WO2022137612A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022137612A1
WO2022137612A1 PCT/JP2021/025871 JP2021025871W WO2022137612A1 WO 2022137612 A1 WO2022137612 A1 WO 2022137612A1 JP 2021025871 W JP2021025871 W JP 2021025871W WO 2022137612 A1 WO2022137612 A1 WO 2022137612A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
conversion device
power conversion
value
control
Prior art date
Application number
PCT/JP2021/025871
Other languages
English (en)
French (fr)
Inventor
和明 戸張
雄作 小沼
卓也 杉本
弘 渡邊
睦男 渡嘉敷
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2022137612A1 publication Critical patent/WO2022137612A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/028Synchronous motors with four quadrant control

Definitions

  • the present invention relates to a power conversion device.
  • the q-axis secondary magnetic flux is estimated from the output of the d-axis current control, and the slip frequency command is set so that the estimated secondary magnetic flux follows zero.
  • the slip frequency command is set so that the estimated secondary magnetic flux follows zero.
  • the d-axis voltage correction value ⁇ V d * _ pi which is the output of the d-axis current control composed of PI (proportional / integral) control, the speed estimation value ⁇ r ⁇ , and the electric circuit parameters of the magnet motor (mutually).
  • the q-axis secondary magnetic flux ⁇ 2q is estimated based on (Equation 1) using the inductance M and the secondary inductance L 2 ).
  • the correction value of the slip frequency command value ⁇ s * so as to suppress the deviation of ⁇ ⁇ 2 q, which is the deviation between the command value ⁇ 2 q * of the q-axis secondary magnetic flux and the estimated value ⁇ 2 q ⁇ of the q-axis secondary magnetic flux.
  • the d -axis current control is PI control, which is the error of the voltage drop related to the primary resistance R 1 in the low speed range (R 1 ⁇ R 1 * ) id, and the voltage related to the leakage inductance L ⁇ in the medium and high speed range.
  • the drop error ⁇ 1 (L ⁇ -L ⁇ * ) i q is included in the d-axis voltage correction value ⁇ V d * _ pi .
  • R 1 * and L ⁇ * are the electric circuit parameters of the induction motor 1 used for the calculation of the vector control.
  • An object of the present invention is to provide a power conversion device that operates an induction motor with high accuracy even if there is an error between the measured value of the motor and the set value of the motor control in the operation during regeneration or field weakening. To do.
  • a preferred example of the present invention is a power converter having a power converter that outputs a voltage that makes the output frequency variable to an induction motor and a control unit that outputs a voltage command to the power converter.
  • the control unit calculates the current control output of the d-axis, which is the magnetic flux axis, calculates the current control output of the d-axis, and outputs the voltage command of the q-axis so that the output of the calculation follows zero. It is a power converter.
  • FIG. 3 is a configuration diagram of a PI control calculation unit in the voltage correction calculation unit according to the first embodiment. Control characteristics at 0.7p.u speed without the examples. Control characteristics at 0.7p.u speed when using the examples. Control characteristics at 1.7p.u velocities when using the examples.
  • the block diagram of another power conversion apparatus and the like which concerns on Example 2.
  • FIG. The block diagram of another voltage correction calculation unit which concerns on Example 2.
  • the block diagram of another power conversion apparatus and the like which concerns on Example 3.
  • FIG. 1 shows a configuration diagram of a power conversion device and an induction motor in the first embodiment.
  • the induction motor 1 generates torque by the magnetic flux generated by the current of the magnetic flux axis (d-axis) component and the current of the torque axis (q-axis) component orthogonal to the magnetic flux axis.
  • This embodiment relates to the control of a power conversion device that drives an inductive motor by speed sensorless control, and particularly to a power conversion device that operates the inductive motor with high accuracy in operation during regeneration or field weakening.
  • the power converter 2 includes a semiconductor element as a switching element.
  • the power converter 2 inputs the voltage command values v u *, v v *, v w * of the three-phase AC, and the voltage proportional to the voltage command values v u * , v v * , v w * of the three - phase AC . Output the value.
  • the induction motor 1 is driven based on the output of the power converter 2, and the output voltage value and the output frequency value of the induction motor 1 are variable.
  • An IGBT Insulated Gate Bipolar Transistor
  • the DC power supply 3 supplies a DC voltage and a DC current to the power converter 2.
  • the control unit includes a coordinate conversion unit 5, a speed control calculation unit 6, a d-axis current magnetic flux setting unit 7, a vector control calculation unit 8, a voltage correction calculation unit 9, a frequency / phase estimation calculation unit 10, and a coordinate conversion unit described below. 11 is provided.
  • the control unit and the control unit control the power converter 2.
  • the control unit is composed of semiconductor integrated circuits (arithmetic control means) such as a microcomputer (microcomputer) and a DSP (Digital Signal Processor). Either or all of the control unit can be configured with hardware such as ASIC (Application Specific Integrated Circuit) and FPGA (Field Programmable Gate Array).
  • the CPU Central Processing Unit
  • the control unit reads a program held in a recording device such as a memory and executes processing of each unit such as the coordinate conversion unit 5 described above.
  • the coordinate conversion unit 5 has three-phase AC currents i u , i v , i w AC current detection values i uc , i vc , i w c and phase command values ⁇ dc to d-axis current detection values i dc , and q.
  • the current detection value of the shaft, i qc is output.
  • the speed control calculation unit 6 outputs the q-axis current command value i q * calculated based on the frequency command value ⁇ r * and the frequency estimation value ⁇ r ⁇ .
  • the d-axis current magnetic flux setting unit 7 outputs the d-axis current command value i d * and the d-axis secondary magnetic flux command value ⁇ 2 d * .
  • the vector control calculation unit 8 has a d-axis secondary magnetic flux command value ⁇ 2d * , a d-axis and q-axis current command values i d * , i q * , and d-axis and q-axis current detection values i dc , i q c . , Outputs the calculated d-axis and q-axis voltage command values v dc ** , v qc ** and d-axis current control output ⁇ v d * based on the output frequency command value ⁇ 1 * .
  • the voltage correction calculation unit 9 adds the voltage correction value ⁇ v dq * calculated based on the q-axis current command value i q * and the d-axis current control output ⁇ v d * to the q-axis voltage command value v qc ** .
  • the frequency / phase estimation calculation unit 10 is based on the q-axis voltage command value v qc *** , the q-axis current command value i q * , the q-axis current detection value i qc , and the d-axis secondary magnetic flux command value ⁇ 2 d * .
