第2の偏光フィルタ2は、それぞれの透過偏光方向が互いに45度の角度を成すように設定されており、その構造は、入射光の波長以上の周期をもつ回折素子であり、その回折構造の一周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するようなパターンが重畳されてなり、後述するとおり、2種類のサブ波長凹凸構造の有効屈折率が、S偏光方向の入射光に対しては同一となり、P偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されている(詳細は実施例4で説明する)。
この第1の偏光フィルタ1及び第2の偏光フィルタ2は、半導体プロセスにより大面積一括生産することが可能であり、光学研磨を必要としない(作成方法の詳細は実施例5で説明する)。また、45度ファラデー回転子3は、GdBiFeガーネット厚膜から成り、図示しない磁場印加手段(永久磁石、電磁石等)により、光の進行方向に沿った磁場Hが印加される。
このうち、第1の偏光フィルタ1及び第2の偏光フィルタ2は、それぞれの透過偏光方向が互いに45度の角度を成すように設定されており、その構造は、入射光の波長以上の周期をもつ回折素子であり、その回折構造の一周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するようなパターンが重畳されてなり、後述するとおり、2種類のサブ波長凹凸構造の有効屈折率が、S偏光方向の入射光に対しては同一となり、P偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されている(詳細は実施例4で説明する)。
この第1の偏光フィルタ1及び第2の偏光フィルタ2は、半導体プロセスにより大面積一括生産することが可能であり、光学研磨を必要としない(作成方法の詳細は実施例5で説明する)。また、45度ファラデー回転子3は、GdBiFeガーネット厚膜から成り、図示しない磁場印加手段(永久磁石、電磁石等)により、光の進行方向に沿った磁場Hが印加される。
(光学装置の構成例)
図2は、図1に示すような構成の光アイソレータを使用した光学装置の構成例を示す概略構成図である。この光学装置は、レーザダイオード9からのレーザ光をレンズ10を通して略平行光とし、光アイソレータ11に入射させ、光アイソレータ11を通過した透過光を、レンズ21により集光し、光ファイバ端12に結合させるように各部がレーザ光の光軸Oに合わせられて配備されている。このような構成の光学装置は、主として光ファイバー通信用の光通信機器や、光情報処理機器等に用いられる。
図2は、図1に示すような構成の光アイソレータを使用した光学装置の構成例を示す概略構成図である。この光学装置は、レーザダイオード9からのレーザ光をレンズ10を通して略平行光とし、光アイソレータ11に入射させ、光アイソレータ11を通過した透過光を、レンズ21により集光し、光ファイバ端12に結合させるように各部がレーザ光の光軸Oに合わせられて配備されている。このような構成の光学装置は、主として光ファイバー通信用の光通信機器や、光情報処理機器等に用いられる。
(光アイソレータの光路)
図1、図2において、入射光は、光アイソレータ11の第1の偏光フィルタ1に入射した後、第1の偏光フィルタ1の第1面(回折構造が形成された面)においてP偏光成分は回折され、S偏光成分についてはその殆どが0次透過(不感帯透過)する。この0次透過したS偏光成分の光が45度ファラデー回転子3に垂直入射し、ファラデー回転子3によってその偏光方向を+45°回転されて、出射側に配置された第2の偏光フィルタ2の方向へ減衰することなく出射される。そして第一の偏光フィルタと同様に、使用しない一方の偏光方向の光は回折され、後続の光ファイバ端12に入射させる偏光方向の光は回折されずに不感帯透過する。
図1、図2において、入射光は、光アイソレータ11の第1の偏光フィルタ1に入射した後、第1の偏光フィルタ1の第1面(回折構造が形成された面)においてP偏光成分は回折され、S偏光成分についてはその殆どが0次透過(不感帯透過)する。この0次透過したS偏光成分の光が45度ファラデー回転子3に垂直入射し、ファラデー回転子3によってその偏光方向を+45°回転されて、出射側に配置された第2の偏光フィルタ2の方向へ減衰することなく出射される。そして第一の偏光フィルタと同様に、使用しない一方の偏光方向の光は回折され、後続の光ファイバ端12に入射させる偏光方向の光は回折されずに不感帯透過する。
また、逆方向の光については、出射側の第2の偏光フィルタ2を0次透過した偏光成分が、ファラデー回転子3の非可逆的作用によってその偏光方向を−45°回転されて入射側の第1の偏光フィルタ1に入射するが、光源からの0次透過する入射時の偏光方向と直交するため回折される。
第1、第2の偏光フィルタ1,2で回折される回折光は0次透過光に対して十分な角度、すなわち順方向の光については光ファイバ端12、逆方向の光についてはレーザダイオード9へ入射しないような角度に設定されてなる。例えば±1次の回折光の角度が10度以上となるように回折構造のピッチが設定されている。
(偏光フィルタの構造)
偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる。
図3(a)、(b)は偏光フィルタ1、2のマクロ構造を示す図である。同図(a)は偏光フィルタ1の正面図、(b)は断面図であり、この偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる格子形状の回折面(回折構造)を有する。
偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる。
図3(a)、(b)は偏光フィルタ1、2のマクロ構造を示す図である。同図(a)は偏光フィルタ1の正面図、(b)は断面図であり、この偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる格子形状の回折面(回折構造)を有する。
図4は、図3に示す偏光フィルタ1を構成する光学素子の回折面に形成されている格子形状の要部を拡大して示す図であり、光学素子(偏光フィルタ)1の回折面に形成されている波長以上の周期のうちの3周期分を示している。同図に示すように、この格子形状は、波長以上の周期Pを有する周期構造に、さらに波長よりも短い周期q1、q2を有するサブ波長凹凸構造[1],[2]が形成されてなる。波長以上の周期構造に応じて入射光は回折し、サブ波長凹凸構造によってP偏光、S偏光のいずれの偏光成分で回折するかの偏光選択性を出している。これにより、図3(b)に示すように偏光フィルタ1はP偏光成分の光が入射したときは回折し、S偏光成分の光に対しては不感帯透過する。
(偏光フィルタについての補足:消光比の定義)
なお、一般に光アイソレータに用いられる反射型偏光子の仕様としては消光比が使用される。この消光比は、使用する偏光方向であるS偏光の透過率、使用しない偏光方向であるP偏光方向の透過率の比で表される。本発明においてはS偏光方向の0次光の回折効率と、P偏光方向の0次光の回折効率の比で表現される。
なお、一般に光アイソレータに用いられる反射型偏光子の仕様としては消光比が使用される。この消光比は、使用する偏光方向であるS偏光の透過率、使用しない偏光方向であるP偏光方向の透過率の比で表される。本発明においてはS偏光方向の0次光の回折効率と、P偏光方向の0次光の回折効率の比で表現される。
(偏光フィルタについての別の実施例:両面化)
一般に偏光フィルタの消光比は高いことが望まれる。本発明の偏光フィルタとしては図1に示したような光学素子の片面にのみ回折構造が形成されたものに限定されるものではなく、図5に示すように第1、第2の偏光フィルタ1,2を構成する光学素子の両面に回折面(回折構造)が形成されたものであってもよい。このような構造とすることにより、消光比は2乗倍大きくできる。なお、特許文献1に記載のような複屈折材料を用いた構造では、消光比を上げるには偏光子を2枚にする必要があり、光アイソレータとしての厚みが増してしまうが、本発明においては偏光フィルタの両面に回折構造を形成するだけで消光比を上げることが可能である。
一般に偏光フィルタの消光比は高いことが望まれる。本発明の偏光フィルタとしては図1に示したような光学素子の片面にのみ回折構造が形成されたものに限定されるものではなく、図5に示すように第1、第2の偏光フィルタ1,2を構成する光学素子の両面に回折面(回折構造)が形成されたものであってもよい。このような構造とすることにより、消光比は2乗倍大きくできる。なお、特許文献1に記載のような複屈折材料を用いた構造では、消光比を上げるには偏光子を2枚にする必要があり、光アイソレータとしての厚みが増してしまうが、本発明においては偏光フィルタの両面に回折構造を形成するだけで消光比を上げることが可能である。
(本実施例の光アイソレータの効果)
以上のように、本実施例では回折を利用した表面構造のみで偏光フィルタや光アイソレータを実現することが可能である。従って、従来の光アイソレータに対して光学的な特性を損うこと無く低価格で製造上において量産可能な偏光フィルタを備えた光アイソレータを提供することができる。
具体的には、従来の複屈折単結晶のプリズムや、特許文献1に記載されているような金属粒子を含むガラスなどを用いずに実現することができる。また、特許文献2に記載されているようなフォトニック結晶方式に比べ、高屈折率媒質及び低屈折率媒質から成る多層膜を形成する必要もなく、さらに安価に作製できる。
また、光学素子の回折を利用した表面構造のみで偏光フィルタ機能が得られるため、複数の材料を用いる必要もない。
