JP6815390B2 - 堆積装置を操作する方法、蒸発した源材料を基板に堆積する方法、及び堆積装置 - Google Patents

堆積装置を操作する方法、蒸発した源材料を基板に堆積する方法、及び堆積装置 Download PDF

Info

Publication number
JP6815390B2
JP6815390B2 JP2018512121A JP2018512121A JP6815390B2 JP 6815390 B2 JP6815390 B2 JP 6815390B2 JP 2018512121 A JP2018512121 A JP 2018512121A JP 2018512121 A JP2018512121 A JP 2018512121A JP 6815390 B2 JP6815390 B2 JP 6815390B2
Authority
JP
Japan
Prior art keywords
shield device
substrate
deposition
evaporation source
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018512121A
Other languages
English (en)
Other versions
JP2018538430A (ja
Inventor
ホセ マヌエル ディエゲス−カンポ,
ホセ マヌエル ディエゲス−カンポ,
シュテファン バンゲルト,
シュテファン バンゲルト,
アンドレアス ロップ,
アンドレアス ロップ,
ハーラルト ヴルスター,
ハーラルト ヴルスター,
ディーター ハース,
ディーター ハース,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2018538430A publication Critical patent/JP2018538430A/ja
Application granted granted Critical
Publication of JP6815390B2 publication Critical patent/JP6815390B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本開示の実施形態は、例えば有機材料などの材料を基板に堆積させる方法、及び例えば有機材料などの材料を基板に堆積させるための堆積装置に関する。本開示の実施形態は、特に、蒸発した源材料を基板に堆積させるように構成された蒸発源を有する堆積装置、更には蒸発した源材料を基板に堆積させるための堆積装置を操作する方法、とりわけ有機材料をその内部に含むデバイスを製造するためのものに関する。
有機蒸発器は、有機発光ダイオード(OLED)の製造のためのツールである。OLEDは、特殊な発光ダイオードであり、その中で発光層がある有機化合物の薄膜を含んでいる。有機発光ダイオード(OLED)は、情報を表示するためのテレビ画面、コンピュータモニタ、携帯電話、及びその他の携帯型デバイスを製造する際に使用される。OLEDはまた、一般的な空間照明にも使用することができる。OLEDピクセルが直接発光し、バックライトを必要としないので、OLEDディスプレイで可能な色、輝度、及び視野角の範囲は、従来のLCDディスプレイの範囲よりも広い。したがって、OLEDディスプレイのエネルギー消費は、従来のLCDディスプレイのエネルギー消費よりもかなり少ない。更に、実際、OLEDをフレキシブル基板上に製造することができ、更なる用途がもたらされる。例えば、典型的なOLEDディスプレイは、個々にエネルギー供給可能なピクセルを有するマトリクスディスプレイパネルを形成するように、すべて基板上に堆積させる2つの電極の間に配置された有機材料の層を含みうる。OLEDは、一般的に、2つのガラスパネルの間に置かれ、OLEDをその中に封入するためにガラスパネルの端部が密閉される。
このようなディスプレイデバイスを製造する際には、多くの課題に遭遇することになる。OLEDディスプレイ又はOLED照明アプリケーションは、例えば、真空の中で蒸発する、幾つかの有機材料のスタックを含む。有機材料は、シャドーマスクを通して、続けて堆積される。OLEDスタックを効率良く製造するためには、混合層/ドープ層が生じるように、2つ以上の材料(例えば、ホスト及びドーパント)を共堆積又は共蒸発することが有利である。さらに、非常に繊細な有機材料の蒸発には、幾つかの処理条件があることを考慮しなければならない。
材料を基板上に堆積させるために、材料は蒸発するまで加熱される。管は、ノズルを通して、蒸発した材料を基板に案内する。ここ数年、堆積プロセスの精度が増し、例えば、ますます小さなピクセルサイズを提供できるようになってきている。幾つかのプロセスにおいて、マスクは、蒸発した材料がマスク開口部を通過するときに、ピクセルを画定するように使用される。しかしながら、マスクのシャドーイング効果、蒸発した材料の広がりなどにより、蒸発プロセスの精度及び予測性を更に高めることが難しい。
上記に鑑み、高い品質及び精度を有する装置を製造するための蒸発プロセスの向上した精度及び予測性が有利である。
上記に鑑み、堆積装置を操作する方法、更には堆積装置が提供される。
本開示の態様によれば、蒸発した源材料を基板に堆積する方法が提供される。前記方法は、蒸発した源材料を、蒸発源の一又は複数の出口から基板に向かって、前記一又は複数の出口と前記基板との間に配置されたシールドデバイスを通って案内することと、堆積位置からシールドデバイスが材料収集ユニットの方を向くサービス位置まで、材料収集ユニットに対して前記蒸発源を移動させること及び前記サービス位置において前記シールドデバイスを少なくとも局部的に加熱することによって、前記シールドデバイスを洗浄することとを含む。
本開示の態様によれば、蒸発した源材料を蒸発源の一又は複数の出口から基板に向かって案内することによって、蒸発した源材料を基板に堆積させることであって、蒸発した源材料の一部が、一又は複数の出口と基板との間に配置されたシールドデバイスによって遮断されかつ当該シールドデバイスに付着する、堆積させること、次に付着した源材料の少なくとも一部をシールドデバイスから離すために、シールドデバイスを少なくとも局部的に加熱することによって、シールドデバイスを洗浄することを含む、堆積装置を操作する方法が提供される。
