JP6830681B2 - 電子回路 - Google Patents

電子回路 Download PDF

Info

Publication number
JP6830681B2
JP6830681B2 JP2019124905A JP2019124905A JP6830681B2 JP 6830681 B2 JP6830681 B2 JP 6830681B2 JP 2019124905 A JP2019124905 A JP 2019124905A JP 2019124905 A JP2019124905 A JP 2019124905A JP 6830681 B2 JP6830681 B2 JP 6830681B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
voltage
inverter
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019124905A
Other languages
English (en)
Other versions
JP2019216423A (ja
Inventor
菅原 聡
聡 菅原
山本 修一郎
修一郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of JP2019216423A publication Critical patent/JP2019216423A/ja
Application granted granted Critical
Publication of JP6830681B2 publication Critical patent/JP6830681B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/3565Bistables with hysteresis, e.g. Schmitt trigger
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0233Bistable circuits
    • H03K3/02337Bistables with hysteresis, e.g. Schmitt trigger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/148Details of power up or power down circuits, standby circuits or recovery circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)
  • Static Random-Access Memory (AREA)

Description

本発明は、電子回路に関し、例えばインバータ回路を有する電子回路に関する。
CMOS(Complementary Metal Oxide Semiconductor)集積回路等の集積回路の消費電力を削減する技術として、例えばパワーゲーティング(PG)技術がある。パワーゲーティング技術においては、電源遮断時の情報の保持が課題となる。このような情報の保持のため、記憶回路に不揮発性メモリ等の不揮発性回路を用いることが検討されている(特許文献1)。また、集積回路の消費電力を低減するため、低電圧駆動技術が検討されている。
国際公開2013/172066号
しかしながら、従来CMOSで構成されていた記憶回路に不揮発性メモリを用いると、システムの動作速度などの性能が劣化する、さらに、製造工程が複雑になる。また、ロジック回路の電源電圧を低減すると、トランジスタのバラツキ耐性とノイズ耐性などの回路性能が劣化し安定動作が難しくなる。
本発明は上記課題に鑑みなされたものであり、電子回路の消費電力を削減することを目的とする。
本発明は、電源電圧が供給される正電源と負電源との間に接続され、第1モードと第2モードとが切り替わるインバータ回路である第1インバータおよび第2インバータがループ状に接続された双安定回路と、前記インバータ回路に、前記インバータ回路を前記第1モードとする第1信号と、前記インバータ回路を前記第2モードとする第2信号と、を出力する制御回路と、前記インバータ回路が前記第1モードのとき前記電源電圧として第1電圧を供給し、前記インバータ回路が前記第2モードのとき前記電源電圧として前記第1電圧より高い第2電圧を供給する電源供給回路と、を具備し、前記第1モードは伝達特性にヒステリシスを有するモードであり前記第2モードは伝達特性にヒステリシスがないモードである、および/または、前記第1モードは前記第2モードより伝達特性が急峻であるモードであることを特徴とする電子回路である。
上記構成において、前記双安定回路は、前記第1モードにおいてデータを保持しデータの書き込みおよび読み出しが行なわれず、前記第2モードにおいてデータの書き込みおよび読み出しが行なわれる構成とすることができる。
上記構成において、前記電源供給回路は、前記制御回路が前記第1信号を出力した後に、前記第2電圧を前記第1電圧に切り替え、前記制御回路が前記第2信号を出力する前に、前記第1電圧を前記第2電圧に切り替える構成とすることができる。
上記構成において、前記インバータ回路は、前記第1モード、前記第2モード、および第3モードに切り替わり、前記第3モードは、前記第1モードより小さい前記ヒステリシスを有し、および/または、前記第2モードより伝達特性が急峻であり、前記制御回路は、前記インバータ回路に、前記インバータ回路を前記第3モードとする第3信号を出力し、前記電源供給回路は、前記インバータ回路が前記第3モードのとき前記電源電圧として前記第2電圧より低い第3電圧を供給する構成とすることができる。
上記構成において、前記第1インバータおよび前記第2インバータにより形成されるループ内にクロック信号に同期しオンおよびオフするスイッチと、前記第1インバータおよび前記第2インバータが前記第1モードのとき前記スイッチに前記クロック信号を供給せず、前記第1インバータおよび前記第2インバータが前記第2モードのとき前記スイッチに前記クロック信号を供給するクロック供給回路と、を具備する構成とすることができる。
上記構成において、前記インバータ回路は、前記正電源と前記負電源にそれぞれソースが接続され、少なくとも一方が複数直列に接続された第1PチャネルFETおよび第1NチャネルFETと、前記第1PチャネルFETのゲートおよび前記第1NチャネルFETのゲートが共通に接続された入力ノードと、前記第1PチャネルFETの1つのドレインおよび前記第1NチャネルFETの1つのドレインが共通に接続された出力ノードと、前記第1PチャネルFETおよび前記第1NチャネルFETのうち複数直列に接続された少なくとも一方の複数の第1FET間に設けられた中間ノードにソースおよびドレインの一方が接続され、ゲートが前記出力ノードに接続され、前記ソースおよび前記ドレインの他方が前記第1信号および前記第2信号が入力する制御ノードに接続され、前記第1PチャネルFETおよび前記第1NチャネルFETのうち複数直列に接続された少なくとも一方の導電型と同じ導電型の第2PチャネルFETおよび第2NチャネルFETの少なくとも一方の第2FETと、を備える構成とすることができる。
上記構成において、前記制御回路は、前記第1信号として、前記第2PチャネルFETの制御ノードにローレベルを出力し、および/または、前記第2NチャネルFETの制御ノードにハイレベルを出力し、前記第2信号として、前記第2PチャネルFETの制御ノードにハイレベルを出力し、および/または、前記第2NチャネルFETの制御ノードにローレベルを出力する構成とすることができる。
上記構成において、前記第1PチャネルFETおよび前記第1NチャネルFETは、いずれも直列に複数接続され、前記第2FETは、前記第2PチャネルFETおよび前記第2NチャネルFETを含み、前記制御回路は、前記第1信号として、前記第2PチャネルFETの制御ノードにローレベルを出力し、かつ前記第2NチャネルFETの制御ノードにハイレベルを出力し、前記第2信号として、前記第2PチャネルFETの制御ノードにハイレベルを出力し、かつ前記第2NチャネルFETの制御ノードにローレベルを出力する構成とすることができる。
上記構成において、前記電源供給回路は、前記正電源および前記負電源の少なくとも一方と前記インバータ回路との間に接続されたMOSFETを含む構成とすることができる。
本発明は、電源電圧が供給される正電源と負電源にそれぞれソースが接続され、少なくとも一方が複数直列に接続された第1PチャネルFETおよび第1NチャネルFETと、前記第1PチャネルFETのゲートおよび前記第1NチャネルFETのゲートが共通に接続された入力ノードと、前記第1PチャネルFETの1つのドレインおよび前記第1NチャネルFETの1つのドレインが共通に接続された出力ノードと、前記第1PチャネルFETおよび前記第1NチャネルFETのうち複数直列に接続された少なくとも一方の複数の第1FET間に設けられた中間ノードにソースおよびドレインの一方が接続され、ゲートが前記出力ノードに接続され、前記ソースおよび前記ドレインの他方が制御ノードに接続され、前記第1PチャネルFETおよび前記第1NチャネルFETのうち複数直列に接続された少なくとも一方の導電型と同じ導電型の第2PチャネルFETおよび第2NチャネルFETの少なくとも一方の第2FETと、を備えるインバータ回路と、前記第2FETの制御ノードに、前記インバータ回路を第1モードとする第1信号と、前記インバータ回路を第2モードとする第2信号と、を出力する制御回路と、を具備し、前記制御回路は、前記第1信号として、前記第2PチャネルFETの制御ノードにローレベルを出力し、および/または、前記第2NチャネルFETの制御ノードにハイレベルを出力し、前記第2信号として、前記第2PチャネルFETの制御ノードにハイレベルを出力し、および/または、前記第2NチャネルFETの制御ノードにローレベルを出力し、前記第1モードは伝達特性にヒステリシスを有するモードであり前記第2モードは伝達特性にヒステリシスがないモードである、および/または、前記第1モードは前記第2モードより伝達特性が急峻であるモードであることを特徴とする電子回路である。
上記構成において前記第1PチャネルFETおよび前記第1NチャネルFETは、いずれも直列に複数接続され、前記第2FETは、前記第2PチャネルFETおよび前記第2NチャネルFETを含み、前記制御回路は、前記第1信号として、前記第2PチャネルFETの制御ノードにローレベルを出力し、かつ前記第2NチャネルFETの制御ノードにハイレベルを出力し、前記第2信号として、前記第2PチャネルFETの制御ノードにハイレベルを出力し、かつ前記第2NチャネルFETの制御ノードにローレベルを出力する構成とすることができる。
上記構成において、前記インバータ回路が前記第1モードのとき前記電源電圧として第1電圧を供給し、前記インバータ回路が前記第2モードのとき前記電源電圧として前記第1電圧より高い第2電圧を供給する電源供給回路を具備する構成とすることができる。
上記構成において、前記インバータ回路を有する論理回路を具備する構成とすることができる。
本発明は、電源電圧が供給される正電源と負電源との間に接続され、ループを形成する第1インバータおよび第2インバータと、前記ループ内にクロック信号に同期しオンおよびオフするスイッチと、を備える双安定回路と、前記スイッチに前記クロック信号を供給するクロック供給回路と、前記クロック供給回路が前記クロック信号を供給しないとき前記電源電圧として第1電圧を供給し、前記クロック供給回路が前記クロック信号を供給するとき前記電源電圧として前記第1電圧より高い第2電圧を供給する電源供給回路と、を具備することを特徴とする電子回路である。
