JP6865497B2 - ウエーハの加工方法 - Google Patents

ウエーハの加工方法 Download PDF

Info

Publication number
JP6865497B2
JP6865497B2 JP2017123912A JP2017123912A JP6865497B2 JP 6865497 B2 JP6865497 B2 JP 6865497B2 JP 2017123912 A JP2017123912 A JP 2017123912A JP 2017123912 A JP2017123912 A JP 2017123912A JP 6865497 B2 JP6865497 B2 JP 6865497B2
Authority
JP
Japan
Prior art keywords
wafer
fine particles
polishing pad
polishing
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017123912A
Other languages
English (en)
Other versions
JP2019009291A (ja
Inventor
法久 有福
法久 有福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2017123912A priority Critical patent/JP6865497B2/ja
Publication of JP2019009291A publication Critical patent/JP2019009291A/ja
Application granted granted Critical
Publication of JP6865497B2 publication Critical patent/JP6865497B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、ウエーハにゲッタリング層を形成するウエーハの加工方法に関する。
半導体デバイス製造工程においては、複数のデバイスが形成された半導体ウエーハをストリートに沿って分割することにより、半導体デバイスを形成する。半導体デバイスの小型化及び軽量化を図るために、半導体ウエーハを分割する前に、半導体ウエーハの裏面を研削している。このように半導体ウエーハを研削すると、半導体ウエーハの裏面にマイクロクラックからなる1μm程度の研削歪層が生成される。半導体ウエーハの厚みが100μm以下に薄くなると、この研削歪層により半導体デバイスの抗折強度が低下するという問題がある。
このような問題を解消するために、半導体ウエーハを所定の厚みに研削した後、半導体ウエーハの裏面にポリッシング加工、ウエットエッチング加工、ドライエッチング加工等を施し、半導体ウエーハの裏面に生成された研削歪層を除去し、半導体デバイスの抗折強度の低下を防いでいる。
一方で、DRAMやフラッシュメモリ等のようにメモリ機能を有する半導体デバイスが複数形成された半導体ウエーハにおいては、研削歪層を除去すると、メモリ機能が低下するという問題がある。これは、半導体ウエーハ裏面の研削歪層が除去されるとゲッタリング効果が消失して、半導体ウエーハの内部に含有した銅等の金属イオンがデバイスの形成された表面側に浮遊することで電流リークが発生するためと考えられる。
このような問題を解消するために、半導体ウエーハの裏面に0.2μm以下の厚さのマイクロクラックからなるゲッタリング層を形成するための研磨パッドが提案されている(例えば、特許文献1参照)。特許文献1の研磨パッドは、シリコンと固相反応を誘発する固相反応微粒子(研磨用砥粒)と、シリコンよりモース硬度が高いゲッタリング用微粒子(ゲッタリング用砥粒)とを混入した液状結合剤を不織布に含浸させて構成されている。
この研磨パッドを用いるウエーハの加工方法では、半導体ウエーハを所定の厚みに研削した後、アルカリ溶液供給源からアルカリ溶液を供給しつつ、上記の研磨パッドで、半導体ウエーハの裏面を研磨する。これにより、固相反応微粒子が働いて、半導体ウエーハの裏面に残存した研削砥石による研削歪層を除去できる。その後、純水供給源から純水を供給しつつ、研磨パッドで半導体ウエーハの裏面を研磨する。これにより、ゲッタリング用微粒子が働いて、抗折強度を低下させない僅かな傷を半導体ウエーハの裏面に形成し、ゲッタリング層を形成することができる。
