JP6840354B2 - ホウ素含有水の処理方法 - Google Patents

ホウ素含有水の処理方法 Download PDF

Info

Publication number
JP6840354B2
JP6840354B2 JP2017018305A JP2017018305A JP6840354B2 JP 6840354 B2 JP6840354 B2 JP 6840354B2 JP 2017018305 A JP2017018305 A JP 2017018305A JP 2017018305 A JP2017018305 A JP 2017018305A JP 6840354 B2 JP6840354 B2 JP 6840354B2
Authority
JP
Japan
Prior art keywords
boron
containing water
added
concentration
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017018305A
Other languages
English (en)
Other versions
JP2018122273A (ja
Inventor
千晴 所
千晴 所
駿吾 帆保
駿吾 帆保
田中 善之
善之 田中
壮志 中村
壮志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Waseda University
Original Assignee
Sumitomo Metal Mining Co Ltd
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Waseda University filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017018305A priority Critical patent/JP6840354B2/ja
Publication of JP2018122273A publication Critical patent/JP2018122273A/ja
Application granted granted Critical
Publication of JP6840354B2 publication Critical patent/JP6840354B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、ホウ素含有水の処理方法に関する。さらに詳しくは、共沈法によってホウ素含有水からホウ素を除去する方法に関する。
ホウ素を含有する水(以下、「ホウ素含有水」という。)は、自然界において地下水、海水などとして存在している。また、ホウ素はホウ素化合物を原材料として使用する工業、例えば、ガラス工業をはじめ、医薬、化粧品原料、石鹸工業、電気めっき工業などで生じる廃水、発電所から生じる廃水、ゴミ焼却場で生じる洗煙廃水などの廃水に含まれている。
ホウ素は、動植物にとって必須の微量栄養素であるが、その反面、農業用水中に数mg/L以上の濃度で含まれている場合、植物の成長を阻害することが知られている。また、ホウ素を人体に継続的に摂取したとき、健康障害が生じるおそれがあることから、ホウ素の人体摂取量が法令で規制されている。例えば、水道水の水質基準では水道水に含まれるホウ素濃度が1.0mg/L以下に規制されている。また、海域へのホウ素の排水基準ではホウ素濃度が230mg/L以下、海域外への排水基準ではホウ素濃度が10mg/L以下に規制されている。そこで、ホウ素を含有する廃水は、ホウ素を除去する処理を行った後に、放流される。
ホウ素含有水からホウ素を除去する方法として、ジルコニウムやマグネシウムなどの水酸化物にホウ素を吸着させる吸着法、ホウ素含有水を蒸発濃縮してホウ酸を晶析する蒸発濃縮法、アルコール基を有する溶媒によりホウ素を抽出分離する溶媒抽出法、逆浸透膜を用いてホウ素を分離除去する逆浸透膜法などの種々の方法が知られている。
しかしながら、吸着法は、ジルコニウムやマグネシウムなどの水酸化物へのホウ素の吸着容量が低いため、多量の吸着剤の添加が不可欠であり、効率性と経済性において実用的でない。蒸発濃縮法は、ホウ素含有水を濃縮しホウ酸を晶析させるために熱源が必要であり、特にホウ素濃度が低い廃水を対象とする場合には、莫大なエネルギーを必要とするので経済的でない。しかも、晶析後のホウ素含有水の中和処理が必要となる。溶媒抽出法は、有機溶媒からホウ素を逆抽出して得られるホウ素含有液の処理のほかに、有機溶媒が微量溶解している処理後の廃水の処理が不可欠である。活性炭などにより有機溶媒を回収除去するなどの処理が必要であり経済的でない。逆浸透膜法は、この方法のみで低濃度になるまでホウ素を除去することが困難であるので、他の方法との併用が必要である。また、膜の閉塞による効率悪化の問題がある。