  • the calculated frequency estimation value ⁇ r ⁇ , output frequency command value ⁇ 1 * , and phase command value ⁇ dc are output.
  • the coordinate conversion unit 11 has voltage command values v dc ** and v qc *** on the d-axis and q-axis, and voltage command values v u * , v v * , v w for three-phase AC from the phase command value ⁇ dc . * Output.
  • the speed control calculation unit 6 performs the q-axis current command value i q * which is a torque current command according to (Equation 4) by proportional control and integral control so that the frequency estimated value ⁇ r ⁇ follows the frequency command value ⁇ r * .
  • K sp proportional gain of speed control
  • K si integrated gain of speed control
  • the vector control calculation unit 8 uses the d-axis secondary magnetic flux command value ⁇ 2d * , the d-axis and q-axis current command values i d * , i q * , and the output frequency command value ⁇ 1 * ( Calculate the voltage command values v dc * and v qc * on the d-axis and q-axis according to Equation 5).
  • T acr Time constant equivalent to current control delay
  • R 1 Primary resistance value
  • L ⁇ Leakage inductance value
  • M Mutual inductance value
  • L 2 Secondary side inductance value
  • the vector control calculation unit 8 proportionally controls the d-axis current command value i d * so that the d-axis current detection value i dc follows, and the q-axis current command value i q * is the q-axis current detection value i.
  • the voltage correction values ⁇ v d * and ⁇ v q * on the d-axis and q-axis are calculated according to (Equation 6) by proportional control and integral control so that qc follows.
  • the d-axis voltage correction value (d-axis current control output) ⁇ v d * is the voltage that corrects the d-axis voltage command value v dc * so that the d-axis current detection value i dc follows the d-axis current command value i d * .
  • the q-axis voltage correction value ⁇ v q * is a voltage correction value that corrects the q-axis voltage command value v qc * so that the q-axis current detection value i qc follows the q-axis current command value i q * . ..
  • K pd1 Proportional gain of d-axis current control
  • K pq1 Proportional gain of q-axis current control
  • K iq1 Integral gain of q-axis current control
  • the vector control calculation unit 8 calculates the voltage command values v dc ** and v qc ** on the d-axis and the q-axis according to (Formula 7).
  • FIG. 2 shows a block of the voltage correction calculation unit 9 which is a feature of this embodiment.
  • the q-axis current command value i q * is input to the polarity determination unit 9a, and “+1” is output when i q * ⁇ 0, and “-1” is output when i q * ⁇ 0. This is to correspond to both power running / regeneration operation modes, and 9a may be omitted if only power running is used.
  • the electromotive force command value 9b and the d-axis current control output ⁇ v d * which are “0”, are input to the subtraction unit 9c, and the deviation (0 ⁇ v d * ) and the output signal (+1 or ⁇ ) of the polarity determination unit 9a are input. 1) is input to the multiplication unit 9d.
  • FIG. 3 shows a block of the voltage correction calculation unit 9e, which is a feature of this embodiment.
  • the PI control calculation unit 9e has a proportional control calculation unit 9e1 having a proportional gain K pdq and an integral control calculation unit having an integral gain K idq so that the output value ⁇ v d ** of the multiplication calculation unit 9d becomes 0 (zero).
  • 9e2 is input to the addition unit 9e3, and the voltage correction value ⁇ v dq * is calculated according to (Equation 8).
  • the addition unit calculates a new q-axis voltage command value V qc *** according to (Equation 9) using the voltage correction value ⁇ v dq * and the q-axis voltage command value V qc ** . Then, the q-axis voltage command value V qc *** is input to the coordinate conversion unit 11.
  • the frequency / phase estimation calculation unit 10 uses the q-axis voltage command value v qc *** , the d-axis current command value i d * , the q-axis current command value i q * , and the q-axis current detection value i qc and the d-axis two. The calculation is performed based on the next magnetic flux command value ⁇ 2d * and the electric circuit parameters of the induction motor 1.
  • the frequency / phase estimation calculation unit 10 calculates the frequency estimation value ⁇ r ⁇ according to (Equation 10). Further, the slip frequency command value ⁇ s * is calculated according to (Equation 11). Further, the output frequency command value ⁇ 1 * is calculated according to (Formula 12). Further, the phase command value ⁇ dc is calculated according to (Equation 13).
  • R2' primary side conversion value of the secondary resistance value
  • T obs speed estimation delay time constant set in the disturbance observer
  • T ACR current control delay time constant
  • T2 Secondary time constant
  • control unit calculates the current control output of the d-axis, which is the magnetic flux axis, calculates the current control output of the d-axis, and issues a voltage command of the q-axis so that the output of the calculation follows zero. Output.
  • the ramp-shaped load torque ⁇ L starts to be applied from point A in the figure, and at point C in the figure, it is twice as large as the rated torque (100%) torque, but ⁇ L is near -1.9p.u B. It can be seen that the torque is lost (torque is insufficient) at the point, the actual frequency ⁇ r increases after the point B in the middle stage, and the d-axis secondary magnetic flux ⁇ 2 d decreases sharply after the point D in the lower stage. ..
  • the d-axis current control is changed to P control, the correction voltage value ⁇ v dq * is calculated using the d-axis current control output ⁇ v d * including the q-axis secondary magnetic flux ⁇ 2q , and the q-axis is calculated.
  • the control characteristics are improved by modifying the voltage command value v qc ** .
  • the control characteristics in this embodiment are shown in FIG. Similar to the control characteristics in FIG. 4, an error of -10% is given to the set value L ⁇ * of the leakage inductance, the voltage correction calculation unit 9 is operated, and the speed command (0.7pu) and the load torque are similarly applied (A). Apply in a ramp shape from point to point C). The q-axis secondary magnetic flux ⁇ 2q in the lower stage is almost zero, and the d-axis secondary magnetic flux ⁇ 2 d is also constant and does not decrease. It can be seen that the effect of this embodiment is clear.
  • FIG. 6 shows the control characteristics in this embodiment in the higher speed range (speed command value is 1.7p.u). Similar to FIG. 5 of the control characteristics, an error of -10% is given to the set value L ⁇ * of the leakage inductance, the voltage correction calculation unit 9 is operated, and the load torque is applied in a ramp shape from point A to point C. ) Giving. It can be seen that the d-axis secondary magnetic flux ⁇ 2d in the lower stage is about 1/2 as compared with FIG. This is because the field weakening region intentionally reduces the magnetic flux of the induction motor 1 and the d-axis current command is reduced to 1/2. It can be seen that the effect of the present invention is clear even in the field weakening region.