本開示の更なる態様によれば、蒸発した源材料を基板に堆積させる方法が提供され当該方法は、基板の表面に沿って蒸発源を移動させることと;蒸発した源材料を蒸発源の一又は複数の出口から基板に向かって案内することであって、蒸発した源材料の一部が、一又は複数の出口と基板との間に配置されたシールドデバイスによって遮断されかつ当該シールドデバイスに付着する、案内することと;蒸発源を堆積位置からサービス位置まで第1の回転角度だけ回転させることと;サービス位置でシールドデバイスを少なくとも局部的に加熱することによって、シールドデバイスを洗浄することと;蒸発源を、再び堆積位置まで又は更なる堆積位置まで、第2の回転角度で回転させることと;板又は更なる基板の表面に沿って蒸発源を移動させることと;一又は複数の出口から基板又は更なる基板に向かって蒸発した源材料を案内することを含む。
本開示の更なる実施態様によれば、堆積装置が提供される。堆積装置は、蒸発した源材料を基板に堆積させるように構成された蒸発源であって、蒸発した源材料を基板に向かって案内するための一又は複数の出口を有する分配管と、一又は複数の出口から下流に配置され、基板に向かって伝播する蒸発した源材料を部分的に遮断するように構成されたシールドデバイスと、堆積装置を堆積位置からサービス位置まで移動させるように構成されたアクチュエータデバイスとを備え、堆積装置がサービス位置にあるとき、シールドデバイスを少なくとも局部的に加熱するための加熱デバイスが設けられる、蒸発源を備える。
本開示の更なる態様、利点、及び特徴は、本明細書及び添付の図面から明らかである。
本開示の上記の特徴を詳細に理解することができるように、実施形態を参照することによって、上で簡単に概説した本開示のより具体的な説明を得ることができる。添付の図面は、本開示の実施形態に関連し、以下で説明される。
本明細書に記載の方法により操作されうる真空チャンバの蒸発した源材料を堆積させるための堆積装置の概略上面図を示す。 AからCは、明細書に記載の実施形態による堆積装置の蒸発源の部分の概略図を示す。 本明細書に記載の実施形態による堆積装置の概略上面図を示す。 A及びBは、本明細書に記載の実施形態による堆積装置を操作する方法の2つの続く段階を示す。 A及びBは、本明細書に記載の実施形態による堆積装置を操作する方法の2つの続く段階を示す。 A及びBは、本明細書に記載の実施形態による堆積装置を操作する方法の2つの続く段階を示す。 AからCは、本明細書に記載の実施形態による堆積装置を操作する方法の3つの連続的段階を示す。 本明細書の実施形態による堆積装置を操作する方法を示すフロー図である。 本明細書に記載の実施形態による堆積装置を操作する方法を示すフロー図である。
ここから、本開示の種々の実施形態が詳細に参照されることになり、そのうちの一又は複数の例が図示されている。図面についての以下の説明の中で、同じ参照番号は同じ構成要素を指す。概して、個々の実施形態に関しての相違のみが説明される。各例は、説明のために提供され、本開示の限定を意味するものではない。更に、1つの実施形態の一部として図示又は説明されている特徴は、更なる実施形態を得るために、他の実施形態で用いることができ、又は他の実施形態と併用して用いることができる。この説明は、そのような修正及び変形を含むことが意図されている。
本明細書で使用されるように、「源材料」という用語は、基板の表面で蒸発及び堆積する材料と理解されうる。例えば、本明細書に記載の実施形態では、基板の表面に堆積する蒸発した有機材料は、源材料でありうる。有機材料の非限定的例は、ITO、NPD、Alq、キナクリドン、Mg/AG、基板材料などのうちの一又は複数を含む。
本明細書で使用されるように、「蒸発源」という用語は、基板上に堆積させる蒸発した源材料を供給する装置と理解されうる。とりわけ、源材料は、基板に堆積させる蒸発した源材料を、堆積装置の真空堆積チャンバなどの真空チャンバの堆積エリアに向けて方向付けるように構成されうる。蒸発した源材料は、複数のノズル又は蒸発源の出口を介して、基板に向かって方向付けられうる。堆積装置が堆積位置に提供されるとき、ノズル又は出口は、堆積エリアに向かって、とりわけコーティングされる基板に向かって、方向付けられうる。
蒸発源は、基板に堆積させる源材料を蒸発させる蒸発器又はるつぼと;るつぼと流体連通し、蒸発した源材料を堆積エリア内に放出するために、蒸発した源材料を複数の出口又はノズルに搬送するように構成されている、分配管とを含みうる。
本明細書で使用されるように、「るつぼ」という用語は、堆積させる源材料を供給又は含有するデバイス又はリザーバと理解されうる。典型的には、るつぼは、基板上で堆積する源材料を蒸発させるために加熱されうる。本明細書の実施形態によれば、るつぼは、蒸発した源材料が供給される分配管と流体連通しうる。
本明細書で使用されるように、「分配管」という用語は、蒸発した源材料を案内及び分配するための管と理解されうる。とりわけ、分配管は、蒸発した源材料をるつぼから分配管の複数の出口又はノズルまで案内しうる。本明細書で使用されるように、「複数の出口」という用語は、典型的には、少なくとも2以上の出口を含む。本明細書に記載の実施形態によれば、分配管は、第1の方向、特に長手方向に、とりわけ垂直方向に延びる線形分配管でありうる。幾つかの実施形態において、分配管は、シリンダ形状を有する管を含みうる。シリンダは、円形底部形状又は任意の他の適した底部形状を有しうる。分配管の例は、以下でより詳しく説明されることになる。幾つかの実施形態において、蒸発源は、2つ又は3つのるつぼ、及び2つ又は3つの関連した分配管を含みうる。
図1は、本明細書に記載の方法に従って操作することができる、本明細書に記載の実施形態による堆積装置100の概略上面図を示す。堆積装置100は、真空チャンバ110内に位置付けられた蒸発源20を備える。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、蒸発源20は、コーティングされる基板の表面に沿って並進運動するように構成される。更に、蒸発源20は、軸周囲を回転するように構成されうる。
幾つかの実施形態によれば、蒸発源20は、一又は複数の蒸発るつぼ及び一又は複数の分配管を有しうる。例えば、図1に示す蒸発源20は、2つの蒸発るつぼ104及び2つの分配管106を含む。図1に示すように、基板10及び更なる基板11は、蒸発した源材料を受容するために真空チャンバ110に提供される。
