JP6900836B2 - 酸化鉱石の製錬方法、還元炉 - Google Patents

酸化鉱石の製錬方法、還元炉 Download PDF

Info

Publication number
JP6900836B2
JP6900836B2 JP2017158245A JP2017158245A JP6900836B2 JP 6900836 B2 JP6900836 B2 JP 6900836B2 JP 2017158245 A JP2017158245 A JP 2017158245A JP 2017158245 A JP2017158245 A JP 2017158245A JP 6900836 B2 JP6900836 B2 JP 6900836B2
Authority
JP
Japan
Prior art keywords
reduction
furnace
tilting
hearth
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017158245A
Other languages
English (en)
Other versions
JP2019035128A (ja
Inventor
井関 隆士
隆士 井関
幸弘 合田
幸弘 合田
純一 小林
純一 小林
岡田 修二
修二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017158245A priority Critical patent/JP6900836B2/ja
Publication of JP2019035128A publication Critical patent/JP2019035128A/ja
Application granted granted Critical
Publication of JP6900836B2 publication Critical patent/JP6900836B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、酸化鉱石の製錬方法に関するものであり、例えば、ニッケル酸化鉱石等を原料として炭素質還元剤により還元することで還元物を得る製錬方法、及びその還元処理に使用する還元炉に関する。
酸化鉱石の一種であるリモナイトあるいはサプロライトと呼ばれるニッケル酸化鉱石の製錬方法として、熔錬炉を使用してニッケルマットを製造する乾式製錬方法、ロータリーキルンあるいは移動炉床炉を使用して鉄とニッケルの合金であるフェロニッケルを製造する乾式製錬方法、オートクレーブを使用してミックスサルファイドを製造する湿式製錬方法等が知られている。
上述した様々な方法の中で、特に乾式製錬法を用いてニッケル酸化鉱石を還元して製錬する場合、反応を進めるために原料のニッケル酸化鉱石を適度な大きさに破砕する等して塊状物化する処理が前処理として行われる。
具体的に、ニッケル酸化鉱石を塊状物化する、すなわち粉状や微粒状の鉱石を塊状にする際には、そのニッケル酸化鉱石と、それ以外の成分、例えばバインダーやコークス等の還元剤とを混合して混合物とし、さらに水分調整等を行った後に塊状物製造機に装入して、例えば一辺あるいは直径が10mm〜30mm程度の塊状物(ペレット、ブリケット等を指す。以下、単に「ペレット」という)とするのが一般的である。
塊状物化して得られるペレットには、含有する水分を「飛ばす」ために、ある程度の通気性が必要となる。さらに、その後の還元処理においてペレット内で均一に還元が進まないと、得られる還元物の組成が不均一になり、メタルが分散したり偏在したりする等の不都合が生じる。そのため、ペレットを作製する際には混合物を均一に混合したり、得られたペレットを還元する際には可能な限り均一な温度を維持することが重要となる。
加えて、還元処理により生成するメタル(フェロニッケル)を粗大化させることも非常に重要な技術である。生成したフェロニッケルが、例えば数10μm〜数100μm以下の細かな大きさであった場合、同時に生成するスラグと分離することが困難となり、フェロニッケルとしての回収率(収率)が大きく低下してしまう。そのため、還元後のフェロニッケルを粗大化する処理が必要となる。
例えば、特許文献1には、フェロニッケルの製造方法に関する技術が開示されており、移動炉床炉を利用してフェロニッケルを製造する際の前処理として、酸化ニッケル及び酸化鉄を含有する原料と炭素質還元剤とを混合して混合物となす混合工程にて、混合物の余剰炭素量を調整しながらペレットを製造し、そのペレットを炉内に装入して還元工程を行う技術が開示されている。
ここで、特許文献1には、原料と炭素質還元材とを混合するには混合機を用い、得られた混合物はそのまま移動炉床炉に装入してもよいが、造粒機で塊成化することが好ましく、このように塊成化することにより、移動炉床炉や溶解炉からのダスト発生量が減るとともに、移動炉床炉内における塊成物(混合物)の内部の伝熱効率が向上して還元速度が上昇することが記載されている。また、造粒した塊成物(混合物)を移動炉床炉に装入して、雰囲気温度1000〜1400℃で加熱し還元することが記載されている。