  • the gains (K p , Ki ) of the proportional control and the integral control are fixed values, but as shown in FIG. 7, the frequency estimation value ⁇ r ⁇ is used. It may be changed accordingly.
  • the PI control calculation unit 9e'of FIG. 7 corresponds to the PI control calculation unit 9e of FIGS. 2 and 3.
  • the addition unit 9e'3 in FIG. 7 is the same as the addition unit 9e3 in FIG.
  • the gains (K p , K i ) of the proportional control and the integral control are changed in substantially proportional to the frequency estimation value ⁇ r ⁇ , so that the low speed range to the high speed range can be obtained. It is possible to realize highly accurate and highly stable control characteristics without overshoot.
  • FIG. 8 is a configuration diagram of the power conversion device and the induction motor according to the second embodiment.
  • the input to the voltage correction calculation unit 9 is the q-axis current command value i q * and the d-axis current control output ⁇ v d * , but in this embodiment, the input to the voltage correction calculation unit 9 is The q-axis current command value i q * , the d-axis current control output ⁇ v d * , and the speed estimation value ⁇ r ⁇ are used. The same contents as in the first embodiment will be omitted.
  • the voltage correction calculation unit 91 in FIG. 8 corresponds to the voltage correction calculation unit 9 in FIG.
  • FIG. 9 shows the configuration of the voltage correction calculation unit 91.
  • the polarity determination unit 91a, the electromotive force command value 91b, the subtraction unit 91c, the multiplication unit 91d, and the PI control calculation unit 91e in FIG. 9 have the polarity determination unit 9a, the electromotive force command value 9b, the subtraction unit 9c, and the multiplication unit 9d in FIG. , The same as the PI control calculation unit 9e.
  • the q-axis secondary magnetic flux calculation unit 91f calculates the estimated value ⁇ 2 q ⁇ of the q-axis secondary magnetic flux ⁇ 2 q from (Equation 14) using the d-axis current control output ⁇ v d * and the velocity estimated value ⁇ r ⁇ .
  • control unit calculates the q-axis secondary magnetic flux estimated value from the d-axis current control output, and calculates the voltage correction value so that the q-axis secondary magnetic flux estimated value follows zero.
  • a voltage detector 21 and a current detector 22 are attached to the power conversion device 20 for driving the induction motor 1, and an encoder 23 is attached to the shaft of the induction motor 1.
  • the voltage detection value of the three-phase AC (v uc , v vc , v wc ), which is the output of the voltage detector 21, and the current detection value of the three-phase AC (i uc ,) i vc , i wc ) and the position ⁇ which is the encoder output are input, and the detection value ⁇ rc obtained by differentiating the position ⁇ from the vector voltage components v dc and v qc and the vector current components i dc and i q c is calculated. ..
  • the waveform observation unit 25 calculates the output frequency value ⁇ 1 using (Equation 15) and the estimated value ⁇ v d * _est of the d-axis current control output ⁇ v d * using (Equation 16).
  • FIG. 11 is a configuration diagram of a drive system of an induction motor having a power conversion device 20, an induction motor 1, and a terminal such as a personal computer 28, a tablet 29, and a smartphone 30 in the third embodiment.
  • This embodiment is an example in which the above-mentioned embodiment is applied to an induction motor drive system.
  • the component induction motor 1 the coordinate conversion unit 5, the speed control calculation unit 6, the d-axis current magnetic flux setting unit, the vector control calculation unit 8, the voltage correction calculation unit 9, the frequency / phase estimation calculation unit 10, and the coordinates.
  • the conversion unit 11 is the same as that in FIG.
  • the induction motor 1 which is a component of FIG. 1 is driven by the power conversion device 20.
  • the coordinate conversion unit 5 of FIG. 1, the speed control calculation unit 6, the d-axis current magnetic flux setting unit, the vector control calculation unit 8, the voltage correction calculation unit 9, the frequency / phase estimation calculation unit 10, and the coordinate conversion unit 11 is implemented as software 20a, that is, as a program.
  • the power converter 2, the DC power supply 3, the current detector 4, and a CPU (not shown) that constitutes a control unit, which is not shown, are mounted as hardware. The CPU executes the above program.
  • the voltage correction calculation unit 9 of the control unit sets the proportional gain 26 and the integral gain 27. Can be changed.
  • the proportional gain 26 and the integrated gain 27 may be set on a fieldbus such as a PLC (Programmable Logic Controller), a LAN (Local Area Network) connected to a computer, or an IoT (Internet of Things) controller.
  • a fieldbus such as a PLC (Programmable Logic Controller), a LAN (Local Area Network) connected to a computer, or an IoT (Internet of Things) controller.
  • the configuration of the power conversion device 20 is disclosed using the first embodiment, but the configuration of the second embodiment may be used.
  • FIG. 12 is a configuration diagram of a power conversion device 20, an induction motor 1, a terminal, and a drive system of an induction motor having a higher-level device such as a PLC (Programmable Logic Controller) or an IoT (Internet of Things) controller in the fourth embodiment. ..
  • a PLC Programmable Logic Controller
  • IoT Internet of Things
  • the conversion unit 11, the power conversion device 20, the software 20a, the digital operator 20b, the proportional gain 26, the integrated gain 27, the personal computer 28, the tablet 29, and the smartphone 30 are the same as those shown in FIG.
  • reference numeral 12 denotes a PLC or IoT controller which is a higher-level device, and the power conversion device 20 and the higher-level device 12 are connected by a network or the like.
  • the set value L ⁇ * of the leakage inductance in the software 20a may be modified so that the induction motor 1 can be stably driven.
  • the control unit feeds back the operating state of the induction motor to the PLC or IoT controller using the memory information in the control unit of the power converter 20, and the PLC or IoT controller outputs the operating status of the induction motor. Try to figure it out.
  • the PLC or IoT controller instructs the control unit of the power conversion device 20 to change the leakage inductance set value L ⁇ * in units of several percent, and the control unit changes the leakage inductance set value L ⁇ * . It may be controlled so as to.
  • the power conversion device is disclosed using the first embodiment, but the second embodiment may be used.