さらには、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、使用する波長に応じて高透過率な基板材料に回折構造を形成してやってもよいし、基板の表面に別の材料を塗布してその表面に回折構造を形成してやってもよい。また、ハイパワーのレーザなどに対しては耐光性のある材料表面に構造を形成すればよい。
このような光学素子(偏光フィルタ)の製造方法は大面積で光学研磨を必要としないものであるため、光学的な特性を損うこと無く製造上において低価格で量産可能である。
また、不要な偏光方向の光は回折させる方式であるため、光アイソレータを斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現することができる。
以上のように、本実施例では回折を利用した表面構造のみで偏光フィルタや光アイソレータを実現することが可能である。従って、従来の光アイソレータに対して光学的な特性を損うこと無く低価格で製造上において量産可能な偏光フィルタを備えた光アイソレータを提供することができる。
具体的には、従来の複屈折単結晶のプリズムや、特許文献1に記載されているような金属粒子を含むガラスなどを用いずに実現することができる。また、特許文献2に記載されているようなフォトニック結晶方式に比べ、高屈折率媒質及び低屈折率媒質から成る多層膜を形成する必要もなく、さらに安価に作製できる。
また、光学素子の回折を利用した表面構造のみで偏光フィルタ機能が得られるため、複数の材料を用いる必要もない。
さらには、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、使用する波長に応じて高透過率な基板材料に回折構造を形成してやってもよいし、基板の表面に別の材料を塗布してその表面に回折構造を形成してやってもよい。また、ハイパワーのレーザなどに対しては耐光性のある材料表面に構造を形成すればよい。
このような光学素子(偏光フィルタ)の製造方法は大面積で光学研磨を必要としないものであるため、光学的な特性を損うこと無く製造上において低価格で量産可能である。
また、不要な偏光方向の光は回折させる方式であるため、光アイソレータを斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現することができる。
[実施例2]
(光アイソレータの構成)
次に本発明の第2の実施例を説明する。本発明では光学素子表面の回折構造のみで偏光フィルタ機能を実現できるため、図6のような光アイソレータ構造であってもよい。すなわち、ファラデー回転子3の入射側の表面に偏光フィルタ1の機能を有する回折面(回折構造)31が形成されたものや、出射側の表面に偏光フィルタ2の機能を有する回折面(回折構造)32が形成されたものであってもよい。回折構造はファラデー回転子3の表面に直接加工されたものでもよいし、ファラデー回転子3の表面に別材料を塗布した後にその表面に回折構造が形成されたものであってもよい。なお、本発明に係る光学素子は図6に示すような構造をも含むものであり、この場合には、一つの光学素子のみで光アイソレータとして機能させることができる。
(光アイソレータの構成)
次に本発明の第2の実施例を説明する。本発明では光学素子表面の回折構造のみで偏光フィルタ機能を実現できるため、図6のような光アイソレータ構造であってもよい。すなわち、ファラデー回転子3の入射側の表面に偏光フィルタ1の機能を有する回折面(回折構造)31が形成されたものや、出射側の表面に偏光フィルタ2の機能を有する回折面(回折構造)32が形成されたものであってもよい。回折構造はファラデー回転子3の表面に直接加工されたものでもよいし、ファラデー回転子3の表面に別材料を塗布した後にその表面に回折構造が形成されたものであってもよい。なお、本発明に係る光学素子は図6に示すような構造をも含むものであり、この場合には、一つの光学素子のみで光アイソレータとして機能させることができる。
(本実施例の光アイソレータの効果)
図6に示すような本実施例の光アイソレータでは、偏光子、ファラデー回転子、偏光子のような構成に比べ、偏光フィルタとファラデー回転子が一体化された構成であるため、ハンドリングがしやすく、また光学系としてコンパクト化できる。
また、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、図6に示すように、ファラデー回転子3に直接回折構造31,32を形成(加工)してやってもよいし、ファラデー回転子3の表面に別材料を塗布してその表面に回折構造を形成(加工)してやってもよい。
図6に示すような本実施例の光アイソレータでは、偏光子、ファラデー回転子、偏光子のような構成に比べ、偏光フィルタとファラデー回転子が一体化された構成であるため、ハンドリングがしやすく、また光学系としてコンパクト化できる。
また、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、図6に示すように、ファラデー回転子3に直接回折構造31,32を形成(加工)してやってもよいし、ファラデー回転子3の表面に別材料を塗布してその表面に回折構造を形成(加工)してやってもよい。
[実施例3]
(光アイソレータの他の構成例)
次に本発明の第3の実施例として、光アイソレータは、図7に示すように実施例1と実施例2を組み合わせたような構成であってもよい。
図7に示す構成の光アイソレータは、ファラデー回転子3の両面に別材料を塗布してその表面にサブ波長凹凸構造を重畳した回折構造を形成するとともに、各々の回折構造に対向するようにサブ波長凹凸構造が形成された偏光フィルタ1,2を配置したものである。また、対向する回折構造の隙間にはギャップを一定に保持する保持材を設ければよい。
なお、外側の偏光フィルタ1,2の回折構造を対向させずに配置してもよいが、対向させると光アイソレータとしては回折構造が外に露出しない構成となるため、緩衝による破損や、ゴミなどの影響を受けないという効果がある。さらに外側の表面を研磨することにより任意の薄型化や任意の光路長調整が可能である。
(光アイソレータの他の構成例)
次に本発明の第3の実施例として、光アイソレータは、図7に示すように実施例1と実施例2を組み合わせたような構成であってもよい。
図7に示す構成の光アイソレータは、ファラデー回転子3の両面に別材料を塗布してその表面にサブ波長凹凸構造を重畳した回折構造を形成するとともに、各々の回折構造に対向するようにサブ波長凹凸構造が形成された偏光フィルタ1,2を配置したものである。また、対向する回折構造の隙間にはギャップを一定に保持する保持材を設ければよい。
なお、外側の偏光フィルタ1,2の回折構造を対向させずに配置してもよいが、対向させると光アイソレータとしては回折構造が外に露出しない構成となるため、緩衝による破損や、ゴミなどの影響を受けないという効果がある。さらに外側の表面を研磨することにより任意の薄型化や任意の光路長調整が可能である。
(光アイソレータについての補足)
実施例1,2の光アイソレータではファラデー回転子3を用いているが、ファラデー回転子3の代わりに波長板のような偏光回転素子を用いてもよく、この場合には磁場印加などが不要なため構造をシンプルにできる。なお、波長板としては、水晶などの複屈折材料を用いてもよいし、本実施例の偏光フィルタで用いているサブ波長凹凸構造によっても実現することが可能である。
また、偏光フィルタとしてはファラデー回転子の手前側だけに設けたものであってもよい。消光比は落ちるが薄型化、低コスト化といった目的には有効である。
実施例1,2の光アイソレータではファラデー回転子3を用いているが、ファラデー回転子3の代わりに波長板のような偏光回転素子を用いてもよく、この場合には磁場印加などが不要なため構造をシンプルにできる。なお、波長板としては、水晶などの複屈折材料を用いてもよいし、本実施例の偏光フィルタで用いているサブ波長凹凸構造によっても実現することが可能である。
また、偏光フィルタとしてはファラデー回転子の手前側だけに設けたものであってもよい。消光比は落ちるが薄型化、低コスト化といった目的には有効である。
[実施例4]
(光学素子(偏光フィルタ)に関する実施例)
ここでは、本発明に係る光学素子の実施例として、実施例1の光アイソレータに搭載されてなる第1の偏光フィルタ1の構成について詳述する。なお、第2の偏光フィルタ2についても同じ構成の光学素子でよい。また、実施例2の光アイソレータの偏光フィルタ(回折構造31,32)に関しては、回折構造を形成する基材の屈折率が異なるが、パラメータの設定方法は同様である。
(光学素子(偏光フィルタ)に関する実施例)
ここでは、本発明に係る光学素子の実施例として、実施例1の光アイソレータに搭載されてなる第1の偏光フィルタ1の構成について詳述する。なお、第2の偏光フィルタ2についても同じ構成の光学素子でよい。また、実施例2の光アイソレータの偏光フィルタ(回折構造31,32)に関しては、回折構造を形成する基材の屈折率が異なるが、パラメータの設定方法は同様である。
(偏光フィルタのマクロ構造)
前述したように、図3(a)、(b)は偏光フィルタ1、2のマクロ構造を示す図であり、同図(a)は偏光フィルタ1の正面図、(b)は断面図である。この偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる格子形状の回折面(回折構造)を有する。
前述したように、図3(a)、(b)は偏光フィルタ1、2のマクロ構造を示す図であり、同図(a)は偏光フィルタ1の正面図、(b)は断面図である。この偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる格子形状の回折面(回折構造)を有する。