特許文献1には、溶存ホウ素を含有する被処理水中に、希土類元素イオンと多価陰イオン性物質とを存在させ、溶存ホウ素を難溶性物質として沈殿分離することが開示されている。また、特許文献2には、無機性陰イオンを含有する被処理水に、希土類元素の塩溶液と水酸化マグネシウムとを存在させ、無機性陰イオンを難溶性物質として沈殿分離することが開示されている。しかし、希土類元素としてセリウムを選択した場合、沈殿物はセリウムの水酸化物であり、ゲル状またはゼリー状となって固液分離が困難であることが知られている。
特開2004−000963号公報 特開2006−341139号公報
本発明は上記事情に鑑み、固液分離性の高い沈殿物が得られるホウ素含有水の処理方法を提供することを目的とする。
第1発明のホウ素含有水の処理方法は、ホウ素含有水に3価のセリウム塩を添加した後、酸化剤を添加して3価のセリウムイオンを酸化することで、前記ホウ素含有水中に4価のセリウムイオンとともに3価のセリウムイオンを存在させ、前記ホウ素含有水のpHを7〜9に調整することで、共沈反応によりホウ素を沈殿させ、前記酸化剤は過酸化水素水であり、過酸化水素水の添加量はセリウムに対する過酸化水素の添加モル比が0.25〜0.5となる量であることを特徴とする。
本発明によれば、ホウ素含有水中に4価のセリウムイオンを存在させることで、3価のセリウムイオンのみを存在させた場合に比べて、固液分離性の高い沈殿物が得られる。
つぎに、本発明の実施形態を説明する。
本願発明者らは、ホウ素含有水にセリウムイオンを存在させ、共沈反応によりホウ素を沈殿させる場合において、セリウムイオンの価数に着目して研究したところ、ホウ素含有水に4価のセリウムイオンを存在させれば、得られる沈殿物の固液分離性が高くなるとの知見を得た。
すなわち、本発明の一実施形態に係るホウ素含有水の処理方法は、ホウ素含有水中に4価のセリウムイオンを存在させ、ホウ素含有水のpHを調整することで、共沈反応によりホウ素を沈殿させることを特徴とする。
より詳細には、まず、ホウ素含有水に4価のセリウム塩を添加する(セリウム添加工程)。これにより、ホウ素含有水中に4価のセリウムイオンを存在させる。4価のセリウム塩としては硫酸セリウム(IV)、酸化セリウム(IV)などが挙げられる。
つぎに、ホウ素含有水にpH調整剤を添加して、ホウ素含有水のpHを7〜9に調整する(共沈工程)。これにより、共沈反応が生じ、ホウ素の沈殿物が得られる。pH調整剤としてはアンモニア水、水酸化ナトリウムなどが用いられる。
最後に、共沈工程で得られたスラリーを固液分離して、沈殿物を除去した処理液を得る(固液分離工程)。ホウ素含有水中に4価のセリウムイオンを存在させることで、3価のセリウムイオンのみを存在させた場合に比べて、固液分離性の高い沈殿物が得られる。そのため、固液分離にかかる時間を短縮でき、効率よくホウ素を除去できる。
ホウ素含有水中に4価のセリウムイオンとともに3価のセリウムイオンを存在させてもよい。ホウ素含有水に4価のセリウム塩と3価のセリウム塩とを添加することで、ホウ素含有水中に4価のセリウムイオンとともに3価のセリウムイオンを存在させることができる。あるいは、つぎの手順を採用してもよい。
すなわち、まず、ホウ素含有水に3価のセリウム塩を添加する(セリウム添加工程)。これにより、ホウ素含有水中に3価のセリウムイオンを存在させる。3価のセリウム塩としては硝酸セリウム(III)、塩化セリウム(III)、リン酸セリウム(III)、炭酸セリウム(III)などが挙げられる。
つぎに、ホウ素含有水に酸化剤を添加して3価のセリウムイオンの一部を酸化して4価のセリウムイオンにする(酸化工程)。これにより、ホウ素含有水中に4価のセリウムイオンとともに3価のセリウムイオンを存在させる。
酸化剤としては過酸化水素水、過マンガン酸カリウム、オゾンガスなどが用いられる。特に過酸化水素水は液体であって、濃度調整可能であるので取り扱いが容易である。酸化剤の添加量は3価のセリウムイオンの所定割合を4価のセリウムイオンに酸化できる量に設定される。また、過酸化水素水の添加量は、セリウムに対する過酸化水素の添加モル比(以下、「H22/Ce」と称する。)が1以下となる量とすることが好ましい。そうすれば、ホウ素を十分に除去できる。
