JP6870747B2 - 熱電変換素子および熱電変換素子の製造方法 - Google Patents

熱電変換素子および熱電変換素子の製造方法 Download PDF

Info

Publication number
JP6870747B2
JP6870747B2 JP2019544386A JP2019544386A JP6870747B2 JP 6870747 B2 JP6870747 B2 JP 6870747B2 JP 2019544386 A JP2019544386 A JP 2019544386A JP 2019544386 A JP2019544386 A JP 2019544386A JP 6870747 B2 JP6870747 B2 JP 6870747B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion unit
insulator
conversion element
paste layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019544386A
Other languages
English (en)
Other versions
JPWO2019064949A1 (ja
Inventor
林 幸子
幸子 林
近川 修
修 近川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2019064949A1 publication Critical patent/JPWO2019064949A1/ja
Application granted granted Critical
Publication of JP6870747B2 publication Critical patent/JP6870747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、熱電変換素子および熱電変換素子の製造方法に関する。
複数のN型の熱電変換部と複数のP型の熱電変換部とが交互に配列してなる熱電変換素子が提案されている(例えば特許文献1参照)。この熱電変換素子は、各熱電変換部の一部が熱電変換素子の外面に露出した構造を有する。また、この種の熱電変換素子には、例えばN型の熱電変換部が酸化物を含むN型酸化物半導体材料から形成され、P型の熱電変換部が金属を含むP型半導体材料から形成されたものがある。ところで、このような熱電変換素子は、硫化水素等の腐食性ガスが分散した雰囲気中で使用されると、P型の熱電変換部のうち熱電変換素子の外面に露出した部分が腐食性ガスに曝されることになる。そうすると、P型の熱電変換部に含まれる金属と腐食性ガスとが反応してP型の熱電変換部のうち、熱電変換素子の外面に露出した部分に、腐食性ガスの成分を含む不純物が形成されてしまう。この場合、P型の熱電変換部でのキャリアの移動が阻害され、熱電変換素子の出力電圧が低下してしまう。
これに対して、前述の熱電変換素子について、P型の熱電変換部の外面を腐食性ガスに対して耐性を有する絶縁体層で覆った構成が考えられる。この場合、P型の熱電変換部の腐食性ガスへの接触が防止されるので、前述のような熱電変換素子の出力電圧の低下が抑制される。
特開平11−121815号公報
ところで、前述のような、酸化物を含むN型酸化物半導体材料から形成されたN型の熱電変換部と金属を含むP型半導体材料から形成されたP型の熱電変換部とは、それらの熱膨張係数が互いに大きく異なる場合が多い。そして、前述のようにP型の熱電変換部が絶縁層で覆われている場合、P型、N型の熱電変換部の周囲温度が大きく変動したときのP型、N型の熱電変換部に加わる応力が増大する。従って、例えば熱電変換素子の製造工程に含まれる焼成工程後においてP型、N型の熱電変換部の割れが発生し易くなる虞がある。また、前述の熱電変換素子は、P型の熱電変換部の抵抗値とN型の熱電変換部の抵抗値との差分が大きくなると、その分、発電効率が低下してしまう。
本発明は、上記事由に鑑みてなされたものであり、製造工程における熱電変換部の割れの発生が低減され且つ発電効率の高い熱電変換素子および熱電変換素子の製造方法を提供することを目的とする。
本発明に係る熱電変換素子は、
複数の第1熱電変換部と、複数の第2熱電変換部と、絶縁体層と、を有し、
前記第1熱電変換部と前記第2熱電変換部とが一方向において交互に配列して接合し、
前記第1熱電変換部と前記第2熱電変換部との接合面の一部の領域において、前記第1熱電変換部と前記第2熱電変換部とが直接接合し、前記接合面の他の領域において、前記第1熱電変換部と前記第2熱電変換部との間に前記絶縁体層を介して接合し、
前記第1熱電変換部と前記第2熱電変換部との配列方向における両端に位置する第1主面および第2主面と、前記配列方向に垂直な方向における両端に位置する端面と、を有する積層体と、
前記積層体の前記第1主面および前記第2主面それぞれに設けられた電極と、を備え、
前記絶縁体層は、前記第2熱電変換部における端面を覆い、
前記配列方向における、前記第2熱電変換部の厚さに対する前記第1熱電変換部の厚さの比率は、5以上且つ11以下であり、
前記電極は、前記第1主面および前記第2主面における前記第2熱電変換部の前記配列方向への投影領域の内側に配置されている
また、本発明に係る熱電変換素子は、
記電極が、少なくとも前記第1主面または前記第2主面に接する部位がNiCrから形成されているNiCr層を備える、ものであってもよい。
また、本発明に係る熱電変換素子は、
前記NiCr層の前記配列方向における厚さが最も薄い部分の厚さが、1μm以下であってもよい。
また、本発明に係る熱電変換素子は、
前記電極が、金属膜を含む、ものであってもよい。
また、本発明に係る熱電変換素子は、
前記第1熱電変換部が、酸化物半導体であり、
前記第2熱電変換部が、金属を含む半導体であり、
前記絶縁体層が、酸化物絶縁体であってもよい。
また、本発明に係る熱電変換素子は、
前記酸化物半導体が、複合酸化物を含むN型半導体であり、
前記金属を含む半導体が、NiとMoと前記複合酸化物とを含むP型半導体であり、
前記酸化物絶縁体が、Y−ZrOを含み、
前記複合酸化物が、Sr、LaおよびTiを含む、ものであってもよい。
また、本発明に係る熱電変換素子は、
前記酸化物絶縁体が、更に、Mnを含む、ものであってもよい。
他の観点から見た本発明に係る熱電変換素子の製造方法は、
第1熱電変換部の基となる酸化物熱電変換材料シート上に、第1スリットが設けられた第1絶縁体ペースト層を形成する工程と、
前記第1絶縁体ペースト層上に、前記第1スリットを覆う金属熱電変換材料ペースト層を形成する工程と、
前記第1絶縁体ペースト層上における前記金属熱電変換材料ペースト層の周囲に第2絶縁体ペースト層を形成する工程と、
前記金属熱電変換材料ペースト層および第2絶縁体ペースト層を覆い、第2スリットが設けられた第3絶縁体ペースト層を形成する工程と、
前記酸化物熱電変換材料シート、前記金属熱電変換材料ペースト層、前記第1絶縁体ペースト層、前記第2絶縁体ペースト層および前記第3絶縁体ペースト層を含む積層体を生成する工程と、
前記積層体を焼成する工程と、を含み、
前記酸化物熱電変換材料シートおよび前記金属熱電変換材料ペースト層の厚さは、前記積層体を焼成する工程の後において、前記金属熱電変換材料ペースト層の厚さに対する前記酸化物熱電変換材料シートの厚さの比率が、5以上且つ11以下となるように設定されている。
また、本発明に係る熱電変換素子の製造方法は、
前記積層体を焼成する工程の後に電極を形成する工程を更に含んでもよい。
また、本発明に係る熱電変換素子の製造方法は、
前記電極を形成する工程において、スパッタリング法を利用して前記電極を形成してもよい。