本発明によれば、電子回路の消費電力を削減することができる。
図1(a)および図1(b)は、実施例1に係る電子回路を示す回路図である。 図2(a)および図2(b)は、実施例1の変形例1に係る電子回路の回路図である。 図3は、実施例1の変形例1におけるインバータ回路の伝達特性を示す図である。 図4(a)および図4(b)は、実施例1の変形例1における時間に対する出力電圧を示した図である。 図5(a)から図5(e)は、実施例1の変形例1におけるタイミングチャートである。 図6(a)は、実施例2に係る電子回路の記憶セルを示す回路図、図6(b)は電子回路を示す回路図である。 図7(a)および図7(b)は、実施例2における記憶セルの特性を示す図である。 図8(a)および図8(b)は、実施例2におけるそれぞれインバータモードおよびシュミットトリガモードにおける記憶セルの特性を示す図である。 図9(a)および図9(b)は、それぞれ実施例2の変形例1および2に係る電子回路を示す回路図である。 図10は、実施例2の変形例3に係る電子回路の回路図である。 図11は、実施例2の変形例4に係る電子回路の回路図である。 図12(a)から図12(e)は、実施例2の変形例3におけるタイミングチャートである。 図13は、実施例2の変形例5に係る電子回路の回路図である。 図14は、実施例2の変形例6に係る電子回路の回路図である。 図15(a)および図15(b)は、実施例2の変形例5の制御回路を示す回路図であり、図15(c)は、タイミングチャートである。 図16(a)および図16(b)は、実施例2の変形例5の制御回路を示す別の回路図であり、図16(c)は、タイミングチャートである。 図17(a)および図17(b)は、実施例3に係る電子回路の回路図である。 図18は、実施例3の変形例1に係る電子回路の回路図である。 図19(a)から図19(c)は、それぞれ実施例4、実施例4の変形例1および実施例4の変形例2に係る電子回路の回路図である。 図20は、実施例5におけるインバータ回路の伝達特性を示す図である。 図21は、実施例5を用いたNAND回路の回路図である。 図22(a)は、実施例6に係る電子回路のブロック図、図22(b)は、実施例6の各モードの動作を示す図である。 図23(a)および図23(b)は、実施例7に係る電子回路の回路図である。
CMOS集積回路における低電圧動作は、その低消費電力化に極めて有効である。記憶回路では、低電圧でデータを保持することで、記憶回路の重要な課題である待機時電力を削減することができる。ロジック回路では、低電圧動作を行うことで、動作速度は劣化するが、演算のエネルギー効率を高めることが可能となる。以下、記憶回路とロジック回路における低電圧動作の現状と課題について述べる。
記憶回路では、データを保持し待機状態にあるときの電力(待機時電力)の削減が重要な課題の1つとなる。パワーゲーティング(PG)はCMOS集積回路における待機時電力削減技術として広く用いられている。しかし、マイクロプロセッサなどのロジックシステムでは、PGによって電源遮断を行う領域(パワードメイン)内に、揮発性の記憶回路が用いられていることが一般的である。このため、PGでは、パワードメイン内のデータの保持が重要な課題となっている。
記憶回路のデータが失われない程度に供給電圧を低く抑えて(例えば、電源電圧の8割程度)、データを保持する方法は、SRAM(Static Random Access Memory)などで構成される記憶回路に用いられている。この方法では、待機時電力の削減には効果があるが、データ保持のための電圧を大幅に下げることができないため、電源遮断ほどの電力削減効果はない。したがって、この方法は本来のPGほどの待機時電力の削減はできない。
また、記憶回路に効果的なPGを行なうため、近年では不揮発性メモリを用いたデータの保持が検討されている。この方法は電源を遮断してもデータを保持できるため、完全な電源遮断によるPGを実行でき、記憶回路の待機時電力の削減の効果は大きい。しかし、不揮発性メモリを用いることによる回路性能の劣化が問題となる。このため、不揮発性メモリを用いないメモリ動作と不揮発性の記憶とを分離できる不揮発性記憶回路の導入など、いくつかの試みが検討されている。しかし、不揮発性メモリとCMOSロジック回路の混載には、例えば製造工程が複雑になる、およびこれに伴う製造コストの増大等の課題も多く、実現に至っていない。
シュミットトリガインバータで構成した双安定回路を用いた記憶回路では、極めて低い電圧(例えば0.3Vまたはこれ以下)でデータの保持ができる。このため、電源遮断並の待機時電力の大幅削減が可能となる。しかし、シュミットトリガインバータの構造に起因して、その動作速度が劣化するなど回路性能が劣化してしまうといった問題が生じる。
そこで、記憶回路の待機時電力を大きく削減するため、極めて低い電圧(例えば、パワードメインのパワースイッチを遮断したときに発生する仮想電源の電圧、0.2−0.3V程度であることが多い)でデータを保持することと、書き込みおよび/または読み出しといった通常のメモリ動作においては、従来の記憶回路(SRAMまたはフリップフロップ)程度に十分に高速動作できることと、が求められる。
次に、ロジック回路の低電圧動作について、現状と課題を述べる。近年、ウエラブルデバイスなどに用いるロジックシステムの高エネルギー効率化による超低消費電力化技術が重要になってきている。ウエラブルデバイスは“always-on”デバイスとも呼ばれている。ウエラブルデバイスの低消費電力化には、演算処理のエネルギー効率を最大限に高めて、無駄なエネルギー消費を極力省くことが重要となる。
一般に、CMOSロジックの消費電力は電源電圧の低減とともに削減できる。しかし、消費エネルギーは電源電圧の削減に対して単調減少せず、ある電圧まで下げるとそこで極小点を持ち、さらに電圧を下げると消費エネルギーはむしろ増大してしまう。これは、低電圧化にともないCMOSの動作速度が急激に遅くなり、この伸びた動作時間内に消費する待機時(スタティック)エネルギーが増大するためである。
ウエラブルデバイスのバックグラウンドにおける情報処理は、高速演算である必要がない。このことから、このバックグラウンド演算には、エネルギー消費が極小となる低電圧化の動作が重要になると考えられる。しかし、このようなエネルギー極小点となる電圧は0.3−0.5V程度と極めて低く、ノイズや素子のバラツキによって、ロジックシステムを安定に動作させることが難しくなる。また、バックグラウンドではない通常電圧(フルスウィング)動作では、スマートフォンなどと同程度の高速な情報処理が求められる。
したがって、ウエラブルデバイスのようなロジックシステムでは、エネルギー極小点となる低電圧における高エネルギー効率および安定動作と、通常電圧による高速演算と、の両立が求められる。
以下に説明する実施例では、シュミットトリガインバータモード(シュミットトリガモードともいう)と通常のインバータモードで動作できるインバータ回路を用いた記憶回路によって、通常電圧駆動時における高速動作と、非常に低い電圧によるデータの保持を実現できる記憶回路を提供する。
また、シュミットトリガモードと通常のインバータモードで動作できるインバータ回路を用いたロジック回路によって、エネルギー効率の高い低電圧動作と、通常電圧駆動による高速動作を実現できるロジック回路を提供する。
図1(a)および図1(b)は、実施例1に係る電子回路を示す回路図である。図1(a)に示すように、電子回路100は、インバータ回路10、制御回路20および電源供給回路30を備える。インバータ回路10は、入力ノードNin、出力ノードNout、中間ノードNm1、Nm2およびFET(Field Effect Transistor)11から16を備える。FET11、12および15はPチャネルFETであり、FET11および12は第1PチャネルFETであり、FET15は第2PチャネルFETである。FET13、14および16はNチャネルFETであり、FET13および14は第1NチャネルFETであり、FET16は第2NチャネルFETである。FET15および16は、FET11から14が形成するインバータへのフィードバックトランジスタとして機能できる。
電源線36とグランド線38との間に、複数のFET11から14が直列に接続されている。FET11のソースが電源線36に接続され、FET14のソースがグランド線38に接続されている。FET11のドレインとFET12のソースは中間ノードNm1に接続されている。FET13のソースとFET14のドレインは中間ノードNm2に接続されている。FET12および13のドレインは共通に出力ノードに接続されている。FET11から14のゲートは共通に入力ノードNinに接続されている。
FET15のソースおよびドレインの一方は中間ノードNm1に、ゲートは出力ノードNoutに、ソースおよびドレインの他方は制御ノードNFPに接続されている。FET16のソースおよびドレインの一方は中間ノードNm2に、ゲートは出力ノードNoutに、ソースおよびドレインの他方は制御ノードNFNに接続されている。
制御回路20は、制御ノードNFPおよびNFNに、それぞれ電圧VFPおよびVFNを印加する。電圧VFPおよびVFNは、ハイレベルまたはローレベルである。制御回路20が電圧VFPとしてハイレベルを出力し、電圧VFNとしてローレベルを出力すると、インバータ回路10は通常のインバータとして動作する。これをインバータモードという。制御回路20が電圧VFPとしてローレベルを出力し、電圧VFNとしてハイレベルを出力すると、インバータ回路10はシュミットトリガインバータとして動作する。これをシュミットトリガモードという。なお、ハイレベルおよびローレベルは、例えば電源線36およびグランド線38の電圧に相当する。インバータモードにおいて、ハイレベルがローレベルより高い電圧であればよい。また、シュミットトリガモードにおいても、ハイレベルがローレベルより高い電圧であればよい。インバータモードのハイレベルとシュミットトリガモードのハイレベルは同じ電圧でもよく、異なった電圧でもよい。インバータモードのローレベルとシュミットトリガモードのローレベルは同じ電圧でもよく、異なった電圧でもよい。例えば、ハイレベルは電源から供給される電源電圧VDD(例えば図17(a)を参照)でもよく、ローレベルはグランドの電圧でもよい。
電源供給回路30は、電源線36とグランド線38との間に電源電圧を供給する。電源供給回路30は、例えば電子回路に供給されている電源電圧から仮想電源電圧VVDDを生成し電源線36に供給する。また電源供給回路30は、仮想電源電圧VVDDとして第1電圧と第1電圧より高い第2電圧とを切り替える。電源供給回路30は、例えば後述するパワースイッチ、電圧レギュレータまたはDC(Direct Current)−DCコンバータなどである。
図1(a)において、電源供給回路30は、電源線36に接続されており、電源線36とグランド線38との間に供給される電源電圧を低くするときに電源線36の仮想電源電圧VVDDを低くし、電源電圧を高くするときに仮想電源電圧VVDDを高くしている。図1(b)に示すように、電源供給回路30は、グランド線38に接続されており、電源線36とグランド線38との間に供給される電源電圧を低くするときにグランド線38の仮想グランド電圧VGNDを高くし、電源電圧を高くするときに仮想グランド電圧VGNDを低くしてもよい。電源供給回路30は仮想電源電圧VVDDと仮想グランド電圧VGNDの両方を切り替えてもよい。