しかしながら、特許文献1には、混合物をそのまま移動炉床炉に装入してもよいとの記載があるものの、酸化ニッケル鉱のスラグの融点は一般的に1300℃〜1400℃程度であり、かつ移動炉床炉では金属製の炉床が使用されるため、その炉床が溶融したスラグと反応してしまい、ニッケル酸化鉱を製錬することは不可能であると考えられる。すなわち、混合物の還元においては、炉床とスラグとが反応しないことが求められる。
また、還元後の混合物をそのまま回収してスラグとメタルとを分離するにあたり、メタルが小さすぎると、スラグとメタルとを分離することが困難となる。したがって、例えば、還元後の混合物を半溶融状態、または溶融状態で保持して、メタルを有効に粗大化させる必要がある。
このような場合、還元炉内における混合物に対する還元反応を均一に生じさせる必要がある。粗大なメタルを生成させて、スラグとメタルとを均一に分離するためには、反応温度や炉内雰囲気を均一にすることが重要となる。しかしながら、還元後に、得られた反応物(還元物)を還元炉から取り出す際に、その取り出しに時間がかかってしまうと、メタルの生成にむらが生じ、その結果、不均一な組成や大きさのメタルとなることがある。
また、例えば、機械的に取り出す機構を還元炉に設けた場合、高温下での耐久性が必要となるため、その構造が複雑化したり、設備寿命に影響したりして、コスト増加をもたらす問題がある。さらには、その取り出し機構と還元炉本体の隙間から空気が混入し、炉内雰囲気が変わって還元反応に影響を及ぼす可能性があり、品質のばらつきが生じる懸念がある。
また、生産性を向上させるために回転炉等の移動炉床を有する還元炉を使用した場合には、設備的な隙間や取り出しに要する時間が増してしまうといった問題もあり、均一に反応を生じさせて、組成や大きさが均一なメタルを得ることは容易でない。なお、回転炉床炉の設置には、広大な面積を必要とし、さらに構造物ごと回転させため、操業において多大な動力を必要とする等、操業コストが増加するという問題もある。
このように、ニッケル酸化鉱石等の酸化鉱石を混合し、その混合物を還元してメタルを製造するにあたり、還元により有効に粗大化させたメタルを効率的に回収し、高品質なメタルをばらつきなく製造するには、多くの問題があった。
特開2004−156140号公報
本発明は、このような実情に鑑みて提案されたものであり、ニッケル酸化鉱石等の酸化鉱石を含む混合物を還元することでメタルを製造する製錬方法において、メタルを効率的に回収することができ、しかも品質のばらつきが少なく高品質なメタルを製造することができる方法を提供することを目的とする。
本発明者は、鋭意検討を重ねた結果、還元炉として傾転炉を用い、還元処理後に得られた還元物の排出に際して、その傾転炉を傾転させることによって還元物を排出口の方向に排出することで、上述した課題を解決できることを見出し、本発明を完成するに至った。
(1)本発明の第1の発明は、酸化鉱石と炭素質還元剤とを混合して得られる混合物を還元炉に装入し、該還元炉にて還元処理を施す酸化鉱石の製錬方法であって、前記還元炉として傾転炉を用い、前記還元処理により生成した還元物を、該傾転炉を傾転させることによって排出する、酸化鉱石の製錬方法である。
(2)本発明の第2の発明は、第1の発明において、前記還元処理における還元温度を1200℃以上1450℃以下とする、酸化鉱石の製錬方法である。
(3)本発明の第3の発明は、第2の発明において、前記還元物を1350℃以下の温度で回収する、請求項3に記載の酸化鉱石の製錬方法である。
(4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、酸化鉱石は、ニッケル酸化鉱石である、酸化鉱石の製錬方法である。
(5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記還元物は、フェロニッケルを含有する、酸化鉱石の製錬方法である。
(6)本発明の第6の発明は、酸化鉱石と炭素質還元剤とを混合して得られる混合物に対して還元処理を施すための還元炉であって、炉床と、当該還元炉を傾転させる傾転機構と、を備え、前記炉床を水平に維持した状態で該炉床上の前記混合物に対する還元処理が施され、該還元処理の終了後、得られた還元物を、前記傾転機構により当該還元炉を傾転させることにより排出する、還元炉である。
本発明によれば、ニッケル酸化鉱石等の酸化鉱石を含む混合物を還元することでメタルを製造する製錬方法において、メタルを効率的に回収することができ、しかも品質のばらつきが少なく高品質なメタルを製造することができる。
ニッケル酸化鉱石の製錬方法の流れの一例を示す工程図である。 還元炉(傾転炉)の構成の一例を示す断面図である。 還元炉を傾転させて還元物を排出するときの様子を示す断面模式図である。
以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