本発明によれば、第1熱電変換部と第2熱電変換部との配列方向における、第2熱電変換部の厚さに対する第1熱電変換部の厚さの比率が、5以上である。これにより、例えば第2熱電変換部の熱膨張率が第1熱電変換部の熱膨張率に比べて大きい場合、熱電変換素子の製造工程に含まれる焼成工程直後における第1熱電変換部、第2熱電変換部に加わる応力が緩和される。従って、焼成工程直後における第1熱電変換部、第2熱電変換部の割れの発生が低減される。また、本発明によれば、第1熱電変換部と第2熱電変換部との配列方向における、第2熱電変換部の厚さに対する第1熱電変換部の厚さの比率が、5以上且つ11以下である。これにより、例えば第1熱電変換部が、Sr、La、Tiを含む複合酸化物を含み、第2熱電変換部が、NiとMoと上記複合酸化物とを含む場合、第1熱電変換部の抵抗値を第2熱電変換部の抵抗値に近づけることができるので、その分、熱電変換素子の発電効率が向上する。
実施の形態に係る熱電変換素子の斜視図である。 実施の形態に係る熱電変換素子の、図1のA−A線における断面矢視図である。 実施の形態に係る熱電変換素子を+Y方向から見た側面図である。 実施の形態に係る熱電変換素子の第1熱電変換部と電極との界面の断面図である。 実施の形態に係る熱電変換素子の製造方法の各工程を示し、(A)は第1絶縁体ペースト層を形成する工程を示す斜視図であり、(B)はP型半導体材料ペースト層を形成する工程を示す斜視図であり、(C)は第2絶縁体ペースト層を形成する工程を示す斜視図である。 実施の形態に係る熱電変換素子の製造方法の各工程を示し、(A)は第3絶縁体ペースト層を形成する工程を示す斜視図であり、(B)はN型酸化物半導体材料シートを積層する工程を示す斜視図であり、(C)は積層体シートを生成する工程を示す斜視図である。 実施の形態に係る熱電変換素子の製造方法の各工程を示し。(A)は下地層を形成する工程における断面図であり、(B)は中間層を形成する工程における断面図であり、(C)はコンタクト層を形成する工程における断面図である。 実施例および比較例に係る熱電変換素子の発電効率を示す図である。 変形例に係る熱電変換素子の断面図である。 変形例に係る熱電変換素子の断面図である。 変形例に係る熱電変換素子の断面図である。
以下、本発明の実施の形態に係る熱電変換素子について図面を参照して詳細に説明する。
図1および図2に示すように、本実施の形態に係る熱電変換素子10は、複数の第1熱電変換部13と、複数の第2熱電変換部11と、複数の絶縁体層15と、を含む積層体と、電極16と、を備える。なお、本実施の形態の説明では、図1における+Z方向を上方向、−Z方向を下方向として説明する。熱電変換素子10は、図2に示すように、下側(−Z方向側)に位置する熱源HSと上側(図1の+Z方向側)に位置し熱源よりも温度が低い冷源CSとのそれぞれに熱的に結合した状態で発電する。なお、熱源HSおよび冷源CSは、熱電変換素子10との接触面が平坦であるものとして説明する。冷源CSとしては、例えば放熱フィンや冷媒管と熱的に結合した金属平板を有するヒートシンクが採用される。熱源HSとしては、例えば工場等に設置された排熱管と熱的に結合した金属平板が採用される。また、要求される電力に応じて、複数の熱電変換素子10が直列または並列に接続した状態で使用されることもある。
複数の第1熱電変換部13と複数の第2熱電変換部11とは一方向において絶縁体層15を介して交互に配列して接合されている。以下、第1熱電変換部13と第2熱電変換部11との配列方向が、図1のY軸方向と一致しているものとして説明する。ここで、第1熱電変換部13と第2熱電変換部11との接合面の一部の領域においては、第1熱電変換部13と第2熱電変換部11とが直接接合し、前述の接合面の他の領域においては、第1熱電変換部13と第2熱電変換部11とが、絶縁体層15を介して接合している。 即ち、第2熱電変換部11は、その下部11aが+Y方向で隣り合う第1熱電変換部13の下端部13aに電気的に接続されている。また、第2熱電変換部11は、その上部11bが−Y方向で隣り合う第1熱電変換部13の上端部13bに電気的に接続されている。そして、複数の第1熱電変換部13、複数の第2熱電変換部11および絶縁体層15から積層体100が構成されている。この積層体100は、Y軸方向の両端に位置する第1主面100a、第2主面100bと、Y軸方向に垂直なZ軸方向の両端に位置する端面と、を有する。第1熱電変換部13は、Z軸方向における両端にZ軸方向に直交する端面13c、13dを有する。複数の第1熱電変換部13それぞれの端面13c、13dは、それらが同一平面内に存在するように形成されている。そして、Y軸方向における、第2熱電変換部11の厚さW1に対する第1熱電変換部13の厚さW2の比率W2/W1は、4よりも大きく且つ11以下に設定されている。ここで、第1熱電変換部13の厚さW2は、第1熱電変換部13の下端部13a、中央部13e、上端部13bそれぞれのY軸方向の厚さの平均値に相当する。また、第2熱電変換部11の厚さW1は、後述する絶縁体層15の第2絶縁体部15aに挟まれた第2熱電変換部11の厚みである。厚さW1は、第2熱電変換部11の下部11a、中央部11c、上部11bそれぞれのY軸方向の厚さの平均値に相当する。
第1熱電変換部13は、酸化物半導体である。酸化物半導体は、例えばペロブスカイト構造を有する組成式:ATiOで表される複合酸化物を含む。このような組成のものをN型半導体と定義する。ここで、組成式:ATiOにおけるAは、SrをLa1−xSrにおいて、0≦x<0.2の範囲でLaに置換されたもの、例えば(Sr0.97La0.03)TiOであってもよい。この複合酸化物を含むN型半導体は、硫化水素のような腐食性ガスや酸化性ガスに対して化学的に安定である。
第2熱電変換部11は、例えばNiMo合金とペロブスカイト構造を有する組成式:ATiOで表される複合酸化物とを含む。このような組成のものをP型半導体と定義する。言い換えると、第2熱電変換部11は、金属を含む半導体と定義される。ここで、組成式:ABOにおけるAは、SrをLa1−xSrにおいて0≦x<0.2の範囲でLaに置換されたもの、例えば(Sr0.97La0.03)TiOであってもよい。
絶縁体層15は、第1絶縁体部15bと、第2絶縁体部15aとを含む。第1絶縁体部15bと第2絶縁体部15aとは、一体成型されている。第2絶縁体部15aは、Y軸方向で隣り合う第1熱電変換部13と第2熱電変換部11との間に介在している。第1熱電変換部13と第2熱電変換部11とは、第2絶縁体部15aが形成されていない接合部15cにおいて互いに接合されている。第1絶縁体部15bは、第2熱電変換部11の±X方向、±Z方向の端部を覆っている。第1絶縁体部15bは、第2熱電変換部11の周囲を囲むように配置されている。また、第1の絶縁体部15bは、第1熱電変換部13のZ軸方向における両端面13c、13dよりも第2熱電変換部11のZ軸方向での中央部側へ窪む凹部15dを有する。即ち、絶縁体層15の端面には、第1熱電変換部13におけるX軸方向およびZ軸方向の端面13dよりも積層体のX軸方向およびZ軸方向の中心に向かって凹む凹部15dが形成されている。絶縁体層15は、電気的絶縁性を有する酸化物絶縁体材料から形成されている。この酸化物絶縁体材料としては、例えばY-ZrO、すなわち、安定化剤としてYが添加されたZrO(イットリア安定化ジルコニア)が採用される。このY-ZrOを含む酸化物絶縁体材料は、硫化水素のような腐食性ガスや酸化性ガスに対して化学的に安定である。