(符号についての説明)
図4は、図3に示す偏光フィルタ1に形成されている格子形状の要部を拡大して示す図であり、偏光フィルタ1に形成されている波長以上の周期のうちの3周期分を示している。ここでは、図4に記載されている符号について説明する。
図4に示す偏光フィルタ1では、波長以上の周期構造に、サブ波長凹凸構造[1]、[2]が重畳された構造となっている。サブ波長凹凸構造[1]はP偏光方向に溝方向をもつ波長以下の周期を有する。また、サブ波長凹凸構造[2]はS偏光方向に溝方向をもつ波長以下の周期を有する。
図4中の、Pは、偏光フィルタ1に形成されている波長以上の周期構造の周期を表す。
Lは、後述するサブ波長凹凸構造[1]が形成されている領域の幅である。
L/Pは、偏光フィルタ1のDutyと呼んでおり、後述する回折効率の計算などに用いる。
q1は、サブ波長凹凸構造[1]の周期を表す。
l1は、サブ波長凹凸構造[1]の凸部の幅である。
l1/q1は、フィリングファクタと呼んでおり、後述する有効屈折率の計算に用いる。
q2は、サブ波長凹凸構造[2]の周期を表す。
l2は、サブ波長凹凸構造[2]の凸部の幅である。
l2/q2は、フィリングファクタと呼んでおり、後述する有効屈折率の計算に用いる。
d1は、サブ波長凹凸構造[1]の溝深さを表す。
d2は、サブ波長凹凸構造[2]の溝深さを表す。
図4は、図3に示す偏光フィルタ1に形成されている格子形状の要部を拡大して示す図であり、偏光フィルタ1に形成されている波長以上の周期のうちの3周期分を示している。ここでは、図4に記載されている符号について説明する。
図4に示す偏光フィルタ1では、波長以上の周期構造に、サブ波長凹凸構造[1]、[2]が重畳された構造となっている。サブ波長凹凸構造[1]はP偏光方向に溝方向をもつ波長以下の周期を有する。また、サブ波長凹凸構造[2]はS偏光方向に溝方向をもつ波長以下の周期を有する。
図4中の、Pは、偏光フィルタ1に形成されている波長以上の周期構造の周期を表す。
Lは、後述するサブ波長凹凸構造[1]が形成されている領域の幅である。
L/Pは、偏光フィルタ1のDutyと呼んでおり、後述する回折効率の計算などに用いる。
q1は、サブ波長凹凸構造[1]の周期を表す。
l1は、サブ波長凹凸構造[1]の凸部の幅である。
l1/q1は、フィリングファクタと呼んでおり、後述する有効屈折率の計算に用いる。
q2は、サブ波長凹凸構造[2]の周期を表す。
l2は、サブ波長凹凸構造[2]の凸部の幅である。
l2/q2は、フィリングファクタと呼んでおり、後述する有効屈折率の計算に用いる。
d1は、サブ波長凹凸構造[1]の溝深さを表す。
d2は、サブ波長凹凸構造[2]の溝深さを表す。
(機能について)
偏光フィルタ1は、図4に示すように、波長以上の周期Pを有する周期構造に、さらに波長よりも短い周期q1、q2を有するサブ波長凹凸構造[1],[2]が形成されてなる。波長以上の周期構造に応じて入射光は回折し、サブ波長凹凸構造[1],[2]によってP偏光、S偏光のいずれの偏光成分で回折するかの偏光選択性を出している。これにより、図3(b)に示すように偏光フィルタ1はP偏光成分の光が入射したときは回折し、S偏光成分の光に対しては不感帯透過する。
偏光フィルタ1は、図4に示すように、波長以上の周期Pを有する周期構造に、さらに波長よりも短い周期q1、q2を有するサブ波長凹凸構造[1],[2]が形成されてなる。波長以上の周期構造に応じて入射光は回折し、サブ波長凹凸構造[1],[2]によってP偏光、S偏光のいずれの偏光成分で回折するかの偏光選択性を出している。これにより、図3(b)に示すように偏光フィルタ1はP偏光成分の光が入射したときは回折し、S偏光成分の光に対しては不感帯透過する。
(サブ波長凹凸構造が呈する構造複屈折特性について)
偏光フィルタ1の回折面に形成されているサブ波長凹凸構造は、一般に知られている構造性複屈折を呈する(発現する)。
構造性複屈折とは、屈折率の異なる2種類の媒質を光の波長よりも短い周期でストライプ状に配置したとき、ストライプに平行な偏光成分(TE波)とストライプに垂直な偏光成分(TM波)とで屈折率(有効屈折率と呼ぶ)が異なり、複屈折作用が生じることをいう。
偏光フィルタ1の回折面に形成されているサブ波長凹凸構造は、一般に知られている構造性複屈折を呈する(発現する)。
構造性複屈折とは、屈折率の異なる2種類の媒質を光の波長よりも短い周期でストライプ状に配置したとき、ストライプに平行な偏光成分(TE波)とストライプに垂直な偏光成分(TM波)とで屈折率(有効屈折率と呼ぶ)が異なり、複屈折作用が生じることをいう。
ここで、屈折率の異なる2種類の媒質として、空気と屈折率nの媒質を想定して、サブ波長凹凸構造の周期よりも2倍以上の波長をもつ光が垂直入射したと仮定する。このときの入射光の偏光方向がサブ波長凹凸構造の溝に平行(TE方向)であるか垂直(TM方向)であるかによってサブ波長凹凸構造の有効屈折率は各々次式で与えられる。ここでは、入射光の偏光方向がサブ波長凹凸構造の溝に平行である場合をn(TE)、垂直である場合をn(TM)と表す。下記の[数1]の左辺の符号はn(TE)を表し、[数2]の左辺の符号はn(TM)を表す。また、式中の符号tは前述のフィリングファクタを表す。
[数1]n(TE)=√((t・n^2)+(1-t))
[数2]n(TM)=√((t/n^2)+(1-t))
[数1]n(TE)=√((t・n^2)+(1-t))
[数2]n(TM)=√((t/n^2)+(1-t))
図8はフィリングファクタに対する偏光方向別の屈折率を示す図である。同図はそれぞれの屈折率の計算結果の例を示している。計算にはTa2O5の波長1550nmの屈折率n=2.086を用いた。
図4のサブ波長凹凸構造[1]、[2]のフィリングファクタtは、それぞれ次のとおりとなる。下記の[数3]はサブ波長凹凸構造[1]のフィリングファクタ:t1、[数4]はサブ波長凹凸構造[2]のフィリングファクタ:t2である。
[数3]t1=l1/q1
[数4]t2=l2/q2
図4のサブ波長凹凸構造[1]、[2]のフィリングファクタtは、それぞれ次のとおりとなる。下記の[数3]はサブ波長凹凸構造[1]のフィリングファクタ:t1、[数4]はサブ波長凹凸構造[2]のフィリングファクタ:t2である。
[数3]t1=l1/q1
[数4]t2=l2/q2
よって、各サブ波長凹凸構造[1]、[2]の有効屈折率は以下のとおりであり、[数7]はサブ波長凹凸構造[1]のTE方向の有効屈折率:n(TE、1)、[数8]はサブ波長凹凸構造[1]のTM方向の有効屈折率:n(TM、1)、[数9]はサブ波長凹凸構造[2]のTE方向の有効屈折率:n(TE、2)、[数10]はサブ波長凹凸構造[2]のTM方向の有効屈折率:n(TM、2)である。
[数7]n(TE、1)=√((t1・n^2)+(1-t1))
[数8]n(TM、1)=√((t1/n^2)+(1-t1))
[数9]n(TE、2)=√((t2・n^2)+(1-t2))
[数10]n(TM、2)=√((t2/n^2)+(1-t2))
[数7]n(TE、1)=√((t1・n^2)+(1-t1))
[数8]n(TM、1)=√((t1/n^2)+(1-t1))
[数9]n(TE、2)=√((t2・n^2)+(1-t2))
[数10]n(TM、2)=√((t2/n^2)+(1-t2))
また位相差は、以下のようになり、下記の[数15]はP偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差ψ(P偏光)、[数16]はS偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差ψ(S偏光)である。
[数15]
ψ(P偏光)=|(2π/1570nm)(n(TM、1)・d1−n(TE、2)・d2)|
[数16]
ψ(S偏光)=|(2π/1570nm)(n(TE、1)・d1−n(TM、2)・d2)|
[数15]
ψ(P偏光)=|(2π/1570nm)(n(TM、1)・d1−n(TE、2)・d2)|
[数16]
ψ(S偏光)=|(2π/1570nm)(n(TE、1)・d1−n(TM、2)・d2)|
ここで、d1、d2はサブ波長凹凸構造[1],[2]の溝深さである。これからフィリングファクタt1、t2、および溝深さd1、d2を適当に選択することで位相差ψ(P偏光)、ψ(S偏光)を任意に調整可能である。
本発明では、2種類のサブ波長凹凸構造[1]と[2]の有効屈折率が、特定の偏光方向(例えばS偏光)の入射光に対しては同一となり、かつ特定の偏光方向とは直交する偏光方向(例えばP偏光)の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造[1],[2]のフィリングファクタt1、t2および溝深さd1、d2が決定されている。
(回折構造の具体的数値と、回折効率特性)
偏光フィルタ1の回折機能を担う、波長以上の周期Pは、使用波長よりも大きい。また、回折格子のDutyであるL/Pは0.5を設定する。
そして、波長よりも短い周期のサブ波長凹凸構造の周期qは、使用波長よりも十分に小さい。具体的には、光源波長の1570nmよりも小さい、半波長の785nm以下であることが望ましい。
偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる格子形状の回折面を有する。S偏光成分の光を不感帯透過させるには、位相差が0あるいは2nπ(nは整数)である必要がある。以下に具体的数値の一例を示す。
偏光フィルタ1の回折機能を担う、波長以上の周期Pは、使用波長よりも大きい。また、回折格子のDutyであるL/Pは0.5を設定する。