図2(a)および図2(b)は、実施例1の変形例1に係る電子回路の回路図である。図2(a)に示すように、電子回路100aにおいて、制御回路20はインバータ22および24を備えている。インバータ24の入力ノードには制御信号CTRLが入力する。インバータ24の出力ノードは制御ノードNFPに接続されている、インバータ22の入力ノードはインバータ24の出力ノードに接続され、出力ノードは制御ノードNFNに接続されている。インバータ22および24には仮想電源電圧VVDDが供給されている。その他の構成は図1(a)と同じであり説明を省略する。制御信号CTRLがハイレベルとのときインバータ回路10はシュミットトリガモードとなり、ローレベルのときインバータ回路10はインバータモードとなる。
図2(b)に示すように、電子回路100bにおいては、インバータ24の出力ノードは制御ノードNFNに接続されている、インバータ22の入力ノードはインバータ24の出力ノードに接続され、出力ノードは制御ノードNFPに接続されている。制御信号CTRLがローレベルとのときインバータ回路10はシュミットトリガモードとなり、ハイレベルのときインバータ回路10はインバータモードとなる。図2(a)のように、制御信号CTRLは制御ノードNFP側から入力してもよい。また、図2(b)のように、制御信号CTRLは制御ノードNFN側から入力してもよい。
図2(a)の電子回路100aを用い、インバータ特性をシミュレーションした。図3は、実施例1の変形例1におけるインバータ回路の伝達特性を示す図である。実線は、制御信号CTRLがローレベルであるインバータモードの伝達特性である。破線は制御信号CTRLがハイレベルであるシュミットトリガモードの伝達特性である。図3に示すように、インバータモードでは、FET15および16はそれぞれ中間ノードNm1およびNm2をハイレベルおよびローレベルにしようとする。このため、伝達特性のヒステリシスがなく通常のインバータとして動作する。シュミットトリガモードでは、FET15および16は、出力ノードNoutの信号をそれぞれ中間ノードNm1およびNm2に正にフィードバックする。このため、伝達特性にヒステリシスが生ずる。また、出力電圧Voutのハイレベルからローレベルへの変化およびローレベルからハイレベルへの変化が急峻である。このため、シュミットトリガモードでは、インバータ回路10は仮想電源電圧VVDDが低いときにおいても安定に動作できる。
図4(a)および図4(b)は、実施例1の変形例1における時間に対する出力電圧を示した図である。一点鎖線は、入力電圧Vinを、点線はFET15および16を備えないインバータを、実線はインバータモードを、破線はシュミットトリガモードを示す。図4(a)は、入力電圧Vinがローレベルからハイレベルに切り替わるときを示し、図4(b)は、ハイレベルからローレベルに切り替わるときを示す。図4(a)および図4(b)に示すように、シュミットトリガモードでは、インバータと比べ出力電圧Voutの切り替わりが遅い。インバータモードでは、FET15および16がプルアップおよびプルダウンをアシストするため、インバータと同程度で出力電圧Voutが切り替わる。このように、シュミットトリガモードでは、動作速度が遅いが、インバータモードでは高速動作が可能となる。
図5(a)から図5(e)は、実施例1の変形例1におけるタイミングチャートである。図5(a)は、時間に対する制御ノードNFNおよびNFPの電圧VFNおよびVFPを示す図、図5(b)は、時間に対する制御信号CTRLおよび仮想電源電圧VVDDを示す図、図5(c)は、時間に対する出力電圧Voutおよび入力電圧Vinを示す図、図5(d)は、時間に対するインバータ回路10、インバータ22および24のスイッチングにともなう貫通電流を示す図、図5(e)は、時間に対する消費電流を示す図である。図5(e)において、各電圧が切り替わったときの過度応答はシミュレーションの都合上正確ではないが、安定した後の電流値は正確である。
図5(b)において制御信号CTRLがハイレベルの期間がシュミットトリガモード、ローレベルの期間がインバータモードである。インバータモードにおいては、図5(a)に示すように、電圧VFPはハイレベル、電圧VFNはローレベルである。図5(c)に示すように、入力電圧Vinがローレベルのとき出力電圧Voutはハイレベル、入力電圧Vinがハイレベルのとき出力電圧Voutはローレベルである。図5(d)に示すように、インバータ回路10、インバータ22および24の出力が切り替わるときに貫通電流が流れる。図5(e)に示すように、消費電流は229nAである。
シュミットトリガモードにおいて、図5(b)に示すように、仮想電源電圧VVDDを1.2Vから順次切り替え0.8Vおよび0.3Vに設定した。1.2Vは、インバータ回路10が通常動作する仮想電源電圧VVDDである。0.8Vは、通常のインバータをいわゆるスリープモードとして動作させるときの仮想電源電圧VVDDに相当する。0.3Vは、通常のインバータは動作しない仮想電源電圧VVDDである。図5(a)および図5(c)のように、電圧VFNおよび出力電圧Voutは仮想電源電圧VVDDにともない低くなる。図5(e)のように、仮想電源電圧VVDDが0.8Vのとき、消費電流は67nA、仮想電源電圧VVDDが0.3Vのとき消費電流は8nAとなる。よって、シュミットトリガモードにおいて仮想電源電圧VVDDを低く(例えば0.3V)することにより、消費電力を抑制できる。例えば、インバータモードでは、仮想電源電圧VVDDを1.2Vとして高速動作させ、シュミットトリガモードでは、仮想電源電圧VVDDを0.3Vとし消費電力を削減できる。シュミットトリガモードにおいて仮想電源電圧VVDDを0.3Vに低下させたときの消費電力は、インバータモードにおいて仮想電源電圧VVDDを1.2Vとしたときの数%となる。また、通常のインバータのスリープモードと比べても消費電力を低減できる。さらに低電圧動作も可能である。
実施例1によれば、インバータ回路10は、電源電圧が供給される電源線(正電源)とグランド線(負電源)との間に接続され、シュミットトリガモード(第1モード)と、インバータモード(第2モード)と、が切り替わる。制御回路20は、インバータ回路10をシュミットトリガモードとする第1信号と、インバータモードとする第2信号と、を出力する。電源供給回路30は、シュミットトリガモードのとき電源電圧として第1電圧を供給し、インバータモードのとき第1電圧より高い第2電圧を供給する。これにより、インバータ回路10をインバータモードおよびシュミットトリガモードとして動作させることができる。インバータモードにおいては、インバータ回路10は高速動作可能となる。シュミットトリガモードでは、インバータ回路10は低電源電圧でも動作可能なヒステリシスを有する急峻な伝達特性を有し、消費電力を抑制できる。第1モードは伝達特性にヒステリシスを有するモードでありかつ第2モードは伝達特性にヒステリシスがないモードである、および/または、第1モードは第2モードより伝達特性の入力電圧に対する出力電圧の変化が急峻であればよい。例えば、記憶回路では、シュミットトリガモードにおいて、ヒステリシスが大きく急峻であることが好ましい。ロジック回路では、シュミットトリガモードにおいて、インバータモードより伝達特性が急峻であることが好ましい。
インバータ回路10の回路構成は図1(a)および図1(b)には限られず、制御回路20からの信号により、伝達特性のヒステリシスの有無が切り替わる回路であればよい。例えば、FET15、16は、FET11および12と、FET13および14と、に、出力ノードNoutの信号を制御回路20から入力する第1信号および第2信号に応じフィードバックするフィードバック回路であればよい。また、図1(a)および図1(b)のような回路構成のインバータ回路10では、制御回路20は、第1信号および第2信号として、FET15および16の制御ノードNFPおよびNFNに、ハイレベルおよびローレベルを切り替えて出力する。これにより、インバータ回路10の伝達特性におけるヒステリシスの有無を切り替えることができる。
制御回路20は、インバータモードとする第2信号として、FET15の制御ノードNFPにハイレベルを出力し、FET16の制御ノードNFNにローレベルを出力する。また、制御回路20は、シュミットトリガモードとする第1信号として、FET15の制御ノードNFPにローレベルを出力し、FET16の制御ノードNFNにハイレベルを出力する。これにより、FET15および16は、制御ノードNFPおよびNFNに第2信号が入力したとき、インバータ回路10をインバータモードとし、制御ノードNFPおよびNFNに第1信号が入力したとき、インバータ回路10をシュミットトリガモードとすることができる。
さらに、制御回路20は、FET15の制御ノードNFPとFET16の制御ノードNFNとの間に接続されたインバータ(反転回路)22を備える。これにより、制御回路20は、制御ノードNFPとNFNの電圧を簡単に反転できる。
シミュレーションでは、インバータ22および24の電源電圧を仮想電源電圧VVDDとしているが任意の電源電圧でもよい。また、制御回路20は、インバータ22および24を用いずに第1信号および第2信号を生成してもよい。例えば、制御回路20は、NAND回路および/またはNOR等の論理ゲートを組み合わせた回路でもよい。
図5(b)のように、電源供給回路30は、制御回路20がインバータ回路10をシュミットトリガモードとする第1信号を出力した後に、仮想電源電圧VVDDを高い第2電圧から低い第1電圧に切り替える。電源供給回路30は、制御回路20がインバータ回路10をインバータモードとする第2信号を出力する前に、仮想電源電圧VVDDを低い第1電圧から高い第2電圧に切り替える。これにより、仮想電源電圧VVDDが低い第1電圧の間、インバータ回路10を安定に動作できる。例えば、後述する実施例2では、双安定回路がデータを安定に保持できる。なお、インバータモードの伝達特性は、ヒステリシスが狭い伝達特性でもよい。実質的にヒステリシスがなければよい。例えばシュミットトリガモードのように、意図的にヒステリシスを形成してなければよい。
実施例2は、実施例1のインバータ回路を用いた記憶回路の例である。図6(a)は、実施例2に係る電子回路の記憶セルを示す回路図、図6(b)は電子回路を示す回路図である。図6(a)に示すように、電子回路104は、記憶セル102、制御回路20および電源供給回路30を備える。記憶セル102は、インバータ回路10aおよび10b、FET41および42を備える。インバータ回路10aおよび10bは実施例1のインバータ回路10である。インバータ回路10aおよび10bはループ状に接続され、双安定回路40を形成する。すなわち、インバータ回路10aの出力ノードNoutがインバータ回路10bの入力ノードNinに接続され、インバータ回路10bの出力ノードNoutがインバータ回路10aの入力ノードNinに接続されている。インバータ回路10aおよび10bの出力ノードNoutはそれぞれ記憶ノードN2およびN1となる。FET41および42はNチャネルFETである。FET41のソースおよびドレインの一方は記憶ノードN2に、ソースおよびドレインの他方はビット線BLに、ゲートはワード線WLに接続されている。FET42のソースおよびドレインの一方は記憶ノードN1に、ソースおよびドレインの他方はビット線BLBに、ゲートはワード線WLに接続されている。
図6(b)に示すように、電子回路104は、メモリ領域70、列ドライバ71、行ドライバ72および制御部73を備えている。メモリ領域70内には記憶セル102がマトリックス状に配列されている。列ドライバ71は、アドレス信号により列を選択し、選択した列のビット線BLおよびBLBに電圧等を印加する。行ドライバ72は、アドレス信号により行を選択し、選択した行のワード線WLに電圧を、選択した行の制御線に電圧VFPおよびVFNを印加する。制御部73は、列ドライバ71および行ドライバ72等を制御する。制御部73は、読み出し回路および書き込み回路(不図示)を用い、例えばワード線WLとビット線BLおよびBLBとにより選択された記憶セル102にデータの書き込みおよび記憶セル102からデータの読み出しを行なう。