本明細書に記載の幾つかの実施形態によれば、基板をマスクするためのマスクアセンブリは、基板と蒸発源との間に提供することができる。マスクアセンブリは、マスク、及びマスクを所定の位置に保持するマスクフレームを含みうる。本明細書の実施形態において、マスクアセンブリを支持し移動させるための一又は複数の追加のトラックが提供されうる。例えば、図1に示す実施形態は、蒸発源20と基板10との間に配置された第1のマスクフレーム131によって支持された第1のマスク133、及び蒸発源20と更なる基板11との間に配置された第2のマスクフレーム132によって支持された第2のマスク134を有する。基板10及び更なる基板11は、真空チャンバ110内のそれぞれの搬送トラック(図1に示されず)で支持されうる。
図1は、シールドデバイス30を更に示しているが、このシールドデバイス30は、後により詳しく説明されるように、一又は複数の分配管106から基板10に及び/又は更なる基板11にそれぞれ蒸発した源材料を案内するために設けられる。シールドデバイス30は、分配管106の出口22から下流に、例えば、分配管と基板との間に、設けられうる。幾つかの実施形態において、シールドデバイス30は、少なくとも1つの分配管に取り外し可能に固定されうる。例えば、分配管106は、分配管の内部から基板に向かって蒸発した源材料を案内するためのそれぞれの出口を有する複数のノズルを含みうる。シールドデバイス30は、単一の分配管の局部的に熱により引き起こされる動き、例えば熱膨張又は熱収縮などに従うように、単一の分配管に取り付けることができる。シールドデバイスがノズルの熱運動に追従できるので、マスク及び基板に衝撃を与える蒸発した源材料のプルームの形状及び開口角度は、本質的に一定に維持することができる。
出口は、シールドデバイス内に、例えば、シールドデバイスの開孔内に突出するノズルのノズル出口として構成されうる。幾つかの実施形態において、ノズルは、典型的に熱いノズルから任意選択的に冷却されたシールドデバイスに向かう熱流を低下させるために、シールドデバイスと直接接触していない。基板に向かう熱放射を低減することができる。
本明細書の実施形態において、OLED製造システムなどで、材料を基板に堆積させるためにマスクが使用される場合、マスクは、約50μm×50μm又はそれ未満のサイズを有するピクセル開口、例えば、約30μm以下、又は約20μm以下の断面の寸法(例えば、断面の最小寸法)を有するピクセル開口などを有するピクセルマスクでありうる。1つの例では、ピクセルマスクは、約40μmの厚さを有しうる。マスクの厚さ及びピクセル開口のサイズを考慮すると、マスクのピクセル開口の壁がピクセル開口の影になる場合に、シャドーイング効果が現れることがある。本明細書に記載のシールドデバイス30は、蒸発した源材料のマスク及び基板への最大衝撃角度を制限し、シャドーイング効果を低下させうる。
本明細書に記載の実施形態によれば、シールドデバイス30の材料は、約100℃から約600℃の温度を有する蒸発した源材料に適合されうる。幾つかの実施形態において、シールドデバイスは、21W/(m・K)を上回る熱伝導率を有する材料、及び/又は例えば蒸発した有機材料などに化学的に不活性である材料を含みうる。幾つかの実施形態によれば、シールドデバイスは、Cu,Ta,Ti,Nb,DLC,及び黒鉛のうちの少なくとも1つを含み、又は指定された材料のうちの少なくとも1つでのコーティングを含みうる。
本明細書に記載の実施形態によれば、本質的に垂直な位置で源材料によりコーティングされうる。典型的には、分配管は、本質的に垂直に延びる線源として構成される。本明細書に記載の他の実施形態と組み合わせることができる本明細書に記載の実施形態において、「本質的に垂直」という用語は、特に基板の配向について言及する場合、垂直方向から20度以下、例えば、10度以下の偏差を許容すると理解されたい。例えば、この偏差は、例えば、垂直配向からのいくらかの偏差を有する基板支持体がより安定した基板位置をもたらし得るので、提供できる。しかし、源材料の堆積中の本質的に垂直な基板配向は、水平な基板配向と異なると考えられる。これにより、基板の表面は、一方の基板寸法に対応する1つの方向に延びる線源、及び他方の基板寸法に対応する他方の方向に沿った並進運動によってコーティングされる。
幾つかの実施形態において、蒸発源20は、例えば、ループ状トラック(図示されず)又は線形ガイド120などのトラック上の堆積装置100の真空チャンバ110内に設けられうる。トラック又は線形ガイド120は、蒸発源20の並進運動のために構成される。本明細書に記載の他の実施形態と組み合わせることができる異なる実施形態によれば、並進運動のためのドライバは、蒸発源20の中に、トラック又は線形ガイド120に、真空チャンバ110内に、又はこれらの組み合わせにおいて設けることができる。したがって、蒸発源は、堆積中にコーティングされる基板の表面に沿って、特に線形経路に沿って、移動させることができる。基板における堆積材料の均一性を改善することができる。
図1は、例えば、ゲートバルブなどのバルブ105を更に示す。バルブ105は、隣接する真空チャンバ(図1に示されず)に対する真空密閉を可能にする。本明細書の実施形態によれば、バルブ105は、基板又はマスクの真空チャンバ110への及び/又は真空チャンバ110からの搬送のために開放することができる。
本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、保守真空チャンバ111などの更なる真空チャンバが、真空チャンバ110に隣接するように設けられる。真空チャンバ110及び保守真空チャンバ111は、バルブ109によって連結される。バルブ109は、真空チャンバ110と保守真空チャンバ111との間の真空密閉を開閉するように構成される。本明細書の実施形態によれば、蒸発源20は、バルブ109が開放状態にある間、保守真空チャンバ111に移送することができる。その後、バルブは、真空チャンバ110と保守真空チャンバ111との間に真空密閉を提供するために閉鎖することができる。バルブ109が閉鎖される場合、保守真空チャンバ111は、真空チャンバ110中の真空を破壊せずに、蒸発源20の保守のために換気及び開放することができる。