そして、波長よりも短い周期のサブ波長凹凸構造の周期qは、使用波長よりも十分に小さい。具体的には、光源波長の1570nmよりも小さい、半波長の785nm以下であることが望ましい。
偏光フィルタ1は、P偏光成分の光を回折し、S偏光成分の光を回折せずにそのまま透過させる格子形状の回折面を有する。S偏光成分の光を不感帯透過させるには、位相差が0あるいは2nπ(nは整数)である必要がある。以下に具体的数値の一例を示す。
屈折率n=2.086の媒質に、
サブ波長凹凸構造[1]のフィリングファクタ:t1=0.35
サブ波長凹凸構造[2]のフィリングファクタ:t2=0.70
とした場合、
サブ波長凹凸構造[1]のTE方向の有効屈折率:n(TE、1)=1.474
サブ波長凹凸構造[1]のTM方向の有効屈折率:n(TM、1)=1.170
サブ波長凹凸構造[2]のTE方向の有効屈折率:n(TE、2)=1.829
サブ波長凹凸構造[2]のTM方向の有効屈折率:n(TM、2)=1.473
である。
サブ波長凹凸構造[1]のフィリングファクタ:t1=0.35
サブ波長凹凸構造[2]のフィリングファクタ:t2=0.70
とした場合、
サブ波長凹凸構造[1]のTE方向の有効屈折率:n(TE、1)=1.474
サブ波長凹凸構造[1]のTM方向の有効屈折率:n(TM、1)=1.170
サブ波長凹凸構造[2]のTE方向の有効屈折率:n(TE、2)=1.829
サブ波長凹凸構造[2]のTM方向の有効屈折率:n(TM、2)=1.473
である。
サブ波長凹凸構造[1]、[2]において溝深さを同一のdとした場合、
P偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差は、
ψ(P偏光)=(2πd/1550nm)(1.829−1.170)
であり、
S偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差は、
ψ(S偏光)≒0
である。
P偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差は、
ψ(P偏光)=(2πd/1550nm)(1.829−1.170)
であり、
S偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差は、
ψ(S偏光)≒0
である。
図9は、以上のような条件において、偏光フィルタ1に波長1550nmの光を入射させた場合の0次透過率および1次回折効率を示す図である。縦軸は回折効率、横軸はサブ波長凹凸構造の溝深さdを振っている。S偏光成分については、不感帯透過するため0次光が1.0で±1次回折光は発生しない。一方、P偏光成分については回折して、0次光成分をなるべく小さくしたいので、そのような溝深さを選定すればよい。
例えば、図9中のような溝深さd=1.255μmの目印線の位置が望ましく、サブ波長凹凸構造[1]、[2]において溝深さを同一のd=1.255μmとした場合、P偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差は、
ψ(P偏光)=(2π×1.255μm/1550nm)(1.829−1.170)
=(1.619π)(0.659)
≒π
であり、P偏光成分の光を効率よく回折することができる。
例えば、図9中のような溝深さd=1.255μmの目印線の位置が望ましく、サブ波長凹凸構造[1]、[2]において溝深さを同一のd=1.255μmとした場合、P偏光方向の光が入射したときのサブ波長凹凸構造[1]と[2]の位相差は、
ψ(P偏光)=(2π×1.255μm/1550nm)(1.829−1.170)
=(1.619π)(0.659)
≒π
であり、P偏光成分の光を効率よく回折することができる。
(本実施例の偏光フィルタを使用した光アイソレータの効果)
以上のように、本実施例では回折を利用した表面構造のみで偏光フィルタを実現することが可能であるので、この偏光フィルタを使用することにより、従来の光アイソレータに対して光学的な特性を損うこと無く低価格で製造上において量産可能な偏光フィルタを備えた光アイソレータを提供することができる。
具体的には、従来の複屈折単結晶のプリズム、特許文献1に記載されているような金属粒子を含むガラスなどを用いずに実現することができる。また、特許文献2に記載されているようなフォトニック結晶方式に比べ、高屈折率媒質及び低屈折率媒質から成る多層膜を形成する必要もなく、さらに安価に作製できる。
さらには、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、使用する波長に応じて高透過率な基板材料に回折構造を形成してやってもよいし、基板の表面に別の材料を塗布してその表面に回折構造を形成してやってもよい。よって実施例2の光アイソレータのように、ファラデー回転子の表面に回折構造を直接加工してやってもよい。
また、本実施例の偏光フィルタの製造方法は大面積で光学研磨を必要としないものであるため、光学的な特性を損うこと無く製造上において低価格で量産可能である。
以上のように、本実施例では回折を利用した表面構造のみで偏光フィルタを実現することが可能であるので、この偏光フィルタを使用することにより、従来の光アイソレータに対して光学的な特性を損うこと無く低価格で製造上において量産可能な偏光フィルタを備えた光アイソレータを提供することができる。
具体的には、従来の複屈折単結晶のプリズム、特許文献1に記載されているような金属粒子を含むガラスなどを用いずに実現することができる。また、特許文献2に記載されているようなフォトニック結晶方式に比べ、高屈折率媒質及び低屈折率媒質から成る多層膜を形成する必要もなく、さらに安価に作製できる。
さらには、サブ波長凹凸構造が重畳された回折構造のみで偏光回折機能が発現するため、材料は任意に選択可能である。そのため、使用する波長に応じて高透過率な基板材料に回折構造を形成してやってもよいし、基板の表面に別の材料を塗布してその表面に回折構造を形成してやってもよい。よって実施例2の光アイソレータのように、ファラデー回転子の表面に回折構造を直接加工してやってもよい。
また、本実施例の偏光フィルタの製造方法は大面積で光学研磨を必要としないものであるため、光学的な特性を損うこと無く製造上において低価格で量産可能である。
本実施例の偏光フィルタでは、不要な偏光方向の光は回折させる方式であるため、光アイソレータを斜めに配置する必要がなく、略垂直入射するようなレイアウトで実現することができる。また、図10〜12は、上記の数値事例を用いて算出した偏光フィルタ1の回折効率の入射角特性(図10)、消光比の入射角特性(図11)、透過率ロスの入射角特性(図12)を示している。
本実施例の偏光フィルタは入射角±10°の範囲でフラットな特性であり、この範囲で使用可能な偏光フィルタといえる。また、例えば45度入射のような配置も可能であり、その場合は45度入射の構成でサブ波長構造の設計を行えばよい。すなわち、本実施例の偏光フィルタは入射角θとして、θ±10°の範囲で適用できる偏光フィルタである。
本実施例の偏光フィルタは入射角±10°の範囲でフラットな特性であり、この範囲で使用可能な偏光フィルタといえる。また、例えば45度入射のような配置も可能であり、その場合は45度入射の構成でサブ波長構造の設計を行えばよい。すなわち、本実施例の偏光フィルタは入射角θとして、θ±10°の範囲で適用できる偏光フィルタである。
また、図13〜15は、上記の数値事例を用いて算出した偏光フィルタ1の回折効率の波長特性(図13)、消光比の波長特性(図14)、透過率ロスの波長特性(図15)を示している。
本実施例の偏光フィルタは波長1480〜1640nmの範囲でフラットな特性であり、この範囲で使用可能な偏光フィルタといえる。これは従来例に比べ、十分に広い波長範囲を有する。
また、特許文献2には記載されていないが、例えば(株)フォトニックラティスのホームページ(製品紹介ページ(http://www.photonic-lattice.com/jp/PhC04.html))などに記載されているフォトニック結晶素子から成る偏光子は、図16に示すように1020〜1080nmの波長範囲を超えると特性劣化が生じている。
本実施例の偏光フィルタは波長1480〜1640nmの範囲でフラットな特性であり、この範囲で使用可能な偏光フィルタといえる。これは従来例に比べ、十分に広い波長範囲を有する。
また、特許文献2には記載されていないが、例えば(株)フォトニックラティスのホームページ(製品紹介ページ(http://www.photonic-lattice.com/jp/PhC04.html))などに記載されているフォトニック結晶素子から成る偏光子は、図16に示すように1020〜1080nmの波長範囲を超えると特性劣化が生じている。
[実施例5]
(光学素子の作製方法に関する実施例)
ここでは、本発明に係る光学素子の作製方法の実施例として、実施例1及び実施例4で説明した偏光フィルタ1の作製手順を説明する。なお、偏光フィルタ2の作製手順も同様である。
まず、素子の作製方法の説明に先立って、型の作製方法を説明する。
(光学素子の作製方法に関する実施例)
ここでは、本発明に係る光学素子の作製方法の実施例として、実施例1及び実施例4で説明した偏光フィルタ1の作製手順を説明する。なお、偏光フィルタ2の作製手順も同様である。
まず、素子の作製方法の説明に先立って、型の作製方法を説明する。
(石英を基材とした型の作製方法)
図17(a)〜(d)は、石英を基材とした型の作製方法を説明するための工程図である。