制御回路20および電源供給回路30の機能は実施例1およびその変形例と同じである。制御回路20は、行ごとに設けられていてもよいし、記憶セル102ごとに設けられていてもよい。簡略化の観点から、制御回路20は行ごとに設けることが好ましい。電源供給回路30は、メモリ領域70内の記憶セル102に共通に設けられていてもよいし、メモリ領域70を複数の領域に分割し、分割された領域ごとに設けられていてもよい。例えば、電源供給回路30は、行ごとに設けられていてもよい。
記憶セル102の特性をシミュレーションした。図7(a)および図7(b)は、実施例2における記憶セルの特性を示す図であり、記憶ノードN1の電圧V1に対する記憶ノードN2の電圧V2を示す図である。図7(a)は、はじめに記憶ノードN2が記憶点になっていた(すなわち、記憶ノードN2がハイレベルとなっている)ときを示す。図7(b)は、はじめに記憶ノードN1が記憶点になっていた(すなわち、記憶ノードN1がハイレベルとなっている)ときを示す。仮想電源電圧VVDDは0.3Vとしてシミュレーションした。
図7(a)および図7(b)に示すように、インバータモードでは、記憶ノードN1とN2に対し対称な特性となる。一方、シュミットトリガモードでは、記憶点を有する側のバタフライカーブの開口が大きくなる。これは、図3のように、シュミットトリガモードでは、インバータ回路10の伝達特性にヒステリシスを有するためである。さらに、バタフライカーブの開口が正方形に近い。これは、図3のように、入力電圧Vinに対し出力電圧Voutが急峻に変化するためである。開口の中に入る正方形の辺の長さがノイズマージンに対応する。すなわち、正方形が大きいとノイズマージンが大きいことを示す。図7(b)の実線80および破線82の正方形は、それぞれインバータモードおよびシュミットトリガモードのノイズマージンを示す。インバータモードでは、仮想電源電圧VVDDを0.3Vとすると、ノイズマージンが小さくなる。このため、仮想電源電圧VVDDを0.3Vとすると、記憶ノードN1およびN2のデータを安定に保持できなくなる。シュミットトリガモードでは、仮想電源電圧VVDDを0.3Vとしてもノイズマージンが2倍程度大きい。このため、仮想電源電圧VVDDを0.3Vとしても記憶ノードN1およびN2のデータをより安定に保持できる。
図8(a)および図8(b)は、実施例2におけるそれぞれインバータモードおよびシュミットトリガモードにおける記憶セルの特性を示す図である。図8(a)に示すように、インバータモードにおいては、仮想電源電圧VVDDを0.3V、0.2Vおよび0.15Vと小さくするとノイズマージンが低下する。図8(b)に示すように、シュミットトリガモードでは、仮想電源電圧VVDDが0.3V、0.2Vおよび0.15Vにおける記憶点側のノイズマージンはインバータモードより大きい。どの仮想電源電圧VVDDでもインバータモードに比べて角型に近い。
実施例2によれば、電子回路104は、インバータ回路10a(第1インバータ)およびインバータ回路10b(第2インバータ)をループ状に接続した双安定回路40を備える。これにより、シュミットトリガモードのときに、仮想電源電圧VVDDを低くしても双安定回路40のデータを安定に保持できる。このため、仮想電源電圧VVDDを低くしてデータの保持を行なえば、データ保持時の待機時電力を抑制できる。インバータモードのときに、仮想電源電圧VVDDを高くし、高速動作が可能となる。
図9(a)および図9(b)は、それぞれ実施例2の変形例1および2に係る電子回路を示す回路図である。図9(a)に示すように、電子回路104aにおいて、インバータ回路10aおよび10bにFET12および15が設けられていない。制御回路20はインバータ26を有する。制御回路20の出力はインバータ回路10aおよび10bの制御ノードNFNに接続されている。その他の構成は実施例2と同じであり、説明を省略する。図9(b)に示すように、電子回路104bにおいて、インバータ回路10aおよび10bにFET13および16が設けられていない。制御回路20の出力はインバータ回路10aおよび10bの制御ノードNFPに接続されている。その他の構成は実施例2と同じであり、説明を省略する。なお、実施例2の変形例1および2において、インバータ26を備えず、制御信号CTRLが直接制御ノードNFNまたはNFPに入力してもよい。
実施例2の変形例1および2のように、PチャネルFETおよびNチャネルFETのうち一方が複数接続され、他方は1個でもよい。FET15または16は、複数接続されたFETにのみ接続されていればよい。このように、フィードバック回路がPチャネルFETおよびNチャネルFETのうち一方にのみフィードバックする場合においても、インバータモードとシュミットトリガモードとの切り替えを行なうことができる。
実施例2の変形例3および4は、ラッチ回路の例である。図10は、実施例2の変形例3に係る電子回路の回路図である。図10に示すように、電子回路106aは、双安定回路40、パスゲート44、45、制御回路20、電源供給回路30およびクロック供給回路46を備える。双安定回路40は、インバータ回路10aおよび10bがループ状に接続されている。パスゲート44は、双安定回路40の記憶ノードN1と入力ノードDinとの間に接続されている。パスゲート45はループ内に接続されている。制御回路20は、インバータ回路10aおよび10b内の制御ノードNFPおよびNFNに電圧VFPおよびVFNを印加する。電源供給回路30は、電源線36に仮想電源電圧VVDDを供給する。クロック供給回路46は、インバータ47および48を備える。クロック供給回路46は、クロック信号CLKからクロックCおよびCBを生成し、パスゲート44および45にクロックCおよびCBを供給する。
図11は、実施例2の変形例4に係る電子回路の回路図である。図11に示すように、電子回路106bにおいては、パスゲート44がFET61から64が電源とグランド間に直列に接続された回路44aに置き換わっている。FET61および62はPチャネルFET、FET63および64はNチャネルFETである。FET61および64のゲートは入力ノードDinに接続されている。FET62および63のゲートにはそれぞれクロックCBおよびCが入力する。FET62および63の代わりにFET61および64のゲートにそれぞれクロックCBおよびCが入力し、FET62および63のゲートは入力ノードDinに接続されていてもよい。FET62および63のドレインは記憶ノードN1に接続されている。インバータ回路10bのFET12および13のゲートにそれぞれクロックCおよびCBが入力する。インバータ回路10bのFET12および13の代わりにFET11および14のゲートにそれぞれクロックCおよびCBが入力し、FET12および13のゲートは記憶ノードN2に接続されていてもよい。その他の構成は実施例2の変形例3と同じであり説明を省略する。実施例2の変形例3および4のように、ラッチ回路に実施例1およびその変形例のインバータ回路を用いることができる。
図12(a)から図12(e)は、実施例2の変形例3におけるタイミングチャートである。図12(a)は、時間に対する制御ノードNFNおよびNFPの電圧VFNおよびVFPを示す図、図12(b)は、時間に対する制御信号CTRL、クロック信号CLKおよび仮想電源電圧VVDDを示す図、図12(c)は、時間に対する記憶ノードN1およびN2の電圧V1およびV2を示す図、図12(d)は、時間に対する電源線36からグランド線38への貫通電流を示す図、図12(e)は、時間に対する消費電流を示す図である。図12(e)において、各電圧が切り替わったときの過度応答はシミュレーションの都合上正確ではないが、安定した後の電流値は正確である。
インバータモードにおいては、図12(e)に示すように、消費電流は188nAである。シュミットトリガモードにおいて、図12(b)に示すように、仮想電源電圧VVDDを1.2Vから0.3Vに切り替えると、図12(a)および図12(c)のように、電圧VFNおよび電圧V2は低くなる。図12(e)のように、仮想電源電圧VVDDが0.3Vのとき消費電流は5.5nAとなる。このように、シュミットトリガモードとし、仮想電源電圧VVDDを低くすると消費電力を抑制できる。制御回路20およびクロック供給回路46は、ラッチ回路ごとに設けてもよいし、複数のラッチ回路ごとにまとめて設けてもよい。
実施例2の変形例5および6は、マスタスレーブ型フリップフロップ回路の例である。図13は、実施例2の変形例5に係る電子回路の回路図である。図13に示すように、電子回路115は、ラッチ回路(Dラッチ回路)97および98を備えている。ラッチ回路97は、実施例2と同様の双安定回路40、パスゲート44および45を備えている。記憶ノードN1はインバータ91を介しQB信号となる。記憶ノードN2はインバータ92を介しQ信号となる。記憶ノードN1は、パスゲート45を介しラッチ回路98に接続される。
ラッチ回路98は、双安定回路90a、パスゲート95および96を備えている。双安定回路90aは、モードを切り替えない通常のインバータ99aおよび99bがループ状に接続されている。双安定回路90aのループ内にパスゲート96が接続されている。双安定回路90aには、インバータ93およびパスゲート95を介しデータDが入力する。ラッチ回路97、98およびクロック供給回路46は電源線36およびグランド線38に接続されている。電源線36には、仮想電源電圧VVDDまたは電源電圧VDDが供給され、グランド線38には、仮想グランド電圧VGNDまたはグランド電圧GNDが供給される。制御回路20には、電圧VAおよびVBが供給される。VAは、例えば仮想電源電圧VVDDまたは電源電圧VDDであり、VBは例えば仮想グランド電圧VGNDまたはグランド電圧GNDである。VAおよびVBは、他の2値または3値の電圧でもよい。
実施例2の変形例5のように、マスタスレーブ型フリップフロップ回路のラッチ回路97に実施例2の変形例3または4のラッチ回路を用いることができる。これにより、インバータ回路10aおよび10bをシュミットトリガモードとすることで、電源線36とグランド線38との間に供給される電圧を低くしても、ラッチ回路97のデータが保持される。データ保持のためには、ラッチ回路97がデータを保持すればよいため、ラッチ回路98のインバータ99aおよび99bは、シュミットトリガモードとして動作しない通常のインバータ回路でもよい。
図14は、実施例2の変形例6に係る電子回路の回路図である。図14に示すように、電子回路116においては、ラッチ回路98の双安定回路90に用いられるインバータ回路10aおよび10bが実施例1およびその変形例に係るインバータ回路である。その他の構成は、実施例2の変形例5と同じであり説明を省略する。
実施例2の変形例6では、ラッチ回路97および98の双安定回路40および90のインバータ回路10aおよび10bはいずれも実施例1およびその変形例に係るインバータ回路である。これにより、実施例5において後述するように、シミュットトリガモードにおいて、電子回路116は、安定に低電圧動作することができる。