  • the current command values i d * , i q * and the current detection values i dc , i q c are used for the vector control operation (Equation 17), and the intermediate current command values i d ** , i q ** are shown. Is created, and the vector control operation shown in (Equation 18) may be performed using the output frequency command value ⁇ 1 * and the electric circuit parameters of the induction motor 1.
  • K pd2 Proportional gain of d-axis current control
  • K pq2 Proportional gain of q-axis current control
  • K iq2 Integral gain of q-axis current control
  • T d d-axis electric time constant (L ⁇ / R 1 )
  • T q q-axis electrical time constant (L ⁇ / R 1 )
  • the d-axis proportional control output ⁇ v d_p * may be created by (Equation 19), and the vector control operation shown in (Equation 20) using the output frequency command value ⁇ 1 * and the electric circuit parameters of the induction motor 1 may be performed.
  • K pd3 Proportional gain of d-axis current control
  • K pq3 Proportional gain of q-axis current control
  • K iq3 Integral gain of q-axis current control
  • the speed estimation calculation shown in (Equation 23) may be performed with the q-axis current control output as the frequency estimation value ⁇ r ⁇ .
  • K pq4 Proportional gain of q-axis current control
  • K iq4 Integral gain of q-axis current control
  • the switching element constituting the power converter 2 may be a Si (silicon) semiconductor element such as SiC (silicon carbide) or GaN (gallum nitride). It may be a wide bandgap semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

出力周波数を可変にする電圧を誘導モータに出力する電力変換器と、電力変換器に電圧指令を出力する制御部とを有する電力変換装置であって、制御部は、磁束軸であるd軸の電流制御出力を算出し、d軸の前記電流制御出力を演算し、演算の出力が零に追従するように、q軸の電圧指令を出力する電力変換装置。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 誘導モータの回生運転時における技術としては、特許文献1のように、d軸電流制御の出力よりq軸二次磁束を推定し、該二次磁束推定値を零に追従するようにすべり周波数指令を自動調整することで、磁束減少によるトルク不足を抑制する技術がある。
特開2016-163501号公報
 特許文献1では、PI(比例・積分)制御で構成されるd軸電流制御の出力であるd軸電圧補正値ΔVd *_piと速度推定値ωr ^および磁石モータの電気回路パラメータ(相互インダクタンスM、二次インダクタンスL)を用いて(数式1)に基づきq軸二次磁束φ2qを推定する。
Figure JPOXMLDOC01-appb-M000001
 さらにq軸二次磁束の指令値φ2q*である「0」とq軸二次磁束の推定値φ2q ^の偏差であるΔφ2qを抑制するようにすべり周波数指令値ωs *の補正値Δωを(数式2)に基づき演算する。sはラプラス演算子(以下同じ)である。
Figure JPOXMLDOC01-appb-M000002
 d軸電流制御はPI制御であり、低速域において一次抵抗Rに関係する電圧降下の誤差である(R-R *)id、中高速域においては漏れインダクタンスLσに関係する電圧降下の誤差であるω(Lσ-Lσ *)iqが、d軸電圧補正値ΔVd *_piに含まれることになる。ここに、R *とLσ *はベクトル制御の演算に用いる誘導モータ1の電気回路パラメータである。
 (数式2)にそれら電圧降下の誤差が含まれるため、補正値Δωで修正されたすべり周波数指令値ωs **の絶対値|ωs **|と実際のすべり周波数値|ωs|が(数式3)の関係になると、d軸二次磁束φ2dは減少し易くなり、場合によってはトルク不足に陥る場合があった。
Figure JPOXMLDOC01-appb-M000003
 本発明の目的は、回生時や弱め界磁時の運転において、モータの実測値とモータ制御の設定値との間に誤差があっても、誘導モータを高精度に運転する電力変換装置を提供することにある。
 本発明の好ましい一例としては、出力周波数を可変にする電圧を誘導モータに出力する電力変換器と、前記電力変換器に電圧指令を出力する制御部とを有する電力変換装置であって、
前記制御部は、磁束軸であるd軸の電流制御出力を算出し、d軸の前記電流制御出力を演算し、演算の出力が零に追従するように、q軸の前記電圧指令を出力する電力変換装置である。
 本発明によれば、モータの実測値とモータ制御の設定値との間に誤差があっても、誘導モータを高精度に運転する電力変換装置を実現することができる。
実施例1に係る電力変換装置などの構成図。 実施例1に係る電圧補正演算部の構成図。 実施例1に係る電圧補正演算部におけるPI制御演算部の構成図。 実施例を用い無い場合の0.7p.u速度における制御特性。 実施例を用いた場合の0.7p.u速度における制御特性。 実施例を用いた場合の1.7p.u速度における制御特性。 電圧補正演算部における他のPI制御演算部の構成図。 実施例2に係る他の電力変換装置などの構成図。 実施例2に係る他の電圧補正演算部の構成図。 顕現性を確認するための構成図。 実施例3に係る他の電力変換装置などの構成図。 実施例4に係る他の電力変換装置などの構成図。