まず同図(a)において、石英材料を基板100とし、その表面に電子線102の描画用のレジスト101を所定の厚さに塗布し、プリベークする。予め設計されたプログラムにより、偏光フィルタ1の諸元に対応したピッチ・線幅に描画する。
次に同図(b)において、レジスト101に対し、現像およびリンスを行うことにより、レジスト上にサブ波長凹凸構造103が形成される。溝の底には石英材料基板100が露出している。
図17(a)〜(d)は、石英を基材とした型の作製方法を説明するための工程図である。
まず同図(a)において、石英材料を基板100とし、その表面に電子線102の描画用のレジスト101を所定の厚さに塗布し、プリベークする。予め設計されたプログラムにより、偏光フィルタ1の諸元に対応したピッチ・線幅に描画する。
次に同図(b)において、レジスト101に対し、現像およびリンスを行うことにより、レジスト上にサブ波長凹凸構造103が形成される。溝の底には石英材料基板100が露出している。
次に同図(c)において、サブ波長凹凸構造103のレジストパターンをマスクとして石英材料基板100のドライエッチングを行う。エッチングには、RIE(Reactive Ion Etching:反応性イオンエッチング)、NLD(Magnetic Neutral Loop Discharge:磁気中性線放電)、TCP(Transformer Coupled Plasma:電磁結合型プラズマ)等のエッチング装置にて、CF4(四フッ化メタン)、CF3(トリフルオロメチル)ガスを用いる。基板にバイアスをかけることで、面に垂直にエッチングを進行させる。
次に同図(d)において、レジストを剥離する。剥離の方法はドライエッチング装置内で、酸素ガスを導入し、酸素ガスプラズマ中でレジスト除去を行う方法と、基板を装置から取り出してCAROS(硫酸と過酸化水素水の混合液)を用いた洗浄で除去する方法とがある。完成したものを石英型として用いる。
(シリコンを基材とした型の作製方法)
型の作製方法の別の例として、図18(a)〜(d)は、シリコンを基材とした型の作製方法を説明するための工程図である。
同図(a)において、シリコンを基板110とし、その表面に電子線112の描画用のレジスト111を所定の厚さに塗布し、プリベークする。予め設計されたプログラムにより、偏光フィルタ1の諸元に対応したピッチ・線幅に描画する。
次に同図(b)において、レジスト111に対し、現像およびリンスを行うことにより、レジスト上にサブ波長凹凸構造113が形成される。溝の底にはシリコン基板110が露出している。
型の作製方法の別の例として、図18(a)〜(d)は、シリコンを基材とした型の作製方法を説明するための工程図である。
同図(a)において、シリコンを基板110とし、その表面に電子線112の描画用のレジスト111を所定の厚さに塗布し、プリベークする。予め設計されたプログラムにより、偏光フィルタ1の諸元に対応したピッチ・線幅に描画する。
次に同図(b)において、レジスト111に対し、現像およびリンスを行うことにより、レジスト上にサブ波長凹凸構造113が形成される。溝の底にはシリコン基板110が露出している。
次に同図(c)において、サブ波長凹凸構造113のレジストパターンをマスクとしてシリコン基板110のアルカリウェットエッチング(KOH溶液使用)を行う。シリコン基板110は{111}面の壁として、ピッチを維持したまま深さ方向にエッチングされる。なお、ボッシュプロセス用いたドライエッチングでも同様の構造を制作できる。
次に同図(d)において、レジストを剥離する。完成したものをシリコン型として用いる。
次に同図(d)において、レジストを剥離する。完成したものをシリコン型として用いる。
以上のようにして作られた石英型、あるいはシリコン型を便宜上、金型と呼ぶことがある。
(偏光フィルタの作製手順1:ガラス基板にTa2O5を成膜し、Ta2O5に偏光フィルタ1を形成する手順)
図19(a)〜(g)は、ガラス基板にTa2O5を成膜し、Ta2O5に偏光フィルタ1を形成する手順を示す工程図である。
まず同図(a)において、ガラス基板表面にTa2O5膜(5酸化タンタル膜)を形成する。形成方法としては、スパッタリング法を次の1〜4のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:5〜8×10−4Torr
3.成膜速度 :0.7〜1.0Å/sec
4.RFパワー:300〜500W
図19(a)〜(g)は、ガラス基板にTa2O5を成膜し、Ta2O5に偏光フィルタ1を形成する手順を示す工程図である。
まず同図(a)において、ガラス基板表面にTa2O5膜(5酸化タンタル膜)を形成する。形成方法としては、スパッタリング法を次の1〜4のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:5〜8×10−4Torr
3.成膜速度 :0.7〜1.0Å/sec
4.RFパワー:300〜500W
次に同図(b)において、Ta2O5膜上にUV硬化樹脂を塗布し、上からモールド型で押圧する。モールド型としてはシリコン型、石英型ともに使用しうるが、微細構造を形成するナノインプリントにおいては、石英金型の方が光透過性なので適している。UV硬化樹脂はグランディックRC8790(大日本インキ製)を用いる。
次に同図(c)において、モールド背面からUV(紫外線)を照射し、樹脂を固める。モールド型としてシリコン金型を用いる場合は、UVをガラス基板側から与える。
次に同図(d)において、モールド型を離型する。UV硬化樹脂に凸状の微細構造が形成されている。
次に同図(c)において、モールド背面からUV(紫外線)を照射し、樹脂を固める。モールド型としてシリコン金型を用いる場合は、UVをガラス基板側から与える。
次に同図(d)において、モールド型を離型する。UV硬化樹脂に凸状の微細構造が形成されている。
次に同図(e)において、Ta2O5が露出するまで樹脂をドライエッチングする。ドライエッチングは以下の1〜6の条件で行う。
1.ガス種 :酸素ガス(O2)
2.ガス流入量 :20sccm
3.圧力 :0.4Pa
4.樹脂エッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :60W
1.ガス種 :酸素ガス(O2)
2.ガス流入量 :20sccm
3.圧力 :0.4Pa
4.樹脂エッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :60W
次に同図(f)において、Ta2O5溝が所望の深さになるまでドライエッチングする。ドライエッチングは以下の1〜6の条件で行う。
1.ガス種 :CHF3(トリフルオロメタン)、Ar(アルゴン)
2.ガス流入量
Ar :5sccm
CHF3 :20sccm
3.圧力 :0.3Pa
4.Ta2O5エッチング速度:8nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
1.ガス種 :CHF3(トリフルオロメタン)、Ar(アルゴン)
2.ガス流入量
Ar :5sccm
CHF3 :20sccm
3.圧力 :0.3Pa
4.Ta2O5エッチング速度:8nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
最後に、最上部に残った樹脂マスクを酸素ガス(プラズマ)中でドライエッチングによる剥離処理により除去する。
同図(g)の状態になって偏光フィルタ1が完成する。ガラス基板上の5酸化タンタル(Ta2O5)が偏光フィルタ1を形成している。
同図(g)の状態になって偏光フィルタ1が完成する。ガラス基板上の5酸化タンタル(Ta2O5)が偏光フィルタ1を形成している。
(偏光フィルタの作製手順2:ガラス基板に直接、偏光フィルタ1を形成する方法)
図20(a)〜(i)は、シリコン膜とモールド型を利用してガラス基板に偏光フィルタ1を形成する手順を示す工程図である。
まず同図(a)において、ガラス基板表面にシリコン膜(Si膜)を形成する。形成方法としては、スパッタリング法を次の1〜4のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:7〜8×10−4Torr
3.成膜速度 :0.5〜1.0Å/sec
4.RFパワー:100〜200W
図20(a)〜(i)は、シリコン膜とモールド型を利用してガラス基板に偏光フィルタ1を形成する手順を示す工程図である。
まず同図(a)において、ガラス基板表面にシリコン膜(Si膜)を形成する。形成方法としては、スパッタリング法を次の1〜4のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:7〜8×10−4Torr
3.成膜速度 :0.5〜1.0Å/sec
4.RFパワー:100〜200W
次に同図(b)において、Si膜上にUV硬化樹脂を塗布し、上からモールドで押圧する。モールド型としてはシリコン型、石英型ともに使用しうるが、微細構造を形成するナノインプリントにおいては、石英金型の方が光透過性なので適している。UV硬化樹脂はグランディックRC8790(大日本インキ製)を用いる。
次に同図(c)において、モールド背面からUV(紫外線)を照射し、樹脂を固める。モールド型としてシリコン金型を用いる場合は、UVをガラス基板側から与える。
次に同図(d)において、モールド型を離型する。UV硬化樹脂に凸状の微細構造が形成されている。
次に同図(c)において、モールド背面からUV(紫外線)を照射し、樹脂を固める。モールド型としてシリコン金型を用いる場合は、UVをガラス基板側から与える。
次に同図(d)において、モールド型を離型する。UV硬化樹脂に凸状の微細構造が形成されている。