記載の材料堆積装置は、処理方法を含むOLEDデバイス製造の用途を含む、種々の用途に使用され、2以上の源材料、例えば、2以上の有機材料が同時に蒸発する。図1に示す例では、2以上の分配管106及び対応する蒸発るつぼが、互いに隣接して設けられる。例えば、幾つかの実施形態において、3つの分配管が、互いに隣接して設けられてもよく、各分配管が、蒸発した源材料をそれぞれの分配管の内部から真空チャンバの堆積エリア内に導入するための1つの出口又は複数の出口22を含んでいる。出口は、それぞれの分配管の直線的延長方向に沿って、例えば、等しい間隔で、設けられうる。各分配管は、異なる源材料を真空チャンバの堆積エリア内に導入するように構成されうる。
図1に示す実施形態では、移動可能な蒸発源20を有する堆積装置100が提供されているが、当業者であれば、上述の実施形態が、処理中に基板が移動する堆積装置にも適用されうると理解するかもしれない。例えば、コーティングされる基板は、静止した材料堆積装置に沿って、案内及び駆動されうる。
本明細書に記載された実施形態は、特に、例えば、大面積基板上でのOLEDディスプレイ製造のための、有機材料の堆積に関する。幾つかの実施形態によれば、大面積基板、或いは一又は複数の基板を支持するキャリアは、少なくとも0.174mのサイズを有しうる。例えば、堆積システムは、約1.4mの基板(1.1m×1.3m)に対応するGEN5、約4.29mの基板(1.95m×2.2m)に対応するGEN7.5、約5.7mの基板(2.2m×2.5m)に対応するGEN8.5、又は更に約8.7mの基板(2.85m×3.05m)に対応するGEN10の基板などの大面積基板を処理するように適合されうる。GEN11及びGEN12のような更に大きな世代、並びにそれに相当する基板面積を同様に実装してもよい。
本明細書に記載された他の実施形態と組み合わせることができる実施形態によれば、基板の厚さは、0.1〜1.8mmであり、この基板のための保持アレンジメントは、このような基板の厚さに適合することができる。基板の厚さは、約0.9mm以下(0.5mm又は0.3mmなど)とすることができ、保持アレンジメントは、このような基板の厚さに適合される。典型的には、基板は、材料堆積に適した任意の材料から作られうる。例えば、基板は、ガラス(例えば、ソーダ石灰ガラス、ホウケイ酸ガラスなど)、金属、ポリマー、セラミック、複合材料、炭素繊維材料、又は堆積プロセスによってコーティングできる任意の他の材料及び材料の組合せを含む群から選択された材料から作られうる。
本明細書に記載の幾つかの実施形態によれば、堆積装置100は、シールド壁として構成された材料収集ユニット40を更に含みうる。材料収集ユニット40は、蒸発源が回転位置にあるとき、とりわけ回転軸周囲での蒸発源20の回転中に、蒸発源から及び/又はシールドデバイス30から生じる蒸発した源材料を収集するように配置されうる。
幾つかの実施形態において、加熱デバイス50は、以下でより詳しく説明されるように、堆積装置100のサービス位置でシールドデバイスを洗浄するために設けられうる。
図2Aから図2Cは、本明細書に記載の実施形態による蒸発源20の一部を示す。図2Aに示すように、蒸発源20は、分配管106及び蒸発るつぼ104を含むことができる。例えば、分配管は、加熱ユニット215を有する細長い立方体とすることができる。蒸発るつぼは、加熱ユニット225で蒸発させる有機材料などの源材料のためのリザーバとすることができる。
本明細書に記載の他の実施形態と組み合わせることができる実施形態によれば、ノズルなどの複数の出口は、蒸発源20の長さ方向に沿って配置されうる。とりわけ、複数の出口は、分配管の長さ方向に沿って配置されうる。代替的実施形態によれば、蒸発源の長さ方向及び/又は分配管の長さ方向に沿って延びる1つの細長い出口を提供することができる。例えば、細長い開口は、スリットとすることができる。
本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、分配管は、長さ方向に本質的に垂直に延びる。例えば、分配管106の長さは、少なくとも堆積装置に堆積させる基板の高さに対応する。多くの場合、分配管106の長さは、堆積させる基板の長さよりも、少なくとも10%又は20%さえも長いことがあり、これにより、基板の上端部及び/又は基板の下端部で均一な堆積が可能となる。
本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、分配管の長さは、1.3m以上、例えば2.5m以上とすることができる。1つの構成によれば、図2Aに示すように、蒸発るつぼ104は、分配管106の下端部に設けられる。典型的には、源材料は、蒸発るつぼ104内で蒸発する。蒸発した源材料は、分配管106の底部で侵入し、分配管の複数の出口を通って、例えば本質的に垂直に配向された基板に向かって、本質的に側方に案内される。
本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、複数の出口は、水平±20度となる主要放出方向Xを有する羽陽に配置される。幾つかの特定の実施形態によれば、主要放出方向Xは、わずかに上方に、例えば、3度から7度上方などまでなどの水平から15度上方までの範囲になるように、配向することができる。同様に、基板は、蒸発方向に対して実質的に垂直になるように、わずかに傾斜させることができ、粒子の発生を低下させうる。例示目的で、蒸発るつぼ104及び分配管106が、熱シールドを含まない状態で図2Aに示されている。加熱ユニット215及び加熱ユニット225を、図2Bに示される概略斜視図の中に見ることができる。
図2Bは、蒸発源の、とりわけ蒸発るつぼ104に連結された分配管106の一部の拡大概略図を示す。蒸発るつぼ104と分配管106との間を連結するように構成されているフランジユニット203が設けられる。例えば、蒸発るつぼ及び分配管は、例えば、蒸発源の動作のために、フランジユニットで分離及び連結又は組み立てできる別個のユニットとして設けられる。
分配管106は、内部空洞210を有する。加熱ユニット215は、分配管を加熱するために設けられる。蒸発るつぼ104によって供給される蒸発した源材料が、分配管106の壁の内側部分で凝縮しない温度まで、分配管106を加熱することができる。2つ以上の熱シールド217が、分配管106のチューブ周囲に設けられる。熱シールドは、加熱ユニット215により供給される熱エネルギーを内部空洞210に向かって反射し返すように構成される。熱シールド217が熱損失を低下させるので、分配管106を加熱するためのエネルギー、即ち、加熱ユニット215に供給されるエネルギーを低下させることができる。他の分配管及び/又はマスク若しくは基板への熱伝達を低下させることができる。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、熱シールド217は、2以上の熱シールド層、例えば、10の熱シールド層など、5以上の熱シールド層を含むことができる。