 以下、図面を用いて本実施例を詳細に説明する。なお、各図における共通の構成については同一の参照番号を付してある。また、以下に説明する各実施例は図示例に限定されるものではない。
 図1は、実施例1における電力変換装置と誘導モータの構成図を示す。誘導モータ1は、磁束軸(d軸)成分の電流により発生する磁束と、磁束軸に直交するトルク軸(q軸)成分の電流によりトルクを発生する。
 本実施例は、誘導モータを速度センサレス制御で駆動する電力変換装置の制御に関し、特に回生時や弱め界磁時の運転において、誘導モータを高精度に運転する電力変換装置に関する。
 電力変換器2は、スイッチング素子としての半導体素子を備える。電力変換器2は、3相交流の電圧指令値vu *、vv *、vw *を入力し、3相交流の電圧指令値vu *、vv *、vw *に比例した電圧値を出力する。電力変換器2の出力に基づいて、誘導モータ1は駆動され、誘導モータ1の出力電圧値と出力周波数値は可変される。スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)を使うようにしてもよい。
 直流電源3は、電力変換器2に直流電圧および直流電流を供給する。
 電流検出器4は、誘導モータ1の3相の交流電流iu、iv、iwの検出値であるiuc、ivc、iwcを出力する。また電流検出器4は、誘導モータ1の3相の内の2相、例えば、u相とw相の交流電流を検出し、v相の交流電流は交流条件(iuc+ivc+iwc=0)から、ivc=-(iuc+iwc)として求めてもよい。本実施例では、電流検出器4は、電力変換装置内に設けた例を示したが、電力変換装置の外部に設けてもよい。
 制御部は、以下に説明する座標変換部5、速度制御演算部6、d軸電流磁束設定部7、ベクトル制御演算部8、電圧補正演算部9、周波数・位相推定演算部10、座標変換部11を備える。制御部は、そして、制御部は、電力変換器2を制御する。
 制御部は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)などの半導体集積回路(演算制御手段)によって構成される。制御部は、いずれかまたは全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードウェアで構成することができる。制御部のCPU(Central Processing Unit)が、メモリなどの記録装置に保持するプログラムを読み出して、上記した座標変換部5などの各部の処理を実行する。
 次に、制御部の各構成要素について、説明する。
 座標変換部5は、3相の交流電流iu、iv、iwの交流電流検出値iuc、ivc、iwcと位相指令値θdcからd軸の電流検出値idc、およびq軸の電流検出値、iqcを出力する。
 速度制御演算部6は、周波数指令値ωr *と周波数推定値ωr ^に基づいて演算したq軸電流指令値iq *を出力する。
 d軸電流磁束設定部7は、d軸電流指令値id *とd軸二次磁束指令値φ2d *を出力する。
 ベクトル制御演算部8は、d軸二次磁束指令値φ2d *、d軸およびq軸の電流指令値id *、iq *、d軸およびq軸の電流検出値idc、iqcと、出力周波数指令値ω *に基づいて、演算したd軸およびq軸の電圧指令値vdc **、vqc **とd軸電流制御出力Δvd *を出力する。
 電圧補正演算部9は、q軸の電流指令値iq *、d軸電流制御出力Δvd *に基づいて演算した電圧補正値Δvdq *をq軸電圧指令値vqc **に加算する。
 周波数・位相推定演算部10は、q軸電圧指令値vqc ***、q軸電流指令値iq *およびq軸電流検出値iqcとd軸二次磁束指令値φ2d *に基づいて演算した周波数推定値ωr ^、出力周波数指令値ω *と位相指令値θdcを出力する。
 座標変換部11は、d軸およびq軸の電圧指令値vdc **、vqc ***と、位相指令値θdcから3相交流の電圧指令値vu *、vv *、vw *を出力する。
 最初に、本実施例の特徴である電圧補正演算部9を用いたときの速度センサレスベクトル制御の基本動作について説明する。
 速度制御演算部6は、周波数指令値ωr *に周波数推定値ωr ^が追従するように、比例制御と積分制御により(数式4)に従いトルク電流指令であるq軸電流指令値iq *を演算す 
Figure JPOXMLDOC01-appb-M000004
ここに、
    Ksp:速度制御の比例ゲイン、Ksi:速度制御の積分ゲイン
 第1に、ベクトル制御演算部8は、d軸二次磁束指令値φ2d *、d軸およびq軸の電流指令値id *、iq *と出力周波数指令値ω *を用いて(数式5)に従いd軸およびq軸の電圧指令値vdc *、vqc *を演算する。
Figure JPOXMLDOC01-appb-M000005
ここに、
    Tacr:電流制御遅れ相当の時定数
    R:一次抵抗値、Lσ:漏れインダクタンス値、M:相互インダクタンス値、L2:二次側インダクタンス値
 第2に、ベクトル制御演算部8は、d軸電流指令値id *にd軸電流検出値idcが追従するように比例制御、q軸電流指令値iq *にq軸電流検出値iqcが追従するように比例制御と積分制御により、(数式6)に従い、d軸およびq軸の電圧補正値Δvd *、Δvq *を演算する。
 d軸電圧補正値(d軸電流制御出力)Δvd *は、d軸電流指令値id *にd軸電流検出値idcが従うようにd軸の電圧指令値vdc *を補正する電圧補正値である。また、q軸の電圧補正値Δvq *は、q軸電流指令値iq *にq軸電流検出値iqcが従うようにq軸の電圧指令値vqc *を補正する電圧補正値である。
Figure JPOXMLDOC01-appb-M000006
ここに、
    Kpd1:d軸電流制御の比例ゲイン
    Kpq1:q軸電流制御の比例ゲイン、Kiq1:q軸電流制御の積分ゲイン
 さらに、ベクトル制御演算部8は、(数式7)に従い、d軸およびq軸の電圧指令値vdc **、vqc **を演算する。
Figure JPOXMLDOC01-appb-M000007
 次に本発明の特徴である電圧補正演算部9について説明する。図2は、本実施例の特徴である電圧補正演算部9のブロックを示す。
 極性判定部9aにq軸電流指令値iq *が入力され、iq *≧0のときは「+1」を、iq *<0のときは「-1」を出力する。これは力行/回生の両方の運転モードに対応するためであり、力行のみであれば9aは省略してもよい。
 「0」である起電力指令値9bとd軸電流制御出力Δvd *は、減算部9cに入力され、その偏差(0-Δvd *)と極性判定部9aの出力信号(+1あるいは-1)が乗算部9dに入力される。
 図3は、本実施例の特徴である電圧補正演算部9eのブロックを示す。PI制御演算部9eは、乗算の演算部9dの出力値Δvd **が0(ゼロ)となるように比例ゲインKpdqを持つ比例制御演算部9e1と積分ゲインKidqを持つ積分制御演算部9e2を加算部9e3に入力し、(数式8)に従い電圧補正値Δvdq *を演算する。
Figure JPOXMLDOC01-appb-M000008
 また、加算部が、該電圧補正値Δvdq *とq軸電圧指令値Vqc **を用いて(数式9)に従い新たなq軸電圧指令値Vqc ***を演算する。そして、q軸電圧指令値Vqc ***が座標変換部11に入力される。
Figure JPOXMLDOC01-appb-M000009