次に同図(e)において、ドライエッチングで、Siが露出するまで樹脂を除去する。ドライエッチングは以下の1〜6の条件で行う。
1.ガス種 :酸素ガス(O2)
2.ガス流入量 :20sccm
3.圧力 :0.4Pa
4.樹脂エッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :60W
1.ガス種 :酸素ガス(O2)
2.ガス流入量 :20sccm
3.圧力 :0.4Pa
4.樹脂エッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :60W
次に同図(f)において、ガラスが露出するまでSiと樹脂をドライエッチングする。ドライエッチングは以下の1〜6の条件で行う。
1.ガス種 :SF6(六フッ化硫黄)、CHF3
2.ガス流入量
SF6 :20sccm
CHF3:5sccm
3.圧力 :0.3Pa
4.樹脂エッチング速度:5nm/sec
Siエッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :50W
1.ガス種 :SF6(六フッ化硫黄)、CHF3
2.ガス流入量
SF6 :20sccm
CHF3:5sccm
3.圧力 :0.3Pa
4.樹脂エッチング速度:5nm/sec
Siエッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :50W
次に同図(g)において、ガラス溝が所望の深さになるまでドライエッチングする。ドライエッチングは以下の1〜6の条件で行う。
1.ガス種 :CHF3、Ar
2.ガス流入量
Ar :5sccm
CHF3 :20sccm
3.圧力 :0.3Pa
4.Siエッチング速度:4nm/sec
ガラスエッチング速度:12nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
1.ガス種 :CHF3、Ar
2.ガス流入量
Ar :5sccm
CHF3 :20sccm
3.圧力 :0.3Pa
4.Siエッチング速度:4nm/sec
ガラスエッチング速度:12nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
次に同図(h)において、最上部に残ったSi膜を剥離処理により除去する。シリコンマスクはアルカリ(KOH)液でウェット剥離する。
同図(i)の状態になって偏光フィルタ1が完成する。ガラス基板自身の片面が偏光フィルタ1になっている。
同図(i)の状態になって偏光フィルタ1が完成する。ガラス基板自身の片面が偏光フィルタ1になっている。
(偏光フィルタの作製手順3:金型を使用しない偏光フィルタ1の製法)
図21(a)〜(g)は、金型を使用しない偏光フィルタ1の製法を説明するための工程図である。
まず同図(a)において、ガラス基板表面にシリコン膜(Si膜)を形成する。形成方法としては、スパッタリング法を次の1〜4のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:7〜8×10−4Torr
3.成膜速度 :0.5〜1.0Å/sec
4.RFパワー:100〜200W
図21(a)〜(g)は、金型を使用しない偏光フィルタ1の製法を説明するための工程図である。
まず同図(a)において、ガラス基板表面にシリコン膜(Si膜)を形成する。形成方法としては、スパッタリング法を次の1〜4のような条件で用いる。
1.基板温度 :70〜100℃
2.製膜時圧力:7〜8×10−4Torr
3.成膜速度 :0.5〜1.0Å/sec
4.RFパワー:100〜200W
次に同図(b)において、Si膜上に電子線用レジストを塗布する。
次に同図(c)において、「高精度微細幅露光装置」によって、I線ステッパを使用する。露光後、現像工程を経て部分的にレジストを除去し、Siを露出させる。残っているレジストは、以後のエッチング用マスクパターンとなる。
次に同図(c)において、「高精度微細幅露光装置」によって、I線ステッパを使用する。露光後、現像工程を経て部分的にレジストを除去し、Siを露出させる。残っているレジストは、以後のエッチング用マスクパターンとなる。
次に同図(d)において、ガラスが露出するまでSiをドライエッチングする。ドライエッチングは以下の1〜6の条件で行う。
1.ガス種 :SF6、CHF3
2.ガス流入量
SF6 :20sccm
CHF3 :5sccm
3.圧力 :0.4Pa
4.Siエッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :50W
1.ガス種 :SF6、CHF3
2.ガス流入量
SF6 :20sccm
CHF3 :5sccm
3.圧力 :0.4Pa
4.Siエッチング速度:30nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :50W
次に同図(e)において、ガラス溝が所望の深さになるまでドライエッチングする。ドライエッチングは以下の1〜6の条件で行う。
1.ガス種 :CHF3、Ar
2.ガス流入量
Ar : 5sccm
CHF3 :20sccm
3.圧力 :0.3Pa
4.ガラスエッチング速度:12nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
1.ガス種 :CHF3、Ar
2.ガス流入量
Ar : 5sccm
CHF3 :20sccm
3.圧力 :0.3Pa
4.ガラスエッチング速度:12nm/sec
5.上部バイアス電力 :1KW
6.下部バイアス電力 :400W
次に同図(f)において、最上部に残ったSi膜を剥離処理により除去する。シリコンマスクはアルカリ(KOH)液でウェット剥離する。
同図(g)の状態になって偏光フィルタ1が完成する。ガラス基板自身の片面が偏光フィルタ1になっている。
同図(g)の状態になって偏光フィルタ1が完成する。ガラス基板自身の片面が偏光フィルタ1になっている。
以上、片面に格子形状(回折構造)を有する偏光フィルタの作成方法(作成手順1〜3)について説明したが、図5に示すような両面に格子形状(回折構造)を有する偏光フィルタを作成する場合にも、同様の作成方法により作成することができる。すなわち上記で説明した偏光フィルタの作成手順1〜3のいずれかをガラス基板の両面に順次実施することにより、両面に回折構造を有する偏光フィルタを作成することができる。
また、実施例2の光アイソレータのように、ファラデー回転子の両面に格子形状(回折構造)を直接加工する場合にも、同様の作成方法により作成することができる。
また、実施例2の光アイソレータのように、ファラデー回転子の両面に格子形状(回折構造)を直接加工する場合にも、同様の作成方法により作成することができる。
本発明に係る光学素子は、光を一方向にのみ透過させて逆方向には遮断する機能を有する光アイソレータに用いるのに好適であり、その光アイソレータを有し、主として光通信機器や光情報処理機器等に用いられる光学装置に用いるのに好適であるが、その他、光ディスク装置の光ピックアップや、プロジェクタの光学系等の種々の光学機器に利用することができる。
1:第1の偏光フィルタ(光学素子)
2:第2の偏光フィルタ(光学素子)
3:45度ファラデー回転子
9:レーザダイオード
10:レンズ
11:光アイソレータ
12:光ファイバ端
21:レンズ
31,32:偏光フィルタとしての機能を有する回折面(回折構造)
100:石英材料基板
101:電子線描画用レジスト
102:電子線
103:サブ波長凹凸構造
110:シリコン基板
111:電子線描画用レジスト
112:電子線
113:サブ波長凹凸構造
2:第2の偏光フィルタ(光学素子)
3:45度ファラデー回転子
9:レーザダイオード
10:レンズ
11:光アイソレータ
12:光ファイバ端
21:レンズ
31,32:偏光フィルタとしての機能を有する回折面(回折構造)
100:石英材料基板
101:電子線描画用レジスト
102:電子線
103:サブ波長凹凸構造
110:シリコン基板
111:電子線描画用レジスト
112:電子線
113:サブ波長凹凸構造
Claims (5)
- 特定の偏光方向の入射光は主として0次透過し、前記特定の偏光方向とは直交する偏光方向の入射光に対しては回折させる光学素子であって、
前記入射光の波長以上の周期をもつ回折素子からなり、
その1周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するように形成されてなり、
前記2種類のサブ波長凹凸構造の有効屈折率が、前記特定の偏光方向の入射光に対しては同一となり、
かつ前記特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されていることを特徴とする光学素子。 - 請求項1に記載の光学素子からなることを特徴とする偏光フィルタ。
- 第1の偏光フィルタと、偏光方向回転子と、第2の偏光フィルタとをこの順で平行に並べて固定配備して成る光アイソレータにおいて、
前記第1、第2の偏光フィルタは、特定の偏光方向の入射光は主として0次透過し、前記特定の偏光方向とは直交する偏光方向の入射光に対しては回折させるものであって、
前記第1、第2の偏光フィルタは、入射光の波長以上の周期をもつ回折素子であり、
その1周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するように形成されてなり、
前記2種類のサブ波長凹凸構造の有効屈折率が、前記特定の偏光方向の入射光に対しては同一となり、
かつ前記特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されていることを特徴とする光アイソレータ。 - 偏光方向回転子の少なくとも一方の面に偏光フィルタが形成されてなる光アイソレータにおいて、
