JP6847191B2 - 電力変換装置の制御方法および電力変換装置 - Google Patents

電力変換装置の制御方法および電力変換装置 Download PDF

Info

Publication number
JP6847191B2
JP6847191B2 JP2019232013A JP2019232013A JP6847191B2 JP 6847191 B2 JP6847191 B2 JP 6847191B2 JP 2019232013 A JP2019232013 A JP 2019232013A JP 2019232013 A JP2019232013 A JP 2019232013A JP 6847191 B2 JP6847191 B2 JP 6847191B2
Authority
JP
Japan
Prior art keywords
axis
value
command value
magnetic flux
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019232013A
Other languages
English (en)
Other versions
JP2020058231A (ja
JP2020058231A5 (ja
Inventor
戸張 和明
和明 戸張
岩路 善尚
善尚 岩路
敏 井堀
敏 井堀
敦彦 中村
敦彦 中村
浩之 富田
浩之 富田
雄作 小沼
雄作 小沼
俊文 坂井
俊文 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019232013A priority Critical patent/JP6847191B2/ja
Publication of JP2020058231A publication Critical patent/JP2020058231A/ja
Publication of JP2020058231A5 publication Critical patent/JP2020058231A5/ja
Application granted granted Critical
Publication of JP6847191B2 publication Critical patent/JP6847191B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、誘導モータを駆動する電力変換装置のドライブ制御に係わり、特に回生運転時において、誘導モータを高精度に運転する電力変換装置に関するものである。
誘導モータの回生運転時における制御方法としては、特開平8-317698号記載のように、回生運転時にはq軸二次磁束が負の値となるように周波数あるいは電圧を補正することで、磁束変化によるトルク減少を防止し、トルク不足を抑制する技術の記載がある。
特開平8-317698号
特開平8-317698号記載の方法は、回生運転時において、q軸二次磁束を負の値にするため、ロバスト性は確保される。しかし、ベクトル制御の理想状態(q軸二次磁束=0)から外れることになるので、回生運転時において、速度指令値に対する制御特性が劣化する問題があった。
そこで、本発明の目的は、回生運転時においても、安定して高精度な速度制御特性を実現できる電力変換装置の制御方法および電力変換装置を提供することにある。
本発明の電力変換装置の制御方法は、演算部が、少なくとも低速度域において、磁束軸成分であるd軸の電流により発生する磁束とトルク軸であるq軸の電流によりトルクを発生させ、力行時はq軸の二次磁束指令値が零になるように制御し、回生時はq軸の二次磁束指令値がq軸の電流指令値と同符号の一定値になるように制御することで、d軸の電圧指令値とq軸の電圧指令値を演算するステップと、前記演算部が、前記d軸の電圧指令値と前記q軸の電圧指令値に基づいて電力変換装置を制御するステップと、を備える。
また、本発明の電力変換装置は、少なくとも低速度域において、磁束軸成分であるd軸の電流により発生する磁束とトルク軸であるq軸の電流によりトルクを発生させ、力行時はq軸の二次磁束指令値が零になるように制御し、回生時はq軸の二次磁束指令値がq軸の電流指令値と同符号の一定値になるように制御することで、d軸の電圧指令値とq軸の電圧指令値を演算する演算部を有し、前記演算部は、前記d軸の電圧指令値と前記q軸の電圧指令値に基づいて自身を制御する。
本発明によれば、回生運転時においても、安定して高精度な速度制御特性を提供することができる。
実施例に係る電力変換装置の構成図。 従来技術を用いた場合の負荷運転特性。 実施例に係る周波数補正演算部の構成図。 実施例に係る補正演算部の構成図。 実施例に係る負荷運転特性。 実施例に係る補正演算部の構成図。 実施例に係る補正演算部の構成図。 実施例に係る補正演算部の構成図。 実施例に係る電力変換器の構成図。 実施例に係る周波数補正演算部の構成図。 実施例に係る電力変換器の構成図。 実施例に係る電力変換器の構成図。 実施例に係る電力変換器の構成図。 実施例に係る電力変換器の構成図。 実施例に係る電力変換器の構成図。 実施例に係る電力変換器の構成図。