電極16は、図2に示すように、複数の第1熱電変換部13のうち+Y方向の端に位置する第1熱電変換部13と、−Y方向の端に位置する第1熱電変換部13と、にそれぞれ設けられている。即ち、電極16は、積層体100のY軸方向における両端面(第1主面100aおよび第2主面100b)にそれぞれ設けられている。電極16は、第1熱電変換部13、即ち、積層体100の第1主面100a、第2主面100b上に形成された下地層161と、下地層161上に積層された中間層162と、中間層162上に形成されたコンタクト層163と、を有する。下地層161、即ち、電極16における積層体100の第1主面100a、第2主面100bに接する部位は、NiCrから形成されたNiCr層である。中間層162は、NiCuから形成され、コンタクト層163は、Agから形成されている。また、下地層161、中間層162およびコンタクト層163は、いずれもスパッタリング法を利用して形成された金属膜である。そして、電極16は、図3に示すように、積層体100の第1主面100aおよび第2主面100bにおける第2熱電変換部11のY軸方向への投影領域A1の内側に配置されている。これにより、電極16と熱源HSおよび冷源CSそれぞれとの間に隙間G1、G2が形成されている。
また、図4に示すように、下地層161のY軸方向における厚さが最も薄い部分の厚さW3は、1μm以下である。中間層162およびコンタクト層163の厚みも1μm以下に設定される。このように、下地層161が中間層162およびコンタクト層163により被覆されていることにより、下地層161の酸化による劣化が抑制される。この電極16には、例えば熱電変換素子10で発電された電力を取り出すためのリード線(図示せず)がボンディングされる。この電極16に接続されたリード線は、例えば電源マネジメント回路や無線通信用回路に接続される。この場合、熱電変換素子10は、電源マネジメント回路や無線通信用回路の駆動用電源として機能する。
図2に示すように、熱電変換素子10の−Z方向の端面に熱源HSが接触し、熱電変換素子10の+Z方向の端面に冷源CSが接触しているとする。この場合、ゼーベック効果により、第1熱電変換部13において電子が+Z方向へ移動し−Z方向へ流れる電流が生じ、第2熱電変換部11において正孔が+Z方向へ移動し+Z方向へ流れる電流が生じる。これにより、熱電変換素子10には、+Y方向へ流れる電流が発生する。
次に、本実施の形態に係る熱電変換素子10の製造方法について、図5乃至図7を参照しながら説明する。この製造方法では、まず、第1熱電変換部13の基となる酸化物熱電変換材料シートであるN型酸化物半導体材料シートと、第2熱電変換部11の基となるP型半導体材料ペーストと、絶縁体層15の基となる絶縁体ペーストと、を生成する。
N型酸化物半導体材料シートの生成では、まず、SrCO、La、TiOを、Sr、La、Tiのモル比が0.97:0.03:1となるように秤量する。次に、秤量したLa、SrCO、TiOの粉末材料に純水を加えてからボールミルを用いて粉砕混合することにより、La、SrCO、TiOを含有するスラリーを生成する。続いて、生成したスラリーを乾燥させてから、それを大気中において仮焼する。これにより、(Sr0.97La0.03)TiOの粉末材料が生成される。なお、この粉末材料の粒径は、特に限定されないが、La、SrCO、TiOが均一に混合されるように決定されることが好ましい。また、仮焼の方法は特に限定されるものではない。また、仮焼の温度は1000℃以上であればどの温度であってもよい。
その後、(Sr0.97La0.03)TiOの粉末材料と、トルエン、エタノール等の有機溶媒と、ポリビニルブチラール等のバインダ材料と、を混合して、(Sr0.97La0.03)TiOを含む混合物を生成する。次に、生成した混合物をシート状に成型することにより、第1熱電変換部13の基となるN型酸化物半導体材料シートを形成する。このとき、焼成後に所定厚み、例えば40μmを超え150μm以下となるようにシート厚みを設定する。
P型半導体材料ペーストの生成では、前述の(Sr0.97La0.03)TiOの粉末材料と、Ni粉末材料と、Mo粉末材料と、を秤量する。具体的には、Ni、Moのモル比が0.9:0.1であり、NiおよびMoを合わせた重量比率が80wt.%、(Sr0.97La0.03)TiOの粉末材料の重量比率が20wt.%となるように秤量する。続いて、(Sr0.97La0.03)TiOの粉末材料と、Ni粉末材料と、Mo粉末材料と、ワニス等の有機溶剤とを、ロール機等を用いて混合することにより、第2熱電変換部11の基となるP型半導体材料ペーストを生成する。なお、Ni粉末材料および、Mo粉末材料の粒径は、特に限定されないが、(Sr0.97La0.03)TiOの粉末材料とNi粉末材料とMo粉末材料とが均一に混合されるように決定されることが好ましい。
その後、Y−ZrOの粉末材料を秤量する。具体的には、Yが3mol%、ZrOが97mol%であるZrOの粉末材料と、ワニス等の有機溶剤とを、ロール機等を用いて混合することにより絶縁ペーストが生成される。
次に、印刷技術を利用して、図5(A)に示すように、N型酸化物半導体材料シート111に第1絶縁体ペースト層115を形成する。第1絶縁体ペースト層115の厚さは約5μmである。第1絶縁体ペースト層115は、N型酸化物半導体材料シート111における第1熱電変換部13と第2熱電変換部11との接合部分に対応する部分に第1スリット115aが設けられるように形成される。
続いて、印刷技術を利用して、図5(B)に示すように、第1絶縁体ペースト層115上に、金属熱電変換材料ペースト層であるP型半導体材料ペースト層113を形成する。P型半導体材料ペースト層113の厚さは焼成後に所定厚み、例えば10μmとなるように設定する。P型半導体材料ペースト層113は、第1絶縁体ペースト層115の第1スリット115aを覆うように形成される。
その後、印刷技術を利用して、図5(C)に示すように、第1絶縁体ペースト層115上におけるP型半導体材料ペースト層113の周囲に第2絶縁体ペースト層116を形成する。この第2絶縁体ペースト層116はP型半導体材料ペースト層113と同じ厚さである。
次に、印刷技術を利用して、図6(A)に示すように、P型半導体材料ペースト層113および第2絶縁体ペースト層116を覆うように第3絶縁体ペースト層117を形成する。第3絶縁体ペースト層117の厚さは、例えば5μmである。第3絶縁体ペースト層117のP型半導体材料ペースト層113の−Z方向の端部に位置する第1熱電変換部13と第2熱電変換部11との接合部分に対応する部分には、第2スリット117aが形成されている。
続いて、図6(B)に示すように、第3絶縁体ペースト層117上にN型酸化物半導体材料シート111を積層する。以上図5(A)から図6(B)を用いて説明した一連の処理を繰り返すことにより、P型半導体材料ペースト層113と絶縁体ペースト層115、116、117とが形成されたN型酸化物半導体材料シート111を、複数枚積層する。
その後、図6(C)の矢印で示すように、等方静水圧プレス法を利用して、P型半導体材料ペースト層113および絶縁体ペースト層115、116、117が形成されたN型酸化物半導体材料シート111を圧着することにより積層体シートを生成する。この積層体シートは、N型酸化物半導体材料シート111、P型半導体材料ペースト層113、第1絶縁体ペースト層115、第2絶縁体ペースト層116および第3絶縁体ペースト層117を含む。次に、ダイシングソーを用いて、生成した積層体シートを1つの熱電変換素子10に対応する個片に切断する。積層体の個片は、焼成後に所定の大きさ、例えば約3.2mm×5.0mm×2.6mmの直方体状になる大きさで形成される。