前記偏光フィルタは、特定の偏光方向の入射光は主として0次透過し、前記特定の偏光方向とは直交する偏光方向の入射光に対しては回折させるものであって、
前記偏光フィルタは、入射光の波長以上の周期をもつ回折素子であり、
その1周期は、入射光の波長以下の周期をもつ2種類のサブ波長凹凸構造が隣り合わせに直交するように形成されてなり、
前記2種類のサブ波長凹凸構造の有効屈折率が、前記特定の偏光方向の入射光に対しては同一となり、
かつ前記特定の偏光方向とは直交する偏光方向の入射光に対しては位相差がπとなるように2種類のサブ波長凹凸構造のフィリングファクタおよび溝深さが決定されていることを特徴とする光アイソレータ。 - 請求項3または4に記載の光アイソレータを有することを特徴とする光学装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009110415A JP2010261999A (ja) | 2009-04-30 | 2009-04-30 | 光学素子、偏光フィルタ、光アイソレータ、光学装置 |
KR1020117024369A KR101259537B1 (ko) | 2009-04-30 | 2010-04-06 | 광학 소자, 편광 필터, 광 아이솔레이터 및 광학 장치 |
PCT/JP2010/056492 WO2010125901A1 (en) | 2009-04-30 | 2010-04-06 | Optical element, polarization filter, optical isolator, and optical apparatus |
CN201080018508.4A CN102414585B (zh) | 2009-04-30 | 2010-04-06 | 光学元件、偏振滤光器、光学隔离器和光学设备 |
EP10769600.7A EP2425284A4 (en) | 2009-04-30 | 2010-04-06 | OPTICAL ELEMENT, POLARIZATION FILTER, OPTICAL INSULATOR AND OPTICAL DEVICE |
US13/255,171 US8830585B2 (en) | 2009-04-30 | 2010-04-06 | Optical element, polarization filter, optical isolator, and optical apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009110415A JP2010261999A (ja) | 2009-04-30 | 2009-04-30 | 光学素子、偏光フィルタ、光アイソレータ、光学装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010261999A true JP2010261999A (ja) | 2010-11-18 |
Family
ID=43032054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009110415A Pending JP2010261999A (ja) | 2009-04-30 | 2009-04-30 | 光学素子、偏光フィルタ、光アイソレータ、光学装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8830585B2 (ja) |
EP (1) | EP2425284A4 (ja) |
JP (1) | JP2010261999A (ja) |
KR (1) | KR101259537B1 (ja) |
CN (1) | CN102414585B (ja) |
WO (1) | WO2010125901A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012159802A (ja) * | 2011-02-02 | 2012-08-23 | Ricoh Co Ltd | 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器 |
US9557655B2 (en) | 2014-07-29 | 2017-01-31 | Samsung Electronics Co., Ltd. | Photomask including focus metrology mark, substrate target including focus monitor pattern, metrology method for lithography process, and method of manufacturing integrated circuit device |
US9927720B2 (en) | 2014-07-29 | 2018-03-27 | Samsung Electronics Co., Ltd. | Substrate target for in-situ lithography metrology, metrology method for in-situ lithography, and method of manufacturing integrated circuit device by using in-situ metrology |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013031054A (ja) | 2011-07-29 | 2013-02-07 | Ricoh Co Ltd | 撮像装置及びこれを備えた物体検出装置、並びに、光学フィルタ及びその製造方法 |
JP2013029451A (ja) | 2011-07-29 | 2013-02-07 | Ricoh Co Ltd | 付着物検出装置及び付着物検出方法 |
US10349787B2 (en) * | 2017-08-28 | 2019-07-16 | Gary A. Burgo, SR. | Faucet system comprising a liquid soap delivery line |
US20160116754A1 (en) * | 2014-10-28 | 2016-04-28 | Moxtek, Inc. | Dielectric Polarizing Beam Splitter |
TWI636617B (zh) | 2016-12-23 | 2018-09-21 | 財團法人工業技術研究院 | 電磁波傳輸板及差動電磁波傳輸板 |
FI128551B (en) | 2017-05-08 | 2020-07-31 | Dispelix Oy | A diffractive lattice with varying diffraction efficiency and a method for displaying an image |
US20210271095A1 (en) * | 2018-07-12 | 2021-09-02 | Lg Innotek Co., Ltd. | Optical path control member and display device comprising same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0296103A (ja) * | 1988-06-29 | 1990-04-06 | Nec Corp | 偏光素子および光アイソレータ |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2687451B2 (ja) * | 1988-06-28 | 1997-12-08 | 日本電気株式会社 | 偏光素子 |
JP3037357B2 (ja) * | 1990-03-12 | 2000-04-24 | 京セラ株式会社 | 偏光子一体型ファラデー回転子及びこれを用いた光アイソレータ |
JP4157634B2 (ja) | 1998-12-14 | 2008-10-01 | 株式会社精工技研 | 光アイソレータ |
JP3371846B2 (ja) * | 1999-04-06 | 2003-01-27 | 日本電気株式会社 | ホログラム素子 |
WO2003019247A1 (fr) | 2001-08-24 | 2003-03-06 | Asahi Glass Company, Limited | Polariseur multicouches a diffraction et element a cristaux liquides |
JP4792679B2 (ja) | 2001-08-24 | 2011-10-12 | 旭硝子株式会社 | アイソレータおよび電圧可変アッテネータ |
US6930053B2 (en) * | 2002-03-25 | 2005-08-16 | Sanyo Electric Co., Ltd. | Method of forming grating microstructures by anodic oxidation |
JP4295192B2 (ja) | 2004-10-15 | 2009-07-15 | 株式会社精工技研 | 光アイソレータ付き光端末 |
JP2009085974A (ja) * | 2005-12-28 | 2009-04-23 | Nalux Co Ltd | 偏光素子およびその製造方法 |