実施例2の変形例5において、制御信号CTRLとクロック信号CLKとを同期させる例を説明する。図15(a)および図15(b)は、実施例2の変形例5の制御回路を示す回路図であり、図15(c)は、タイミングチャートである。図15(a)に示すように、制御回路117は、電源供給回路30、クロック供給回路46および制御回路20を備える。電源供給回路30として、後述する実施例3のようなパワースイッチ32を用いる。パワースイッチ32はPチャネルFETであり、仮想電源電圧VVDDの電源線36と電源電圧VDDの電源との間に接続されている。仮想電源電圧VVDDがクロック供給回路46および制御回路20に接続されている。イネーブル信号ENとパワーゲーティング補信号PGBがNOR回路74に入力し、NOR回路74の出力がパワースイッチ制御信号VPSとなる。クロック供給回路46は、NAND回路48aを有し、NAND回路48aにイネーブル信号ENとクロック信号CLKが入力する。制御回路20のインバータ24にはイネーブル信号ENが入力する。制御回路20およびクロック供給回路46のその他の構成は実施例2と同じであり説明を省略する。
図15(b)に示すように、制御回路117aには、NOR回路74が設けられていない。パワーゲーティング信号PGがパワースイッチ制御信号VPSとしてパワースイッチ32のゲートに入力する。イネーブル信号ENがNAND回路48aおよびインバータ24に入力する。その他の構成は図15(a)と同じであり説明を省略する。
図15(c)に示すように、イネーブル信号ENおよびパワーゲーティング補信号PGBがハイレベル(またはパワースイッチ制御信号VPSがローレベル)のとき、クロック供給回路46は、クロックCおよびCBを供給し、制御回路20は、インバータモードとなる信号(すなわち電圧VFPがハイレベル、電圧VFNがローレベル)を出力する。パワースイッチ32はオンしており、仮想電源電圧VVDDは高い電圧である。
時間t1において、イネーブル信号ENがローレベルとなる。クロック供給回路46はクロックCおよびCBの供給を停止する。制御回路20は、シュミットトリガモードとなる信号(すなわち電圧VFPがローレベル、電圧VFNがハイレベル)を出力する。これにより、双安定回路40のインバータ回路10aおよび10bはシュミットトリガモードとなる。時間t2において、パワーゲーティング補信号PGBがローレベル(またはパワースイッチ制御信号VPSがハイレベル)となる。これにより、パワースイッチ32が遮断し、仮想電源電圧VVDDとして低電圧が供給される。ラッチ回路97は、低電圧でデータを保持する。
時間t3において、パワーゲーティング補信号PGBがハイレベル(またはパワースイッチ制御信号VPSがローレベル)となる。これにより、パワースイッチ32がオンし、仮想電源電圧VVDDは高電圧となる。時間t4において、イネーブル信号ENがハイレベルとなる。クロック供給回路46はクロックCおよびCBの供給を開始する。制御回路20は、インバータモードとなる信号(電圧VFPおよびVFN)を供給する。
図16(a)および図16(b)は、実施例2の変形例5の制御回路を示す別の回路図であり、図16(c)は、タイミングチャートである。図16(a)に示すように、制御回路118において、パワースイッチ32は、NチャネルFETであり、グランド線38とグランド電圧GNDとの間に接続されている。NOR回路74の代わりにOR回路75が設けられている。その他の構成は図15(a)と同じであり説明を省略する。
図16(b)に示すように、制御回路118aには、OR回路75が設けられていない。パワーゲーティング補信号PGBがパワースイッチ制御信号VPSとしてパワースイッチ32のゲートに入力する。イネーブル信号ENがNAND回路48aおよびインバータ24に入力する。その他の構成は図16(a)と同じであり説明を省略する。
図16(c)に示すように、パワーゲーティング補信号PGBがハイレベルのときパワースイッチ制御信号VPSがハイレベルとなり、パワーゲーティング補信号PGBがローレベルのときパワースイッチ制御信号VPSがローレベルとなる。その他の動作は図15(c)と同じであり説明を省略する。
図13および図14のように、インバータ回路10aおよび10bにより形成されるループ内にクロックCおよびCBに同期しオンおよびオフするパスゲート45(スイッチ)を備える。図15(a)から図16(c)のように、クロック供給回路46は、インバータ回路10aおよび10bがインバータモードのときパスゲート44および45にクロックCおよびCBを供給し、シュミットトリガモードのときパスゲート44および45にクロックCおよびCBを供給しない。このように、クロック供給回路46のクロックCおよびCBの供給と、制御回路20の制御信号(電圧VFPおよびVFN)の供給を同期させてもよい。
また、シュミットトリガモードのときに、クロック供給回路46がクロックCおよびCBの供給を停止(クロックゲーティング)し、かつ電源供給回路30が仮想電源電圧VVDDを低くまたは仮想グランド電圧VGNDを高くする。これにより、リーク電流を削減できる。このように、記憶回路において、クロックゲーティングを行なうときにシュミットトリガモードとし、かつパワーゲーティングを行なう。これにより、ダイナミックパワーとスタティックパワーの両方を削減できる。
以上のように、電源供給回路30は、クロック供給回路46がクロック信号を供給しないとき電源電圧として第1電圧を供給し、クロック供給回路46がクロック信号を供給するとき電源電圧として第1電圧より高い第2電圧を供給する。このように、記憶回路において、クロックゲーティングとパワーゲーティングを同時に行なう。このような動作は、シュミットトリガモードとインバータモードとを有するインバータ回路を用い双安定回路40を形成することにより、可能となる。記憶セルに双安定回路のデータをストアする不揮発性メモリ素子を設けることにより、クロックゲーティングとパワーゲーティングを同時に行なってもよい。実施例2の変形例5は、不揮発性メモリ素子を用いないため、不揮発性メモリ素子を用いるのに比べ高速動作が可能となる。さらに、実施例2の変形例5は、電源遮断のときに不揮発性メモリ素子にデータをストアしないため、データストアにともなうエネルギー消費も小さい。これにより、頻繁にパワーゲーティングを行ない、より効率的にエネルギー消費を削減できる。なお、不揮発性メモリ素子を用いずに、CMOS技術のみを用い、記憶回路においてクロックゲーティングとパワーゲーティングを同時に行なうことは、これまでできなかった。実施例1、2およびその変形例を用いることにより、はじめて可能となった。
実施例3は、電源供給回路30としてパワースイッチを用いる例である。図17(a)および図17(b)は、実施例3に係る電子回路の回路図である。図17(a)に示すように、電子回路108aでは、電源供給回路30としてパワースイッチ32が設けられている。パワースイッチ32はPチャネルFETである。パワースイッチ32のソースは電源電圧VDDの電源、ドレインは電源線36に接続されている。電源電圧VDDの電源は、例えば集積回路に供給される電源である。パワースイッチ32は、ゲートに入力する電源信号により、仮想電源電圧VVDDの電圧を切り替える。パワースイッチ32をオンまたはオフすることで、パワースイッチ32とインバータ回路との分圧比が変わる。パワースイッチ32がオンのとき、仮想電源電圧VVDDは電源電圧VDDに近い。パワースイッチ32がオフのときは、仮想電源電圧VVDDは電源電圧VDDよりかなり低くなる。このとき、インバータ回路10に印加される電圧は、例えば、記憶回路では、シュミットトリガモードにおいてデータを保持できる電圧であり、ロジック回路では、シュミットトリガモードにおいて安定動作できる電圧である。その他の構成は実施例1の図2(b)と同じであり、説明を省略する。
図17(b)に示すように、電子回路108bでは、電源供給回路30はグランド側に接続されたパワースイッチ32である。パワースイッチ32はNチャネルFETである。パワースイッチ32のソースはグランド、ドレインはグランド線38に接続されている。グランドは、例えば集積回路に設けられるグランドである。パワースイッチ32は、ゲートに入力する電源信号により、仮想グランド電圧VGNDの電圧を切り替える。パワースイッチ32をオンまたはオフすることで、パワースイッチ32とインバータ回路との分圧比が変わる。パワースイッチ32がオンのとき、仮想グランド電圧VGNDはグランド電圧に近い。パワースイッチ32がオフのときは、仮想グランド電圧VGNDはグランド電圧よりかなり高くなる。このとき、インバータ回路10に印加される電圧は、例えば、記憶回路では、シュミットトリガモードにおいてデータを保持できる電圧であり、ロジック回路では、シュミットトリガモードにおいて安定動作できる電圧である。その他の構成は図17(a)と同じであり、説明を省略する。
図18は、実施例3の変形例1に係る電子回路の回路図である。図18に示すように、電子回路109では、電源供給回路30としてパワースイッチ32が設けられている。その他の構成は実施例2の図6(a)と同じであり説明を省略する。実施例3および変形例1のように、電源供給回路30はパワースイッチ32でもよい。パワースイッチ32が遮断されたときに仮想電源電圧VVDDがデータの保持できる電圧とする(例えば、遮断時にこのような仮想電源電圧VVDDが得られるようにパワースイッチ32の大きさを設計する)ことにより、パワースイッチ32を遮断しても記憶回路のデータを保持できる。パワースイッチ32は、グランド線38側のみに設けてもよく、電源線36側とグランド線38側の両方に設けてもよい。
また、パワースイッチ32のソースとドレインとの間に、ダイオードを接続し、パワースイッチ32が遮断したときの仮想電源電圧VVDDまたは仮想グランド電圧VGNDを生成してもよい。ダイオードはMOSFET等のトランジスタを用いて形成してもよい。さらに、パワースイッチ32のソースとドレインとの間に、電流源を接続し、パワースイッチ32が遮断したときの仮想電源電圧VVDDまたは仮想グランド電圧VGNDを生成してもよい。電流源はMOSFET等のトランジスタを用いて形成してもよい。さらに、パワースイッチ32のゲートに印加される信号をハイレベルとローレベルの間の電圧とし、所望の仮想電源電圧VVDDまたは仮想グランド電圧VGNDを生成してもよい。
実施例4は、記憶回路とロジック回路を有する電子回路の例である。図19(a)から図19(c)は、それぞれ実施例4、実施例4の変形例1および実施例4の変形例2に係る電子回路の回路図である。図19(a)に示すように、電子回路110aは記憶回路50およびロジック回路52を備えている。記憶回路50は、例えば、キャッシュメモリまたはレジスタであり、実施例2のSRAM記憶回路または実施例2の変形例2および3のラッチ回路を有するフリップフロップを備える。記憶回路50およびロジック回路52には電源線36から仮想電源電圧VVDDが供給される。電源供給回路30はパワースイッチ32を有する。パワースイッチ32は仮想電源電圧VVDDを切り替えるまたは電源電圧を遮断する。電圧が低い仮想電源電圧VVDDは、記憶回路50がシュミットトリガモードでデータを安定に保持できるようにパワースイッチ32が設計されている。また、ロジック回路52には後述する実施例5のロジック回路が搭載されていてもよい。これにより、シミュットトリガモードにおいて、ロジック回路52は、安定に低電圧動作することができる。
記憶回路50とロジック回路52の組み合わせは、以下の3つが考えられる。第1に、記憶回路50はシュミットトリガモードとインバータモードとが切り替え可能であり、ロジック回路52は切り替えできない通常のロジック回路の場合である。第2に、記憶回路50は切り替えができない通常の記憶回路であり、ロジック回路52は切り替え可能な場合である。第3に、記憶回路50およびロジック回路52ともに切り替え可能な場合である。いずれの場合も切り替え可能な回路において、仮想電源電圧VVDDの設計が重要となる。また、記憶回路50およびロジック回路52は複数のブロックを含んでもよい。さらに、記憶回路50に周辺回路が含まれていてもよい。
