JP6878065B2 - コンデンサ - Google Patents

コンデンサ Download PDF

Info

Publication number
JP6878065B2
JP6878065B2 JP2017053003A JP2017053003A JP6878065B2 JP 6878065 B2 JP6878065 B2 JP 6878065B2 JP 2017053003 A JP2017053003 A JP 2017053003A JP 2017053003 A JP2017053003 A JP 2017053003A JP 6878065 B2 JP6878065 B2 JP 6878065B2
Authority
JP
Japan
Prior art keywords
capacitor
capacitance
dielectric
green sheet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017053003A
Other languages
English (en)
Other versions
JP2018157077A (ja
Inventor
岩崎 健一
健一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017053003A priority Critical patent/JP6878065B2/ja
Publication of JP2018157077A publication Critical patent/JP2018157077A/ja
Application granted granted Critical
Publication of JP6878065B2 publication Critical patent/JP6878065B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本開示は、コンデンサに関する。
従来より、積層セラミックコンデンサ(以下、単に、コンデンサという。)に代表されるように、誘電体グリーンシートと内部電極パターンとを交互に複数層積み重ねた後、一体的に焼成して作製された積層型のコンデンサが知られている(例えば、特許文献1を参照)。
特開2011−129841号公報
積層型のコンデンサの中には、誘電体層の厚みが積層方向に異なっているものがある。通常、コンデンサは電圧が印加されると、積層方向に電歪効果による歪みが生じる。誘電体層の厚みが積層方向に異なっているコンデンサでは、誘電体層の厚みの薄い方に、より大きな応力が発生することになる。このような場合、誘電体層にクラックが発生しやすくなり、破壊電圧を高くできないという問題が生じてくる。
従って、本開示は、所望の静電容量を保ちつつ、破壊電圧の高いコンデンサを提供することを目的とする。
本開示のコンデンサは、誘電体層と内部電極層とが交互に複数積層され、静電容量の発現に寄与する容量部と、該容量部の周囲を取り囲むように配置され、静電容量の発現に寄与しない非容量部とで構成されたコンデンサ本体を備えているコンデンサであって、前記誘電体層は、分子量が40000〜60000、水酸基量が28〜33モル%を有するブチラール系バインダを添加した誘電体グリーンシートにより構成され、前記容量部は、積層方向の一方側の前記非容量部近傍に、他方側よりも前記誘電体層の厚みの薄い薄層部と、前記薄層部よりも厚みがある厚層部とを有しているとともに、該薄層部近傍の前記非容量部内にあり、前記薄層部と前記厚層部の間に位置する盛り上がり部の箇所に、細長の形
状であり、前記コンデンサ本体を平面視したときに、前記容量部の一辺の長さに相当する長さを有している空洞を備えている。
本開示によれば、所望の静電容量を保ちつつ、破壊電圧の高いコンデンサを得ることができる。