ホウ素含有水中に4価のセリウムイオンとともに3価のセリウムイオンを存在させれば、固液分離性の高い沈殿物が得られるとともに、ホウ素の除去効率を高めることができる。なお、4価のセリウムイオンと3価のセリウムイオンとの割合は、固液分離性と除去効率とを考慮して設定すればよい。
まず、ホウ素含有水へのセリウム塩の添加と、沈殿物の固液分離性との関係について試験を行った。
(実施例1)
ホウ素濃度が1,000mg/Lのホウ素含有水を容量500ccのビーカーに300cc入れた。ホウ素含有水の初期pHは3であった。ホウ素含有水に純度98%の硫酸セリウム(IV)・四水和物試薬を45g添加した。ホウ素含有水を撹拌しつつ、濃度15mol/Lのアンモニア水を30cc添加してpH調整を行った。共沈反応が生じ、沈殿物を含むスラリーが得られた。1時間撹拌した後の液相のpHは9であった。
得られたスラリーをビーカー内で静置した。すると、沈殿物が沈降しはじめ上澄み液と沈殿物との界面が現れた。この界面が1cm低下するのにかかる時間を沈降速度と定義し、これを測定した。その結果、沈降速度は80分/cmであった。
前記と同様の手順で新たに沈殿物を含むスラリーを得た。得られたスラリーを孔径0.45μmのメンブレンフィルター(ADVANTEC社製、型番A045A090C、以下同じ。)に通過させ固液分離した。固液分離に要した時間(濾過時間)は45分であった。
得られた濾液をICP分析(ICP分析装置としてセイコーインスツルメンツ社製、型番SPS−7800を用いた。以下同じ。)して、残存ホウ素濃度を測定した。その結果、残存ホウ素濃度は10.1mg/Lであった。また、ホウ素含有水の体積当りの沈殿物の乾燥重量は98.5g/Lであり、ホウ素の除去効率は10.0mg/gであった。ここで、除去効率とは除去されたホウ素の重量[mg]を沈殿物の乾燥重量[g]で除算した値である。
(実施例2)
ホウ素濃度が1,000mg/Lのホウ素含有水を容量500ccのビーカーに300cc入れた。ホウ素含有水の初期pHは3であった。ホウ素含有水に純度98%の硝酸セリウム(III)・六水和物試薬を45g添加した。つぎに、ホウ素含有水に濃度10mol/Lの過酸化水素水を10cc添加した。1時間撹拌した後のホウ素含有水のpHは1であった。ホウ素含有水を撹拌しつつ、濃度15mol/Lのアンモニア水を30cc添加してpH調整を行った。共沈反応が生じ、沈殿物を含むスラリーが得られた。1時間撹拌した後の液相のpHは9であった。
得られたスラリーをビーカー内で静置し、沈降速度を測定した。その結果、沈降速度は60分/cmであった。
前記と同様の手順で新たに沈殿物を含むスラリーを得た。得られたスラリーを孔径0.45μmのメンブレンフィルターに通過させ固液分離した。濾過時間は40分であった。
得られた濾液をICP分析して残存ホウ素濃度を測定した。その結果、残存ホウ素濃度は9.2mg/Lであった。また、ホウ素含有水の体積当りの沈殿物の乾燥重量は93.2g/Lであり、ホウ素の除去効率は10.6mg/gであった。
(比較例1)
ホウ素濃度が1,000mg/Lのホウ素含有水を容量500ccのビーカーに300cc入れた。ホウ素含有水の初期pHは3であった。ホウ素含有水に純度98%の硝酸セリウム(III)・六水和物試薬を45g添加した。ホウ素含有水を撹拌しつつ、濃度15mol/Lのアンモニア水を20cc添加してpH調整を行った。共沈反応が生じ、沈殿物を含むスラリーが得られた。1時間撹拌した後の液相のpHは9であった。
得られたスラリーをビーカー内で静置し、沈降速度を測定しようとしたが、界面が現れず測定不能であった。
前記と同様の手順で新たに沈殿物を含むスラリーを得た。得られたスラリーを孔径0.45μmのメンブレンフィルターに通過させ固液分離した。濾過時間は640分であった。
得られた濾液をICP分析して残存ホウ素濃度を測定した。その結果、残存ホウ素濃度は1.06mg/Lであった。また、ホウ素含有水の体積当りの沈殿物の乾燥重量は81.0g/Lであり、ホウ素の除去効率は12.3mg/gであった。
実施例1、2および比較例1を表1にまとめる。
Figure 0006840354
表1より、実施例1、2は比較例1に比べて濾過時間が10分の1以下となっていることが分かる。これより、ホウ素含有水中に4価のセリウムイオンを存在させれば、固液分離性の高い沈殿物が得られることが確認された。