その後、大気中において積層体の個片の脱脂処理を行ってから、この積層体の個片を、酸素分圧10−10乃至10−15MPaの還元雰囲気、温度1200℃乃至1400℃の条件で焼成する。なお、焼成方法としては、ホットプレス焼結法、SPS(Spark Plasma Sintering)焼結法またはHIP(Hot Isostatic Pressing)焼結法等を採用してもよい。また、酸素分圧は、Ni及びMoが酸化せず第1熱電変換部13の熱電特性が大きく低減しなければ他の酸素分圧であってもよい。更に、焼成時の温度は、第2熱電変換部11、第1熱電変換部13、絶縁体層15の主成分の相対密度が80%以上であり且つN型酸化物半導体材料シート111、P型半導体材料ペースト層113および絶縁体ペースト層115、116、117が共焼結する温度であれば他の温度であってもよい。これにより、積層体100が形成される。
次に、図7(A)に示すように、積層体100の第1主面100aをメタルマスクMで覆った状態で、スパッタリング法を利用して、積層体100の第1主面100aにNiCrの層を成長させて下地層161を形成する。続いて、図7(B)に示すように、積層体100の第1主面100aをメタルマスクMで覆った状態を維持したまま、スパッタリング法を利用して、積層体100の第1主面100aにNiCuの層を成長させて中間層162を形成する。その後、図7(C)に示すように、積層体100の第1主面100aをメタルマスクMで覆った状態を維持したまま、スパッタリング法を利用して、積層体100の第1主面100aにAgの層を成長させてコンタクト層163を形成する。そして、積層体100の第2主面100bについても同様にして、下地層161、中間層162およびコンタクト層163を形成する。このようにして、積層体100の第1主面100aと第2主面100bとのそれぞれに電極16が形成され、熱電変換素子10が完成する。
次に、本実施の形態に係る熱電変換素子10について、発電効率と、焼成工程後における割れ発生率と、電極の電気的特性および付着強度と、を評価した結果について説明する。発電効率および焼成工程後における割れの発生率の評価は、本実施の形態に係る熱電変換素子10と同様の構造を有する実施例1乃至4に係る熱電変換素子と、後述する比較例1乃至4に係る熱電変換素子を用いて実施した。また、電極の電気的特性および付着強度の評価は、本実施の形態に係る熱電変換素子10と同様の構造を有する実施例5に係る熱電変換素子と、後述する比較例5乃至7に係る熱電変換素子を用いて実施した。
実施例1乃至4に係る熱電変換素子として、X軸方向の長さが5乃至5.5mm、Z軸方向の長さが2.5乃至3.0mm、第2熱電変換部11を35層、第1熱電変換部13を36層備えるものを準備した。また、第2熱電変換部11の厚さW1を10μm、第1熱電変換部13の厚さW2を30μm乃至110μm、第2絶縁体部15aの厚さを4乃至7μmに設定した。一方、比較例1乃至4に係る熱電変換素子は、X軸方向、Z軸方向の長さ、第2熱電変換部11、第1熱電変換部13の層数、第2熱電変換部11の厚さW1、第2絶縁体部15aの厚さを前述の実施例1乃至4に係る熱電変換素子と同じとした。そして、第1熱電変換部13の厚さW2を30μm乃至40μmおよび130μm乃至150μmに設定した。
実施例5に係る熱電変換素子として、実施の形態に係る積層体100の第1主面100aおよび第2主面100bにNiCrから形成された電極を設けたものを準備した。実施例5に係る熱電変換素子は、X軸方向、Z軸方向の長さ、第2熱電変換部11、第1熱電変換部13の層数、第2熱電変換部11の厚さW1、第1熱電変換部13の厚さW2、第2絶縁体部15aの厚さを前述の実施例4に係る熱電変換素子と同じとした。比較例5乃至7に係る熱電変換素子として、実施の形態に係る積層体100の第1主面100aおよび第2主面100bにAg、Ni、NiMoから形成された電極を設けたものを準備した。比較例5乃至7に係る熱電変換素子は、X軸方向、Z軸方向の長さ、第2熱電変換部11、第1熱電変換部13の層数、第2熱電変換部11の厚さW1、第1熱電変換部13の厚さW2、第2絶縁体部15aの厚さを前述の実施例4に係る熱電変換素子と同じとした。
次に、発電効率と、焼成工程後における割れ発生率と、電極の電気的特性および付着強度と、を評価するための評価方法と各評価方法を実施することにより得られた評価結果とについて説明する。
発電効率の評価は、実施例1乃至4に係る熱電変換素子および比較例1乃至4に係る熱電変換素子をそれぞれ20個ずつ準備し、それらについて発電量の測定することにより行った。この発電量の測定は、熱電変換素子の下側を温度30℃の熱源HSに接触させ、熱電変換素子の上側を温度20℃の冷源CSに接触させて、熱電変換素子の上側と下側との温度差を10℃に維持した状態で行った。熱源HSとして、30℃に温度制御されたヒータを使用した。また、冷源CSとして、20℃に温度制御された冷却板を使用した。そして、電極に金属プローブを接触させて熱電変換素子に一定の電流を供給したときの出力電圧を測定した。熱電変換素子に供給する電流の電流値を複数種類の大きさに設定したときの各出力電圧を測定し、熱電変換素子に供給する電流と出力電圧との積に相当する電力の最大値を、熱電変換素子の発電量とした。そして、実施例1乃至4に係る熱電変換素子および比較例1乃至4に係る熱電変換素子について、それぞれ20個の熱電変換素子の発電量を測定し、それら発電量の平均値を算出した。また、焼成工程後における割れ発生率の評価は、実施例1乃至4に係る熱電変換素子および比較例1乃至4に係る熱電変換素子をそれぞれ100個ずつ準備し、目視で割れの有無を確認することにより行った。発電効率の評価および焼成工程後における割れ発生率の評価の結果を表1に示す。
Figure 0006870747
表1および図8に示すように、Y軸方向における第2熱電変換部11の厚さW1に対する第1熱電変換部13の厚さW2の比率である厚さ比率W2/W1が、5乃至11の場合、発電効率が4μW/mm以上になることが判った。この評価結果から、厚さ比率W2/W1が5乃至11の場合、第1熱電変換部13の抵抗値と第2熱電変換部11の抵抗値とが互いに等しい値に近づき、その分、熱電変換素子の発電効率が向上するものと考えられる。
また、表1に示すように、焼成工程後の割れ発生率は、厚さ比率W2/W1が4以下の場合、36%以上であるのに対して、厚さ比率W2/W1が5以上の場合、9%以下に低減することが判った。ここで、実施例1乃至4に係る熱電変換素子および比較例1乃至4に係る熱電変換素子について、腐食性ガスへの曝露前後における発電効率の変化の有無を評価した。この腐食性ガスへの曝露は、腐食性ガスが分散した試験槽の中に240時間放置することにより行った。試験槽内は、HSの濃度が3ppm、SOの濃度が10ppm、温度40℃、湿度85%の雰囲気で維持された。このガス腐食試験の条件は、技術基準DN8J112Aで定める屋外での一般的な使用(温泉地域等の環境負荷が大きい地域での使用を除く)を想定した条件となっている。比較例1および2に係る熱電変換素子の場合、焼成工程後の割れが発生したものについては、腐食性ガスへの曝露後、熱源HS、冷源CSに接触させても発電しなくなった。一方、実施例1乃至4および比較例3および4に係る熱電変換素子は、いずれも腐食性ガスへの曝露後において、熱源HS、冷源CSに接触させると腐食性ガスへの曝露前と略同じレベルの発電効率で発電した。このことから、熱電変換素子の耐腐食性ガス性能を維持する上で、焼成工程後の割れの発生率を低減することが重要であることが判る。従って、熱電変換素子の歩留まりを90%以上にするためには、厚さ比率W2/W1を5以上にするのが好ましい。
電極の電気的特性の評価は、実施例5乃至8に係る熱電変換素子についてデジタルマルチメータを用いて抵抗値の測定することにより行った。また、電極の付着強度の評価は、実施例5に係る熱電変換素子および比較例5乃至7に係る熱電変換素子の電極にリード線を接続してからリード線を積層体から遠ざかる方向へ引っ張り、電極の剥離が生じたときの引っ張り強度を測定することにより行った。実施例5乃至8に係る熱電変換素子をそれぞれ20個ずつ準備し、それらの抵抗値、引っ張り強度の平均値を算出した。熱電変換素子の抵抗値の平均値および引っ張り強度の平均値の評価の結果を表2に示す。