 周波数・位相推定演算部10は、q軸電圧指令値vqc ***、d軸の電流指令値id *、q軸電流指令値iq *およびq軸電流検出値iqcとd軸二次磁束指令値φ2d *、誘導モータ1の電気回路パラメータに基づいて演算をする。周波数・位相推定演算部10は、(数式10)に従い周波数推定値ωr ^を演算する。また、(数式11)に従いすべり周波数指令値ωs *を演算する。また、(数式12)に従い出力周波数指令値ω *を演算する。また、(数式13)に従い位相指令値θdcを演算する。
Figure JPOXMLDOC01-appb-M000010
ここに、R2´ : 二次抵抗値の一次側換算値、Tobs: 外乱オブザーバに設定する速度推定遅れ時定数、 TACR: 電流制御遅れ時定数
Figure JPOXMLDOC01-appb-M000011
ここに、T2: 二次時定数
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 上記したように、制御部は、磁束軸であるd軸の電流制御出力を算出し、d軸の電流制御出力を演算し、演算の出力が零に追従するように、q軸の電圧指令を出力する。
 つぎに本発明がトルク不足を抑制できる原理について説明する。図4は、本実施例である電圧補正演算部9を用いない(Vdq *=0)場合の制御特性を示す。
 特許文献1の技術を用いて、(数式5)に示すd軸およびq軸の電圧指令値Vdc *、Vqc *の演算式や(数式10)に示す速度推定値ωr ^の演算式に含まれる漏れインダクタンスの設定値Lσ *に-10%の誤差がある場合のシミュレーション結果が図4に示される。速度指令値の設定は基底周波数の0.7p.uであり、上段は負荷トルクτL(点線)とトルクτM(実線)、中段は周波数ωr、下段はd軸二次磁束φ2dとq軸二次磁束φ2qを表示している。
 ランプ状の負荷トルクτLを図中のA点から与え始め、図中のC点で定格トルク(100%)トルクの2倍の大きさとなるが、τLが-1.9p.u近傍B点でトルク抜け(トルクが不足)しており、中段のB点以降に実周波数ωrは増速、下段のD点以降にd軸二次磁束φ2dは急激に減少していることがわかる。
 これはd軸電流制御がPI制御であるため、漏れインダクタンスLσに関係する電圧降下の誤差であるω(Lσ-Lσ *)iqにより、誘導モータ1内部でq軸二次磁束φ2qが発生し、d軸二次磁束φ2dが減少する結果、トルク抜けする現象である。
 そこで本実施例では、d軸電流制御をP制御に変更し、q軸二次磁束φ2qが含まれるd軸電流制御出力Δvd *を用いて補正電圧値Δvdq *を演算し、q軸電圧指令値をvqc **を修正することで制御特性を改善する。
 本実施例における制御特性を図5に示す。図4の制御特性と同様に、漏れインダクタンスの設定値Lσ *に-10%の誤差を与え、電圧補正演算部9を動作させて、同様に速度指令(0.7p.u)や負荷トルクを(A点からC点までランプ状に印加)与えている。下段のq軸二次磁束φ2qはほぼ零であり、d軸二次磁束φ2dも一定で減少していない。本実施例の効果が明白であることがわかる。
 また更なる高速域(速度指令値が1.7p.u)での本実施例における制御特性を図6に示す。制御特性の図5と同様に、漏れインダクタンスの設定値Lσ *に-10%の誤差を与え、電圧補正演算部9を動作させて、負荷トルクを(A点からC点までランプ状に印加)与えている。下段のd軸二次磁束φ2dが図5に比べて約1/2であることがわかる。これは誘導モータ1の磁束を意図的に減少させる弱め界磁領域であり、d軸電流指令を1/2に低減しているためである。弱め界磁領域でも本発明の効果が明白であることがわかる。
 上記の実施例では、図1の電圧補正演算部9において、比例制御と積分制御のゲイン(Kp、Ki)は固定値としているが、図7に示すように周波数推定値ωr ^に応じて変化させてもよい。図7のPI制御演算部9e’は図2および図3のPI制御演算部9eに相当するものである。図7の加算部9e’3は図3の加算部9e3と同一である。
 図7のPI制御演算部9e’のPI制御において、周波数推定値ωr ^に略比例して比例制御と積分制御のゲイン(Kp、Ki)を変化させることで、低速域から高速域においてオーバーシュートなしの高精度かつ高安定な制御特性を実現することができる。
 図8は、実施例2における電力変換装置と誘導モータの構成図である。
  実施例1では、電圧補正演算部9への入力はq軸の電流指令値iq *、d軸電流制御出力Δvd *としたが、本実施例では、電圧補正演算部9への入力はq軸の電流指令値iq *、d軸電流制御出力Δvd *と速度推定値ωr^としている。実施例1と同じ内容については説明を省略する。
 図8の電圧補正演算部91は、図1の電圧補正演算部9に相当するものである。図9に電圧補正演算部91の構成を示す。
 図9の極性判定部91a、起電力指令値91b、減算部91c、乗算部91d、PI制御演算部91eは、図2の極性判定部9a、起電力指令値9b、減算部9c、乗算部9d、PI制御演算部9eと同一である。q軸二次磁束演算部91fは、d軸電流制御出力Δvd *と速度推定値ωr ^を用いて(数式14)よりq軸二次磁束φ2qの推定値φ2q ^を演算する。
Figure JPOXMLDOC01-appb-M000014
 本実施例では、制御部が、d軸の電流制御出力からq軸の二次磁束推定値を算出し、q軸の二次磁束推定値が零に追従するように電圧補正値を算出する。
 本実施例では、q軸二次磁束φ2q相当を演算してフィードバックすることで、低速域から高速域において高応答な制御特性を実現することができる。
 ここで、図10を用いて本実施例を採用した場合の検証方法について説明する。誘導モータ1を駆動する電力変換装置20に、電圧検出器21、電流検出器22を取り付け、誘導モータ1のシャフトにはエンコーダ23を取り付ける。
 ベクトル成分の電圧・電流の計算部24には、電圧検出器21の出力である三相交流の電圧検出値(vuc、vvc、vwc)、三相交流の電流検出値(iuc、ivc、iwc)とエンコーダ出力である位置θが入力され、ベクトル電圧成分のvdc、vqc、ベクトル電流成分のidc、iqcと、位置θを微分した検出値ωrcを演算する。
 各部波形の観測部25では、(数式15)を用いて出力周波数値ωを、(数式16)を用いてd軸電流制御出力Δvd *の推定値Δvd * _estを演算する。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 (数式16)に示す推定値Δvd * _estが定常的にゼロであれば、本発明を採用していることが明白となる。
 図11は、実施例3における電力変換装置20、誘導モータ1、およびパーソナル・コンピュータ28、タブレット29、スマートフォン30などの端末を有する誘導モータの駆動システムの構成図である。本実施例は、誘導モータ駆動システムに、上記した本実施例を適用した実施例である。
 図11において、構成要素の誘導モータ1、座標変換部5、速度制御演算部6、d軸電流磁束設定部、ベクトル制御演算部8、電圧補正演算部9、周波数・位相推定演算部10、座標変換部11は、図1と同一である。図1の構成要素である誘導モータ1は、電力変換装置20により駆動される。
 電力変換装置20では、図1の座標変換部5、速度制御演算部6、d軸電流磁束設定部、ベクトル制御演算部8、電圧補正演算部9、周波数・位相推定演算部10、座標変換部11がソフトウェア20aとして、つまりプログラムとして実装されている。