以下、図面を用いて本実施例を詳細に説明する。なお、各図における共通の構成については同一の参照番号を付してある。また、以下に説明する各実施例は図示例に限定されるものではない。
<第1の実施例>
図1は、実施例に係る電力変換装置の構成図を示す。誘導モータ1は、磁束軸(d軸)成分の電流により発生する磁束と、磁束軸に直行するトルク軸(q軸) 成分の電流によりトルクを発生する。電力変換器2は、3相交流の電圧指令値Vu *、Vv *、Vw *に比例した電圧値を出力し、誘導モータ1の出力電圧値と回転周波数値を可変する。直流電源2aは、電力変換器2に直流電圧を供給する。
電流検出器3は、誘導モータ1の3相の交流電流Iu、Iv、Iwの検出値Iuc、Ivc、Iwcを出力する。電流検出器3は、誘導モータ1の3相の内の2相、例えば、U相とW相の線電流を検出し、V相の線電流は、交流条件(Iu+Iv+Iw=0)から、Iv=−(Iu+Iw)として求めてもよい。座標変換部4は、3相の交流電流Iu、Iv、Iwの検出値Iuc、Ivc、Iwcと位相推定値θdcからd軸およびq軸の電流検出値Idc、Iqcを出力する。
速度推定演算部5は、d軸の電流指令値Id *とq軸の電圧指令値Vqc **とq軸の電流検出値Iqcと出力周波数値ω1 **および誘導モータ1の電気定数(R1、R2´、M、L2、φ2d *)に基づいて、誘導モータ1の速度推定値ωr ^を出力する。すべり周波数演算部6は、d軸およびq軸の電流指令値Id *、Iq *と誘導モータ1の二次時定数T2に基づいて、誘導モータ1のすべり周波数指令値ωs *を出力する。
加算部7は、速度推定値ωr ^とすべり周波数指令値ωs *の加算値である出力周波数値ω1 *を出力する。周波数補正演算部8は、d軸の電圧補正値ΔVd *と速度推定値ωr ^に基づいて、出力周波数値ω1 *の補正値Δωを出力する。
減算部9は、出力周波数値ω1 *と出力周波数値の補正値Δωとの減算値である新たな出力周波数指令値ω1 **を出力する。位相推定演算部10は、新たな出力周波数値ω1 **を積分演算して位相推定値θdcを出力する。
d軸の電流指令設定部11は、「正極性」であるd軸の電流指令値Id *を出力する。定トルク領域では、d軸の電流指令値Id *は一定値に設定あるいは制御される。定出力領域では、Id *はトルクと回転数に対し可変に設定あるいは制御される。速度制御演算部12は、速度指令値ωr *と速度推定値ωr ^の偏差(ωr *−ωr ^)からq軸の電流指令値Iq *を出力する。
ベクトル制御演算部13は、誘導モータ1の電気定数(R1、Lσ、M、L2)と電流指令値Id *、Iq *および出力周波数値ω1 **に基づいて、d軸およびq軸の電圧基準値Vdc *、Vqc *を出力する。d軸の電流制御演算部14は、d軸の電流指令値Id *と電流検出値Idcとの偏差(Id *−Idc)からd軸の電圧補正値ΔVd *を出力する。
q軸の電流制御演算部15は、q軸の電流指令値Iq *と電流検出値Iqcとの偏差(Iq *−Iqc)からq軸の電圧補正値ΔVq *を出力する。加算部16は、d軸の電圧基準値Vdc *とd軸の電圧補正値ΔVd *との加算値である電圧指令値Vdc **を出力する。
加算部17は、q軸の電圧基準値Vqc *とq軸の電圧補正値ΔVq *との加算値である電圧指令値Vqc **を出力する。座標変換部18は、電圧指令値Vdc **、Vqc **と位相推定値θdcから3相交流の電圧指令値Vu *、Vv *、Vw *を出力する。
最初に、本実施例の特徴である周波数補正演算部8を用いない場合の速度センサレス制御方式の基本動作について説明する。
d軸の電流指令設定部11では、誘導モータ1のd軸の二次磁束値φ2dを発生させるために必要な電流指令値Id *を出力する。また、速度制御演算部12において、速度指令値ωr *に速度推定値ωr ^が一致あるいは近づくように、(数1)に示す演算よりq軸の電流指令値Iq *を演算する。
(数1)において、速度制御演算部が比例制御構成(KpASR≠0、KiASR=0)の場合、速度指令値ωr *に速度推定値ωr ^が近づく(定常偏差:ωr *−ωr ^≠0)ように追従し、比例積分制御構成(KpASR≠0 、KiASR≠0)の場合、積分動作により速度指令値ωr *に速度推定値ωr ^が一致する(定常偏差:ωr *−ωr ^=0)ように追従する。速度制御演算部を比例制御構成にするか比例積分制御構成にするかは、適用システムやシステムの安定性により決められるものである。
Figure 0006847191
ここに、
KpASR:速度制御の比例ゲイン、KiASR:速度制御の積分ゲイン
ベクトル制御演算部13では、d軸およびq軸の電流指令値Id *、Iq *と誘導モータ1の電気定数(R1、Lσ、M、L2)とd軸の二次磁束指令値φ2d *および出力周波数値ω1 **を用いて、(数2)に示す電圧基準値Vdc *、Vqc *を演算する。
Figure 0006847191
ここに、
TACR:電流制御遅れ時定数
R1:一次抵抗値、Lσ:漏れインダクタンス値、M:相互インダクタンス値
L2:二次インダクタンス値