Figure 0006870747
表2に示すように、実施例5、即ち、電極を形成する材料である電極材料がAgの場合、抵抗値が98Ωと比較的高く、電極と第1熱電変換部13との電気的な接合状態が良くないことが判った。一方、実施例6乃至8、即ち、電極材料がNi、NiMo、NiCrの場合、抵抗値が5.2Ω乃至6.0Ωと比較的低く、電極と第1熱電変換部13との電気的な接合状態が良好であることが判った。但し、実施例6、7、即ち、電極材料が、Ni、NiMoの場合、引っ張り強度が1.0MPa以下と比較的低く、電極の剥離が生じ易いことが判った。これに対して、実施例8、即ち、電極材料がNiCrの場合、引っ張り強度が3.2MPaと高く、電極の剥離が生じ難いことが判った。これは、電極がNiCrから形成されている場合、電極に含まれるCrが酸化して第1熱電変換部13の表面に露出する第1熱電変換部13を構成する複合酸化物と堅固に結合することにより、電極の剥離強度が高まったためと考察される。また、実施例5、8に係る熱電変換素子の電極は、実施例6、7に係る熱電変換素子の電極に比べて、半田の濡れ性が良好であった。従って、実施例8に係る熱電変換素子の電極は、実施例5乃至7に係る熱電変換素子の電極に比べて、電極表面上に更に金属層を形成する場合に剥離強度向上の観点から有利と考察される。これらの評価結果から、電極の少なくとも第1熱電変換部13に接する部分がNiCrから形成されているほうが、電極の剥離強度向上の観点から好ましい。
本実施の形態に係る熱電変換素子10では、第2熱電変換部11の熱膨張率が第1熱電変換部13の熱膨張率に比べて大きい。これは、第1熱電変換部13が、複合酸化物から形成されているのに対して、第2熱電変換部11が、複合酸化物に比べて熱膨張率が大きいNiMo合金を80wt.%含むからである。これに対して、本実施の形態に係る熱電変換素子10では、Y軸方向における第2熱電変換部11の厚さW1に対する第1熱電変換部13の厚さW2の比率W2/W1が4よりも大きい。これにより、熱電変換素子10の焼成工程直後における第1熱電変換部13、第2熱電変換部11に加わる応力が緩和される。従って、焼成工程直後における第1熱電変換部13、第2熱電変換部11の割れの発生が低減される。また、本実施の形態に係る熱電変換素子10によれば、Y軸方向における、厚さの比率W2/W1が、4よりも大きく11以下である。これにより、第1熱電変換部13の抵抗値を第2熱電変換部11の抵抗値に近づけることができるので、その分、熱電変換素子10の発電効率が向上する。
また、本実施の形態に係る熱電変換素子10によれば、図1および図2に示すように、第2熱電変換部11の±X方向、±Z方向の端部は、腐食性ガスに対して化学的に安定している第1絶縁体部15bで覆われており第2熱電変換部11が熱電変換素子10の外面に露出していない。これにより、第2熱電変換部11を形成する材料が熱電変換素子10周囲に存在する腐食性ガスと化学的に反応して第2熱電変換部11内に不純物が形成されることが防止される。従って、熱電変換素子10の周囲に存在する腐食性ガスに起因した熱電変換素子10の電気的特性の劣化が抑制される。
ところで、前述したような、第1熱電変換部と第2熱電変換部とが絶縁体層を介して交互に配列した構成を有する熱電変換素子において、腐食性ガスに対して化学的に安定し且つ熱電変換素子全体を覆う絶縁体層を備える構成が考えられる。この構成によれば、絶縁体層により、熱電変換素子の周囲に存在する腐食性ガスの第2熱電変換部への接触が防止される。しかしながら、この構成の場合、その製造方法において、熱電変換素子全体を覆う絶縁体層を形成する工程が必要となり、工程数が増加してしまう。これに対して、本実施の形態に係る熱電変換素子10の製造方法では、熱電変換素子10全体を覆う絶縁体層を備えていないため、熱電変換素子10全体を覆う絶縁体層を形成する工程は不要である。これにより、工程数の削減による製造方法の簡素化を図ることができる。
ところで、熱電変換素子は、一般的に熱衝撃を受けやすい環境で使用される。そして、熱電変換素子が熱衝撃を受けた際、例えば電源マネジメント回路や無線通信用回路に接続される電極に熱応力が発生する。そして、電極の剥離強度が低い場合、熱電変換素子へ繰り返し熱衝撃が加えられて電極に繰り返し熱応力が発生すると、電極が剥がれてしまう虞がある。これに対して、本実施の形態に係る電極16は、積層体100の第1主面100a、第2主面100bに接する部位、即ち、下地層161がNiCrから形成されている。これにより、下地層161に含まれるCrが酸化して第1主面100a、第2主面100bに露出する第1熱電変換部13を構成する複合酸化物と堅固に結合する。従って、例えば電極16がAgまたはNiのみから形成されている場合に比べて、電極16の剥離強度を高めることができる。また、下地層161および中間層162が、いずれも合金であることから、例えば電極16がAgまたはNiのみから形成されている場合に比べて、電極16の熱伝導率が低くなる。従って、熱電変換素子10の熱源HSに接する下側から冷源CSに接する上側への熱の伝達が抑制され、その分、熱電変換素子10の上側と下側との温度差を大きくすることができるので、発電効率が高まるという利点がある。
更に、本実施の形態に係る電極16は、積層体100の第1主面100aおよび第2主面100bにおける第2熱電変換部11のY軸方向への投影領域A1の内側に配置されている。そして、電極16と熱源HSおよび冷源CSそれぞれとの間に隙間G1、G2が形成されている。これにより、電極16と熱源HSまたは冷源CSとの間での熱伝達が抑制されるとともに、第1熱電変換部13の隙間G1、G2に相当する部分での放熱性が高まる。従って、熱電変換素子10の熱源HSに接する下側から冷源CSに接する上側との温度差が大きくなるので、その分、発電効率が高まる。
また、本実施の形態に係る下地層161のY軸方向における厚さが最も薄い部分の厚さW3は、1μm以下である。これにより、下地層161のY軸方向における厚さが最も薄い部分の熱伝達が低くなる。従って、熱電変換素子10の熱源HSに接する下側から冷源CSに接する上側への熱の伝達が抑制され、その分、熱電変換素子10の上側と下側との温度差を大きくすることができるので、発電効率が高まるという利点がある。
ところで、熱電変換素子10の製造方法として、積層体の個片に電極16の基となる金属ペーストを塗布してから積層体の個片を焼成する方法が考えられる。但し、この方法の場合、積層体の個片と金属ペーストとの接合部分に熱応力が生じ、積層体の個片の焼成後に割れが生じる虞がある。これに対して、本実施の形態に係る熱電変換素子10の製造方法では、積層体の個片を焼成する工程の後に電極16を形成する。これにより、積層体の個片と電極16の基となる金属ぺーストとの接合部分に生じる熱応力に起因した積層体の個片の割れの発生を回避できるので、熱電変換素子10の製造時における歩留まりを向上させることができる。
また、本実施の形態に係る電極16は、スパッタリング法を利用して形成されている。これにより、例えば電極16が、金属を含有するペーストを焼成することにより形成される場合に比べて、電極16の厚さを薄くできる。従って、電極16から第1熱電変換部13へ加わる応力が緩和されるので、電極16を基点にした第1熱電変換部13、第2熱電変換部11等にクラックが発生することが抑制される。
更に、本実施の形態に係る第1絶縁体部15bは、硫化水素等の腐食性ガスに対して化学的に安定であるY−ZrOを含む酸化物絶縁体材料から形成されている。また、第1熱電変換部13も腐食性ガスに対して化学的に安定である複合酸化物を含むN型半導体から形成されている。これにより、硫化水素が分散した雰囲気中で熱電変換素子10が使用されても第2熱電変換部11内に硫化物が形成されることが防止される。