≪1.本発明の概要≫
本発明に係る酸化鉱石の製錬方法は、酸化鉱石を原料として、その酸化鉱石と炭素質還元剤とを混合して混合物とし、得られた混合物を高温下で還元処理に付して還元物であるメタルを製造する方法である。例えば、酸化鉱石として、酸化ニッケルや酸化鉄等を含有するニッケル酸化鉱石を原料とし、そのニッケル酸化鉱石を炭素質還元剤と混合して、高温下において、混合物に含まれるニッケルを優先的に還元し、また鉄を部分的に還元することで鉄とニッケルの合金であるフェロニッケルを製造する方法が挙げられる。
具体的に、本発明に係る酸化鉱石の製錬方法は、還元炉として傾転炉を用いる。そして、その還元処理により生成した還元物を、傾転炉を傾転させることによって排出口の方向に排出することを特徴としている。
このような製錬方法によれば、炉床が所定の角度で傾く傾転炉を傾転させるようにしていることから、その炉床上に生成した還元物を、傾転に伴って排出口の方向に自然に移送させることができる。そのため、全ての還元物を一気に回収することができ、すなわち還元炉からの取り出し時間を短くすることができる。これにより、品質のばらつきが小さくなり、高品質なメタルを安定的に回収することができる。また、このような方法によれば、有効に粗大化したメタルを回収することができ、このようなメタルによればスラグと選別しやすくなり、効率的にメタルを回収することができる。
また、傾転炉を用いて傾転させるというものであるため、過度な設備コストの増加を抑えることができ、さらに、炉内雰囲気の変化も防ぐことができる。
以下では、本発明の具体的な実施形態(以下、「本実施の形態」という)として、ニッケル酸化鉱石の製錬方法を例に挙げて説明する。上述したように、製錬原料であるニッケル酸化鉱石は、酸化ニッケル(NiO)と酸化鉄(Fe)とを少なくとも含むものであり、そのニッケル酸化鉱石を製錬原料として還元処理することで、メタルとして鉄−ニッケル合金(フェロニッケル)を製造することができる。
なお、本発明は、酸化鉱石としてニッケル酸化鉱石に限定されるものではなく、製錬方法としても酸化ニッケル等を含むニッケル酸化鉱石からフェロニッケルを製造する方法に限られるものではない。
≪2.ニッケル酸化鉱石の製錬方法≫
本実施の形態に係るニッケル酸化鉱石の製錬方法は、ニッケル酸化鉱石を炭素質還元剤と混合して混合物とし、その混合物に対して還元処理を施すことによって、還元物としてメタルであるフェロニッケルとスラグとを生成させる方法である。なお、メタルであるフェロニッケルは、還元処理を経て得られたメタルとスラグとを含む混合物から、そのメタルを分離することで回収することができる。
図1は、ニッケル酸化鉱石の製錬方法の流れの一例を示す工程図である。図1に示すように、この製錬方法は、ニッケル酸化鉱石を含む原料を混合する混合処理工程S1と、得られた混合物を所定の形状に成形する混合物成形工程S2と、成形された混合物(ペレット)を所定の還元温度で還元加熱する還元処理工程S3と、還元処理工程S3にて生成したメタルとスラグとを分離してメタルを回収する分離工程S4と、を有する。
<2−1.混合処理工程>
混合処理工程S1は、ニッケル酸化鉱石を含む原料粉末を混合して混合物を得る工程である。具体的には、混合処理工程S1では、原料鉱石であるニッケル酸化鉱石に、炭素質還元剤を添加して混合し、また任意成分の添加剤として、鉄鉱石、フラックス成分、バインダー等の、例えば粒径が0.1mm〜0.8mm程度の粉末を添加して混合し、混合物を得る。なお、混合処理は、混合機等を用いて行うことができる。
原料鉱石であるニッケル酸化鉱石としては、特に限定されないが、リモナイト鉱、サプロライト鉱等を用いることができる。なお、ニッケル酸化鉱石は、酸化ニッケル(NiO)と、酸化鉄(Fe)とを少なくとも含有する。
炭素質還元剤としては、特に限定されないが、例えば、石炭粉、コークス粉等が挙げられる。なお、この炭素質還元剤は、原料鉱石であるニッケル酸化鉱石の粒度や粒度分布と同等の大きさのものであると、均一に混合し易く、還元反応も均一に進みやすくなるため好ましい。
炭素質還元剤の混合量としては、ニッケル酸化鉱石を構成する酸化ニッケルの全量をニッケルメタル還元するのに必要な化学当量と、酸化鉄(酸化第二鉄)を金属鉄に還元するのに必要な化学当量との両者合計値(便宜的に「化学当量の合計値」ともいう)を100質量%としたときに、好ましくは5質量%以上60質量%以下の炭素量の割合、より好ましくは10質量%以上40質量%以下の炭素量の割合となるように調整することができる。このように、炭素質還元剤の混合量を、化学当量の合計値100質量%に対して5質量%以上の割合とすることで、ニッケルの還元を効率的に進行させることができ生産性が向上する。一方で、化学当量の合計値100質量%に対して60質量%以下の割合とすることで、鉄の還元量を抑えて、ニッケル品位の低下を防ぎ、高品質のフェロニッケルを製造することができる。このように、好ましくは、炭素質還元剤の混合量を化学当量の合計値100質量%に対して5質量%以上60質量%以下の炭素量の割合とすることで、混合物の表面に金属成分により生成した殻(メタルシェル)を均一に生成させて生産性を向上させることができ、またニッケル品位の高い高品質なフェロニッケルを得ることができ、好ましい。