JP2007265581A (ja) * | 2006-03-30 | 2007-10-11 | Fujinon Sano Kk | 回折素子 |
JP4803806B2 (ja) | 2006-06-28 | 2011-10-26 | 株式会社リコー | ディスク駆動方法 |
JP4842763B2 (ja) * | 2006-10-23 | 2011-12-21 | 株式会社リコー | 光学素子および光学装置 |
JP2009031392A (ja) * | 2007-07-25 | 2009-02-12 | Seiko Epson Corp | ワイヤーグリッド型偏光素子、その製造方法、液晶装置および投射型表示装置 |
JP2009223937A (ja) | 2008-03-14 | 2009-10-01 | Ricoh Co Ltd | 光ピックアップおよびこれを用いる光情報処理装置 |
JP2009223936A (ja) | 2008-03-14 | 2009-10-01 | Ricoh Co Ltd | 光ピックアップおよびこれを用いる光情報処理装置 |
JP2009223938A (ja) * | 2008-03-14 | 2009-10-01 | Ricoh Co Ltd | 光ピックアップおよびこれを用いる光情報処理装置 |
JP5078764B2 (ja) * | 2008-06-10 | 2012-11-21 | キヤノン株式会社 | 計算機ホログラム、露光装置及びデバイスの製造方法 |
JP5218079B2 (ja) | 2009-01-15 | 2013-06-26 | 株式会社リコー | 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、光学機器 |
-
2009
- 2009-04-30 JP JP2009110415A patent/JP2010261999A/ja active Pending
-
2010
- 2010-04-06 EP EP10769600.7A patent/EP2425284A4/en not_active Withdrawn
- 2010-04-06 KR KR1020117024369A patent/KR101259537B1/ko not_active IP Right Cessation
- 2010-04-06 CN CN201080018508.4A patent/CN102414585B/zh not_active Expired - Fee Related
- 2010-04-06 US US13/255,171 patent/US8830585B2/en not_active Expired - Fee Related
- 2010-04-06 WO PCT/JP2010/056492 patent/WO2010125901A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0296103A (ja) * | 1988-06-29 | 1990-04-06 | Nec Corp | 偏光素子および光アイソレータ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012159802A (ja) * | 2011-02-02 | 2012-08-23 | Ricoh Co Ltd | 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器 |
US9557655B2 (en) | 2014-07-29 | 2017-01-31 | Samsung Electronics Co., Ltd. | Photomask including focus metrology mark, substrate target including focus monitor pattern, metrology method for lithography process, and method of manufacturing integrated circuit device |
US9927720B2 (en) | 2014-07-29 | 2018-03-27 | Samsung Electronics Co., Ltd. | Substrate target for in-situ lithography metrology, metrology method for in-situ lithography, and method of manufacturing integrated circuit device by using in-situ metrology |
Also Published As
Publication number | Publication date |
---|---|
CN102414585A (zh) | 2012-04-11 |
KR101259537B1 (ko) | 2013-05-06 |
WO2010125901A1 (en) | 2010-11-04 |
CN102414585B (zh) | 2014-06-25 |
EP2425284A4 (en) | 2013-09-25 |
US20120002280A1 (en) | 2012-01-05 |
KR20120004452A (ko) | 2012-01-12 |
US8830585B2 (en) | 2014-09-09 |
EP2425284A1 (en) | 2012-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010261999A (ja) | 光学素子、偏光フィルタ、光アイソレータ、光学装置 | |
US7619816B2 (en) | Structures for polarization and beam control | |
US7079202B2 (en) | Multi-layer diffraction type polarizer and liquid crystal element | |
US20060127830A1 (en) | Structures for polarization and beam control | |
JP2006514751A (ja) | ビームの偏光を提供するための方法およびシステム | |
JP2010164749A (ja) | 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、光学機器 | |
US20130043956A1 (en) | Systems and methods for a nanofabricated optical circular polarizer | |
Chou et al. | Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates | |
WO2007055245A1 (ja) | 偏光分離素子及びその製造方法、並びに、当該偏光分離素子を備えた光ピックアップ、光デバイス、光アイソレータ及び偏光ホログラム | |
JP4792679B2 (ja) | アイソレータおよび電圧可変アッテネータ | |
JP2012159802A (ja) | 光学素子、光ピックアップ、光情報処理装置、光減衰器、偏光変換素子、プロジェクタ光学系、アイソレータ及び光学機器 | |
JP6047051B2 (ja) | 光学素子および光学装置 | |
JP5152366B2 (ja) | アイソレータおよび電圧可変アッテネータ | |
Wang et al. | Diffractive polarizing beam splitter of two-layer grating for operation in reflection | |
Zhou et al. | A novel nano-optics polarization beam splitter/combiner for telecom applications | |
JP3879246B2 (ja) | 偏光光学素子 | |
WO2009107355A1 (ja) | 紫外線用自己クローニングフォトニック結晶 | |
JP2010152297A (ja) | 偏光子、光アイソレータおよびそれを用いた光デバイス | |
JP2006114201A (ja) | 偏光回折素子及び光ヘッド装置 | |
JP2010032807A (ja) | 偏光分離素子、光アイソレータおよびそれを用いた光デバイス | |
JPH06194523A (ja) | ホログラム素子及びその製造方法 | |
KR20130128127A (ko) | 선격자 편광자 및 이를 포함하는 광 배향막 형성용 장치 | |
JP4449833B2 (ja) | ワイヤーグリッド偏光子の製造方法、液晶装置、プロジェクタ | |
Wang et al. | High performance Al bi-layer wire-grid polarizer for deep-ultraviolet to infrared: modeling and design | |
Ying et al. | Polarizing beam splitter with focusing ability based on sub-wavelength gratings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130527 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131126 |