コンデンサを製造するための逐次積層工法の一部を示す工程図である。 図1に示した逐次積層工法により製造される従来のコンデンサの構造を示すものであり、(a)は外観の透視斜視図、(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図である 。 (a)は、本実施形態のコンデンサの構造を示す透視斜視図であり、(b)は、(a)のA−A線断面図である。(c)は、(b)のB−B線断面図である。 本実施形態のコンデンサを製造するための逐次積層工法の一部を示す工程図である。
図1は、コンデンサを製造するための逐次積層工法の一部を示す工程図である。図2は、図1に示した逐次積層工法により製造される従来のコンデンサの構造を示すものであり、(a)は外観の透視斜視図、(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図である。
積層型のコンデンサの中には、例えば、図1に示すような逐次積層工法によって作製されるものがある。図1に示した逐次積層工法について説明する。
まず(a)工程において、誘電体グリーンシート101a、101b、101c(以下、誘電体グリーンシート101という場合がある。)の表面に、それぞれ内部電極パターン103a、103b、103c(以下、内部電極パターン103という場合がある。)を形成したパターンシート105a、105b、105c(以下、パターンシート105という場合がある。)を用意する。この場合、パターンシート105は、誘電体グリーンシート101の表面に内部電極パターン103の厚みに起因した段差Sを有するものとなっている。
従来のコンデンサ100を形成するための誘電体グリーンシート101としては、後述の実施例にて比較しているように、母体積層体を作製したときに、誘電体グリーンシート101同士が強固に密着するように、分子量および水酸基量の異なる2種類のバインダを添加して作製した誘電体グリーンシート101が用いられる。
次に、(b)工程において、用意したパターンシート105a、105b、105cのうちの2枚のパターンシート105a、105bを重ねて加圧加熱を行って2層構造の仮積層体107aを形成する。
この場合、(b)工程において、2層構造の仮積層体107aを形成すると、上層側のパターンシート105bを構成している誘電体グリーンシート101bが下層側のパターンシート105aを構成している誘電体グリーンシート101aよりもわずかに平面方向に伸びた状態となる。図1(b)においては、上層側の誘電体グリーンシート101bの幅Wが下層側の誘電体グリーンシート101aの幅Wよりも長くなるように表している。これは下層側のパターンシート105aを構成している内部電極パターン103aが誘電体グリーンシート101aの表面において段差Sを有するように形成されているため、その上面に重ねられる誘電体グリーンシート101bが内部電極パターン103aの段差Sを埋めようとして可塑性的に変形するためである。
続いて、図1(c)(d)工程に示すように、仮積層体107aの上面に3層目のパターンシート105cを重ねて、加圧加熱を行って3層構造の仮積層体107bを作製する。(c)工程において、2層構造の仮積層体107aの上面にパターンシート105cを重ねて加圧加熱を行うと、パターンシート105cを構成している誘電体グリーンシート101cが可塑性的変形により2層構造の仮積層体107aよりもさらに平面方向に伸びた状態となる。
図1(d)に示すように、さらに、仮積層体107bの上面側にカバー用の誘電体グリーンシート109を積層して加圧加熱を行う。このとき、誘電体グリーンシート101a、101b、101cの表面にそれぞれ形成した内部電極パターン103a、103b、103cの間隔が狭い場合には、加圧加熱によって平面方向に伸ばされた誘電体グリーンシート101が内部電極パターン103の間に集まり、この部分の誘電体グリーンシート101が盛り上がってくる。これは誘電体グリーンシート101の表面に形成された内部電極パターン103の段差Sが累積していくことによる。この誘電体グリーンシート10
1の盛り上がりに伴い、この部分の内部電極パターン103の端部も盛り上がった形状に変化する。図1(c)においては、誘電体グリーンシート101および内部電極パターン103の端部が盛り上がった部分を破線で囲み符号111で表している。なお、誘電体グリーンシート101は、内部電極パターン103の周囲の方に伸びていく分だけ、厚みtgがtgの厚みまで薄くなる。
図1では、パターンシート105a、105b、105cの積層数を3層とした状態しか示していないが、コンデンサ100を製造する場合には、こうしたパターンシート105を数百層にも積層して母体積層体を作製する。
次に、図1に示した工程を経て製造されたコンデンサの例を図2に示す。図2(a)は従来のコンデンサを示す外観斜視図であり、(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図である。図2(a)(b)(c)に示したコンデンサ100は、コンデンサ本体111の両端部に外部電極113を備えた構成となっている。コンデンサ本体111は、誘電体層115と内部電極層117とが交互に複数積層された構成である。コンデンサ本体111では、内部電極層117が各層で重なった領域を容量部119とする。図2(a)において、容量部119はコンデンサ100の内部に直方体状に描いた破線の部分である。一方、容量部119の周囲に位置し、内部電極層117が一層置きに重なった領域を非容量部121とする。非容量部121はコンデンサ100のうち容量部119の外側となる部分である。