以上、本発明の実施の形態について説明したが、本発明は前述の実施の形態の構成に限定されるものではない。例えば、図9に示す熱電変換素子2010のように、第2熱電変換部2011の端部が平坦でない構成であってもよい。なお、図9において、実施の形態と同様の構成については図2と同一の符号を付している。ここで、第2熱電変換部2011は、第1熱電変換部13に接合される接合部2111a、2111bと、突出部2112a、2112bと、を有する。第2熱電変換部2011の下側の接合部2111aは、+Y方向で隣り合う第1熱電変換部13の下端部13aに電気的に接続されている。また、第2熱電変換部2011の上側の接合部2111bは、−Y方向で隣り合う第1熱電変換部13の上端部13bに電気的に接続されている。突出部2112a、2112bは、接合部2111a、2111bから第2熱電変換部2011のZ軸方向における中央部から離れる方向、即ち、絶縁体層2015の端面に近づく方向へ突出している。そして、突出部2112a、2112bの先端部は、Y軸方向で隣接する第1熱電変換部13に接していない。
実施の形態では、絶縁体層15が、Y−ZrOから形成される例について説明したが、絶縁体層15を形成する酸化物絶縁体材料は、これに限定されるものではない。例えば、絶縁体層15が、Mnが添加されたY-ZrOから形成されていてもよい。
本変形例に係る熱電変換素子の製造方法では、絶縁ペーストを以下のようにして生成する。Y−ZrOの粉末材料と、Mnの粉末材料と、ワニス等の有機溶剤とを、ロール機等を用いて混合することにより絶縁ペーストが生成される。ここで、Mnの粉末材料は、Y−ZrOの粉末材料を100wt%としたときに、0.2wt%となるようにする。これにより、絶縁体層にMnが含まれた熱電変換素子が製造される。なお、Mnの粉末材料の量は、熱電変換素子に要求される発電性能、N型酸化物半導体材料シート、P型半導体材料ペーストおよび絶縁体ペーストの共焼結に必要な条件によって適宜選択されてもよい。また、絶縁ペーストにMnを添加できる粉末材料であれば、Mn3に限定されるものではなく、例えばMnO、MnCO等のMnを含む化合物であってもよい。
ここで、本変形例に係る熱電変換素子について、発電効率と、焼成工程後における割れ発生率と、を評価した結果について説明する。発電効率および焼成工程後における割れの発生率の評価は、本変形例に係る熱電変換素子と同様の構造を有する実施例9乃至11に係る熱電変換素子と、比較例5および6に係る熱電変換素子と、を用いて実施した。実施例9乃至11に係る熱電変換素子は、X軸方向、Z軸方向の長さ、第2熱電変換部2011、第1熱電変換部13の層数、第2熱電変換部2011の厚さW1、第2絶縁体部15aの厚さを前述の実施例1乃至4に係る熱電変換素子と同じとした。そして、第1熱電変換部13の厚さW2を50μm乃至110μmに設定した。また、比較例5および6に係る熱電変換素子も、X軸方向、Z軸方向の長さ、第2熱電変換部2011、第1熱電変換部13の層数、第2熱電変換部2011の厚さW1、第2絶縁体部15aの厚さを前述の実施例1乃至4に係る熱電変換素子と同じとした。そして、第1熱電変換部13の厚さW2を30μm、130μmに設定した。
発電効率および焼成工程後における割れ発生率の評価方法は、前述の実施の形態に係る発電効率および焼成工程後における割れ発生率の評価方法と同様である。発電効率の評価および焼成工程後における割れ発生率の評価の結果を表3に示す。
Figure 0006870747
表3に示すように、実施例9乃至11に係る熱電変換素子の発電効率は、前述の実施例1乃至4に係る熱電変換素子の発電効率に比べて上昇した。これは、絶縁体層15にMnが添加されることにより、絶縁体層15の焼結挙動を第1熱電変換部13および第2熱電変換部2011の焼結挙動に近づき、絶縁体層15の端面の窪みが小さくなったためと考えられる。絶縁体層15の端面の窪みが小さくなると、その分、絶縁体層15と熱源HSおよび冷源CSとの間の隙間が小さくなる。この場合、第2熱電変換部2011と熱源HSまたは冷源CSとの間での絶縁体層15を介した熱伝達の効率が上昇するので、熱電変換素子の発電効率が上昇すると考えられる。また、実施例9乃至11に係る熱電変換素子の焼成工程後の割れ発生率は、前述の実施例1乃至4に係る熱電変換素子の焼成工程後の割れ発生率に比べて低減している。これは、絶縁体層15の焼結挙動を第1熱電変換部13および第2熱電変換部2011の焼結挙動に近づいたことにより、焼成工程直後に発生していた応力が緩和されたことに起因するものと考えられる。
本構成によれば、焼成工程後の割れ発生率を低減させつつ、熱電変換素子の発電効率を向上させることができる。
実施の形態では、絶縁体層15の端面に、第1熱電変換部13におけるX軸方向およびZ軸方向の端面13dよりも積層体のX軸方向およびZ軸方向の中心に向かって凹む凹部15dが形成されている熱電変換素子10について説明した。但し、絶縁体層は、必ずしもその端面に凹部が形成されているものに限定されるものではない。例えば、図10に示すように、絶縁体層3015の第1絶縁体部3015bに凹部が形成されておらず、絶縁体層3015の端面が平坦である熱変換素子3010であってもよい。なお、図10において、実施の形態1と同様の構成については図2と同一の符号を付している。このような絶縁体層3015の端面が平坦な熱電変換素子3010は、その製造工程において、例えば絶縁体層3015の基となる絶縁ペーストにMnを添加したり、その他の絶縁体層3015の形成に関する製造条件を適宜設定したりすることにより実現される。
実施の形態では、第1絶縁体部15bが、第1熱電変換部13の側面(Y軸方向の面)全体を覆っている例について説明した。但し、これに限らず、例えば図11に示すように、絶縁体層4015の第1絶縁体部4015bが、第1熱電変換部13の側面の一部を覆っていない熱電変換素子4010であってもよい。すなわち、第1熱電変換部13の側面が露出している熱電変換素子4010であってもよい。なお、図11において、実施の形態1と同様の構成については図2と同一の符号を付している。第1熱電変換部13のZ軸方向の端面と、第1絶縁体部4015bのZ軸方向の端面との間の幅W4は例えば10μm程度に設定できる。
本構成によれば、例えば熱源HSと冷源CSとが弾性材料から形成されている場合、第1熱電変換部13の、第1絶縁体部4015bで覆われずに露出している±Z方向の端部が存在する分だけ、熱源HSと冷源CSとの接触面積を増大させることができる。これにより、熱電変換素子4010と熱源HS、冷源CSとの間での伝熱効率が高くなるので、熱電変換素子4010のZ軸方向における両端部の温度差は、熱源HSと冷源CSとの温度差に近づけることができる。
実施の形態では、電極16がスパッタリング法を利用して形成される例について説明したが、電極16を形成する方法はこれに限定されない。例えば、電極16が、他の気相成長法である、真空蒸着法、イオンプレーティング法、PLD(Pulsed Laser Deposition)法、CVD(Chemical Vapor Deposition)法等により形成されてもよい。或いは、電極16が、液相成長法である、電解めっき法、無電解めっき法、ゾルゲル法等により形成されてもよい。
本構成によれば、例えば電極16が、金属を含有するペーストを焼成することにより形成される場合に比べて、電極16の厚さを薄くできる。従って、電極16から第1熱電変換部13へ加わる応力が緩和されるので、電極16を基点にした第1熱電変換部13、第2熱電変換部11等にクラックが発生することが抑制される。