また、任意成分の添加剤である鉄鉱石としては、例えば、鉄品位が50%程度以上の鉄鉱石、ニッケル酸化鉱石の湿式製錬により得られるヘマタイト等を用いることができる。
また、フラックス成分としては、例えば、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、二酸化珪素等を挙げることができる。また、バインダーとしては、例えば、ベントナイト、多糖類、樹脂、水ガラス、脱水ケーキ等を挙げることができる。
混合処理工程S1では、上述したようなニッケル酸化鉱石を含む原料粉末を均一に混合することによって混合物を得る。この混合に際しては、混合性を高めるために混練を同時に行ってもよく、混合後に混練を行ってもよい。具体的に、混練は、例えば二軸混練機等を用いて行うことができ、混合物を混練することによってその混合物にせん断力を加え、炭素質還元剤や原料粉末等の凝集を解いて、均一に混合できるとともに、各々の粒子の密着性を向上させ、また空隙を減少させることができる。これにより、還元反応が起りやすくなるとともに均一に反応させることができ、還元反応の反応時間を短縮することができる。また、品質のばらつきを抑えることができる。そして、結果として、生産性の高い処理を施すことができ、高い品質のフェロニッケルを製造することができる。
また、混練した後、押出機を用いて押出してもよい。このように押出機で押出すことによって、より一層高い混練効果を得ることができる。
なお、下記表1に、混合処理工程S1にて混合する、一部の原料粉末の組成(重量%)の一例を示すが、原料粉末の組成としてはこれに限定されない。
Figure 0006900836
<2−2.混合物成形工程>
混合物成形工程S2は、混合処理工程S1で得られた混合物を成形する工程である。具体的には、原料粉末を混合して得られた混合物を、ある程度の大きさ以上の塊(塊状化物、以下「ペレット」ともいう)に成形する。したがって、混合物成形工程S2は、ペレット製造工程とも換言することができる。
成形方法としては、特に限定されないが、混合物を塊状物化するのに必要な量の水分を添加し、例えば塊状物製造装置(転動造粒機、圧縮成形機、押出成形機等、あるいはペレタイザーともいう)を用いて所定の形状のペレットに成形する。
混合物を成形して得られるペレットの形状としては、例えば、球状、直方体状、立方体状、円柱状等とすることができる。このような形状とすることにより、混合物を成形し易くし、成形にかかるコストを抑えることができる。また、上述した形状は簡易な形状であって複雑なものではないため、不良品の発生を抑制することができ、得られるペレットの品質も均一にすることができる。
また、ペレットの形状としては、次工程の還元処理工程での処理において、ペレットを積層させた状態で処理できることが好ましく、その点においても、ペレットが球状、直方体状、立方体状、円柱状等であれば、還元炉内に積層させて載置させ易く、還元処理に供する処理量を多くすることができる。また、このように積層させて還元処理に供することで、一つのペレットを巨大化しなくても還元時の処理量を増やすことができるため、取り扱いが容易となり、また移動時等に崩れ落ちたりすることがなく、不良等の発生を抑えることができる。
ペレットの大きさとしては、特に限定されないが、球状とする場合には、その直径が10mm〜30mm程度となるように成形することができる。また、直方体状、立方体状、円柱状等とする場合には、概ね、縦、横の内寸が500mm以下程度となるように成形することができる。これらのような大きさに成形してペレットとすることにより、還元処理が均一に施され、ばらつきが少なく、かつ生産性の高い製錬を行うことができる。
混合物を成形した後には、その混合物に対して乾燥処理を施すようにしてもよい。混合物中には所定量の水分が含まれていることがあり、還元処理に際して急激な昇温によって内部の水分が一気に気化して膨張すると、その混合物が粉々になってしまう懸念がある。このような膨張を防ぐ観点から、成形した混合物に対して乾燥処理を施す工程を設けることができる。
具体的に、乾燥処理においては、例えばペレットの固形分が70重量%程度で、水分が30重量%程度となるように処理を施すことができる。例えば、150℃〜400℃の熱風をペレットに吹き付けて乾燥させる。
なお、比較的大きなペレットである場合、乾燥処理前や乾燥処理後の混合物にひびや割れが入っていてもよい。塊が大きい場合には、割れ等によって表面積が大きくなってもその影響は僅かであり、大きな問題にはならない。このため、還元処理に供される成形したペレットに割れ等があっても特に問題はない。