特開2015−46550号公報
しかしながら、上記の加工方法では、アルカリ性の溶液を取り扱う必要があった。また、純水供給源の他にアルカリ溶液供給源を研磨装置に設ける必要があるため、装置構成が複雑になり、コストがかかる問題があった。
本発明はかかる点に鑑みてなされたものであり、純水を供給しながら研磨パッドに含まれるアルカリ微粒子の溶解を制御して、ウエーハにゲッタリング層を良好に形成できるウエーハの加工方法を提供することを目的の一つとする。
本発明の一態様のウエーハの加工方法は、シリコン基板の表面にデバイスが形成されたウエーハを加工するウエーハの加工方法であって、ウエーハの表面に保護部材を貼着し、チャックテーブルの保持面に保護部材側を保持するウエーハ保持工程と、シリコンと固相反応を誘発する固相反応微粒子と、シリコンよりモース硬度が高くゲッタリング層を形成するためのゲッタリング用微粒子と、アルカリ微粒子とを含む研磨パッドに純水を供給しつつ、研磨パッドを所定圧でシリコン基板に押圧しつつ回転するとともにチャックテーブルを回転させて溶解したアルカリ微粒子の作用によりウエーハの裏面を研磨する研磨工程と、研磨工程を実施した後に、アルカリ微粒子の溶解度が低下する水温の純水を供給しつつ、研磨パッドを所定圧よりも低圧で押圧しつつ回転するとともにチャックテーブルを回転させながら研磨パッドによってウエーハの裏面を研磨することにより裏面に傷を付けてゲッタリング層を形成するゲッタリング層形成工程と、を含む。
この構成によれば、固相反応微粒子とゲッタリング用微粒子とともに、アルカリ微粒子が研磨パッドに含まれ、研磨パッドに純水を供給することによりアルカリ微粒子が溶解されてアルカリ溶液が生成される。よって、アルカリ溶液を取り扱う必要がなく、ウエーハを安全に加工することができる。また、アルカリ溶液を供給するためのアルカリ溶液供給源を研磨装置に設ける必要がなく、簡易な装置構成でウエーハを加工することができる。また、研磨工程においては、常温の純水を研磨パッドに供給することでアルカリ微粒子が溶解され、固相反応微粒子を働かせることができるため、ウエーハを良好に研磨できる。ゲッタリング層形成工程においては、純水をアルカリ微粒子の溶解度が低下する温度にして研磨パッドに供給することで、アルカリ微粒子の溶解が抑えられ、固相反応微粒子の働きが抑制される。これにより、ゲッタリング層形成工程でゲッタリング用微粒子を働かせることができるため、ウエーハにゲッタリング層を良好に形成できる。
本発明によれば、純水を供給しながら研磨パッドに含まれるアルカリ微粒子の溶解を制御して、ウエーハにゲッタリング層を良好に形成できる。
本実施の形態に係る研磨装置の斜視図である。 本実施の形態に係る研磨手段の模式図である。 本実施の形態に係る研磨パッドに含まれるアルカリ微粒子の純水に対する溶解度を示す図である。 本実施の形態に係るウエーハ保持工程を示す図である。 本実施の形態に係る研磨工程を示す図である。 本実施の形態に係るゲッタリング層形成工程を示す図である。
以下、添付図面を参照して、研磨装置について説明する。図1は、本実施の形態に係る研磨装置の斜視図である。なお、本実施の形態に係る研磨装置は、図1に示すような研磨専用の装置に限定されず、例えば、研削、研磨、洗浄等の一連の加工が全自動で実施されるフルオートタイプの加工装置に組み込まれてもよい。
図1に示すように、研磨装置1は、後述する研磨パッド47を用いて、化学機械研磨(CMP: Chemical Mechanical Polishing)によってウエーハWを研磨するように構成されている。ウエーハWはシリコンウエーハからなり、表面W1に複数のストリートが格子状に形成され、ストリートによって区画された領域にIC、LSI等のデバイス(不図示)が形成されている。ウエーハWの裏面W2を研削して所定の厚み(例えば100μm)にする際し、ウエーハWの表面W1に形成されるデバイスを保護するために、ウエーハWの表面W1には保護部材としての保護テープTが貼着されている。ウエーハWは、被加工面である裏面W2を上側にして後述するチャックテーブル21に保持される。
研磨装置1の基台11の上面には、Y軸方向に延在する矩形状の開口が形成され、この開口はチャックテーブル21とともに移動可能なテーブルカバー12及び蛇腹状の防水カバー13に覆われている。防水カバー13の下方には、チャックテーブル21をY軸方向に移動させる移動手段24と、チャックテーブル21を連続回転させる回転手段22とが設けられている。チャックテーブル21の表面には、多孔質のポーラス材によって保護テープTを介してウエーハWを保持する保持面23が形成されている。保持面23は、チャックテーブル21内の流路を通じて吸引源(不図示)に接続されている。