また、図1の電力変換器2、直流電源3、電流検出器4および図示していないが制御部を構成するCPUがハードウェアとして実装されている。CPUは上記のプログラムを実行する。
 またデジタル・オペレータ20b、パーソナル・コンピュータ28、タブレット29、スマートフォン30などの上位装置からの指示を受け、制御部(ソフトウェア20a)の電圧補正演算部9は、比例ゲイン26、積分ゲイン27を設定もしくは変更することができる。
 本実施例を誘導モータ駆動システムに適用すれば、速度センサレスベクトル制御において高精度かつ高安定な制御特性を実現することができる。また比例ゲイン26、積分ゲイン27は、PLC(Programmable Logic Controller)、コンピュータと接続するLAN(Local Area Network)、IoT(Internet of Things)コントローラなどのフィールドバス上で設定してもよい。
 さらに本実施例では、電力変換装置20の構成を実施例1を用いて開示してあるが、実施例2の構成であっても良い。
 図12は、実施例4における電力変換装置20、誘導モータ1、端末、およびPLC(Programmable Logic Controller)やIoT(Internet of Things)コントローラなどの上位装置を有する誘導モータの駆動システムの構成図である。本実施例は誘導モータ駆動システムに上記した実施例を適用した実施例である。
 図12において、構成要素の誘導モータ1、座標変換部5、速度制御演算部6、d軸電流磁束設定部、ベクトル制御演算部8、電圧補正演算部9、周波数・位相推定演算部10、座標変換部11、電力変換装置20、ソフトウェア20a、デジタル・オペレータ20b、比例ゲイン26、積分ゲイン27、パーソナル・コンピュータ28、タブレット29、スマートフォン30は図11に示したものと同一である。
 図12において、12は上位装置であるPLCやIoTコントローラであり、電力変換装置20と上位装置12とはネットワークなどで接続している。電力変換装置20が運転中にトルク抜けをする場合は、ソフトウェア20a内の漏れインダクタンスの設定値Lσ *を修正して誘導モータ1を安定駆動できるようにしてもよい。これを実行するには、電力変換装置20の制御部内のメモリ情報を用いて、制御部は、誘導モータの運転状態をPLCやIoTコントローラにフィードバックし、PLCやIoTコントローラが誘導モータの運転状況を把握するようにする。そしてPLCやIoTコントローラが漏れインダクタンスの設定値Lσ *を数%単位で変更するように、電力変換装置20の制御部に指示し、制御部が、漏れインダクタンスの設定値Lσ *を変更するよう制御するようにしてもよい。
 さらに本実施例では、電力変換装置は実施例1を用いて開示してあるが、実施例2であっても良い。
 ここまでの実施例1と実施例2においては、電流指令値id *、iq *と電流検出値idc、iqcから電圧修正値Δvdc、Δvqcを作成し、この電流制御出力値とベクトル制御の電圧基準値を加算する(数式5)に示す演算であった。
 代わりに、電流指令値id *、iq *と電流検出値idc、iqcからベクトル制御演算に使用する(数式17)に示す中間的な電流指令値id **、iq **を作成し、出力周波数指令値ω *および誘導モータ1の電気回路パラメータを用いて(数式18)に示すベクトル制御演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
ここに、
    Kpd2:d軸電流制御の比例ゲイン
    Kpq2:q軸電流制御の比例ゲイン、Kiq2:q軸電流制御の積分ゲイン
    Td:d軸電気時定数(Lσ/R)、Tq:q軸電気時定数(Lσ/R)
 あるいは電流指令値id *、iq *と電流検出値idc、iqcから、ベクトル制御演算に使用するd軸比例制御出力Δvd_p *、q軸比例制御出力Δvq_p *、q軸積分制御出力Δvq_i * を(数式19)により作成し、出力周波数指令値ω *および誘導モータ1の電気回路パラメータを用いた(数式20)に示すベクトル制御演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
ここに、
    Kpd3:d軸電流制御の比例ゲイン
    Kpq3:q軸電流制御の比例ゲイン、Kiq3:q軸電流制御の積分ゲイン
 またd軸電流指令値id *およびq軸電流検出値iqcの一次遅れ信号iqctd、(数式21)に示す出力周波数指令値ω **と、誘導モータ1の電気回路パラメータを用いて、(数式22)に示すベクトル制御演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 またq軸電流制御出力を周波数推定値ωr ^^とする(数式23)に示す速度推定演算を行ってもよい。
Figure JPOXMLDOC01-appb-M000023
ここに、
    Kpq4:q軸電流制御の比例ゲイン、Kiq4:q軸電流制御の積分ゲイン
 なお、実施例1から実施例4において、電力変換器2を構成するスイッチング素子としては、Si(シリコン)半導体素子であっても、SiC(シリコンカーバイト)やGaN(ガリュームナイトライド)などのワイドバンドギャップ半導体素子であってもよい。
1…誘導モータ、2…電力変換器、3…直流電源、4…電流検出器、5…座標変換部、6…速度制御演算部、7…d軸電流磁束設定部、8…ベクトル制御演算部、9…電圧補正演算部、10…周波数・位相推定演算部、11…座標変換部、12…上位装置、20…電力変換装置、20a…電力変換装置のソフトウェア、20b…電力変換装置のデジタル・オペレータ、21…電圧検出器、22…電流検出器、23…エンコーダ、24…ベクトル成分の電圧・電流の計算部、25…各部波形の観測部、26…電圧補正演算の比例ゲイン、27…電圧補正演算の積分ゲイン、28…パーソナル・コンピュータ、29…タブレット、30…スマートフォン、31…IOTコントローラ、id *…d軸電流指令値、iq *…q軸電流指令値、idc…d軸電流検出値、iqc…q軸電流検出値、ΔVd *…d軸電流制御出力値、ΔVq *…q軸電流制御出力値、ΔVdq *…q軸電圧指令補正値、ωs *…すべり周波数指令値、ωs…誘導モータのすべり周波数、ωr ^、ωr ^^…周波数推定値、ωr…誘導モータの周波数、vdc *、 vdc **、vdc ***、vdc ****、vdc *****…d軸の電圧指令値、vqc *、 vqc **、vqc ***、vqc ****、vqc ****…q軸の電圧指令値

Claims (10)

  1. 出力周波数を可変にする電圧を誘導モータに出力する電力変換器と、
    前記電力変換器に電圧指令を出力する制御部とを有する電力変換装置であって、
    前記制御部は、
    磁束軸であるd軸の電流制御出力を算出し、
    d軸の前記電流制御出力を演算し、演算の出力が零に追従するように、q軸の前記電圧指令を出力する電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    前記制御部は、
    d軸の前記電流制御出力と零の指令値との偏差を算出し、前記偏差に基づいてPI制御をし、電圧補正値を算出する電力変換装置。