実施例4によれば、記憶回路50およびロジック回路52に共通に仮想電源電圧VVDDを供給するパワースイッチ32を備える。これにより、パワースイッチ32の数を減らせるため、小型化が可能となる。例えば、パワースイッチ32の占有面積を小さくできる。
図19(b)に示すように、電子回路110bにおいては、記憶回路50には電源線36aから仮想電源電圧VVDD1が供給され、ロジック回路52に電源線36bから仮想電源電圧VVDD2が供給される。電源供給回路30はパワースイッチ32aおよび32bを有する。パワースイッチ32aおよび32bは、それぞれ仮想電源電圧VVDD1およびVVDD2を切り替えるまたは電源電圧を遮断する。また、記憶回路50およびロジック回路52は複数のブロックを含んでもよい。さらに、記憶回路50に周辺回路が含まれていてもよい。その他の構成は実施例4と同じであり説明を省略する。
実施例4の変形例1によれば、記憶回路50とロジック回路52に独立に仮想電源電圧VVDD1およびVVDD2を供給するパワースイッチ32aおよび32bを備える。これにより、記憶回路50とロジック回路52とで、異なる仮想電源電圧を異なる時間に切り替えることができる。
図19(c)に示すように、電子回路110cにおいては、パワースイッチ32aは、電源電圧VDDの電源から記憶回路50に仮想電源電圧VVDD1を供給し、パワースイッチ32bは、電源電圧VDDの電源からロジック回路52に仮想電源電圧VVDD2を供給する。また、記憶回路50およびロジック回路52は複数のブロックを含んでもよい。さらに、記憶回路50に周辺回路が含まれていてもよい。その他の構成は実施例4の変形例1と同じであり説明を省略する。
実施例4の変形例2によれば、電源線36aおよび36bを省略できるため、レイアウトが簡略化され、また、占有面積を小さくできる。
実施例4およびその変形例においては、記憶回路50にシュミットトリガモードとインバータモードとの切り替え可能な回路が含まれる場合、データ保持できる仮想電源電圧VVDDとなるようにパワースイッチを設計する。ロジック回路52にシュミットトリガモードとインバータモードとの切り替え可能な回路が含まれる場合、低電圧動作が安定に可能となる仮想電源電圧VVDDとなるようにパワースイッチを設計する。また、パワースイッチは、1つのトランジスタで構成されていてもよいし、複数のトランジスタで構成されていてもよい。
実施例4およびその変形例において、電源供給回路30をグランド側に設ける場合についても図19(a)から図19(c)と同様の構成とすることができる。すなわち、記憶回路50およびロジック回路52を共通のグランド線に接続し、グランド線とグランドとの間にパワースイッチ32を設けてもよい。また、記憶回路50およびロジック回路52をそれぞれグランド線に接続し、各グランド線とグランドとの間にそれぞれパワースイッチ32を設けてもよい。さらに、グランド線を設けず、記憶回路50およびロジック回路52とグランドとの間にそれぞれパワースイッチ32を設けてもよい。さらに、パワースイッチ32を電源側とグランド側の両方に設けてもよい。
シュミットトリガモードにおいて低消費電力(または消費エネルギーが最小になる電圧)で動作させる例である。図20は、実施例5におけるインバータ回路の伝達特性を示す図である。図20に示すように、実施例5では、実施例1に比べシュミットトリガモードにおけるヒステリシスを実施例1より小さくする。例えば、FET15および16などの設定および/または電圧VFPおよびVFNの設定により、ヒステリシスの大きさを変えることができる。
論理回路においては、シュミットトリガモードにおけるヒステリシスを小さくしてもよい。ヒステリシスが小さくても電圧の変化が急峻であれば、ノイズマージンが大きくなり、バラツキ耐性およびノイズ耐性に優れる。このため、低電源電圧における動作が可能となる。よって、シュミットトリガモードにおいて仮想電源電圧VVDDを低くすれば、消費電力を抑制できる。例えば、仮想電源電圧VVDDを、動作のエネルギー効率が極小となる電圧付近とすることができる。インバータモードにおいては、仮想電源電圧VVDDを高くし、高速動作が可能となる。
記憶回路においても、シュミットトリガモードにおいて、実施例1よりヒステリシスを小さくし、仮想電源電圧VVDDを、インバータモードより低くする。これにより、インバータモードよりは動作速度が遅いが、低消費電力で動作を行なうことができる。仮想電源電圧VVDDは、実施例1のシュミットトリガモードの仮想電源電圧VVDDより高くてもよい。
例えば、実施例4およびその変形例の記憶回路50内の記憶セルおよび/またはロジック回路52内の論理回路に実施例5を用いることができる。論理回路についてNAND回路を例に説明する。
図21は、実施例5を用いたNAND回路の回路図である。図21に示すように、電子回路112は、FET11aから16を備える。電源線36と出力ノードNoutとの間に、FET11aと12aが直列に、FET11bと12bが直列に接続され、FET11aおよび12aと、FET11bおよび12bと、が並列に接続さえている。FET11aと12aとの間のノードと、FET11bと12bとの間のノードと、は共通化され中間ノードNm1となる。
出力ノードNoutとグランド線38との間にFET13aから14bが直列に接続されている。FET13bとFET14aとの間のノードは中間ノードNm2である。FET11aから14aのゲートは共通に入力ノードNin1に接続され、FET11bから14bのゲートは共通に入力ノードNin2に接続される。FET15および16の接続は実施例1と同じである。その他の構成は実施例1と同じであり、説明を省略する。
電子回路112によれば、入力ノードNin1およびNin2にAおよびBが入力する。出力ノードNoutにはAとBのNANDであるCが出力される。シュミットトリガモードにおいて、仮想電源電圧VVDDを低くする(例えば0.3V)ことにより、動作速度は遅いが消費電力を削減できる。インバータモードにおいて、仮想電源電圧VVDDを高くする(例えば1.2V)ことにより、高速に動作することができる。以上NAND回路を例に説明したが、NAND回路以外の論理回路(例えば、OR回路、AND回路、XOR回路、NOR回路)にも実施例5を用いることがきる。
図22(a)は、実施例6に係る電子回路のブロック図、図22(b)は、実施例6の各モードの動作を示す図である。図22(a)に示すように、電子回路114は、記憶回路86、制御回路20および電源供給回路30を備えている。記憶回路86は、実施例2およびその変形例の双安定回路40を有する。制御回路20は記憶回路86内のインバータ回路10のモードを切り替える信号を出力する。電源供給回路30は、電源線36に仮想電源電圧VVDDを供給する。電源供給回路30がパワースイッチの場合、パワースイッチの接続は図19(a)から図19(c)のいずれでもよい。また、グランド側にパワースイッチを接続してもよく、グランド側と電源電圧VDD側の両方にパワースイッチを接続してもよい。
図22(b)に示すように、記憶回路86内のインバータ回路がインバータモード(第2モード)のとき、図20のようにヒステリシスはない。第2モードにおいて、電源供給回路30は仮想電源電圧VVDDとして高い電圧を供給すると、記憶回路86は高速で動作する。シュミットトリガモードのときは第1モードと第3モードとがある。第1モードのとき、ヒステリシスは図20の実施例1のように大きい。電源供給回路30が仮想電源電圧VVDDとして低い電圧を供給すると、記憶回路86は低消費電力でデータを保持する。第3モードのとき、ヒステリシスは図20の実施例5のように第1モードより小さい。また、第3モードの伝達特性は第2モードより急峻であり、第1モードと同じか緩慢である。第3モードのとき、電源供給回路30が仮想電源電圧VVDDとして第1電圧より高く第2電圧より低い第3電圧を供給すると、記憶回路86は低速ではあるが低消費電力でも安定に動作する。
実施例6によれば、記憶回路86内のインバータ回路10は、第1モード、第2モード、および第3モードに切り替わる。制御回路20は、インバータ回路10に、第1信号および第2信号に加え、インバータ回路10を第3モードとする第3信号を出力する。電源供給回路30は、インバータ回路10が第3モードのとき仮想電源電圧VVDDとして第2電圧より低い第3電圧を供給する。記憶回路86を3つのモードで動作できる。実施例6では、第3電圧を第1電圧より高く設定しているが、第3電圧を第1電圧と同じまたは低くしてもよい。
実施例1から6およびその変形例において説明した各FETは、MOSFET、MIS(Metal Insulator Semiconductor)FET、MES(Metal Semiconductor)FET、FinFET、トンネルFETなどの同等の動作ができる電界効果トランジスタであればよい。
実施例1および2では、図5(a)および図12(a)のように、電圧VFNおよびVFPのハイレベルは仮想電源電圧VVDDである。これは、例えば図2(a)の制御回路20(例えばインバータ22および24)に供給される電源電圧を仮想電源電圧VVDDとしているためである。さらに、制御回路20に仮想グランド電圧VGNDが供給される場合、電圧VFNおよびVFPのローレベルは仮想グランド電圧VGNDとなる。このように、制御回路20に仮想電源電圧VVDDおよび仮想グランド電圧VGNDを供給することにより、制御回路20の消費電力を削減できる。
一方、制御回路20に供給される電源電圧およびグランド電圧を仮想電源電圧VVDDおよび仮想グランド電圧VGNDと異ならせることもできる。図23(a)および図23(b)は、実施例7に係る電子回路の回路図である。図23(a)に示すように、電子回路116aにおいて、電源供給回路30には電圧VDDが供給されている。インバータ22および24には、電源電圧として電圧VDD2が供給され、グランド電圧として電圧GNDが供給されている。電圧VFPおよびVFNのローレベルおよびハイレベルはそれぞれ電圧GNDおよび電圧VDD2となる。その他の構成は実施例1の図2(a)と同じであり説明を省略する。例えば電圧VDD2を電源供給回路30に印加される電圧VDDとする。これにより、電源供給回路30が供給する仮想電源電圧VVDDに関係なく、電圧VFPおよびVFNのハイレベルを電圧VDDとすることができる。
図23(b)に示すように、電子回路116bにおいて、電源供給回路30はグランド側に設けられている。電源供給回路30はグランド線38に仮想グランド電圧VGNDを供給する。インバータ22および24には、電源電圧として電圧VDDが供給され、グランド電圧として電圧GND2が供給されている。電圧VFPおよびVFNのローレベルおよびハイレベルはそれぞれ電圧GND2および電圧VDDとなる。その他の構成は図23(a)と同じであり説明を省略する。例えば電圧GND2を電源供給回路30に供給されるグランド電圧GNDとする。これにより、電源供給回路30が供給する仮想グランド電圧VGNDに関係なく、電圧VFPおよびVFNのローレベルをグランド電圧GNDとすることができる。
実施例7によれば、電圧VFPおよびVFNのハイレベルおよびローレベルを仮想電源電圧VVDDおよびグランド電圧VGNDと異ならせることができる。例えば、電圧VFPおよびVFNのハイレベルおよびローレベルをそれぞれ電圧VDDおよびGNDとすることもできる。実施例2から実施例6およびその変形例においても、電圧VFPおよびVFNは任意に設定できる。
以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10、10a、10b インバータ回路
11−16 FET
20 制御回路
22−26 インバータ
30 電源供給回路
40 双安定回路