移動手段24は、基台11上に配置されたY軸方向に平行な一対のガイドレール51と、一対のガイドレール51にスライド可能に設置されたモータ駆動のY軸テーブル52とを有している。Y軸テーブル52の背面側には、ナット部(不図示)が形成され、このナット部にボールネジ53が螺合されている。そして、ボールネジ53の一端部に連結された駆動モータ54が回転駆動されることで、チャックテーブル21が一対のガイドレール51に沿ってY軸方向に動かされる。回転手段22は、Y軸テーブル52上に設けられており、チャックテーブル21をZ軸回りに回転可能に支持している。
基台11にはコラム14が設置されており、コラム14には、研磨手段41をZ軸方向に加工送りする加工送り手段31が設けられている。加工送り手段31は、コラム14に配置されたZ軸方向に平行な一対のガイドレール32と、一対のガイドレール32にスライド可能に設置されたモータ駆動のZ軸テーブル33とを有している。Z軸テーブル33の背面側にはナット部(不図示)が形成され、このナット部にボールネジ34が螺合されている。ボールネジ34の一端部に連結された駆動モータ35によりボールネジ34が回転駆動されることで、研磨手段41がガイドレール32に沿って加工送りされる。
研磨手段41は、ハウジング42を介してZ軸テーブル33の前面に取り付けられており、スピンドルユニット43の下部に研磨パッド47を設けて構成されている。スピンドルユニット43にはフランジ45が設けられ、フランジ45を介してハウジング42に研磨手段41が支持される。スピンドルユニット43の下部にはマウント44が取り付けられ、マウント44には支持基台46と研磨パッド47から構成される研磨工具48が装着される。研磨手段41には、純水の配管、及び低温の純水の配管が接続されている。
研磨装置1には、装置各部を統括制御する制御部70が設けられている。制御部70は、バルブ65、66を制御する。制御部70は、各種処理を実行するプロセッサやメモリ等により構成される。メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)等の一つ又は複数の記憶媒体で構成される。このように構成された研磨装置1では、研磨パッド47がZ軸回りに回転されながらチャックテーブル21に保持されるウエーハWに接近される。そして、研磨パッド47がウエーハWの裏面W2に回転接触することでウエーハWが研磨される。
ここで、一般に、研削後に研削歪層を除去してゲッタリング層を形成するために、まず化学機械研磨によってウエーハの裏面が研磨される。化学機械研磨においては、ウエーハにアルカリ溶液を供給しながら固相反応微粒子を作用させてウエーハが研磨されるため、アルカリ溶液を扱う必要がある。また、研磨装置にアルカリ溶液を供給するアルカリ溶液供給源を設置する必要があるため、装置構成が複雑になる。そこで、固相反応微粒子及びゲッタリング用微粒子とともに水溶性のアルカリ微粒子が含まれる研磨パッドが検討されている。この研磨パッドでは、研磨パッドに供給される純水により、研磨パッドに含まれるアルカリ微粒子が溶解されてアルカリ溶液が生成される。研磨パッドがウエーハに回転接触することによる摩擦熱により、アルカリ微粒子の溶解は促進され、ウエーハにアルカリ溶液を供給できる。これにより、アルカリ溶液供給源を設置する必要がなく、簡易な装置構成で、安全にウエーハを加工することができる。
しかしながら、研削歪層を除去後、この研磨パッドに純水を供給しながらゲッタリング用微粒子でゲッタリング層を形成する際にも、アルカリ微粒子は溶解する。このため、固相反応微粒子が作用して、ゲッタリング層が形成されるよりも強くウエーハが研磨され、ゲッタリング層を良好に形成できない問題があった。そこで、本実施の形態においては、ゲッタリング層形成工程においては、純水をアルカリ微粒子の溶解度が低下する温度にして研磨パッドの供給することにより、アルカリ微粒子の溶解を抑えて、ゲッタリング層を良好に形成する。