下記表2に、乾燥処理後の混合物における固形分中組成(重量部)の一例を示す。なお、混合物の組成としては、これに限定されるものではない。
Figure 0006900836
<2−3.還元処理工程>
(1)還元処理
還元処理工程S3では、混合物成形工程S2を経て成形された混合物を還元炉内に装入して、所定の還元温度で加熱することによって還元処理を施す。この還元処理工程S3における還元処理により、製錬反応(還元反応)が進行して、還元物であるメタルとスラグとが生成する。
具体的に、還元処理工程S3における還元処理は、還元炉を用いて行われ、ニッケル酸化鉱石を含む混合物(ペレット)を、所定の還元温度に加熱した還元炉に装入することによって還元加熱する。還元炉を使用した還元処理においては、原料鉱石であるニッケル酸化鉱石に含まれる酸化ニッケルは可能な限り完全に優先的に還元し、一方で、ニッケル酸化鉱石に含まれる酸化鉄は一部だけ還元して、目的とする高いニッケル品位のフェロニッケルが得られる、いわゆる部分還元を施す。
還元処理では、例えば1分程度のわずかな時間で、先ず還元反応の進みやすいペレットの表面近傍において混合物中のニッケル酸化鉱石及び鉄酸化物が還元されメタル化して鉄−ニッケル合金(以下、鉄−ニッケル合金を「フェロニッケル」ともいう)となり、殻(シェル)を形成する。一方で、殻の中では、その殻の形成に伴って容器中のスラグ成分が徐々に熔融して液相のスラグが生成する。これにより、混合物中では、フェロニッケルメタル(以下、単に「メタル」という)と、フェロニッケルスラグ(以下、単に「スラグ」という)とが分かれて生成する。
また、混合物が十分に混合されて組成ばらつきが実質的にない場合においては、原料同士が密着しているため、還元反応は均一に生じる。そのため、従来から言われているようにメタルシェルを生成し、その中である程度、時間をかけて反応して均一化する必要はなく、よってメタルシェルの生成が必須とはならない。すなわち、メタルシェルができなくても均一に反応が進み、フェロニッケルを製造することができる。
還元処理工程S3において、混合物中のスラグは熔融して液相となっているが、還元処理により既に分離して生成したメタルとスラグとは、混ざり合うことがなく、その後の冷却によってメタル固相とスラグ固相との別相として混在する混合物となる。この混合物の体積は、装入する混合物と比較すると、50%〜60%程度の体積に収縮している。
還元処理における温度(還元温度)としては、特に限定されないが、1200℃以上1450℃以下の範囲とすることが好ましく、1300℃以上1400℃以下の範囲とすることがより好ましい。このような温度範囲で還元することによって、均一に還元反応を生じさせることができ、品質のばらつきを抑制したフェロニッケルを生成させることができる。また、より好ましくは1300℃以上1400℃以下の範囲の還元温度で還元することで、比較的短時間で所望の還元反応を生じさせることができる。
なお、還元処理においては、上述した範囲の還元温度になるまでバーナー等により還元炉の内部温度を上昇させ、昇温後にその温度を維持する。
(2)還元炉の構成
図2は、還元処理に使用する還元炉の断面図であり、構成の一例を示すものである。還元炉1は、還元処理対象のペレットPを炉内空間Sに装入する装入口11と、還元処理により得られた還元物を炉外に排出させる排出口12とを備えている。
そして、還元炉1は、傾転炉により構成されている。還元炉1には、炉床13を含む炉全体を所定の角度(傾転角度)に傾転させる傾転機構15が設けられている。この傾転機構15を動作させることにより、図2中の矢印Fの方向の任意の角度に、炉全体が傾くように構成されている。
傾転機構15は、軸15aを備えており、炉の重心に軸15aが位置するように設けられ、その傾転機構15の軸15aを回転させることによって、その軸15aを中心として炉全体を所定の角度に傾転する。傾転角度は、軸15aの回転量に応じて調整される。
炉床13は、耐熱性に優れる材料により構成されていることが好ましく、耐火煉瓦により構成されていることが好ましい。少なくとも炉床13が耐火煉瓦により構成される還元炉1であれば、1500℃以上の温度条件にも耐え得ることができ、還元温度(混合物を溶融する温度)を例えば1450℃程度まで上げることができる。このような還元温度の条件で還元処理を施すことで、還元反応時間を短くすることができる。また。生成したメタルが沈降し、粗大化し易くなり、これにより、スラグとメタルとの分離が容易となり、より一層に効率的にメタルを回収することができる。また、炉床13が耐火煉瓦で構成されていることにより、炉床13に接するペレットPがその炉床13と反応してしまうことを防ぐことができ、ペレットPの熔着等を抑制することができる。これにより、得られた還元物の回収作業を容易にし、粗大なメタルを効率的に回収することができる。
なお、還元炉1の炉壁14についても、耐火煉瓦により構成されることが好ましい。