d軸の電流制御演算部14には、d軸の電流指令値Id *と電流検出値Idcが入力され、q軸の電流制御演算部15には、q軸の電流指令値Iq *と電流検出値Iqcが入力される。ここでは、(数3)に従い、電流指令値Id *、Iq *に、各成分の電流検出値Idc、Iqcが追従するように(比例+積分)演算を行い、d軸およびq軸の電圧補正値ΔVd *、ΔVq *を出力する。
Figure 0006847191
ここに、
KpdACR:d軸の電流制御の比例ゲイン、KidACR:d軸の電流制御の積分ゲイン
KpqACR:q軸の電流制御の比例ゲイン、KiqACR:q軸の電流制御の積分ゲイン
さらに、加算部16、17において、(数4)に示す電圧指令値Vdc **、Vqc **を演算し、電力変換器2の出力を制御する。
Figure 0006847191
また、速度推定演算部5では、(数5)により誘導モータ1の速度を推定する。この速度推定演算は、外乱オブザーバにより、q軸の誘起電圧値を推定し、磁束係数で除算することによりωr ^を算出している。
Figure 0006847191
ここに、
R2´:二次抵抗値の一次側換算値
Tobs:外乱オブザーバに設定する速度推定遅れ時定数
また、すべり周波数演算部6では、(数6)に従い、誘導モータ1のすべり周波数指令値ωs *を演算している。
Figure 0006847191
ここに、
T2:二次時定数値
更に加算部7では、速度推定値ωr ^とすべり周波数指令値ωs *を用いて、(数7)に示す出力周波数値ω1 *を演算する。
Figure 0006847191
位相推定演算部8では、(数8)に従い、誘導モータ1の磁束軸の位相θdを推定している。
Figure 0006847191
磁束軸の位相θdの推定値である位相推定値θdcを制御の基準に、センサレス制御演算を実行している。以上が基本動作である。
ここからは、本実施例の特徴である周波数補正演算部8を用いた場合の制御特性について述べる。
図2に、従来技術である特開平8-317698を用いた場合の負荷運転特性のシミュレーション結果を示す。
誘導モータ1を定格速度の10%で速度制御を行った状態で、A点からB点までランプ状の回生トルクτLを-200%まで与えている。誘導モータ1内部のq軸の二次磁束φ2qは「負」で発生し、d軸の二次磁束φ2dは「正」で増加しているが、実速度値ωrは速度指令値ωr *よりも低下し、図中に示すB点以降では定常的な速度偏差Δωrが発生していることがわかる。
つまり、回生運転では、速度制御特性が劣化する問題があった。ここで、本実施例の特徴である周波数補正演算部8を用いれば、この速度制御特性を改善することができる。以下、これについて説明を行う。
図3に実施例に係る周波数補正演算部8のブロック示す。
q軸の二次磁束演算部8aでは、d軸の電圧補正値ΔVd *と速度推定値ωr ^が入力され、(数9)よりq軸の二次磁束推定値φ2q ^を算出する。
Figure 0006847191
q軸の二次磁束指令設定部8bは、q軸の二次磁束指令値φ2q *を出力する。
減算部8cでは、q軸の二次磁束推定値φ2q ^とq軸の二次磁束指令値φ2q *との偏差であるΔφ2q ^ を出力する。
補正演算部8dでは、Δφ2q ^ を抑制するように出力周波数値の補正値Δωを演算し出力する。ここで、補正演算部8dの構成について説明する。
図4は、補正演算部を(比例+積分)で構成した場合である。q軸の二次磁束推定値φ2q ^とq軸の二次磁束指令値φ2q *との偏差であるΔφ2q ^は、Kpの定数を持つ比例演算部8d1と、Ki1の定数を持つ積分演算部8d2とに入力され、それらの出力信号は加算部8d3に入力される。
つまり、(数10)に示す演算より出力周波数値の補正値Δωを演算する。
Figure 0006847191
本実施例に係る負荷運転特性のシミュレーション結果を図5に示す(図2に用いた負荷条件を設定している)。図2と図5に開示した負荷特性の結果を比較すれば、本実施例の特徴である周波数補正演算部8を用いた制御の場合、図中の誘導モータ内部のd軸およびq軸の二次磁束値φ2d、φ2qのいずれについても精度が顕著に向上しており、誘導モータの実速度値ωrの定常的な速度偏差Δωr=0 (速度指令値ωr *=実速度値ωr)であることがわかる。本実施例の周波数補正演算部8の効果は明白である。
すなわち、d軸の電圧補正値ΔVd *からq軸の二次磁束値φ2qを演算し、出力周波数値ω1 *を補正することで、φ2qの発生に係わるフィードバック・ループを追加することが本実施例の特徴であり、従来の特性である図2に比べて、より高精度な速度制御を実現することができる。
また、上記の実施例では、周波数補正演算部8内の補正演算部8dにおいて、演算構成を(比例+積分)にしているが、図6に示すように、比例と積分で構成した出力値を更に積分する構成としてもよい。図中における8d1、8d2、8d3は図4のものと同一である。図6の構成では、Ki2の定数を持つ積分演算部8d4と加算部8d5を追加している。図4の出力であった加算部8d3の出力信号に積分演算部8d4の出力信号を加算している。