また、4価のセリウム塩を添加した実施例1に比べて、3価のセリウム塩を添加した後に酸化剤を添加した実施例2の方が、濾過時間が短いことが分かる。発明者らはこの現象について、3価のセリウムイオンが全て酸化されるわけではなく、わずかに残留するためであると考えている。3価のセリウムイオンにより得られる沈殿物は非常に微細な粒子である。この微粒子が4価のセリウムイオンにより得られる沈殿物が生じる核として働いていると考えられる。ホウ素含有水中に4価のセリウムイオンとともに3価のセリウムイオンが存在した方が、より固液分離性の高い沈殿物が得られると考えられる。
つぎに、ホウ素含有水に3価のセリウム塩を添加した後に酸化剤を添加する場合において、過酸化水素水の添加量と残存ホウ素濃度との関係を試験した。
(実施例3)
ホウ素濃度が1,000mg/Lのホウ素含有水を容量500ccのビーカーに300cc入れた。ホウ素含有水の初期pHは2であった。ホウ素含有水に純度98%の硝酸セリウム(III)・六水和物試薬を45g添加した。つぎに、ホウ素含有水に濃度10mol/Lの過酸化水素水を2.5cc添加した。H22/Ce=0.25である。1時間撹拌した後のホウ素含有水のpHは1であった。ホウ素含有水を撹拌しつつ、濃度15mol/Lのアンモニア水を30cc添加してpH調整を行った。共沈反応が生じ、沈殿物を含むスラリーが得られた。1時間撹拌した後の液相のpHは9であった。
得られたスラリーを孔径0.45μmのメンブレンフィルターに通過させ固液分離した。得られた濾液をICP分析して残存ホウ素濃度を測定した。その結果、残存ホウ素濃度は2.4mg/Lであった。
(実施例4)
ホウ素濃度が1,000mg/Lのホウ素含有水を容量500ccのビーカーに300cc入れた。ホウ素含有水の初期pHは2であった。ホウ素含有水に純度98%の硝酸セリウム(III)・六水和物試薬を45g添加した。つぎに、ホウ素含有水に濃度10mol/Lの過酸化水素水を5cc添加した。H22/Ce=0.5である。1時間撹拌した後のホウ素含有水のpHは1であった。ホウ素含有水を撹拌しつつ、濃度15mol/Lのアンモニア水を30cc添加してpH調整を行った。共沈反応が生じ、沈殿物を含むスラリーが得られた。1時間撹拌した後の液相のpHは9であった。
得られたスラリーを孔径0.45μmのメンブレンフィルターに通過させ固液分離した。得られた濾液をICP分析して、残存ホウ素濃度を測定した。その結果、残存ホウ素濃度は8.5mg/Lであった。
(実施例5)
ホウ素濃度が1,000mg/Lのホウ素含有水を容量500ccのビーカーに300cc入れた。ホウ素含有水の初期pHは2であった。ホウ素含有水に純度98%の硝酸セリウム(III)・六水和物試薬を45g添加した。つぎに、ホウ素含有水に濃度10mol/Lの過酸化水素水を10cc添加した。H22/Ce=1である。1時間撹拌した後のホウ素含有水のpHは1であった。ホウ素含有水を撹拌しつつ、濃度15mol/Lのアンモニア水を30cc添加してpH調整を行った。共沈反応が生じ、沈殿物を含むスラリーが得られた。1時間撹拌した後の液相のpHは9であった。
得られたスラリーを孔径0.45μmのメンブレンフィルターに通過させ固液分離した。得られた濾液をICP分析して、残存ホウ素濃度を測定した。その結果、残存ホウ素濃度は13.5mg/Lであった。
(実施例6)
ホウ素濃度が1,000mg/Lのホウ素含有水を容量500ccのビーカーに300cc入れた。ホウ素含有水の初期pHは2であった。ホウ素含有水に純度98%の硝酸セリウム(III)・六水和物試薬を45g添加した。つぎに、ホウ素含有水に濃度10mol/Lの過酸化水素水を20cc添加した。H22/Ce=2である。1時間撹拌した後のホウ素含有水のpHは1であった。ホウ素含有水を撹拌しつつ、濃度15mol/Lのアンモニア水を30cc添加してpH調整を行った。共沈反応が生じ、沈殿物を含むスラリーが得られた。1時間撹拌した後の液相のpHは9であった。
得られたスラリーを孔径0.45μmのメンブレンフィルターに通過させ固液分離した。得られた濾液をICP分析して、残存ホウ素濃度を測定した。その結果、残存ホウ素濃度は76.3mg/Lであった。
実施例3〜6を表2にまとめる。
Figure 0006840354
表2より、実施例6(H22/Ce=2)は実施例3〜5(H22/Ce=0.25、0.5、1)に比べて残存ホウ素濃度が著しく高いことが分かる。沈殿物の様子も実施例6と実施例3〜5とでは異なり、実施例6ではセリウムの水酸化物とは別のものが生成されたと考えられる。したがって、過酸化水素水の添加量はH22/Ceが1以下となる量とすることが好ましいことが確認された。