還元炉1は、例えば1200℃〜1450℃程度の温度(還元温度)に加熱され、加熱された炉内空間Sに、装入口11を介してペレットPが装入される。還元炉1では、炉床13上に載置させたペレットPに対して所定の還元時間で還元処理が施される。還元処理時においては、傾転機構15が作動せず、還元炉1の炉床13が水平となるように固定され、その状態においてペレットPに対する処理が施される。
なお、図2では、ペレットPを装入する装入口11と、得られた還元物を排出する排出口12とをそれぞれ備える還元炉(傾転炉)1の例を示しているが、還元炉1を傾転させることにより排出口の開口部を上方に向かせることができるのであれば、ペレットPの装入口と、還元物の排出口とを共通化させてもよい。これにより、構造が単純化して、また外部からの空気の巻き込み等を抑制することもできる。
(3)還元物の回収
還元処理の終了後、得られた還元物を排出口12を介して炉外に排出するが、本実施の形態においては、傾転機構15により還元炉1を傾転させることによって、生成した還元物を排出口12の方向へ移動させ、そして排出口12から炉外に排出する。
具体的に、還元炉1においては、ペレットPが炉内に装入されて、水平状態にある炉床13上に載置されると、所定の還元温度で還元処理が施される。上述したように、還元処理時においては、炉床13は水平状態が維持され、ペレットPや還元処理により得られた還元物は静止している。一方で、還元処理後、得られた全ての還元物を回収するに際しては、図3に示すように、傾転機構15を作動させ、所定の傾転角度となるように還元炉1を傾転させる。還元炉1を傾転させることで炉床13も同時に所定の方向に傾くようになるため、排出口12の方向(図3の紙面向かって左側の方向)に傾転させることによって、炉床13上の還元物Rを重力により一気に移動させ、排出口12を介して排出させる。なお、このとき、排出口12の開口部は下方に向く状態となり、還元物Rが排出口12からスムーズに排出されるようになる。
このように、傾転炉により構成される還元炉1を傾転機構15により傾転させることで、得られた還元物Rを一気に排出させ取り出すことができ、還元物Rの取り出しに要する時間を短くすることができる。還元物の取り出しに時間がかかると、還元炉1内での還元物の滞留時間にばらつきが生じてしまい、還元物のメタルの生成にむらが発生して、均一なメタル品位を有するフェロニッケルを回収できないことがある。これに対して、還元炉1を傾転させることによって、得られた還元物Rを一気に取り出すことにより、短い時間で全ての還元物Rを炉外に排出させることができ、還元炉1内での滞留時間のばらつきを抑制して、均一なメタル品位を有するフェロニッケルを効率的に回収することができる。
また、このような方法によれば、粗大化したメタルを効率的に回収することができ、その結果、スラグと選別しやすくなり、メタルの回収率を高めることができる。
さらに、還元炉1として傾転炉を用い、その傾転炉を傾転させるというものであるため、過度な設備コストの増加を抑えることができ、さらに、炉内雰囲気の変化も防ぐことができる。
還元物の回収時の温度としては、特に限定されないが、1350℃以下とすることが好ましく、1250℃以下とすることがより好ましい。このように、回収時の温度を1350℃以下とすることで、コストを低減させて効率的に還元物を回収することができる。また特に、回収時の温度を1350℃以下とすることで、還元反応を最大化させつつ、還元物の熔融に起因する炉床13への熔着をより効率的に抑制することができ、より効率的な回収作業を行うことができる。なお、回収時の温度の下限は、1200℃以上とすることが好ましい。
<2−4.分離工程>
分離工程S4では、還元処理工程S3にて生成したメタルとスラグとを分離してメタルを回収する。具体的には、混合物に対する還元加熱処理によって得られた、メタル相(メタル固相)とスラグ相(スラグ固相)とを含む混合物(混在物)からメタル相を分離して回収する。
固体として得られたメタル相とスラグ相との混在物からメタル相とスラグ相とを分離する方法としては、例えば、篩い分けによる不要物の除去に加えて、比重による分離や、磁力による分離等の方法を利用することができる。
また、得られたメタル相とスラグ相は、濡れ性が悪いことから容易に分離することができ、上述した還元処理工程S3における処理で得られた、大きな混在物に対して、例えば、所定の落差を設けて落下させる、あるいは篩い分けの際に所定の振動を与える等の衝撃を与えることで、その混在物からメタル相とスラグ相とを容易に分離することができる。
このようにしてメタル相とスラグ相とを分離することによって、メタル相を回収する。
以下、本発明の実施例及び比較例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
≪実施例1〜6、比較例1〜2≫
[混合処理工程]
原料鉱石としてのニッケル酸化鉱石と、鉄鉱石と、フラックス成分である珪砂及び石灰石、バインダー、及び炭素質還元剤(石炭粉、炭素含有量:85重量%、平均粒径:約200μm)を、適量の水を添加しながら混合機を用いて混合して混合物を得た。炭素質還元剤は、原料鉱石であるニッケル酸化鉱石に含まれる酸化ニッケル(NiO)と酸化鉄(Fe)とを過不足なく還元するのに必要な量の合計値を100質量%としたときに20%の割合となる量で含有させた。