コンデンサ本体111では、積層方向の一方側(図2(b)における上層側)に位置する誘電体層115の厚みtが積層方向の他方側(図2(b)における下層側)に位置する誘電体層115の厚みtよりも薄くなっている。ここで、誘電体層115の厚みtの部分を以下、厚層部119aとし、誘電体層115の厚みtの部分を以下、薄層部119bとする。
容量部119は厚層部119aおよび薄層部119bが含まれる構造であるが、これら厚層部119aおよび薄層部119bは、容量部119を平面視したときに、それぞれが容量部119の主面の全体を占めるものとなっている。
コンデンサ100では、誘電体層115の厚みが変化すると電歪効果の大きさが変化する。誘電体層115の厚みの薄い薄層部119bは、誘電体層115の厚みがこれよりも厚い厚層部119aに比べて強誘電性による電歪効果が大きくなる。
また、このコンデンサ100では、容量部119の積層方向の一方側に形成された薄層部119bの端部119btにおいて、誘電体層115および内部電極層117がともに湾曲した状態で形成されている。言い換えると、薄層部119bは端部119btに湾曲部119Wを有している。
一方、湾曲部119W間に位置する中央部119bcの誘電体層115および内部電極層117は湾曲部119Wよりも平坦である。また、湾曲部119Wにおける誘電体層115の厚みtは中央部119bcにおける誘電体層15の厚みtよりも薄くなっている。
図2(c)では、コンデンサ100に生じる電歪効果の大きさを左右対称の3方向の矢印AR1100、AR2100によって表している。この場合、矢印の長さが長いほど電歪効果が大きいことを意味する。図2(c)からわかるように、誘電体層115の厚みの薄い薄層部119bの方が誘電体層115の厚みがこれよりも厚い厚層部119aに比べて矢印の長さが長い分、電歪効果が大きくなっている。
コンデンサ100において、積層方向に電歪効果の大きさの異なる部分が形成されると、電歪効果の違いにより誘電体層115の厚みの薄い薄層部119bに大きな応力が発生する。その結果、薄層部119bにクラックなどの欠陥が発生し、破壊電圧が低くなる。
これに対し、本出願人は上記の課題を解決するコンデンサとして、コンデンサ本体の容量部を構成している薄層部近傍の非容量部内に空洞を設けたものを提案する。この場合、本実施形態のコンデンサの作製には、後述するように、容量部および非容量部を形成するための誘電体グリーンシートとして、所定範囲の分子量および水酸基量を有するブチラール系バインダを添加したものを用いる。また、非容量部を形成するためのカバー用グリーンシートとして、厚みの異なる2種類の誘電体グリーンシートを用意し、容量部となる仮積層体側に厚みの薄い誘電体グリーンシートを重ね、その外側に厚みの厚い誘電体グリーンシートを重ねる方法を採る。
図3(a)は、本実施形態のコンデンサを示す外観の透視斜視図であり、(b)は、(a)のA−A線断面図である。(c)は、(b)のB−B線断面図である。図3(a)(b)(c)に示したコンデンサ10は、非容量部11に空洞13を有する以外は、図2(a)(b)(c)に示したコンデンサ100と同様の構成となっている。
各部位の符号は以下のようになる。符号1はコンデンサ本体、3は外部電極、5は誘電体層、7は内部電極層、9は容量部、9aは厚層部、9bは薄層部、11は非容量部、13は空洞、t1、t2は誘電体層5の厚みとなる。
以下、コンデンサ10が破壊電圧を高められる理由を説明する。この場合、コンデンサ10についての電歪効果の大きさは矢印AR110、AR210によって表している。コンデンサ10には、容量部9の中の薄層部9b近傍の非容量部11内に空洞13が設けられている。言い換えると、空洞13は薄層部9b側の非容量部11内に形成されている。
容量部9の中の薄層部9b近傍の非容量部11内に空洞13が設けられている場合には、薄層部9bに生じた応力が空洞13によって弱められる。図3(c)では、コンデンサ10に発生する応力が従来のコンデンサ100に発生する応力よりも小さいことを表すために、容量部9側から空洞13の方向に向いた応力を表す矢印(この場合、AR210)の長さを、図2(c)に示した従来のコンデンサ100における応力(矢印AR2100)に比べて短くして表している。
コンデンサ10の場合、容量部9が、印加された電圧によって積層方向に膨張すると、容量部9と非容量部11との境界付近に応力が集中する。このような場合に、コンデンサ10のように、薄層部9b近傍の非容量部11内に空洞13が設けられていると、容量部9と非容量部11との境界付近に集中する応力を緩和することができる。これにより容量部9と非容量部11との境界付近に発生するクラックなどの欠陥の発生を抑えることができる。その結果、破壊電圧の高いコンデンサ10を得ることができる。
この場合、コンデンサ10の薄層部9b近傍の非容量部11内に形成された空洞13は細長の形状である。この場合の空洞13の形状はコンデンサ本体1を平面視して観察される形状となる。また、この空洞13はそれぞれにおいて容量部 9の一辺の長さLに相
当する長さLを有しているのが良い。 空洞13が細長の形状であり、容量部9の一辺