まず、図2を参照して、研磨パッドの構成及び純水の供給系統について詳細に説明する。図2は、本実施の形態に係る研磨手段の模式図である。図3は、本実施の形態に係る研磨パッドに含まれるアルカリ微粒子の純水に対する溶解度を示す図である。図3において、縦軸は純水100[g]に溶解する炭酸ナトリウムの量(溶解度)、横軸は純水の温度を示している。
図2に示すように、研磨パッド47は、円環状の支持基台46に貼着され研磨工具48を構成する。支持基台46はアルミ合金等によって形成されており、中央部分には研磨液が通る穴46aが開口されている。研磨パッド47は円環状に形成され、研磨パッド47の中央部分には、支持基台46に形成される穴46aに連通する穴47cが開口されている。
研磨パッド47は、シリコンと固相反応を誘発する固相反応微粒子81、シリコンよりモース硬度が高いゲッタリング用微粒子82、及びアルカリ微粒子85が液状結合材に投入され、この液状結合材を含浸させた不織布が乾燥されて形成されている。固相反応微粒子81としては、SiO、CeO、ZrO等が用いられ、固相反応微粒子81の粒径は、例えば2μmであることが好ましい。ゲッタリング用微粒子82はモース硬度が9以上であることが好ましく、ゲッタリング用微粒子82としては、ダイヤモンド、GC(Green Carbide)等のSiC、Al、WC、TiN、TaC、ZrC、AlB、BC等が用いられる。ゲッタリング用微粒子82の粒径は、例えば0.5μmであることが好ましい。
アルカリ微粒子85は、後述する純水供給源61から研磨パッド47に供給される純水により溶解した際に、生成されるアルカリ溶液がpH10以上pH12以下となるように、研磨パッド47に含まれている。アルカリ微粒子85としては、溶解する純水の温度に応じて溶解度に差が生じる物質であればよく、炭酸ナトリウム、TMAH(水酸化テトラメチルアンモニウム)、ピペラジン、水酸化カリウム、水酸化ナトリウム等であることが好ましく、炭酸ナトリウムであることがより好ましい。
また、液状結合剤としては、例えばウレタンを溶媒で溶解した液体が用いられ、溶媒としては、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、酢酸エチル等が用いられる。研磨パッド47には、固相反応微粒子81、ゲッタリング用微粒子82、及びアルカリ微粒子85が、それぞれ2種類以上含まれていてもよい。
このように構成される研磨工具48は、スピンドルユニット43の下端に取り付けられているマウント44の下面に装着される。この際、スピンドルユニット43の中心に形成される流路43aが、支持基台46及び研磨パッド47に形成される穴46a、47cに連通する。
スピンドルユニット43の流路43aには、バルブ65、66を介してそれぞれ純水供給源61、低温純水供給源62が接続されている。純水供給源61からは、常温の純水が供給され、低温純水供給源62からは、常温よりも低い温度の純水が供給される。純水供給源61の純水又は低温純水供給源62の低温純水は、流路43a及び穴46a、47cを通って研磨パッド47に供給される。純水供給源61の常温の純水は、研磨装置1が設置される工場内の配管から供給されてもよい。また低温純水供給源62の低温の純水は、工場内の配管から供給される純水が冷却設備を介して供給されてもよい。
研磨工程においてウエーハから研削歪層を除去する際は、バルブ65が開かれて、常温の純水が純水供給源61から流路43aに供給される。流路43aに供給された純水は研磨パッド47の研磨面に広がって研磨パッド47に含まれるアルカリ微粒子85が溶解される。これにより、アルカリ溶液が生成されることで、研磨工程において研磨パッド47に含まれる固相反応微粒子81が働いて、ウエーハWを研磨できる。
ゲッタリング層形成工程においてウエーハWにゲッタリング層を形成する際には、バルブ66が開かれて、アルカリ微粒子85の溶解度が低下する水温の純水が低温純水供給源62から流路43aに供給される。
ここで、図3に示すように、研磨パッド47に含まれるアルカリ微粒子85としての例えば炭酸ナトリウム(NaCO)の純水に対する溶解度は、純水の温度が約40℃以下の範囲で、純水の温度の上昇とともに高くなる。炭酸ナトリウムにおいては、純水の温度が20℃付近の常温では溶解度が約18[g]であるのに対して、純水の温度が10℃付近では溶解度が約11[g]であり、水温が低下することにより溶解度は低下する。このように、炭酸ナトリウムは、溶解する純水の温度が約40℃以下の範囲で、純水の温度による溶解度の差が大きいという性質を有している。よって、研磨パッド47に供給される純水の温度を変化させることで、研磨パッド47に含まれる炭酸ナトリウムの溶解を制御することができる。