つまり、(数11)により出力周波数値の補正値Δωを演算する。
Figure 0006847191
このような構成にすることで、q軸の二次磁束推定値φ2q ^を前記q軸の二次磁束指令値φ2q *に近づける作用が大きくなる。つまり、q軸の二次磁束値φ2qの抑制に係わるフィードバック・ループの安定性を向上することができ、トルク変動が少ない安定な運転を実現することができる。
さらに、周波数補正演算部8内の補正演算部8dにおいて、比例演算と積分演算のゲイン(Kp、Ki1、Ki2)は固定値としているが、図7、図8に示すように速度推定値ωr ^に応じて、変化させてもよい。
図7、図8における8d'は、それぞれ図4、図6における8dに相当するものである。図7では、q軸の二次磁束推定値φ2q ^とq軸の二次磁束指令値φ2q *との偏差であるΔφ2q ^は、速度推定値ωr ^の大きさに応じて変化するKp´を持つ比例演算部8d´1とKi'1を持つ積分演算部8d'2とに入力され、それらが加算部8d'3で加算され、出力周波数値の補正値Δωとなる。
また、図8中における8d'1、8d'2、8d'3は、図7のものと同一である。図8の構成では、速度推定値ωr ^の大きさに応じて変化するKi'2を持つ積分演算部8d'4と加算部8d'5を追加している。図7の出力であった加算部8d'3の出力信号に積分演算部8d'4の出力信号を加算している。
図7、図8において、速度推定値ωr ^の大きさに略比例して、Kp'、Ki'1、Ki'2を変化させることで、q軸の二次磁束推定値φ2q ^をq軸の二次磁束指令値φ2q *に近づける作用が速度に応じて変化する。つまり、誘導モータの低速域から高速域において、q軸の二次磁束値φ2qの発生に係わるフィードバック・ループの安定性を向上することができ、トルク変動がより少ない運転を実現することができる。
また、本実施例の電力変換器2を構成するスイッチング素子としては、Si(シリコン)半導体素子であってもSiC(シリコンカーバイト)やGaN(ガリュームナイトライド)などのワイドバンドギャップ半導体素子であってもよい。
<第2の実施例>
図9は、実施例に係る電力変換装置の構成図である。第1の実施例では、周波数補正演算部8内部のq軸の二次磁束指令値を固定値としたが、本実施例はq軸の二次磁束指令値を変化させる方式である。図において、1〜7、9〜18、2aは、図1のものと同一である。
周波数補正演算部8'は、d軸の電圧補正値ΔVd *と速度推定値ωr ^およびq軸の電流指令値Iq *に基づいて、出力周波数値ω1 *の補正値Δωを出力する。
図10に、周波数補正演算部8'の構成を示す。8a、8c、8dは第1の実施例における周波数補正演算部8と同一物である。
8eは力行/回生の運転モード判定部であり、q軸の電流指令値Iq *と速度推定値ωr ^が同符号であれば、力行運転と判断し「0」を、Iq *とωr ^が異符号であれば、回生運転と判断し「1」を出力する。8b'はq軸の二次磁束指令設定部であり、8b'では、8eの出力が「0」の場合:φ2q *はゼロ、8eの出力が「1」の場合:φ2q *をゼロあるいはq軸の電流指令値Iq *と同極性となる値を設定する。つまり、回生運転時には、φ2q *をIq *と同符号の一定値に設定あるいは制御することで、高精度かつロバスト性の高い速度制御を実現することができる。
ここで、回生運転時には、φ2q *をIq *と同符号の一定値としたが、φ2q *の大きさは、誘導モータ1の一次抵抗値の設定誤差ΔR1や電力変換器を構成するスイッチング素子のデッドタイム補償を行う際の誤差電圧値に関係してくる。
それら設定値と実際値が一致していれば、φ2q *=0で十分であるが、予めその設定誤差を考慮して、例えば、速度推定値の大きさに略反比例してφ2q *設定すると、より安定な運転を実現することが可能である。上記φ2q *の値は、一例でありこの数値に限定したものではない。
<第3の実施例>
図11は、実施例に係る電力変換器の構成図である。第1の実施例では、周波数補正演算部8の出力値より出力周波数値ω1 *を補正したが、本実施例は速度推定値ωr ^を補正する方式である。図において、1〜8、10〜18、2aは、図1のものと同一である。
減算部9'は、演算された速度推定値ωr ^から周波数補正値Δωを差し引いた新たな速度推定値ωr ^^を出力する。速度制御演算部12において、速度指令値ωr *に速度推定値ωr ^^が一致あるいは近づくように、q軸の電流指令値Iq *を演算する。
つまり、出力周波数値の代わりに、速度推定値を補正することでも、第1実施例と同様に高精度な速度制御を実現することができ、同様の効果が得られる。
<第4の実施例>
図12は、実施例に係る電力変換器の構成図である。第1から第3の実施例では、周波数補正演算部8の補正演算部8dに設定するq軸の二次磁束指令値φ2q *を1つ設定していたが、本実施例では、q軸の二次磁束指令値を2つ設定する。図において、1〜7、9〜18、2aは図1のものと同一である。
19は、q軸の二次磁束指令設定値を2つ(φ2q1 *、φ2q2 *)設定する。例えば、第一のq軸二次磁束指令設定値φ2q1 *にはゼロを、第二のq軸二次磁束指令設定値φ2q2 *にはq軸の電流指令値Iq *と同極性とするd軸の二次磁束指令φ2d *以下の値を設定する。