の長さLに相当する長さLを有する形状であると、薄層部9bが容量部9の主面の全体を占めるように形成されている形状であっても、薄層部9bの全体 にわたって発生す
る応力を緩和することができる。 その結果、破壊電圧のより高いコンデンサ10を得る
ことができる。ここで、空洞13の長さLが容量部9の一辺の長さLに相当する長さ
というのは、L/L比が0.9〜1.1であることを言う。この場合、空洞13は長手方向の途中に途切れなどがなく貫通した 構造であるのがよい 。
また、空洞13は、図3(a)に示しているように、コンデンサ本体1を平面透視 し
た ときに、容量部9を囲むように配置されているのが良い。この場合、空洞13は、容
量部9の周囲に位置する非容量部11内にロの字型に配置されていることから、容量部9を構成している薄層部9bの外側かつ上側となる。空洞13が上記のような配置であると、薄層部9bの主面の全体にわたって発生する応力を四方から緩和することができる。これにより破壊電圧をさらに高めることができる。
なお、上記したコンデンサ10の構造は、誘電体層5の積層数が200層以上である場合に、より高い効果が得られる。このような高積層のコンデンサ10の場合には、湾曲部9Wにおける誘電体層5の厚みtが中央部9bcにおける誘電体層5の厚みtよりも薄くなって局所的に電歪効果が高くなっているからである。
本実施形態のコンデンサ10は、誘電体層5および内部電極層7の平均厚みがそれぞれ0.3〜4.0μmとなる薄層、高積層型のコンデンサに好適なものとなる。
コンデンサ10を構成する誘電体層5には、強誘電性を示す種々のセラミック材料を適用できるが、比誘電率が高く、温度特性および絶縁性の制御が容易という点から、チタン酸バリウムに希土類元素、酸化マグネシウムなどを加えて調製した誘電体粉末が特に好適なものとなる。
コンデンサ10を構成する内部電極層7を形成するための金属粉末としては、ニッケル(熱膨張係数:12.8×10−6/℃)、銅(熱膨張係数:16.8×10−6/℃)、パラジウム(熱膨張係数:11.8×10−6/℃)および銀(熱膨張係数:18.9×10−6/℃)から選ばれる1種もしくはこれらの合金を適用するのが良い。外部電極3も同様の金属を適用するのが良い。
図4は、本実施形態のコンデンサを製造するための逐次積層工法の一部を示す工程図である。図4に示す工程が図1に示した工程と異なる点は、容量部9および非容量部11を形成するための誘電体グリーンシート21として、分子量が40000〜60000、水酸基量が28〜33モル%を有するブチラール系バインダを添加したものを用いること、これに加えて、非容量部11にはこれを形成するためのカバー用グリーンシートとして厚みの異なる2種類の誘電体グリーンシート29a、29bを用意し、容量部9となる第1仮積層体27側に厚みの薄い誘電体グリーンシート29aを重ね、その表面に厚みの厚い誘電体グリーンシート29bを重ねる方法によって作製することである。
以下、各部材の符号は以下のようになる。符号21a、21b、21cは誘電体グリーンシート、23a、23b、23cは内部電極パターン、25a、25b、25cはパターンシート、27は第1仮積層体、29aは厚みの薄いカバー用グリーンシート、29bは厚みの厚いカバー用グリーンシート、31は第2仮積層体、33は母体積層体、35は空洞、tg1、tg2は誘電体グリーンシートの厚みである。ここでは、便宜上、符号21a、21b、21cの誘電体グリーンシートを誘電体グリーンシート21と、符号23a、23b、23cの内部電極パターンを内部電極パターン23と、さらに符号25a、25b、25cのパターンシートをパターンシート25と表記する。また、図4(d)において、誘電体グリーンシート21および内部電極パターン23の端部が盛り上がった盛り上がり部を破線で囲み符号Pで表している。
本実施形態のコンデンサ10を製造する場合においても容量部9となるパターンシート
5を逐次積層して第1仮積層体27を形成する段階で、隣接する内部電極パターン23間が盛り上がった状態となる。
次に、この第1仮積層体27の上面に、まず、厚みの薄いカバー用グリーンシート29aを積層し、加圧加熱を行って、第2仮積層体31を形成する。次いで、この第2仮積層体31の表面に厚みの厚いカバー用グリーンシート29bを重ね、加圧加熱を行って母体積層体33を形成する。この場合、厚みの薄いカバー用グリーンシート29aおよび厚みの厚いカバー用グリーンシート29bは、それぞれ複数枚用いても良い。
この場合、第1仮積層体27の上面に積層した厚みの薄いカバー用グリーンシート29aはその厚みの薄さから加圧加熱時に変形しやすい。このことから、第1仮積層体27において内部電極パターン23の端部に盛り上がり部Pが形成されていても、厚みの薄いカバー用グリーンシート29aはその盛り上がり部Pの形状に追従し密着する。
ところが、次の第2仮積層体31の表面に厚みの厚いカバー用グリーンシート29bを重ねた場合には、厚みの厚いカバー用グリーンシート29bは第2仮積層体31の盛り上がり部Pに密着し難い箇所が発生する。こうして図4(d)に示すように、母体積層体33のカバー用グリーンシート29を積層した部分に空洞35が形成される。
次に、母体積層体33を従来のコンデンサ100の場合と同様に所定のサイズになるように切断してコンデンサ本体1となる成形体を作製する。次いで、作製した成形体を所定の条件にて焼成を行うことにより、図3に示すようなコンデンサ本体11が得られる。