このため、ゲッタリング層形成工程において、低温純水供給源62から研磨パッド47に供給される純水における水温としては、アルカリ微粒子85としての例えば炭酸ナトリウムの溶解度が、20℃付近の常温における溶解度と比べて低下する観点から、常温よりも低い温度であることが好ましく、10℃以下であることがより好ましい。これにより、ゲッタリング層形成工程で研磨パッド47に純水を供給した場合であっても、アルカリ微粒子85としての例えば炭酸ナトリウムの溶解度を低下させることができるため、アルカリ溶液の生成が抑えられ、固相反応微粒子81の働きが抑制される。よって、ゲッタリング層形成工程において、研磨パッド47に含まれるゲッタリング用微粒子82が働いて、ウエーハWにゲッタリング層を良好に形成できる。
以上のように、固相反応微粒子81とゲッタリング用微粒子82とともに、アルカリ微粒子が研磨パッド47に含まれ、研磨パッド47に純水を供給することによりアルカリ微粒子85からアルカリ溶液が生成されるため、研磨パッド47にアルカリ溶液を供給する必要がない。よって、アルカリ溶液を供給するためのアルカリ溶液供給源を研磨装置1に設ける必要がなく、研磨装置1を簡易な装置構成とすることができる。
以下、図4から図6を参照して、本実施の形態に係るウエーハWの加工方法について説明する。ウエーハWの加工方法は、チャックテーブル21にウエーハWを保持するウエーハ保持工程と、常温の純水を供給しながら研磨パッド47に含まれるアルカリ微粒子を溶解して研磨パッド47でウエーハWの裏面W2を研磨して切削歪層を除去する研磨工程と、常温よりも低い温度の純水を供給しながら研磨パッド47でウエーハWの裏面W2に傷を形成するゲッタリング層形成工程とを含んでいる。図4は本実施の形態に係るウエーハ保持工程、図5は本実施の形態に係る研磨工程、図6は本実施の形態に係るゲッタリング層形成工程を示す図である。
図4に示すように、まずウエーハ保持工程が実施される。所定の厚みに研削加工されたウエーハWは、保護テープTが貼着される表面W1を下側に、裏面W2を上側にしてチャックテーブル21に搬入され、ウエーハWは保護テープTを介してチャックテーブル21の保持面23に保持される。
図5に示すように、ウエーハ保持工程の後には、研磨工程が実施される。移動手段24(図1参照)によりチャックテーブル21が研磨手段41の下方に移動され、チャックテーブル21の回転軸と研磨パッド47の回転軸とがずれるように位置付けられる。
チャックテーブル21がZ軸回りに回転されるとともに、研磨パッド47もZ軸回りにチャックテーブル21と同一方向に回転される。そして、加工送り手段31(図1参照)により例えば300g/cmの研磨圧力で研磨パッド47がウエーハWの裏面W2に向けて加工送りされ、研磨パッド47の研磨面がウエーハWの裏面W2全体に回転接触されウエーハWが研磨される。このように、研磨工程の研磨圧力を、後述するゲッタリング層形成工程の研磨圧力よりも大きくすることにより、研磨パッド47がウエーハWに回転接触することによる摩擦熱が大きくなり、研磨パッド47に含まれるアルカリ微粒子85としての例えば炭酸ナトリウムが純水に溶解し易くなる。
このとき、バルブ66が閉じられ、バルブ65が開かれて純水供給源61からスピンドルユニット43内の流路43aに常温の純水が供給される。支持基台46に形成される穴46aを介して研磨パッド47に形成される穴47cに、純水が供給される。純水は研磨パッド47の穴47cから研磨面に広がり、研磨パッド47に含まれるアルカリ微粒子85としての例えば炭酸ナトリウムが溶解される。制御部70(図1参照)が、バルブ65の開閉を制御して、研磨パッド47に供給される純水の供給量を調整することで、アルカリ溶液がpH10以上pH12以下となるように生成される。これにより、ウエーハWにアルカリ溶液が供給されながらウエーハWが研磨される。なお、研磨レートは例えば0.72μm/分に設定され、研磨時間は例えば2分間に設定される。
このようにして研磨工程を実施することにより、アルカリ微粒子85が溶解してアルカリ溶液が生成される。これにより、研磨パッド47に含まれる固相反応微粒子81が強く働いて、ウエーハWの裏面W2が所定量研磨されるとともに、アルカリ溶液によりエッチングされるため、研削加工でウエーハWの裏面W2に生成された研削歪層が除去される。