周波数演算部8''では、最初に、q軸の二次磁束指令値を第一のq軸二次磁束指令値(φ2q1 *)に設定して実運転を行い、その結果、トルク不足状態や過電流トリップに陥った場合は、次の演算タイミングで、自動的にq軸の二次磁束指令値を第二のq軸二次磁束指令値(φ2q2 *)に設定変更する。このように構成にすることで、最適なq軸の二次磁束指令値を設定することができる。
また、本実施例ではq軸の二次磁束指令値として、第一の設定値および第二の設定値である2つの設定値を用いて制御する方式について説明したが、3つ以上の設定値を用いて制御しても良い。このようにすれば、q軸の二次磁束指令値を数個設けることにより、どのような負荷トルク状態(トルクの大きさや傾き)でも安定で高精度な速度制御を実現することができる。
<第5の実施例>
図13は、実施例に係る電力変換器の構成図である。本実施例は、誘導モータ駆動システムに、本実施例を適用したものである。図において、構成要素の1〜18、2aは、図1のものと同一である。
図1の構成要素である誘導モータ1は、電力変換装置20により駆動される。電力変換装置20には、図1の1〜18、2aがソフトウエァー、ハードウエァーとして実装されている。
電力変換装置20のデジタル・オペレータ20bやパーソナル・コンピュータ21、タブレット22、スマートフォン23などの上位装置により、q軸の二次磁束指令値(φ2q *、φ2q1 *
φ2q2 *)の値を設定できるようにしても良い。
本実施例を誘導モータ駆動システムに適用すれば、高精度な速度制御特性を実現することができる。
また本実施例では、第1の実施例を用いて開示してあるが、第2から第4の実施例であっても良い。
ここまでの第1から第5の実施例においては、電流指令値Id *、Iq *と電流検出値Idc、Iqcから、電圧補正値ΔVd *、ΔVq *を作成し、この電圧補正値とベクトル制御の電圧基準値を加算する(数2)に示す演算を行ったが、電流指令値Id *、Iq *に電流検出値Idc、Iqcから、ベクトル制御演算に使用する(数12)に示す中間的な電流指令値Id **、Iq **を作成し、この電流指令値と、出力周波数値ω1 **および誘導モータ1の電気定数を用いて、(数13)に従い電圧指令値Vdc ***、Vqc ***を演算するベクトル制御方式や、
Figure 0006847191
ここに、KpdACR1:d軸の電流制御の比例ゲイン、
KidACR1:d軸の電流制御の積分ゲイン、
KpqACR1:q軸の電流制御の比例ゲイン、
KiqACR1:q軸の電流制御の積分ゲイン、
Td:d軸の電気時定数(Ld/R)、Tq:q軸の電気時定数(Lq/R)
Figure 0006847191
電流指令値Id *、Iq *に電流検出値Idc、Iqcから、ベクトル制御演算に使用するd軸の比例演算成分の電圧補正値ΔVd_p *、d軸の積分演算成分の電圧補正値ΔVd_i *、q軸の比例演算成分の電圧補正値ΔVq_p *、q軸の積分演算成分の電圧補正値ΔVq_i * を(数14)により演算する
Figure 0006847191
これらの電圧補正値と、出力周波数値ω1 **および誘導モータ1の電気定数を用いて、(数15)に従い電圧指令値Vdc ****、Vqc ****を演算するベクトル制御方式や、
Figure 0006847191
また、d軸の電流指令値Id *およびq軸の電流検出値Iqcの一次遅れ信号Iqctdおよび速度
指令値ωr *および誘導モータ1の電気定数を用いて、(数16)に示す出力周波数指令値ω1 ***と(数17)に示す電圧指令値Vdc *****、Vqc *****を演算する制御方式にも適用することが
できる。
Figure 0006847191
Figure 0006847191
ここまでの第1から第6の実施例においては、速度推定演算部5では、(数5)に従い速度推定値を演算していたが、q軸電流制御で、電流制御と速度推定を併用する方式でも良い。
(数18)に示すように、速度推定値ωr ^^^を演算する。
Figure 0006847191
ここに、
KpqACR2:電流制御の比例ゲイン、KiqACR2:電流制御の積分ゲイン
さらに、ここまでの第1から第5の実施例においては、速度推定演算部5において、(数5)に従い速度推定値を演算したが、図14に開示したように、誘導モータ1に速度検出用エンコーダ26を取りつけ、エンコーダ信号から速度検出値を演算する方式でも良い。
この場合には、誘導モータ1に速度検出用のエンコーダを取りつけ、実施例1から実施例5に開示した速度推定演算部5の代わりに速度検出演算部5'を設けることにより、誘導モータ1の実速度値(速度検出値)ωrdを正確に検出することが可能である。
<第6の実施例>
図15は、実施例に係る電力変換器の構成図である。図15における構成要素の8の代替として8'または8''、9の代替として9'の要素で構成しても同様の効果が得られる。異なるのは、速度指令値ωr *ではなく出力周波数ω1r *が指令値として与えられている点である。