この後、コンデンサ本体11の端部に外部電極3を形成することによりコンデンサ10が得られる。さらに、外部電極3の表面に必要に応じてめっき膜を形成する。
以下、コンデンサとして積層型のコンデンサを具体的に作製して誘電特性の評価を行った。まず、チタン酸バリウムを主成分とする誘電体粉末に表1に示したバインダを添加して、誘電体グリーンシートおよびカバー用グリーンシートを作製した。作製した誘電体グリーンシートの厚みは3.5μm、厚みの薄いカバー用グリーンシートの厚みは1.5μm、厚みの厚いカバー用グリーンシートの厚みは10μmとした。バインダの添加量は誘電体グリーンシートおよびカバー用グリーンシートともに、誘電体粉末100質量部に対して10質量部とした。バインダを2種類用いた場合には各々5質量部となるように配合した。
次に、誘電体グリーンシートの表面にニッケルを主成分とする導体ペーストを印刷して内部電極パターンを形成し、これらを一体化させたパターンシートを作製した。
次に、厚みの厚いカバー用グリーンシートを所定の枚数重ねたその上にパターンシートを逐次積層工法を用いて270層まで積層して仮積層体を作製した。次いで、この仮積層体の上面にまず厚みの薄いカバー用グリーンシートを1層積層し、次いで、厚みの厚いカバー用グリーンシートを所定の枚数重ねて母体積層体を作製した。
次に、母体積層体を所定のサイズに切断し、本焼成を行ってコンデンサ本体を作製した。
本焼成は、水素−窒素中、昇温速度を900℃/hとし、最高温度を1200℃に設定した条件で行った。この焼成にはローラーハースキルンを用いた。
次に、作製したコンデンサ本体に対して再酸化処理を行った。再酸化処理の条件は、窒素雰囲気中、最高温度を1000℃に設定し、保持時間を5時間とした。
次に、コンデンサ本体をバレル研磨した後、コンデンサ本体の両端部に外部電極ペーストを塗布し、800℃の温度にて焼き付けを行って外部電極を形成した。外部電極ペーストは、Cu粉末にガラスを添加したものを用いた。その後、電解バレル機を用いて、この外部電極の表面に順にNiメッキ及びSnメッキを形成して積層型のコンデンサを得た。
得られたコンデンサのサイズは、3.2mm×1.6mm×1.6mm、コンデンサの静電容量は4.7μFに設定した。誘電体層の平均厚みは2.7μmであった。
次に、これらのコンデンサについて以下の評価を行った。まず、非容量部に形成された空洞の有無、形状および長さは、研磨加工したコンデンサを測定顕微鏡を用いて観察する方法より求めた。試料は、まず、コンデンサの試料の断面を側面側から研磨し、容量部における薄層部の位置を確認した後、同じ試料を積層方向の薄層部側から研磨して作製した。
観察の結果、試料No.1、2ともに、薄層部の端部に形成された湾曲部における誘電体層の厚みは端部以外の中央部の領域における誘電体層の厚みよりも薄くなっていた。これらのうち試料No.1のコンデンサには空洞は見られなかったが、試料No.2のコンデンサには空洞が見られた。その空洞は、図3(a)に示した状態を取り、容量部を四方から囲むように非容量部内に形成されていた。また、容量部の一辺長さLに対する空洞の長さLの比(L/L比)は0.92〜0.95であった 。
次に、コンデンサの静電容量をLCRメータ(ヒューレットパッカード社製)を用いて、周波数を1.0kHz、AC電圧を1.0V/μmとし、直流電圧を印加しない条件(0V/μm)にて測定した。試料数は30個とした。
破壊電圧は、昇圧速度を5V/秒(昇圧1)、10V/秒(昇圧2)として測定した。また、昇圧速度による破壊電圧の違いを昇圧2/昇圧1比として求めた。試料数は30個とし、平均値を求めた。
さらに、耐熱衝撃試験を行ってデラミネーションの発生割合を評価した。耐熱衝撃試験は、半田槽の温度を室温(25℃)からの温度差が250℃となるように設定し、1秒間浸漬する方法を用いた。試料数は100個とした。
比較例となるコンデンサ(試料No.1)は、分子量および水酸基量の異なる2種類のバインダを添加して作製した誘電体グリーンシートおよびカバー用グリーンシートを用いた。
Figure 0006878065
Figure 0006878065
表1、表2から明らかなように、分子量が50,000、水酸基量が31モル%のバインダ(B1)を用いて作製した試料No.2は、容量部を構成している薄層部近傍の非容量部内に空洞が形成されており、破壊電圧が415V/秒以上であったが、分子量および水酸基量の異なる2種類のバインダを用いて作製した試料No.1は、空洞が観察されず、破壊電圧も390V/秒以下であった。
また、試料No.2は、耐熱衝撃試験後のデラミネーションの数も100個中1と試料No.1と同等であり、コンデンサを構成する容量部および非容量部の密着性に遜色は無かった。また、静電容量は4.81μFであり、試料No.1よりも高かった。作製した試料No.1、2は、いずれも設計値を超えた値を有していた。
10、100・・・・・・・・・コンデンサ
1、111・・・・・・・・・・コンデンサ本体
3、113・・・・・・・・・・外部電極
5、115・・・・・・・・・・誘電体層
7、117・・・・・・・・・・内部電極層
9、119・・・・・・・・・・容量部
9a、119a・・・・・・・・厚層部
9b、119b・・・・・・・・薄層部
11、121・・・・・・・・・非容量部
13・・・・・・・・・・・・・空洞