図6に示すように、研磨工程の後には、ゲッタリング層形成工程が実施される。図6Aに示すように、チャックテーブル21がZ軸回りに回転されるとともに、研磨パッド47もZ軸回りにチャックテーブル21と同一方向に回転される。そして、加工送り手段31(図1参照)により、例えば50g/cmの研磨圧力で研磨パッド47がウエーハWの裏面W2に向けて加工送りされ、研磨パッド47の研磨面がウエーハWに回転接触されてウエーハWが研磨される。
このように、ゲッタリング層形成工程の研磨圧力を、研磨工程の研磨圧力よりも小さくすることにより、図5に示すよりも研磨パッド47がウエーハWに弱く押圧されるため、研磨パッド47の表面からゲッタリング用微粒子82を突出させた状態でウエーハWを研磨することができる。これにより、ゲッタリング用微粒子82がウエーハWに効果的に接触して、後述する図6Bに示すようにウエーハWにゲッタリング層を形成し易くなる。また、研磨パッド47がウエーハWに回転接触することによる摩擦熱を小さくすることができるため、研磨パッド47に含まれるアルカリ微粒子85の純水への溶解を抑制できる。
このとき、バルブ65が閉じられて流路43aへの常温の純水の供給が停止され、バルブ66が開かれて低温純水供給源62からの低温の純水の供給に切り替えられる。これにより、支持基台46に形成される穴46aを介して研磨パッド47に形成される穴47cに、例えば1分間に1.0リットルの割合で低温の純水が供給され、純水は穴47cから研磨面に広がる。
低温純水供給源62から研磨パッド47に供給される純水の温度としては、アルカリ微粒子85としての例えば炭酸ナトリウムの溶解度が低下する観点から、常温よりも低い温度であることが好ましく、10℃以下であることがより好ましい。これにより、ゲッタリング層形成工程で研磨パッド47に純水を供給した場合であっても、研磨パッド47に含まれるアルカリ微粒子85の溶解が抑えられ、固相反応微粒子81の働きが抑制される。よって、ゲッタリング層形成工程において、研磨パッド47に含まれるゲッタリング用微粒子82が働いて、後述する図6Bに示すようにウエーハWにゲッタリング層を形成できる。
また、このように研磨パッド47に低温の純水を供給することにより、研磨パッド47が冷却され、研磨パッド47の弾性率が上昇する。これにより、研磨パッド47がウエーハWに押圧される際に、研磨パッド47の表面から突出するゲッタリング用微粒子82の沈み込みが抑制される。研磨パッド47の表面のゲッタリング用微粒子82がウエーハWに効果的に接触し、ウエーハWにゲッタリング層を効率的に形成できる。
図6Bに示すように、研磨パッド47に低温の純水が供給されながら研磨パッド47がウエーハWに回転接触されている状態で、移動手段24(図1参照)により矢印Nの方向にチャックテーブル21が移動される。すなわち、ウエーハWの裏面W2が摺動されながら、チャックテーブル21の回転軸と研磨パッド47の回転軸とがY軸方向に離れるように移動される。チャックテーブル21の矢印Nで示す方向への移動は、例えば移動速度0.67mm/秒で1分間実施され、チャックテーブル21は約40mm移動される。これにより、ウエーハWの裏面W2には僅かな傷が付けられる。
このようにしてゲッタリング層形成工程を実施することにより、アルカリ微粒子85としての例えば炭酸ナトリウムからのアルカリ溶液の生成が抑えられる。これにより、研磨パッド47に含まれるゲッタリング用微粒子82が強く働いて、ウエーハWの裏面W2にゲッタリング層を形成することができる。研磨パッド47に純水を供給しながら研磨パッド47に含まれるアルカリ微粒子85の溶解を制御して、ウエーハWにゲッタリング層を安全に形成することができる。
以上のように、本実施の形態に係るウエーハWの加工方法は、固相反応微粒子81とゲッタリング用微粒子82とともに、アルカリ微粒子85が研磨パッド47に含まれ、研磨パッド47に純水を供給することによりアルカリ微粒子85が溶解されてアルカリ溶液が生成される。よって、アルカリ溶液を取り扱う必要がなく、ウエーハWを安全に加工することができる。また、アルカリ溶液を供給するためのアルカリ溶液供給源を研磨装置1に設ける必要がなく、簡易な装置構成でウエーハを加工することができる。また、研磨工程においては、常温の純水を研磨パッド47に供給することでアルカリ微粒子85が溶解され、固相反応微粒子81を働かせることができるため、ウエーハWを良好に研磨できる。ゲッタリング層形成工程においては、純水をアルカリ微粒子85の溶解度が低下する温度にして研磨パッド47に供給することで、アルカリ微粒子85の溶解が抑えられ、固相反応微粒子81の働きが抑制される。これにより、ゲッタリング層形成工程でゲッタリング用微粒子82を働かせることができるため、ウエーハWにゲッタリング層を良好に形成できる。