出力周波数指令値ω1r *からすべり周波数指令値ωs *を減算部24で減算し、速度指令値ωr *を出力する。
図14に開示したように、速度推定演算部5の代わりに速度検出演算部5'を設けることにより、誘導モータ1の速度推定値ωr ^の代替として速度検出値ωrdを演算する方式でも良い。
<第7の実施例>
図16は、実施例に係る電力変換器の構成図である。図16における構成要素の8の代替として8'または8''、9の代替として9'の要素で構成しても同様の効果が得られる。異なるのは、速度指令値ωr *ではなく出力周波数ω1r *を指令値として与え、出力周波数指令値ω1r *から出力周波数値ω1 *を減算部25で減算し、速度制御演算部の入力信号としている点である。図14に開示したように、速度推定演算部5の代わりに速度検出演算部5'を設けることにより、誘導モータ1の速度推定値ωr ^の代替として速度検出値ωrを演算する方式でも良い。
以上のように、実施例における特徴となる構成として、誘導モータの速度推定値あるいは速度検出値を出力するステップと、前記誘導モータのすべり周波数指令値を出力するステップと、電流制御の補正電圧値から算出した二次磁束推定値が二次磁束指令値に一致あるいは近づくように周波数補正値を演算する周波数補正値演算ステップと、前記速度推定値あるいは前記速度検出値と、前記周波数指令値と、前記周波数補正値と、に基づいて、電力変換装置の出力周波数値を制御する制御ステップと、を備えることを特徴とする電力変換装置の制御法である(構成1)。
また、構成1に記載の電力変換装置の制御法であって、前記周波数補正値演算ステップでは、d軸電流制御の補正電圧値から算出したq軸の二次磁束推定値がq軸の二次磁束指令値に一致あるいは近づくように周波数補正値を演算することを特徴とする電力変換装置の制御法である(構成2)。
また、構成2に記載の電力変換装置の制御法であって、前記誘導モータのd軸(磁束成分)およびq軸(トルク成分)の電流検出値と、前記電力変換装置の出力周波数値と、前記誘導モータの電気定数とd軸およびq軸の電流指令値に基づいた電圧基準値と、前記d軸およびq軸の電流指令値に従い前記d軸およびq軸の電流検出値を制御する電流制御の補正電圧値と、前記電圧基準値と前記電流制御の補正電圧値から演算したd軸およびq軸の電圧指令値と、電力変換装置の出力周波数値を積分演算した位相推定値と、前記d軸およびq軸の電圧指令値から演算した3相交流の電圧指令値と、3相交流の電圧指令値と、に従い制御されるスイッチング素子から構成される電力変換器を備えることを特徴とする電力変換装置の制御法である(構成3)。
また、構成1乃至3のいずれかに記載の電力変換装置の制御法であって、前記制御ステップでは、前記周波数補正値により、前記すべり周波数指令値あるいは前記速度推定値のどちらか一方の補正を実行することを特徴とする電力変換装置の制御法である(構成4)。
また、構成1乃至4のいずれかに記載の電力変換装置の制御法であって、前記q軸の二次磁束推定値が、前記q軸の二次磁束指令値に一致あるいは近づくように演算した周波数補正値は、比例演算値と積分演算値で構成したことを特徴とする電力変換装置の制御法である(構成5)。
また、構成1乃至4のいずれかに記載の電力変換装置の制御法であって、前記q軸の二次磁束推定値が、前記q軸の二次磁束指令値に一致あるいは近づくように演算した周波数補正値は、比例演算と積分演算で構成した出力値を更に積分演算することで構成したことを特徴とする電力変換装置の制御法である(構成6)。
また、構成5または6に記載の電力変換装置の制御法であって、前記制御ステップでは、前記誘導モータの速度推定値あるいは速度検出値または速度指令値に基づいて、比例演算と積分演算で構成した制御ゲインを自動修正することを特徴とする電力変換装置の制御法である(構成7)。
また、構成1乃至4のいずれかに記載の電力変換装置の制御法であって、前記q軸の二次磁束指令値は、力行モード時の場合は、ゼロ、回生モード時の場合は、ゼロあるいはトルク指令値あるいはq軸の電流指令値と同極性に設定あるいは制御することを特徴とする電力変換装置の制御法である(構成8)。
また、構成7あるいは8に記載の電力変換装置の制御法であって、前記制御ゲインあるいは前記q軸の二次磁束指令値は、電力変換器を含む電力変換装置内に搭載されているマイクロ・コンピュータ内部メモリなどに設定し、デジタル・オペレータやパーソナル・コンピュータあるいはタブレット、スマートフォン機器を接続して、前記値を自由に設定・変更できることを特徴とする電力変換装置の制御法である(構成9)。
また、構成9に記載の電力変換装置の制御方法であって、前記q軸の二次磁束指令値は、少なくとも2つ以上が設定可能で、1つ目に設定した値で正しく運転ができなかった場合は、次の2つ目以降を自動的に設定することを特徴とする電力変換装置の制御法である(構成10)。
また、誘導モータの速度推定値あるいは速度検出値を出力する速度検出演算部と、 前記誘導モータのすべり周波数指令値を出力するすべり周波数演算部と、電流制御の補正電圧値から算出した二次磁束推定値が二次磁束指令値に一致あるいは近づくように周波数補正値を演算する周波数補正演算部と、前記速度推定値あるいは前記速度検出値と、前記周波数指令値と、前記周波数補正値と、に基づいて、電力変換装置の出力周波数値を制御する制御部と、を備えることを特徴とする電力変換装置である(構成11)。