典型的には、図2Bに示すように、熱シールド217は、分配管106の出口22の位置に開口を含む。図2Bに示される蒸発源の拡大図は、4つの出口を示している。出口22は、分配管106の長さ方向に沿って設けることができる。本明細書に記載されるように、分配管106は、例えば、内部に配置された複数の開口を有する、線形分配管として提供することができる。例えば、分配管は、分配管の長さ方向に沿って配置された40、50又は54の出口など、30以上の出口を有しうる。本明細書の実施形態によれば、出口は、互いに間隔を空けて配置されうる。例えば、出口は、1cm以上の距離、例えば1cm〜3cmの距離、例えば2cmの距離で間隔を空けて配置されうる。
動作中に、分配管106が、フランジユニット203で蒸発るつぼ104と連結される。蒸発るつぼ104は、蒸発させる源材料を受容し、源材料を蒸発させるように構成される。図2Bは、蒸発るつぼ104のハウジングを通る断面図を示す。補充開口は、例えば、プラグ222、蓋、カバー又は蒸発るつぼ104の筐体を閉じるための同種のものを使用して閉鎖することができる、蒸発るつぼの上部に設けられる。
外側加熱ユニット225が蒸発るつぼ104の筐体内に設けられる。外側加熱ユニット225は、少なくとも蒸発るつぼ104の壁の一部に沿って延びることができる。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、追加的に又は代替的には、一又は複数の中央加熱要素を設けることができる。図2Bは、2つの中央加熱要素226、228を示す。第1の中央加熱要素226及び第2の中央加熱要素228はそれぞれ、中央加熱要素226、228に電力を供給するための第1の導体229及び第2の導体230を含むことができる。
蒸発るつぼ内での源材料の加熱効率を高めるため、蒸発るつぼ104は、外側加熱ユニット225によって、かつもしあれば中央加熱要素226、228によって、供給される熱エネルギーを蒸発るつぼ104の筐体内に反射し返すように構成された熱シールド227を更に含むことができる。
本明細書に記載された幾つかの実施形態によれば、熱シールド217及び熱シールド227などの熱シールドを蒸発源に提供することができる。熱シールドは、蒸発源からのエネルギー損失を低下させることができ、また源材料を蒸発させるために蒸発源によって消費されるエネルギー全体も低下させる。更なる態様として、特に有機材料の堆積について、蒸発源から生じる熱放射、特に堆積中にマスク及び基板に向かう熱放射を低減することができる。特にマスクされた基板上での有機材料の堆積について、更にはディスプレイ製造について、基板及びマスクの温度は、正確に制御される必要がある。蒸発源から生じる熱放射は、例えば熱シールド217及び熱シールド227などの熱シールドによって低減又は回避することができる。
これらのシールドは、蒸発源20の外側への熱放射を低減するために幾つかのシールド層を含むことができる。更なる選択肢として、熱シールドは、空気、窒素、水又は他の適切な冷却流体などの流体によって能動冷却されるシールド層を含みうる。本明細書に記載の更なる実施形態によれば、一又は複数の熱シールドは、蒸発源のそれぞれの部分を取り囲む、例えば、分配管106及び/又は蒸発るつぼ104を取り囲む、金属板を含むことができる。本明細書の実施形態によれば、金属板は、0.1mm〜3mmの厚さを有することができ、鉄合金(SS)及び非鉄合金(Cu、Ti、Al)を含む群から選択された少なくとも1つの材料から選択することができ、及び/又は、例えば0.1mm以上の間隙によって、互いに対して間隔を空けることができる。
本明細書に記載の幾つかの実施形態によれば、図2A及び図2Bに関して例示的に示されるように、蒸発るつぼ104は、分配管106の下端に設けられる。本明細書に記載の他の実施形態と組み合わせることができる更なる実施形態によれば、分配管106の中央部分に、又は分配管の下端部と分配管の上端部との間の別の位置に、蒸気導管242が設けられてもよい。
図2Cは、分配管106、及び分配管の中央部分に設けられる蒸気導管242を有する蒸発源20の例を示す。蒸発るつぼ104の中で生じた蒸発した源材料は、蒸気導管242を通って、分配管106の中央部分まで案内される。蒸発した源材料は、複数の出口22を通って分配管106を出る。分配管106は、本明細書に記載の他の実施形態に関して説明されたように、支持体102によって支持される。本明細書の更なる実施形態によれば、2以上の蒸気導管242は、分配管106の長さに沿って様々な位置に設けられうる。蒸気導管242は、1つの蒸発るつぼ又は幾つかの蒸発るつぼのどちらかに連結することができる。例えば、各蒸気導管242は、対応する蒸発るつぼを有することができる。代替的には、蒸発るつぼ104は、分配管106に連結されている2つ以上の蒸気導管242と流体連通することができる。
本明細書に記載されているように、分配管は、中空シリンダとすることができる。シリンダという用語は、円形の底部形状と、円形の上部形状と、上部の円及び下部の円とを連結する湾曲した表面積又は外郭とを有するものとして一般に認められていると理解することができる。本明細書に記載の他の実施形態と組み合わせることができる更なる追加的又は代替的実施形態によれば、シリンダという用語は、数学的意味において、任意の底部形状と、一致する上部形状と、上部形状と下部形状とを連結する湾曲した表面積又は外郭とを有すると更に理解することができる。シリンダは、必ずしも円形断面を有する必要がない。