実施の形態の熱電変換素子10の製造方法では、N型酸化物半導体材料シートの厚さを40μ乃至110μm、P型半導体材料ペースト層の厚さを10μm、N型酸化物半導体材料シートの積層数を35とする例について説明した。但し、N型酸化物半導体材料シートの厚さ、P型半導体材料ペースト層の厚さ、絶縁体ペースト層の厚さおよびN型酸化物半導体材料シートの積層数はこれに限定されない。これらは、熱電変換素子10に要求される出力電圧、出力電流および熱電変換素子10に接続される負荷の抵抗値等に応じて適宜変更されてもよい。
実施の形態では、電極16が、NiCrから形成された下地層161、NiCuから形成された中間層162およびAgから形成されたコンタクト層163を含む3層構造である例について説明した。但し、電極16の構造は、これに限定されるものではなく、例えばNiCrから形成された下地層上にAuまたはPtから形成されたコンタクト層が設けられた2層構造であってもよい。或いは、電極16が、NiCrのみから形成されたものであってもよい。本構成によれば、例えば電極をスパッタリング法を利用して形成する場合に、材料源の切り替え頻度を低減することができるので、電極の形成に要する時間を短縮することができる。
実施の形態の熱電変換素子10の製造方法では、N型酸化物半導体材料シートおよびP型半導体材料ペーストを生成するために、酸化物(La、TiO)と炭酸塩(SrCO)とを使用する例について説明した。但し、これに限らず、焼成により酸化物熱電変換材料を形成しうるものであれば他の化合物であってもよい。また、実施の形態に係る熱電変換素子10の製造方法では、P型半導体材料ペーストの金属の原料としてNiとMoを使用する例について説明したが、これに限らず、Moに代えてCr(クロム)またはW(タングステン)を使用してもよい。
実施の形態の熱電変換素子10の製造方法では、絶縁体ペーストを生成するために、Y−ZrO(イットリア安定化ジルコニア)の粉末材料を使用する例について説明した。また、変形例ではMnが添加されたY-ZrOの粉末材料を使用する例について説明した。但し、これに限らず、N型酸化物半導体材料およびP型半導体材料と共に焼結させることが可能であり、絶縁体ペーストを還元雰囲気で焼成して絶縁体層を形成した場合において、その絶縁体層が電気的絶縁性を有するものであれば他の種類の酸化物を使用してもよい。また、安定化剤は、Yに限定されるものではなく、他の安定化剤(例えばCaO、MgO等)であってもよい。但し、N型酸化物半導体材料シートおよびP型半導体材料ペーストに使用される材料およびその熱膨張係数から、安定化剤としてはYまたはCaOを使用することが好ましい。
以上、本発明の実施の形態および変形例(なお書きに記載したものを含む。以下、同様。)について説明したが、本発明はこれらに限定されるものではない。本発明は、実施の形態および変形例が適宜組み合わされたもの、それに適宜変更が加えられたものを含む。
本出願は、2017年9月29日に出願された日本国特許出願特願2017−191681号に基づく。本明細書中に日本国特許出願特願2017−191681号の明細書、特許請求の範囲および図面全体を参照として取り込むものとする。
10,2010,3010,4010:熱電変換素子、11,2011:第2熱電変換部、11a:下部、11b:上部、11c,13e:中央部、13:第1熱電変換部、13a:下端部、13b:上端部、13c,13d:端面、15,2015,3015,4015:絶縁体層、15a:第2絶縁体部、15b,3015b,4015b:第1絶縁体部、15c:接合部、15d:凹部、115a:第1スリット、117a:第2スリット、16:電極、100:積層体、100a:第1主面、100b:第2主面、111:N型酸化物半導体材料シート、113:P型半導体材料ペースト層、115:第1絶縁体ペースト層、116:第2絶縁体ペースト層、117:第3絶縁体ペースト層、161:下地層、162:中間層、163:コンタクト層、2111a,2111b:接合部、2112a,2112b:突出部、A1:投影領域、CS:冷源、G1,G2:隙間、HS:熱源、M:メタルマスク

Claims (10)

  1. 複数の第1熱電変換部と、複数の第2熱電変換部と、絶縁体層と、を有し、
    前記第1熱電変換部と前記第2熱電変換部とが一方向において交互に配列して接合し、
    前記第1熱電変換部と前記第2熱電変換部との接合面の一部の領域において、前記第1熱電変換部と前記第2熱電変換部とが直接接合し、前記接合面の他の領域において、前記第1熱電変換部と前記第2熱電変換部との間に前記絶縁体層を介して接合し、
    前記第1熱電変換部と前記第2熱電変換部との配列方向における両端に位置する第1主面および第2主面と、前記配列方向に垂直な方向における両端に位置する端面と、を有する積層体と、
    前記積層体の前記第1主面および前記第2主面それぞれに設けられた電極と、を備え、
    前記絶縁体層は、前記第2熱電変換部における端面を覆い、
    前記配列方向における、前記第2熱電変換部の厚さに対する前記第1熱電変換部の厚さの比率は、5以上且つ11以下であり、
    前記電極は、前記第1主面および前記第2主面における前記第2熱電変換部の前記配列方向への投影領域の内側に配置されている、
    熱電変換素子。
  2. 記電極は、少なくとも前記第1主面または前記第2主面に接する部位がNiCrから形成されているNiCr層を備える、
    請求項1に記載の熱電変換素子。
  3. 前記NiCr層の前記配列方向における厚さが最も薄い部分の厚さは、1μm以下である、
    請求項に記載の熱電変換素子。
  4. 前記電極は、金属膜を含む、
    請求項に記載の熱電変換素子。
  5. 前記第1熱電変換部は、酸化物半導体であり、
    前記第2熱電変換部は、金属を含む半導体であり、
    前記絶縁体層は、酸化物絶縁体である、
    請求項1からのいずれか1項に記載の熱電変換素子。
  6. 前記酸化物半導体は、複合酸化物を含むN型半導体であり、
    前記金属を含む半導体は、NiとMoと前記複合酸化物とを含むP型半導体であり、
    前記酸化物絶縁体は、Y−ZrOを含み、
    前記複合酸化物は、Sr、LaおよびTiを含む、
    請求項に記載の熱電変換素子。
  7. 前記酸化物絶縁体は、更に、Mnを含む、
    請求項に記載の熱電変換素子。
  8. 第1熱電変換部の基となる酸化物熱電変換材料シート上に、第1スリットが設けられた第1絶縁体ペースト層を形成する工程と、
    前記第1絶縁体ペースト層上に、前記第1スリットを覆う金属熱電変換材料ペースト層を形成する工程と、
    前記第1絶縁体ペースト層上における前記金属熱電変換材料ペースト層の周囲に第2絶縁体ペースト層を形成する工程と、
    前記金属熱電変換材料ペースト層および前記第2絶縁体ペースト層を覆い、第2スリットが設けられた第3絶縁体ペースト層を形成する工程と、
    前記酸化物熱電変換材料シート、前記金属熱電変換材料ペースト層、前記第1絶縁体ペースト層、前記第2絶縁体ペースト層および前記第3絶縁体ペースト層を含む積層体を生成する工程と、
    前記積層体を焼成する工程と、を含み、
    前記酸化物熱電変換材料シートおよび前記金属熱電変換材料ペースト層の厚さは、前記積層体を焼成する工程の後において、前記金属熱電変換材料ペースト層の厚さに対する前記酸化物熱電変換材料シートの厚さの比率が、5以上且つ11以下となるように設定されている、
    熱電変換素子の製造方法。
  9. 前記積層体を焼成する工程の後に電極を形成する工程を更に含む、
    請求項に記載の熱電変換素子の製造方法。
  10. 前記電極を形成する工程において、スパッタリング法を利用して前記電極を形成する、