Claims (3)

  1. 誘電体層と内部電極層とが交互に複数積層され、静電容量の発現に寄与する容量部と、
    該容量部の周囲を取り囲むように配置され、静電容量の発現に寄与しない非容量部とで構成されたコンデンサ本体を備えているコンデンサであって、
    前記誘電体層は、分子量が40000〜60000、水酸基量が28〜33モル%を有するブチラール系バインダを添加した誘電体グリーンシートにより構成され、
    前記容量部は、積層方向の一方側の前記非容量部近傍に、他方側よりも前記誘電体層の厚みの薄い薄層部と、前記薄層部よりも厚みがある厚層部とを有しているとともに、
    該薄層部近傍の前記非容量部内にあり、前記薄層部と前記厚層部の間に位置する盛り上がり部の箇所に、細長の形状であり、前記コンデンサ本体を平面視したときに、前記容量部の一辺の長さに相当する長さを有している空洞を備えているコンデンサ。
  2. 前記コンデンサ本体を平面視したときに、前記空洞は前記容量部を囲む配置となっている、請求項1記載のコンデンサ。
  3. 前記薄層部は、端部に湾曲部を有しており、該湾曲部における前記誘電体層の厚みは前記端部以外の領域における前記誘電体層の厚みよりも薄い、請求項1又は請求項2に記載のコンデンサ。
JP2017053003A 2017-03-17 2017-03-17 コンデンサ Active JP6878065B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053003A JP6878065B2 (ja) 2017-03-17 2017-03-17 コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053003A JP6878065B2 (ja) 2017-03-17 2017-03-17 コンデンサ