[混合物成形工程]
次に、得られた混合物を、パン型造粒機を用いて球状に造粒して、φ15.5±1.5mmの大きさに篩った。
[還元処理工程]
次に、用意した混合物試料(各試験で10個ずつ)を還元炉に装入し、下記表4に示すそれぞれの還元温度、還元時間で還元処理を施した。還元炉としては、図2に示したような構成の傾転炉であって、炉床及び炉壁が耐火煉瓦により構成されているものを用いた。
なお、還元処理に供する各混合物試料は、還元処理に先立ち、固形分が70重量%程度、水分が30重量%程度となるように、300℃〜400℃の熱風を吹き付けることで乾燥させた。下記表3に、乾燥処理後の試料の固形分組成(炭素を除く)を示す。
Figure 0006900836
具体的に、実施例1〜6では、還元炉として図2に示したような傾転機構を備えた傾転炉を用いた。還元炉の炉床は耐火煉瓦により構成した。還元処理時には、還元炉を傾転させず、炉床が水平状態と維持するように固定し、還元処理後には、傾転機構を作動させ、還元炉を排出口が設けられている方向に傾転させることによって、炉床上に得られた還元物を炉外に排出させ回収した。
一方で、比較例1〜2では、還元炉として、従来の移動炉床炉である回転炉床炉を使用した。なお、回転炉床炉とは、炉床が水平方向に移動する炉である。回転炉床炉は、炉床が水平に構成されており、還元処理後の還元物の回収に際しては、炉内に設けられたガイドに沿わせるようにして取り出した。なお、還元炉の炉床は金属製とし、この比較例1〜2では、還元炉の炉床と混合物試料とが反応により熔着して炉床から剥がれなくなって回収不能になる可能性が高いと想定されたため、金属製の炉床に灰(主成分はSiOであり、その他の成分としてAl、MgO等の酸化物を少量含有する灰)を敷き詰め、実質的に酸化を含まない窒素雰囲気下において混合物試料を装入した。
なお、すべての試験例において、還元物を回収した後は、窒素を流しながら速やかに室温まで冷却し、大気中へ取り出した。
≪評価≫
還元加熱処理後に取り出した試料について、ニッケルメタル率、メタル中のニッケル含有率を、ICP発光分光分析器(SHIMAZU S−8100型)により分析して算出した。下記表4に、分析結果から算出した値を併せて示す。なお、ニッケルメタル率は(1)式、メタル中ニッケル含有率は(2)式により求め、試験毎に得られた合計10個の還元物の平均を算出した。
ニッケルメタル率=混合物中のメタル化したNiの量÷(ペレット中の全てNiの量)×100(%) ・・・(1)式
メタル中ニッケル含有率=混合物中のメタル化したNiの量÷(ペレット中のメタル化したNiとFeの合計量)×100(%) ・・・(2)式
Figure 0006900836
表4の結果に示されるように、実施例1〜6では、還元炉として傾転炉を用い、還元物の排出に際しては傾転炉を傾転させることによって還元物を排出口の方向に移動させ排出させたため、効率的に還元物を回収することができ、高い生産性でもってメタルを製造することができた。また、ニッケルメタル化率、メタル中ニッケル含有量は、いずれも高い値で良好な結果となり、高品質なメタルを製造することができた。
一方で、比較例1では、ニッケルメタル化率、メタル中ニッケル含有量がいずれも実施例に比べて低い値となった。このことは、還元物の取り出しに時間がかかってしまったため、メタルの生成にむらが発生し、ばらつきが生じたことによると考えられる。しかも、比較例2では、炉床に灰を敷き詰めたものの、金属製の炉床と混合物試料とが反応してしまい、有効に還元物を回収できなかった。
1 還元炉
11 装入口
12 排出口
13 炉床(傾斜した炉床)
14 炉壁
15 排出機構(炉壁シャッター)
15a シャッター部

Claims (6)

  1. 酸化鉱石と炭素質還元剤とを混合して得られる混合物を還元炉に装入し、該還元炉にて還元処理を施す酸化鉱石の製錬方法であって、
    前記還元炉として、炉床と、前記炉床を含む炉全体を所定の角度である傾転角度に傾転させる傾転機構と、を備えた傾転炉を用い、前記傾転機構は、前記傾転炉を傾転可能に支持する軸を備えており、前記軸を中心として前記傾転炉全体を前記傾転角度に傾転させるように構成され、
    前記炉床を水平に維持した状態で前記炉床上の前記混合物に対する還元処理を施し、前記還元処理の終了後、前記還元処理により生成した還元物を、前記傾転炉を傾転させることによって排出する
    酸化鉱石の製錬方法。
  2. 前記還元処理における還元温度を1200℃以上1450℃以下とする
    請求項1に記載の酸化鉱石の製錬方法。
  3. 前記還元物を1350℃以下の温度で回収する
    請求項2に記載の酸化鉱石の製錬方法。
  4. 酸化鉱石は、ニッケル酸化鉱石である
    請求項1乃至3のいずれかに記載の酸化鉱石の製錬方法。