  3. 請求項2に記載の電力変換装置において、
    前記制御部は、
    前記偏差が零になるように比例ゲインと積分ゲインを有し、
    前記電圧補正値とq軸電圧指令値とを演算し、新たなq軸電圧指令値を算出する電力変換装置。
  4. 請求項3に記載の電力変換装置において、
    前記制御部は、
    周波数推定値に基づいて前記比例ゲインと前記積分ゲインを変化させる電力変換装置。
  5. 請求項1に記載の電力変換装置において、
    前記制御部は、
    d軸の前記電流制御出力からq軸の二次磁束推定値を算出し、q軸の前記二次磁束推定値が零に追従するように電圧補正値を算出する電力変換装置。
  6. 請求項5に記載の電力変換装置において、
    前記制御部は、
    d軸の前記電流制御出力と速度推定値からq軸の前記二次磁束推定値を算出し、q軸の前記二次磁束推定値が零になるようにPI制御をする電力変換装置。
  7. 請求項3に記載の電力変換装置において、
    デジタル・オペレータやパーソナル・コンピュータあるいはタブレット、スマートフォン機器からの指示により、前記制御部は、前記比例ゲインもしくは前記積分ゲインを設定もしくは変更するように制御する電力変換装置。
  8. 請求項1に記載の電力変換装置は、
    上位コントローラもしくはIoTコントローラと接続しており、
    前記制御部は、
    前記誘導モータの運転状態を前記上位コントローラや前記IoTコントローラにフィードバックして、前記誘導モータが運転中にトルク抜けをするときは漏れインダクタンスの設定値を修正するように制御する電力変換装置。
  9. 請求項1に記載の電力変換装置において、
    d軸の前記電流制御出力は、
    d軸の電流検出値がd軸の電流指令値になるようにd軸の電圧指令値を補正するd軸の電圧補正値である電力変換装置。
  10. 請求項2に記載の電力変換装置において、
    前記制御部は、
    前記偏差と、力行、回生に従った極性判定の値とを演算する電力変換装置。
PCT/JP2021/025871 2020-12-22 2021-07-08 電力変換装置 WO2022137612A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020212295A JP2022098727A (ja) 2020-12-22 2020-12-22 電力変換装置
JP2020-212295 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022137612A1 true WO2022137612A1 (ja) 2022-06-30

Family

ID=82158912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025871 WO2022137612A1 (ja) 2020-12-22 2021-07-08 電力変換装置

Country Status (2)

Country Link
JP (1) JP2022098727A (ja)
WO (1) WO2022137612A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233576A (ja) * 1993-02-04 1994-08-19 Toshiba Corp 誘導電動機の制御装置
JP2000134999A (ja) * 1998-10-28 2000-05-12 Okuma Corp 誘導電動機の制御装置
JP2001238499A (ja) * 2000-02-24 2001-08-31 Hitachi Ltd 誘導電動機の速度制御方法
JP2016163501A (ja) * 2015-03-05 2016-09-05 株式会社日立産機システム 電力変換装置およびその制御法
JP2020124024A (ja) * 2019-01-30 2020-08-13 東洋電機製造株式会社 モータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233576A (ja) * 1993-02-04 1994-08-19 Toshiba Corp 誘導電動機の制御装置
JP2000134999A (ja) * 1998-10-28 2000-05-12 Okuma Corp 誘導電動機の制御装置
JP2001238499A (ja) * 2000-02-24 2001-08-31 Hitachi Ltd 誘導電動機の速度制御方法
JP2016163501A (ja) * 2015-03-05 2016-09-05 株式会社日立産機システム 電力変換装置およびその制御法
JP2020124024A (ja) * 2019-01-30 2020-08-13 東洋電機製造株式会社 モータ制御装置

Also Published As

Publication number Publication date
JP2022098727A (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
JP6367332B2 (ja) インバータ制御装置及びモータ駆動システム
JP5445892B2 (ja) 永久磁石形同期電動機の制御装置
JP6776066B2 (ja) インバータ制御装置および電動機駆動システム
CN111130417B (zh) 电力转换装置及其控制方法
JP2011205857A (ja) 誘導電動機の制御装置及び制御方法
JPH02254987A (ja) 誘導電動機の制御方式及びその装置
JP2005287148A (ja) 巻線界磁式同期機のベクトル制御装置
JP6641445B2 (ja) 電力変換装置の制御方法および電力変換装置
JP5499594B2 (ja) 永久磁石形同期電動機の制御装置
JP6971925B2 (ja) モータ制御装置
WO2022137612A1 (ja) 電力変換装置
JP6979281B2 (ja) 誘導モータの速度推定方法およびそれを用いた電力変換装置
WO2019082441A1 (ja) 電力変換装置およびその制御方法
JP6847191B2 (ja) 電力変換装置の制御方法および電力変換装置
JP4937766B2 (ja) 電圧型インバータの制御装置
JP3674638B2 (ja) 誘導電動機の速度推定方法および誘導電動機駆動装置
JP6707050B2 (ja) 同期電動機の制御装置
WO2022054357A1 (ja) 電力変換装置
JP6421014B2 (ja) 電力変換装置および電力変換装置の制御方法
JP6923801B2 (ja) 誘導電動機のオブザーバ制御装置
JP6497584B2 (ja) 永久磁石形同期電動機の制御装置
CN116830450A (zh) 电力转换装置
CN116746049A (zh) 电力转换装置
JP2022101784A (ja) 制御装置、モータシステム及び同定方法
JP2022101783A (ja) 制御装置、モータシステム及び同定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909772

Country of ref document: EP

Kind code of ref document: A1