上記実施の形態においては、ゲッタリング層形成工程において、移動手段24によりチャックテーブル21がY軸方向に移動されることで(図1及び図6B参照)、ウエーハWの裏面W2にゲッタリング層が形成される構成としたが、これに限定されない。ウエーハWの裏面W2が摺動されながらチャックテーブル21の回転軸と研磨パッド47の回転軸とが離れるように移動されれば、研磨パッド47がチャックテーブル21に対して移動される構成としてもよい。
また、上記実施の形態においては、ウエーハWとして半導体デバイスウエーハが用いられる構成としたが、例えば、半導体基板、酸化物ウエーハが用いられてもよい。
また、上記実施の形態においては、ウエーハWの表面W1には保護テープTが貼着される構成としたが、ウエーハWの表面W1にはサブストレートが接着される構成としてもよい。
また、本実施の形態では、加工装置としてウエーハを研磨する研磨装置を例示して説明したが、この構成に限定されない。本発明は、加工対象を加工する加工具に含まれる粒子を溶解させながらウエーハWを加工する他の加工装置に適用可能である。例えば、研磨装置及びこれを組み合わせたクラスター装置等に適用されてもよい。
また、本発明の各実施の形態を説明したが、本発明の他の実施の形態として、上記各実施の形態を全体的又は部分的に組み合わせたものでもよい。
また、本発明の実施の形態は上記の各実施の形態に限定されるものではなく、本発明の技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、本発明の技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、本発明の技術的思想の範囲内に含まれ得る全ての実施態様をカバーしている。
本実施の形態では、本発明をウエーハを研磨加工する研磨装置に適用した構成について説明したが、加工具に含まれる粒子を溶解させながらウエーハWを加工する加工装置に適用することも可能である。
以上説明したように、本発明は、純水を供給しながら研磨パッドに含まれるアルカリ微粒子の溶解を制御して、ウエーハにゲッタリング層を良好に形成できるという効果を有し、特にウエーハを研磨加工する研磨装置に有用である。
1 研磨装置
21 チャックテーブル
23 保持面
46 支持基台
47 研磨パッド
48 研磨工具
61 純水供給源
62 低温純水供給源
65、66 バルブ
81 固相反応微粒子
82 ゲッタリング用微粒子
85 アルカリ微粒子
T 保護テープ(保護部材)
W ウエーハ
W1 (ウエーハの)表面
W2 (ウエーハの)裏面

Claims (1)

  1. シリコン基板の表面にデバイスが形成されたウエーハを加工するウエーハの加工方法であって、
    ウエーハの表面に保護部材を貼着し、チャックテーブルの保持面に該保護部材側を保持するウエーハ保持工程と、
    シリコンと固相反応を誘発する固相反応微粒子と、シリコンよりモース硬度が高くゲッタリング層を形成するためのゲッタリング用微粒子と、アルカリ微粒子とを含む研磨パッドに純水を供給しつつ、該研磨パッドを所定圧で該シリコン基板に押圧しつつ回転するとともに該チャックテーブルを回転させて溶解した該アルカリ微粒子の作用によりウエーハの裏面を研磨する研磨工程と、
    該研磨工程を実施した後に、該アルカリ微粒子の溶解度が低下する水温の純水を供給しつつ、該研磨パッドを該所定圧よりも低圧で押圧しつつ回転するとともに該チャックテーブルを回転させながら該研磨パッドによってウエーハの裏面を研磨することにより裏面に傷を付けてゲッタリング層を形成するゲッタリング層形成工程と、を含むことを特徴とするウエーハの加工方法。
JP2017123912A 2017-06-26 2017-06-26 ウエーハの加工方法 Active JP6865497B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017123912A JP6865497B2 (ja) 2017-06-26 2017-06-26 ウエーハの加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123912A JP6865497B2 (ja) 2017-06-26 2017-06-26 ウエーハの加工方法