    請求項に記載の熱電変換素子の製造方法。
JP2019544386A 2017-09-29 2018-08-08 熱電変換素子および熱電変換素子の製造方法 Active JP6870747B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017191681 2017-09-29
JP2017191681 2017-09-29
PCT/JP2018/029737 WO2019064949A1 (ja) 2017-09-29 2018-08-08 熱電変換素子および熱電変換素子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019064949A1 JPWO2019064949A1 (ja) 2020-04-09
JP6870747B2 true JP6870747B2 (ja) 2021-05-12

Family

ID=65901180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019544386A Active JP6870747B2 (ja) 2017-09-29 2018-08-08 熱電変換素子および熱電変換素子の製造方法

Country Status (4)

Country Link
US (1) US11223003B2 (ja)
JP (1) JP6870747B2 (ja)
CN (1) CN111149227A (ja)
WO (1) WO2019064949A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815444B2 (en) * 2021-10-14 2023-11-14 Saudi Arabian Oil Company Thermoelectric polymer system for corrosion monitoring

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121815A (ja) 1997-10-17 1999-04-30 Seiko Instruments Inc 熱電素子
JP3911957B2 (ja) * 2000-04-25 2007-05-09 松下電工株式会社 高感度赤外線検出素子およびその製造方法
JP2006203009A (ja) * 2005-01-21 2006-08-03 Yamajiyu Ceramics:Kk 焦電型赤外線検出素子および焦電型赤外線検出器
JP2009099686A (ja) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd 熱電変換モジュール
WO2009063911A1 (ja) * 2007-11-14 2009-05-22 Murata Manufacturing Co., Ltd. 熱電変換モジュール片、熱電変換モジュールおよびこれらの製造方法
JP2013251309A (ja) * 2012-05-30 2013-12-12 Nec Corp 熱電変換装置
US9748466B2 (en) * 2013-01-08 2017-08-29 Analog Devices, Inc. Wafer scale thermoelectric energy harvester
CN105474416B (zh) * 2013-08-05 2018-01-16 株式会社村田制作所 层叠型热电转换元件及其制造方法
JP5920537B2 (ja) * 2013-08-09 2016-05-18 株式会社村田製作所 積層型熱電変換素子
CN107615502B (zh) 2015-06-09 2020-06-30 株式会社村田制作所 热电变换元件、热电变换模块及电气设备
JPWO2017082042A1 (ja) * 2015-11-12 2018-08-30 株式会社村田製作所 熱電変換素子
JPWO2017163507A1 (ja) 2016-03-25 2018-11-08 株式会社村田製作所 積層型熱電変換素子

Also Published As

Publication number Publication date
WO2019064949A1 (ja) 2019-04-04
US20200212281A1 (en) 2020-07-02
JPWO2019064949A1 (ja) 2020-04-09
US11223003B2 (en) 2022-01-11
CN111149227A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
US20100218796A1 (en) Thermoelectric conversion module
JP2013026334A (ja) 積層型熱電変換モジュール
JP2014165188A (ja) 熱電変換素子
US10847703B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and electrical device
JP2011035117A (ja) 熱電変換材料
JP2021077880A (ja) 熱電素子
CN110770924B (zh) 热电转换模块及热电转换模块的制造方法
EP3723145A1 (en) Insulating heat-transfer substrate, thermoelectric conversion module, and method for manufacturing insulating heat-transfer substrate
US20180248097A1 (en) Thermoelectric conversion element
JP6870747B2 (ja) 熱電変換素子および熱電変換素子の製造方法
US20150107641A1 (en) Thermoelectric conversion material, thermoelectric conversion module using the same, and manufacturing method of the same
JP5158200B2 (ja) 熱電変換モジュールおよび熱電変換モジュールの製造方法
JP6399251B2 (ja) 熱電変換素子および熱電変換素子の製造方法
JP2012248819A (ja) 熱電変換素子およびその製造方法
US7417186B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic apparatus and cooling device comprising the element
JP5218285B2 (ja) 熱電変換材料
EP3813130A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2019009202A1 (ja) 熱電変換モジュール、及び、熱電変換モジュールの製造方法
KR20190142591A (ko) 열전 소자 모듈
JP2024030943A (ja) サーミスタ素子及びその製造方法
CN115349181A (zh) 热电转换材料、热电转换元件及热电转换模块
JP2020053471A (ja) 熱電変換モジュールおよびその製造方法
JP2002033528A (ja) 高温用熱電変換モジュール
KR20180022249A (ko) 열전 모듈
JP2008300730A (ja) 熱電素子の製造方法及び熱電素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150