Claims (3)

  1. 第1電源電圧が供給される第1電源と前記第1電源電圧より低い第2電源電圧が供給される第2電源との間に接続され、ループを形成する第1インバータおよび第2インバータと、前記ループ内にクロック信号に同期しオンおよびオフするスイッチと、を備える双安定回路と、
    前記スイッチに前記クロック信号を供給するクロック供給回路と、
    前記クロック供給回路が前記クロック信号を供給しないとき前記第1電源電圧と前記第2電源電圧との差である電源電圧として前記双安定回路データを保持できる電圧である第1電圧を供給し、前記クロック供給回路が前記クロック信号を供給するとき前記電源電圧として前記第1電圧より高い第2電圧を供給する電源供給回路と、
    を具備し、
    前記第1インバータおよび前記第2インバータは第1モードと第2モードが切り替わるインバータ回路であり、
    前記電源供給回路は、前記第1インバータおよび前記第2インバータが前記第1モードでありかつ前記クロック供給回路が前記クロック信号を供給しないとき前記電源電圧として前記第1電圧を供給し、前記第1インバータおよび前記第2インバータが前記第2モードでありかつ前記クロック供給回路が前記クロック信号を供給するとき前記電源電圧として前記第2電圧を供給し、
    前記第1モードは伝達特性にヒステリシスを有するモードであり前記第2モードは伝達特性にヒステリシスがないモードである、または、前記第1モードは前記第2モードより伝達特性が急峻であるモードであることを特徴とする電子回路。
  2. 第1電源電圧が供給される第1電源と前記第1電源電圧より低い第2電源電圧が供給される第2電源との間に接続され、ループを形成する第1インバータおよび第2インバータと、前記第1インバータおよび第2インバータのうち少なくとも1つ内にクロック信号に同期しオンおよびオフするスイッチと、を備える双安定回路と、
    前記スイッチに前記クロック信号を供給するクロック供給回路と、
    前記クロック供給回路が前記クロック信号を供給しないとき前記第1電源電圧と前記第2電源電圧との差である電源電圧として前記双安定回路データを保持できる電圧である第1電圧を供給し、前記クロック供給回路が前記クロック信号を供給するとき前記電源電圧として前記第1電圧より高い第2電圧を供給する電源供給回路と、
    を具備し、
    前記第1インバータおよび前記第2インバータは第1モードと第2モードが切り替わるインバータ回路であり、
    前記電源供給回路は、前記第1インバータおよび前記第2インバータが前記第1モードでありかつ前記クロック供給回路が前記クロック信号を供給しないとき前記電源電圧として前記第1電圧を供給し、前記第1インバータおよび前記第2インバータが前記第2モードでありかつ前記クロック供給回路が前記クロック信号を供給するとき前記電源電圧として前記第2電圧を供給し、
    前記第1モードは伝達特性にヒステリシスを有するモードであり前記第2モードは伝達特性にヒステリシスがないモードである、または、前記第1モードは前記第2モードより伝達特性が急峻であるモードであることを特徴とする電子回路。
  3. 前記双安定回路を有するマスタスレーブ型フリップフロップ回路を備える請求項1または2に記載の電子回路。
JP2019124905A 2015-04-01 2019-07-04 電子回路 Active JP6830681B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015075481 2015-04-01
JP2015075481 2015-04-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017509877A Division JP6553713B2 (ja) 2015-04-01 2016-03-24 電子回路