Publications (2)

Publication Number Publication Date
JP2019009291A JP2019009291A (ja) 2019-01-17
JP6865497B2 true JP6865497B2 (ja) 2021-04-28

Family

ID=65027003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123912A Active JP6865497B2 (ja) 2017-06-26 2017-06-26 ウエーハの加工方法

Country Status (1)

Country Link
JP (1) JP6865497B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214704B1 (en) * 1998-12-16 2001-04-10 Memc Electronic Materials, Inc. Method of processing semiconductor wafers to build in back surface damage
JP5222626B2 (ja) * 2008-05-20 2013-06-26 富士紡ホールディングス株式会社 研磨パッドおよび研磨パッドの製造方法
JP2010225987A (ja) * 2009-03-25 2010-10-07 Disco Abrasive Syst Ltd ウェーハの研磨方法及び研磨パッド
JP5404673B2 (ja) * 2011-02-25 2014-02-05 株式会社東芝 Cmp装置、研磨パッド及びcmp方法
JP6208498B2 (ja) * 2013-08-29 2017-10-04 株式会社ディスコ 研磨パッドおよびウエーハの加工方法

Also Published As

Publication number Publication date
JP2019009291A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6208498B2 (ja) 研磨パッドおよびウエーハの加工方法
JP7015667B2 (ja) 研磨装置
TW201125031A (en) Semiconductor substrate planarization apparatus and planarization method
JP5916513B2 (ja) 板状物の加工方法
JP6723892B2 (ja) ウエーハの加工方法
US10279452B2 (en) Processing apparatus
JP2010225987A (ja) ウェーハの研磨方法及び研磨パッド
JP6192778B2 (ja) シリコンウエーハの加工装置
JP6517108B2 (ja) Cmp研磨装置
JP2018133356A (ja) 研磨パッド
JP6865497B2 (ja) ウエーハの加工方法
JP6920160B2 (ja) 研磨パッド
KR20180037113A (ko) 웨이퍼의 가공 방법 및 연마 장치
JP6846284B2 (ja) シリコンウエーハの加工方法
JP6965018B2 (ja) ウエーハの加工方法
JP6851761B2 (ja) 板状物の加工方法
JP6960788B2 (ja) ウエーハの加工方法
JP2011031359A (ja) 研磨工具、研磨装置および研磨加工方法
JP2009269128A (ja) 研削装置及び研削方法
JP6851794B2 (ja) 研磨方法
JP6979608B2 (ja) 研削装置及び研削方法
JP6761739B2 (ja) ウエーハの研磨方法
JP2019046838A (ja) エッジ研磨方法
JP6765267B2 (ja) 研磨ユニット
JP2022028781A (ja) 亀裂進展装置及び亀裂進展方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6865497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250