また、構成11に記載の電力変換装置であって、前記周波数補正演算部は、d軸電流制御の補正電圧値から算出したq軸の二次磁束推定値がq軸の二次磁束指令値に一致あるいは近づくように周波数補正値を演算することを特徴とする電力変換装置の制御法である(構成12)。
また、構成12に記載の電力変換装置であって、前記誘導モータのd軸(磁束成分)およびq軸(トルク成分)の電流検出値と、前記電力変換装置の出力周波数値と、前記誘導モータの電気定数とd軸およびq軸の電流指令値に基づいた電圧基準値と、前記d軸およびq軸の電流指令値に従い前記d軸およびq軸の電流検出値を制御する電流制御の補正電圧値と、前記電圧基準値と前記電流制御の補正電圧値から演算したd軸およびq軸の電圧指令値と、電力変換装置の出力周波数値を積分演算した位相推定値と、前記d軸およびq軸の電圧指令値から演算した3相交流の電圧指令値と、3相交流の電圧指令値と、に従い制御されるスイッチング素子から構成される電力変換器を備えることを特徴とする電力変換装置である(構成13)。
1…誘導モータ、2…電力変換器、2a…直流電源、3…電流検出器、4…座標変換部、
5…速度推定演算部、6…すべり周波数演算部、7…加算部、8、8´、8´´…周波数補正演算部、9、24…減算部、10…位相推定演算部、11…d軸電流指令設定部、12…速度制御演算部、13…ベクトル制御演算部、14…d軸電流制御演算部、15…q軸電流制御演算部、16、17、25…加算部、18…座標変換部、20…電力変換装置、20a…電力変換装置の中身、22…パ
ーソナル・コンピュータ、23…タブレット、24…減算部、25…減算部、26…速度検出用エンコーダ、Id *…d軸電流指令値、Iq *…q軸電流指令値、ωr…誘導モータ1の速度、ωr ^…速度推定値、ωr ^^…新しい速度推定値、ωrd…速度検出値、ωs…誘導モータ1のすべり、ωs *…すべり周波数指令値、ω1r *…出力周波数指令値、ω1r…出力周波数値、ω1 *…誘導モータ1の出力周波数値、ω1 **…新しい出力周波数値、Δω…出力周波数値の補正量、θdc…位相推定値、ωr *…速度指令値、Vdc *…d軸の電圧指令の基準値、Vqc *…q軸の電圧指令の基準値、Vdc **、Vdc ***、Vdc ****、Vdc *****…d軸の電圧指令値、Vqc **、Vqc ***、Vqc ****、Vqc *****…q軸の電圧指令値

Claims (6)

  1. 演算部が、少なくとも低速度域において、磁束軸成分であるd軸の電流により発生する磁束とトルク軸であるq軸の電流によりトルクを発生させ、力行時はq軸の二次磁束指令値が零になるように制御し、回生時はq軸の二次磁束指令値がq軸の電流指令値と同符号の一定値になるように制御することで、d軸の電圧指令値とq軸の電圧指令値を演算するステップと、
    前記演算部が、前記d軸の電圧指令値と前記q軸の電圧指令値に基づいて電力変換装置を制御するステップと、
    を備える電力変換装置の制御方法。
  2. 前記演算部が、d軸の電流指令値とq軸の電圧指令値とq軸の電流検出値と出力周波数値、および誘導モータの電気定数に基づいて速度推定値を出力するステップ、
    を更に備える請求項1に記載の電力変換装置の制御方法。
  3. 前記演算部は、前記q軸の二次磁束推定値を所定値に維持させるようにd軸の電圧指令値とq軸の電圧指令値を演算するステップにおいて、比例演算と積分演算で構成した出力値を用いる、
    ことを特徴とする請求項に記載の電力変換装置の制御方法。
  4. 前記演算部が、比例演算と積分演算で構成した前記出力値を更に積分演算することで、前記q軸の二次磁束推定値を所定値に維持させる、
    ことを特徴とする請求項3に記載の電力変換装置の制御方法。
  5. 前記演算部が、前記速度推定値に比例して、比例演算の制御ゲインと積分演算の制御ゲインとを変化させることを特徴とする請求項3または4に記載の電力変換装置の制御方法。
  6. 少なくとも低速度域において、磁束軸成分であるd軸の電流により発生する磁束とトルク軸であるq軸の電流によりトルクを発生させ、力行時はq軸の二次磁束指令値が零になるように制御し、回生時はq軸の二次磁束指令値がq軸の電流指令値と同符号の一定値になるように制御することで、d軸の電圧指令値とq軸の電圧指令値を演算する演算部を有し、
    前記演算部は、前記d軸の電圧指令値と前記q軸の電圧指令値に基づいて自身を制御する、
    ことを特徴とする電力変換装置。