Publications (2)

Publication Number Publication Date
JP2018157077A JP2018157077A (ja) 2018-10-04
JP6878065B2 true JP6878065B2 (ja) 2021-05-26

Family

ID=63715788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053003A Active JP6878065B2 (ja) 2017-03-17 2017-03-17 コンデンサ

Country Status (1)

Country Link
JP (1) JP6878065B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113607A (ja) * 1990-09-03 1992-04-15 Nec Corp 積層セラミックコンデンサ
JP4577951B2 (ja) * 2000-06-29 2010-11-10 京セラ株式会社 積層型電子部品
JP3971651B2 (ja) * 2002-05-24 2007-09-05 Tdk株式会社 積層セラミック電子部品の製造方法
JP2006278565A (ja) * 2005-03-28 2006-10-12 Tdk Corp 積層電子部品及びその製造方法
US8576537B2 (en) * 2008-10-17 2013-11-05 Kemet Electronics Corporation Capacitor comprising flex crack mitigation voids
JP5773702B2 (ja) * 2011-03-30 2015-09-02 京セラ株式会社 コンデンサ
KR20150121567A (ko) * 2014-04-21 2015-10-29 삼성전기주식회사 적층 세라믹 커패시터 및 그의 제조 방법

Also Published As

Publication number Publication date
JP2018157077A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
KR20170113108A (ko) 적층 세라믹 콘덴서
JP2018101724A (ja) 積層セラミックコンデンサ
JP2017191837A (ja) 積層セラミックコンデンサ
JP2012253338A (ja) 積層セラミック電子部品
JP6513328B2 (ja) 積層セラミックコンデンサ
JP2018073900A (ja) 積層セラミックコンデンサ
JP2018067568A (ja) 積層セラミックコンデンサの製造方法
JP2019009290A (ja) 積層セラミックコンデンサ
JP4574267B2 (ja) 積層型電子部品の製法および積層型電子部品
KR101590826B1 (ko) 적층 세라믹 콘덴서
KR101952845B1 (ko) 적층 세라믹 전자부품 및 그 제조 방법
JP6878065B2 (ja) コンデンサ
JP2019016688A (ja) 積層セラミック電子部品の製造方法
JP6971036B2 (ja) 積層型電子部品
JP6301629B2 (ja) 積層型電子部品
JP2017174945A (ja) 積層型電子部品
JP2003045740A (ja) 積層型電子部品
JP6317119B2 (ja) 積層型電子部品
JP6591771B2 (ja) 積層コンデンサ
JP6306311B2 (ja) 積層型電子部品
JP2018113300A (ja) 積層電子部品の製造方法
WO2013190718A1 (ja) 積層セラミックコンデンサ
JP3716746B2 (ja) 積層セラミック電子部品及びその製造方法
JP2006128282A (ja) 積層型電子部品およびその製法
JP7312525B2 (ja) 積層セラミックコンデンサおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150