Claims (1)

  1. ホウ素含有水に3価のセリウム塩を添加した後、酸化剤を添加して3価のセリウムイオンを酸化することで、前記ホウ素含有水中に4価のセリウムイオンとともに3価のセリウムイオンを存在させ、
    前記ホウ素含有水のpHを7〜9に調整することで、共沈反応によりホウ素を沈殿させ
    前記酸化剤は過酸化水素水であり、過酸化水素水の添加量はセリウムに対する過酸化水素の添加モル比が0.25〜0.5となる量である
    ことを特徴とするホウ素含有水の処理方法。
JP2017018305A 2017-02-03 2017-02-03 ホウ素含有水の処理方法 Active JP6840354B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018305A JP6840354B2 (ja) 2017-02-03 2017-02-03 ホウ素含有水の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018305A JP6840354B2 (ja) 2017-02-03 2017-02-03 ホウ素含有水の処理方法

Publications (2)

Publication Number Publication Date
JP2018122273A JP2018122273A (ja) 2018-08-09
JP6840354B2 true JP6840354B2 (ja) 2021-03-10

Family

ID=63110666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018305A Active JP6840354B2 (ja) 2017-02-03 2017-02-03 ホウ素含有水の処理方法

Country Status (1)

Country Link
JP (1) JP6840354B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6950893B2 (ja) * 2018-06-21 2021-10-13 学校法人早稲田大学 ホウ素含有水の処理方法
JP7370312B2 (ja) * 2020-12-28 2023-10-27 株式会社日本海水 有害物質除去剤、有害物質除去剤の製造方法および有害物質除去剤を用いた有害物質の処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132986A (ja) * 1983-01-18 1984-07-31 Asahi Chem Ind Co Ltd ホウ酸イオンの分離方法
JPS6012190A (ja) * 1983-07-04 1985-01-22 Asahi Chem Ind Co Ltd 海水又はかん水或いは苦汁水中のホウ酸イオンの分離除去方法
JP2000308890A (ja) * 1999-04-27 2000-11-07 Minolta Co Ltd ホウ素の除去方法
JP2006263603A (ja) * 2005-03-24 2006-10-05 Kurita Water Ind Ltd ホウ素含有水の処理方法
CA2743304A1 (en) * 2008-11-11 2010-05-20 Molycorp Minerals Llc Target material removal using rare earth metals
EA201201401A1 (ru) * 2010-04-13 2013-04-30 Моликорп Минералс, Ллс Способы и устройства для усовершенствования удаления загрязнений с помощью редкоземельных металлов

Also Published As

Publication number Publication date
JP2018122273A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
Muzzarelli Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review
CN105448373B (zh) 一种高盐含铀废水或废液快速除铀降盐方法
JP5936196B2 (ja) セシウム含有層状複水酸化物複合体、廃棄物固化体、セシウム含有廃水の処理方法、層状複水酸化物複合体、及び層状複水酸化物複合体の製造方法
JP6840354B2 (ja) ホウ素含有水の処理方法
JP2018065125A (ja) ホウ素含有水の処理方法
EP2792645B1 (en) Process for removing fluorides from water
JP5550459B2 (ja) 回収リンおよびその回収方法
JP5110463B2 (ja) アニオン吸着性及び磁性をもつ磁性ナノコンプレックス材料の製造方法
JP2013104723A (ja) Sr含有水の処理方法及び処理装置
JP6047957B2 (ja) 放射性ストロンチウム含有排水の処理方法
JP2008221148A (ja) リン回収方法及びリン回収システム
JP6950893B2 (ja) ホウ素含有水の処理方法
JP2008029989A (ja) ホウ素含有水からホウ素の分離回収方法
Kaprara et al. Evaluation of current treatment technologies for Cr (VI) removal from water sources at sub-ppb levels
JP2000033387A (ja) 水中砒素の除去方法
JP6599153B2 (ja) ホウ素含有水の処理方法
JP2016176742A (ja) 放射性セシウムの固定化方法、及び放射性セシウム吸着無機鉱物
JPH11235595A (ja) ホウ素含有排水の処理方法
JP5484702B2 (ja) 水質浄化材料およびそれを用いた水質浄化方法
Chen et al. Novel effective waste iron oxide-coated magnetic adsorbent for phosphate adsorption
Sharma et al. Removal of fluoride from ground water by using bio-adsorbent like Lantana camera(Jamri)
RU2628396C2 (ru) Сорбент для очистки водных сред от ионов мышьяка и способ его получения
KR101768803B1 (ko) 비소 또는 인산염의 선택적 흡착재 및 이의 제조방법
RU2613519C1 (ru) Способ получения сорбента мышьяка
Akanyeti et al. Hybrid sorbent-ultrafiltration systems for fluoride removal from water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6840354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250