JP2019232013A 2019-12-23 2019-12-23 電力変換装置の制御方法および電力変換装置 Active JP6847191B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019232013A JP6847191B2 (ja) 2019-12-23 2019-12-23 電力変換装置の制御方法および電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232013A JP6847191B2 (ja) 2019-12-23 2019-12-23 電力変換装置の制御方法および電力変換装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018202350A Division JP6641445B2 (ja) 2018-10-26 2018-10-26 電力変換装置の制御方法および電力変換装置

Publications (3)

Publication Number Publication Date
JP2020058231A JP2020058231A (ja) 2020-04-09
JP2020058231A5 JP2020058231A5 (ja) 2020-05-21
JP6847191B2 true JP6847191B2 (ja) 2021-03-24

Family

ID=70107943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232013A Active JP6847191B2 (ja) 2019-12-23 2019-12-23 電力変換装置の制御方法および電力変換装置

Country Status (1)

Country Link
JP (1) JP6847191B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7217833B1 (ja) * 2022-11-30 2023-02-03 日立ジョンソンコントロールズ空調株式会社 モータ駆動装置、電気定数測定方法および冷凍機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489987A (en) * 1987-09-29 1989-04-05 Toshiba Corp Controller for induction machine
JP3185604B2 (ja) * 1995-05-19 2001-07-11 株式会社日立製作所 誘導機の制御装置
JP3815113B2 (ja) * 1999-04-23 2006-08-30 株式会社日立製作所 誘導電動機の制御方法
JP2001238499A (ja) * 2000-02-24 2001-08-31 Hitachi Ltd 誘導電動機の速度制御方法
JP6431788B2 (ja) * 2015-03-05 2018-11-28 株式会社日立産機システム 電力変換装置およびその制御法

Also Published As

Publication number Publication date
JP2020058231A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6431788B2 (ja) 電力変換装置およびその制御法
JP3860031B2 (ja) 同期電動機制御装置、同期電動機の制御方法
JP3944955B2 (ja) 誘導電動機の誘導起電力推定方法、速度推定方法、軸ずれ補正方法及び誘導電動機制御装置
JP5271543B2 (ja) 誘導電動機の制御装置
JP5418961B2 (ja) 誘導電動機の制御装置
JP6641445B2 (ja) 電力変換装置の制御方法および電力変換装置
JP6847191B2 (ja) 電力変換装置の制御方法および電力変換装置
JP2016096666A (ja) モータ制御装置
JP5499594B2 (ja) 永久磁石形同期電動機の制御装置
CN110235355B (zh) 感应电动机的速度推测方法和使用它的电力转换装置
JP2023074899A (ja) 電力変換装置
JP7251424B2 (ja) インバータ装置及びインバータ装置の制御方法
JP6590196B2 (ja) 電力変換装置
JP6421014B2 (ja) 電力変換装置および電力変換装置の制御方法
JPH089697A (ja) 誘導電動機のベクトル制御装置
JP6680104B2 (ja) モータの制御装置、及び、制御方法
JP6794693B2 (ja) 誘導電動機の制御装置
WO2019082441A1 (ja) 電力変換装置およびその制御方法
JP6573213B2 (ja) 永久磁石形同期電動機の制御装置
JP6497584B2 (ja) 永久磁石形同期電動機の制御装置
JP4005510B2 (ja) 同期電動機の駆動システム
JP2023081611A (ja) 電力変換装置
WO2022137612A1 (ja) 電力変換装置
JP2011067067A (ja) 永久磁石形同期電動機の制御装置
JP2014090643A (ja) 永久磁石形同期電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6847191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150