Publications (2)

Publication Number Publication Date
JP2019216423A JP2019216423A (ja) 2019-12-19
JP6830681B2 true JP6830681B2 (ja) 2021-02-17

Family

ID=57006758

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017509877A Active JP6553713B2 (ja) 2015-04-01 2016-03-24 電子回路
JP2019124905A Active JP6830681B2 (ja) 2015-04-01 2019-07-04 電子回路

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017509877A Active JP6553713B2 (ja) 2015-04-01 2016-03-24 電子回路

Country Status (6)

Country Link
US (1) US10355676B2 (ja)
EP (3) EP3644505B1 (ja)
JP (2) JP6553713B2 (ja)
CN (1) CN107408939B (ja)
TW (1) TWI625939B (ja)
WO (1) WO2016158691A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170088765A (ko) * 2016-01-25 2017-08-02 삼성전자주식회사 반도체 장치 및 그 구동 방법
CN107017771B (zh) * 2017-05-27 2019-05-14 电子科技大学 一种负电源转正电源转换电路及正电源转负电源转换电路
US11114348B2 (en) 2017-12-04 2021-09-07 Microsemi Soc Corp. Hybrid high-voltage low-voltage FinFET device
US10971216B2 (en) * 2017-12-04 2021-04-06 Microsemi Soc Corp. SRAM configuration cell for low-power field programmable gate arrays
CN107888165B (zh) * 2017-12-18 2024-02-23 中国电子科技集团公司第四十七研究所 低压总线信号锁存器
CN110245749B (zh) * 2018-03-08 2024-06-14 三星电子株式会社 用于执行同或运算的计算单元、神经网络及方法
CN110620569B (zh) * 2018-06-19 2023-09-08 瑞昱半导体股份有限公司 触发器电路
JP6926037B2 (ja) 2018-07-26 2021-08-25 株式会社東芝 シナプス回路、演算装置およびニューラルネットワーク装置
KR102627943B1 (ko) * 2018-12-13 2024-01-22 삼성전자주식회사 반도체 회로 및 반도체 회로의 레이아웃 시스템
CN113892232A (zh) * 2019-05-30 2022-01-04 国立研究开发法人科学技术振兴机构 电子电路和双稳态电路
US10812081B1 (en) 2019-09-27 2020-10-20 Apple Inc. Output signal control during retention mode operation
WO2021111772A1 (ja) * 2019-12-03 2021-06-10 富士電機株式会社 比較回路、半導体装置
JP7430425B2 (ja) 2020-02-10 2024-02-13 国立研究開発法人科学技術振興機構 双安定回路および電子回路
CN112821882B (zh) * 2020-12-30 2023-09-12 国家超级计算无锡中心 可切换工作点的高性能施密特触发器及切换工作点方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591005B2 (ja) 1980-06-13 1984-01-10 沖電気工業株式会社 シユミツトトリガ回路
JPH09223948A (ja) * 1996-02-15 1997-08-26 Sharp Corp シフトレジスタ回路および画像表示装置
KR100236058B1 (ko) * 1997-04-24 1999-12-15 김영환 트리거 전압 조정이 가능한 슈미트 트리거 회로
JPH11214962A (ja) * 1997-11-19 1999-08-06 Mitsubishi Electric Corp 半導体集積回路装置
US6242948B1 (en) 1997-11-19 2001-06-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
US6285213B1 (en) * 1997-11-19 2001-09-04 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
JP2000013215A (ja) * 1998-04-20 2000-01-14 Nec Corp 半導体集積回路
JP2001111409A (ja) 1999-10-12 2001-04-20 Oki Micro Design Co Ltd 入力インタフェース回路
JP2001185996A (ja) * 1999-12-22 2001-07-06 Nec Ic Microcomput Syst Ltd 半導体装置の入力回路
US6448830B1 (en) * 2001-11-05 2002-09-10 International Business Machines Corporation Single-stage tri-state Schmitt trigger
US6870413B1 (en) * 2001-12-14 2005-03-22 Altera Corporation Schmitt trigger circuit with adjustable trip point voltages
JP3986393B2 (ja) * 2002-08-27 2007-10-03 富士通株式会社 不揮発性データ記憶回路を有する集積回路装置
JP4122954B2 (ja) * 2002-12-06 2008-07-23 沖電気工業株式会社 半導体集積回路
JP2004241021A (ja) 2003-02-04 2004-08-26 Fujitsu Ltd 記憶装置およびリーク電流低減方法
JP2005079360A (ja) * 2003-09-01 2005-03-24 Renesas Technology Corp 半導体集積回路
JP2005236972A (ja) 2004-01-21 2005-09-02 Ricoh Co Ltd 半導体集積回路
JP2008219491A (ja) * 2007-03-05 2008-09-18 Nec Electronics Corp マスタスレーブ型フリップフロップ回路およびラッチ回路
JP2008228192A (ja) * 2007-03-15 2008-09-25 Toshiba Corp 半導体集積回路
TWI345377B (en) * 2008-01-28 2011-07-11 Faraday Tech Corp Schmitt trigger as level detection circuit
US8115531B1 (en) 2008-03-31 2012-02-14 Lsi Corporation D flip-flop having enhanced immunity to single-event upsets and method of operation thereof
US8289755B1 (en) * 2008-10-01 2012-10-16 Altera Corporation Volatile memory elements with soft error upset immunity
US8305829B2 (en) * 2009-02-23 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Memory power gating circuit for controlling internal voltage of a memory array, system and method for controlling the same
US9064550B2 (en) * 2011-10-24 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for word line suppression
WO2013172066A1 (ja) 2012-05-18 2013-11-21 独立行政法人科学技術振興機構 双安定回路と不揮発性素子とを備える記憶回路
JP6020076B2 (ja) 2012-11-16 2016-11-02 株式会社ソシオネクスト インタフェース回路及び半導体装置
US8736333B1 (en) * 2013-01-08 2014-05-27 Freescale Semiconductor, Inc. Schmitt trigger circuit with near rail-to-rail hysteresis
CN103927972B (zh) * 2013-12-05 2016-03-02 华南理工大学 栅极驱动单元及栅极扫描驱动器及其驱动方法

Also Published As

Publication number Publication date
JPWO2016158691A1 (ja) 2018-02-08
US20180069534A1 (en) 2018-03-08
CN107408939A (zh) 2017-11-28
US10355676B2 (en) 2019-07-16
JP6553713B2 (ja) 2019-07-31
EP3280051B1 (en) 2020-02-12
TW201703430A (zh) 2017-01-16
CN107408939B (zh) 2020-09-25
EP3644506B1 (en) 2023-10-18
EP3644505B1 (en) 2021-12-22
EP3644505A1 (en) 2020-04-29
WO2016158691A1 (ja) 2016-10-06
EP3280051A4 (en) 2018-03-28
EP3280051A1 (en) 2018-02-07
JP2019216423A (ja) 2019-12-19
TWI625939B (zh) 2018-06-01
EP3644506A1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
JP6830681B2 (ja) 電子回路
JP4873182B2 (ja) 半導体記憶装置及びその駆動方法
US7630229B2 (en) Semiconductor memory device
KR101463939B1 (ko) 반도체 디바이스
US8879304B2 (en) Memory circuit and word line control circuit
US8391097B2 (en) Memory word-line driver having reduced power consumption
KR100305992B1 (ko) 전력저감기구를 갖는 반도체 집적회로장치
TW202044252A (zh) 電子電路及雙穩態電路
JP6535120B2 (ja) 半導体装置
US7729180B2 (en) Semiconductor memory device
JP5745668B2 (ja) 半導体装置
JP2007201853A (ja) 半導体集積回路
JP2016177864A (ja) 半導体装置
CN106898375B (zh) 一种片上系统以及用于防止片上系统中的闭锁的方法
JP6383041B2 (ja) 半導体装置
JP2003298410A (ja) 半導体集積回路
JP2014164777A (ja) Sram
JP2018156657A (ja) 半導体装置
JP2000082950A (ja) 半導体集積回路
JP2005293751A (ja) 半導体メモリ
JP2015135721A (ja) 半導体装置
JP2014041688A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210113

R150 Certificate of patent or registration of utility model

Ref document number: 6830681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250