図3は、本明細書の実施形態による堆積装置100の蒸発源20の概略上面図を示す。図3に図示する蒸発源20は、1つの分配管106を含む。本明細書に記載の実施形態によれば、分配管106は、長さ方向に延び、複数の出口22は、分配管106の長さ方向に沿って配置されうる。分配管の壁は、壁に装着又は取り付けられる加熱要素380によって加熱されうる。基板10に向かう熱放射を低減することによって、分配管106を取り囲む第1の外側シールド302は、冷却されうる。付加的な第2の外側シールド304は、堆積エリア又は基板10に向かって方向付けられた熱負荷をそれぞれ低減するように設けられうる。第2の外側シールド304は、基板10に面している及び/又はマスク340に面している前壁305を有しうる。第2の外側シールド304は、一又は複数の側壁を含みうる。例えば、第2の外側シールド304は、第1の側壁306及び第2の側壁307を含む。本明細書の実施形態によれば、前壁305、第1の側壁306及び第2の側壁307は、堆積エリア、即ち基板及び/又はマスク、に向かう熱放射を低減するためのU字型の第2の外側シールド304として設けられうる。
本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態によれば、シールドは、金属シールドに付着した又は金属シールド内に供給された、水などの冷却流体用の導管を有する金属板として設けることができる。追加的に又は代替的には、シールドを冷却するために熱電性冷却デバイス又は他の冷却デバイスを設けることができる。典型的には、外側シールド、即ち、分配管106の内部空洞を取り囲む最も外側のシールドを冷却することができる。
幾つかの実施形態において、蒸発源20は、出口22から下流に配置されるシールドデバイス30を備えうる。シールドデバイスは、蒸発した源材料を基板に向かって案内し、かつ蒸発した源材料のプルームを成形するように構成されうる。したがって、シールドデバイス30はまた、本明細書で“シェーパシールド”と称されることがある。図3に示す実施形態では、シールドデバイス30は、第2の外側シールド304の一部として構成される。他の実施形態では、シールドデバイスは、分配管106に取り外し可能に取り付けられる別個のユニットとして設けられうる。幾つかの実施形態において、シールドデバイスは、複数のシールドユニットを含みうる。シールドデバイスは、複数の開孔32を含み、各開孔は、関連する出口22の前に配置され、関連する出口から放出される源材料の一部は、開孔32を取り囲むシールド壁により遮断され、シールド壁に付着しうる。シールドデバイスに蓄積した源材料は、図3の参照番号35によって表示される。
幾つかの実施形態によれば、シールドデバイス30は、堆積エリアに向かって放出される熱負荷を更に低減するために冷却することができる。矢印312は、出口22を介して分配管106を出る蒸発した源材料を図示する。本明細書の実施形態によれば、蒸発源20は、典型的には、蒸発源20の長さ方向に沿って分布した複数の出口22を含む。例えば、蒸発源20は、例えば2cmの距離で互いに間隔を空けて配置される30以上の出口を含みうる。幾つかの実施形態によれば、シールドデバイス30は、基板10に向かって分配される蒸発した源材料の分配コーン又はプルーム318の範囲を定める。シールドデバイス30は、蒸発した源材料の少なくとも一部、例えば、プルーム318の外角部分を遮断するように構成されうる。
本明細書に開示される実施形態によれば、シールドデバイス30は、少なくとも1つの側面を含む。少なくとも1つの側面は、複数の出口から蒸発源の長さ方向に垂直な面方向への蒸発した源材料のプルームの放出角度次第で、蒸発した源材料を遮断するように構成されうる。図3では、シールドデバイス30は、第1の側壁321及び第2の側壁322を含む。第1及び第2の側壁の各々は、蒸発源の長さ方向に垂直な平面に高い放出角度(θ)を有する蒸発した源材料を遮断するように構成された側面を提供する。
本明細書に記載の実施形態によれば、少なくとも1つの側面は、蒸発した源材料の主要放出方向Xから45°を上回る又は30°を上回る放出角度(θ)を有する蒸発した源材料のプルーム318の蒸発した源材料を遮断するように構成されうる。
本明細書に記載の他の実施形態と組み合わせてもよい幾つかの実施形態において、シールドデバイスは、蒸発源20の長さ方向に平行な平面で蒸発した源材料を遮断するように構成されうる。
幾つかの実施形態において、シールドデバイスは、周方向のシールド壁によってそれぞれ取り囲まれる複数の開孔32を含みうる。各開孔は、蒸発源の2以上の出口22の前に配置され、2以上の出口22から放出される蒸発した源材料が、関連する開孔のシールド壁によって成形されうる。幾つかの実施形態において、シールドデバイスの各開孔32は、蒸発源20の単一の関連する出口の前にそれぞれ配置され、関連する出口のみの蒸発した源材料が開孔を通って流れる。出口から放出された蒸発した源材料の各プルームは、シールドデバイス30の関連する開孔によって個々に成形されうる。
シールドデバイスの開孔は、分配管の出口から生じる蒸発した源材料のプルームを成形するように構成されうる。とりわけ、各開孔32の周方向エッジは、関連する出口から生じる蒸発した源材料のプルームの外部を遮断するように構成されうる。蒸発した源材料のプルームの外角部分がシールドデバイスによって遮断される際に、蒸発した源材料は、大きな入射角で基板に衝撃を与えることはない。マスクに起因するシャドーイング効果を低下させることができ、堆積したピクセルの正確なエッジを実現することができる。
シールドデバイスによって遮断される蒸発した源材料は、シールドデバイスに付着し、その上で凝縮することがある。付着した源材料は、シールドデバイスに蓄積しうる。とりわけ、源材料の層は、図3の参照番号35によって示されるように、堆積中のシールドデバイスの表面に形成されうる。とりわけ、堆積期間の増加に伴い、開孔の直径が小さくなるように、源材料の層は、開孔の内面及び/又は開孔を取り囲むシールド壁で形成されうる。例えば、本明細書に記載のいくつかの実施形態では、シールドデバイスの開孔は、7mm以下、特に5mm以下の小さな直径を有しうる。シールドデバイスの開孔の小さな直径は、堆積精度を向上させうる。しかしながら、小さな開孔直径は、より簡単に詰まる傾向があり、堆積効率及び堆積均一性を悪化させる。
長時間にわたって高い堆積精度を維持しつつ、同時に開孔の詰まりを防止することができる、本明細書に記載の堆積装置を操作する実施形態が提供される。
本明細書の実施形態による堆積装置100を操作する方法が、図4A及び図4Bを参照して説明される。堆積装置は、先ほど説明した堆積装置の特徴の幾つか又はすべてを有しうる。堆積装置100の細部について、反復を避けるために、ここでは繰り返さない。