  5. 前記還元物は、フェロニッケルを含有する
    請求項1乃至4のいずれかに記載の酸化鉱石の製錬方法。
  6. 酸化鉱石と炭素質還元剤とを混合して得られる混合物に対して還元処理を施すための還元炉であって、
    炉床と、前記炉床を含む前記還元炉全体を所定の角度である傾転角度に傾転させる傾転機構と、を備え、
    前記傾転機構は、前記還元炉を傾転可能に支持する軸を備えており、前記軸を中心として前記還元炉全体を前記傾転角度に傾転させるように構成され、
    前記炉床を水平に維持した状態で前記炉床上の前記混合物に対する還元処理が施され、前記還元処理の終了後、得られた還元物を、前記傾転機構により前記還元炉を傾転させることにより排出する
    還元炉。
JP2017158245A 2017-08-18 2017-08-18 酸化鉱石の製錬方法、還元炉 Active JP6900836B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017158245A JP6900836B2 (ja) 2017-08-18 2017-08-18 酸化鉱石の製錬方法、還元炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158245A JP6900836B2 (ja) 2017-08-18 2017-08-18 酸化鉱石の製錬方法、還元炉

Publications (2)

Publication Number Publication Date
JP2019035128A JP2019035128A (ja) 2019-03-07
JP6900836B2 true JP6900836B2 (ja) 2021-07-07

Family

ID=65637009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158245A Active JP6900836B2 (ja) 2017-08-18 2017-08-18 酸化鉱石の製錬方法、還元炉

Country Status (1)

Country Link
JP (1) JP6900836B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288504A (ja) * 2000-03-31 2001-10-19 Midrex Internatl Bv 溶融金属鉄の製造方法
JP4348152B2 (ja) * 2002-10-18 2009-10-21 株式会社神戸製鋼所 フェロニッケルおよびフェロニッケル精錬原料の製造方法
JP6477371B2 (ja) * 2015-09-08 2019-03-06 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法

Also Published As

Publication number Publication date
JP2019035128A (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6900695B2 (ja) 金属酸化物の製錬方法
WO2017183666A1 (ja) 酸化鉱石の製錬方法
JP6900696B2 (ja) 金属酸化物の製錬方法
JP7035322B2 (ja) 酸化鉱石の製錬方法、ペレット及び容器の製造方法
JP6772525B2 (ja) ペレットの製造方法、及びニッケル酸化鉱石の製錬方法
JP6776927B2 (ja) 金属酸化物の製錬方法
JP6855897B2 (ja) 酸化鉱石の製錬方法
JP6900837B2 (ja) 酸化鉱石の製錬方法、還元炉
JP6809603B2 (ja) 金属酸化物の製錬方法
JP6981070B2 (ja) 酸化鉱石の製錬方法
JP6900836B2 (ja) 酸化鉱石の製錬方法、還元炉
JP7292581B2 (ja) 酸化鉱石の製錬方法
JP6943075B2 (ja) 酸化鉱石の製錬方法、還元炉
JP6953835B2 (ja) 酸化鉱石の製錬方法
JP6891722B2 (ja) 酸化鉱石の製錬方法、還元炉
JP7052239B2 (ja) 酸化鉱石の製錬方法
JP6439828B2 (ja) 酸化鉱石の製錬方法
JP6926674B2 (ja) 酸化鉱石の製錬方法
JP2021102797A (ja) 酸化鉱石の製錬方法
JP7124588B2 (ja) 酸化鉱石の製錬方法
JP6772526B2 (ja) ニッケル酸化鉱石の製錬方法
JP6798079B2 (ja) 酸化鉱石の製錬方法
JP6809377B2 (ja) 酸化鉱石の製錬方法
JP6907705B2 (ja) 酸化鉱石の製錬方法
JP7167534B2 (ja) 酸化鉱石の製錬方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150