本明細書に記載の方法は、図4Aに示すように、蒸発した源材料を基板10に堆積させることを含む。蒸発した源材料の堆積は、蒸発した源材料を基板10に向かって主要放出方向Xに案内することを含み、蒸発した源材料の一部は、蒸発した源材料のプルームを成形するために、複数の出口22と基板10との間に配置されたシールドデバイス30によって遮断される。
堆積中に、シールドデバイス30は、例えば150℃未満の温度、特に100℃以下又は50℃以下の温度など、低温である第1の温度で維持されうる。例えば、基板の方を向くシールドデバイスの表面は、マスクに向かう及び/又は基板に向かう熱放射を低減するために、堆積中に100℃以下の温度で維持されうる。幾つかの実施形態において、シールドデバイス30は、例えば、シールドデバイスに取り付けられる冷却チャネルを介して又は熱電性冷却デバイスを介して、堆積中に能動的に又は受動的に冷却されうる。
シールドデバイス30の表面が低温で維持される際に、シールドデバイスによって遮断される蒸発した源材料は、シールドデバイスで凝縮し、そこに付着しうる。その中で、遮断された源材料の一部は、シールドデバイスで付着した源材料を形成するように、シールドデバイスに付着しうる。開孔直径は、より小さくなり、詰まりのリスクが存在しうる。
本明細書に記載の方法によれば、図4Aに図示した堆積段階の次に、図4Bに示した洗浄段階が続き、シールドデバイスを第1の温度を上回る第2の温度まで加熱することによって、シールドデバイス30に蓄積した源材料の少なくとも一部が、シールドデバイスから除去される。シールドデバイスは、少なくとも局部的に、とりわけ蓄積した源材料を有するシールドデバイスの表面セクションにおいて、加熱されうる。例えば、蒸発した源材料の一部が典型的には、開孔を取り囲むシールド壁セクションによって遮断されるので、シールドデバイスの開孔32を取り囲むシールド壁セクションが加熱されうる。
幾つかの実施形態において、シールドデバイスは、洗浄中に源材料の蒸発温度を上回る温度まで、例えば、100℃又は200℃を上回る温度、特に300℃以上の温度まで、少なくとも局部的に加熱されうる。付着した源材料は、シールドデバイスから解放され、再蒸発する可能性がある。したがって、シールドデバイスを洗浄することができる。
幾つかの実施形態において、シールドデバイス30は、堆積中に基板10の方を向くのに対し、加熱中には基板10の方を向くことはない。したがって、シールドデバイスから再蒸発した源材料の基板への堆積を回避することができる。更に、加熱したシールドデバイスからの熱放射に起因したマスク及び/又は基板の熱膨張を回避することができる。
本明細書に記載の他の実施形態と組み合わせてもよい幾つかの実施形態において、蒸発源20の出口22を通した蒸発した源材料の放出は、洗浄中に停止することができる。例えば、洗浄段階で、出口22が閉鎖されてもよく、又は蒸発が停止されてもよい。源材料の消費を低減することができる。
本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態において、堆積装置は、洗浄のためにサービス位置II内に設置されうる。とりわけ、堆積後、堆積装置は、シールドデバイスの開孔が基板10に向かって方向付けられる堆積位置Iから、シールドデバイスの開孔が基板に向かって方向付けられないサービス位置II内に移動しうる。
本明細書で使用される「堆積位置」は、堆積装置が蒸発した源材料を基板に向かって案内する準備ができている、堆積装置の状態でありうる。例えば、蒸発源の出口及びシールドデバイスの開孔は、基板又は堆積装置の堆積エリアの方を向くことがある。
本明細書で使用される「サービス位置」は、蒸発した源材料を基板に向かって案内するのに適していない堆積装置の状態でありうる。例えば、蒸発源の出口及びシールドデバイスの開孔は、基板又は堆積装置の堆積エリアの方を向かなくてもよい。堆積装置を堆積位置からサービス位置内に設置することは、蒸発源の移動、例えば回転移動を含みうる。幾つかの実施形態において、堆積装置をサービス位置内に設置することは、シールドデバイスを加熱するために加熱デバイス50が設けられる位置、及び/又はシールドデバイスがシールド壁などの材料収集ユニットの方を向く位置内に蒸発源を移動させることを含みうる。
幾つかの実施形態において、堆積装置をサービス位置II内に設置することは、蒸発源20と材料収集ユニット40との間の相対運動を含みうる。例えば、図4A及び図4Bに示す実施形態では、蒸発源20を、図4Aに示す堆積位置Iから図4Bに示すサービス位置IIまで移動させ、シールドデバイス30が、サービス位置IIの材料収集ユニット40に向かって方向付けられる。
蒸発源をサービス位置IIに移動させることは、回転角度、特に20°以上の回転角度αで、より詳細には60°〜120°の回転角度で、蒸発源20を回転させることを含みうる。図4Bに示す実施形態において、蒸発源を、堆積位置Iからサービス位置IIまでのおよそ90°の回転角度だけ回転させる。本明細書で使用される「回転」とは、出口の方向が第1の方向から第1の方向と異なる第2の方向に移動されるように蒸発源を移動させることと理解されうる。
シールドデバイス30は、サービス位置IIで加熱されうるのだが、そのサービス位置IIでは、シールドデバイス30が材料収集ユニット40の方を向いている。材料収集ユニット40は、壁要素、例えば凝縮壁又はシールド壁などとして設けられうる。図4Bに示されるように、壁要素は湾曲していてもよい。壁要素とシールドデバイスとの間の距離は、蒸発源の回転移動中に本質的に一定に維持することができる。更に、壁要素が湾曲した形状であるため、壁要素は、本質的に蒸発源20の全体的な回転移動中に蒸発源20から放出される蒸発した源材料を遮断するシールドとして作用しうる。例えば、壁要素は、蒸発源の回転軸に対して、45°以上、特に90°以上の角度にわたり延びうる。
幾つかの実施形態において、洗浄することは、1秒以上、特に10秒以上の期間、シールドデバイスを加熱することを含みうる。加熱期間が長ければ長いほどより良好な洗浄結果につながるが、蒸発プロセスを減速する可能性がある。1秒から60秒までの期間にわたり加熱することによって、良好な洗浄結果を実現することができる。
洗浄後、基板上又は更なる基板上での蒸発した源材料の堆積が継続しうる。堆積の継続前に、幾つかの実施形態では、蒸発源が、サービス位置IIから、再び堆積位置Iまで又は更なる堆積位置までもたらされうる。例えば、蒸発源を、角度(−α)だけ回転させ、再び堆積位置Iに戻すか、又は代替的には、蒸発源を同一の回転方向に、例えば更に角度αだけ、更に回転させることによって、蒸発が更なる堆積位置までもたらされうる。
本明細書に記載の他の実施形態と組み合わせてもよい幾つかの実施形態において、堆積及び洗浄は、交互に実行されてもよい。例えば、シールドデバイスは、所定の堆積期間後にそれぞれ洗浄されてもよく、洗浄後に、堆積がそれぞれ継続してもよい。幾つかの実施形態において、シールドデバイスの洗浄は、蒸発した材料の全基板への堆積後、又は所定数の基板のコーティング完了後、例えば、2つの基板、4つの基板又はそれ以上の基板のコーティング完了後に、実行されうる。幾つかの実施形態において、シールドデバイスの洗浄は、堆積工程の数分後、数時間後又は数日後にそれぞれ実行されうる。洗浄実行後の期間は、シールドデバイスの開孔のサイズ及び形状、蒸発源の出口とシールドデバイスとの間の距離、更には堆積中のシールドデバイスの表面の温度次第でありうる。例えば、洗浄は、蒸発した材料の各基板への堆積後、又は数時間までの堆積期間後にそれぞれ実行されうる。
幾つかの実施形態では、シールドデバイスにおける源材料の蓄積が測定され、シールドデバイスにおいて付着した源材料が所定量蓄積された後に、洗浄が実行されうる。シールドデバイスの開孔の詰まりを防止することができ、基板に衝撃を与える蒸発した源材料の一定のプルームを得ることができる。
加熱されたシールドデバイスによる基板上の実質的な熱負荷を回避するために、シールドデバイスは、洗浄後に冷却されてもよい。例えば、シールドデバイスは、洗浄後及び堆積継続前に、第1の温度、例えば、150℃以下又は100℃以下の温度、まで冷却されうる。幾つかの実施形態において、洗浄中にシールドデバイスを加熱するように構成されている加熱デバイス50は、堆積継続前に所定の期間、スイッチが切られる。幾つかの実施形態において、シールドデバイスは、洗浄後及び/又は堆積継続前に、受動的又は能動的に冷却される。更に、シールドデバイスは、追加的に又は代替的には、堆積中に受動的又は能動的に冷却されうる。受動冷却は、冷却流体を介した冷却を含みうる。能動冷却は、能動冷却要素、例えば、熱電性冷却要素、ペルチェ要素又は圧電冷却要素などを介した冷却を含みうる。
図4A及び図4Bに示されるように、シールドデバイス30は、蒸発した源材料が通過する一又は複数の開孔32を含みうる。堆積中に、開孔32は、基板10の方を向き(図4A)、洗浄中に、開孔は、材料収集ユニット40の方を向くことになる(図4B)。
シールドデバイスは、複数の出口22から蒸発した源材料の主要な放出方向Xに対して45°を上回る放出角度を有する蒸発した源材料を遮断するように構成されうる。
図4A及び図4Bに示されるように、堆積装置100を堆積位置Iからサービス位置IIまで移動させることは、蒸発源20を移動させること、例えば、蒸発源20を回転させること、を含みうる。
代替的には、図5A及び図5Bに示されるように、堆積位置Iからサービス位置IIまで堆積装置を移動させることは、材料収集ユニット40、例えば、蒸発源に対して凝縮壁又はシールド壁など、を移動させることを含みうる。サービス位置IIにおいて、材料収集ユニット40は、シールドデバイス30の開孔32の前に配置されうる。
例えば、蒸発源の主要放出方向Xが材料収集ユニット40と交差するように、材料収集ユニット40を、蒸発源と基板保持エリアとの間の空間に移動させることができる。材料収集ユニット40は、シールドデバイスから再び蒸発した源材料のほとんどが確実に壁セグメントに当たるように、湾曲した壁セグメントでありうる。
本明細書に記載の他の実施形態と組み合わせてもよい幾つかの実施形態において、洗浄することは、シールドデバイス30から源材料を解放するために、電磁放射を蓄積した源材料上に方向付けることを含みうる。例えば、マイクロ波放射、熱放射、レーザ放射、IR放射、及びUV放射のうちの少なくとも1つは、特に源材料によって覆われるシールドデバイスのセクション上に向けられることがある。
図5Bに示される実施形態では、堆積装置100は、電磁放射源を含む加熱デバイス50を含む。電磁放射源は、ランプ、例えば、ハロゲン加熱ランプ、UVランプ、IR光源、レーザ、フラッシュランプ、又はLEDなどの一又は複数の光源を含みうる。幾つかの実施形態において、電磁放射源は、マイクロ波発振器又は放熱装置でありうる又はそれらを含みうる。
幾つかの実施形態において、一又は複数のハロゲン加熱ランプ、例えば、タングステン−ハロゲン加熱ランプは、シールドデバイスを加熱するために設けられうる。加熱ランプは、UV放射からNIR放射に至る放出範囲を有する広帯域放出ランプでありうる。
幾つかの実施形態において、シールドデバイスの種々のセクション、例えば、種々の開孔のエッジに方向付けられた複数のランプが設けられてもよい。例えば、10以上のランプ又は100以上のランプが設けられてもよい。
幾つかの実施形態において、一又は複数のレーザ源は、サービス位置でシールドデバイスを少なくとも局部的に加熱するために使用されうる。とりわけ、凝縮した源材料は、レーザ蒸発させてもよい。例えば、一又は複数のVCSEL(垂直キャビティ面発光レーザ)が供給されてもよい。
幾つかの実施形態において、一又は複数のマイクロ波源は、シールドデバイスから源材料を再び蒸発させるために使用されうる。マイクロ波源は、上記光源の幾つかと比較して安価でありうる。マイクロ波源は、良好な放射均一性を更に提供しうる。
幾つかの実施形態において、シールドデバイスは、一又は複数のUVランプを介して加熱されうる。有機材料は、特に350nm〜400nmまでの波長範囲のUV光を吸収し、UV光 の吸収は、有機材料の加熱及び再蒸発につながることがある。シールドデバイスへの熱負荷は、他の加熱デバイスと比較して小さいことがある。UV光は、幾つかの有機分子の分解につながることがある。
堆積装置がサービス位置IIにあるとき、電磁放射をシールドデバイスの表面セクションに向けることができるように、加熱デバイスは配置されうる。例えば、加熱デバイスは、材料収集ユニット40に取り付けられ又は配置されうる。幾つかの実施形態において、加熱デバイは、材料収集ユニットの中心に配置されうる。
電磁放射源での加熱は、源材料が容易に再蒸発し、シールドデバイスの温度が比較的低く維持される(「トップダウン加熱」)ように、蓄積した源材料が最上部から加熱されるという利点を提供する。したがって、シールドデバイスは、洗浄後及び堆積継続前に、より迅速に冷却することができる。
ここで繰り返さない上記説明を参照することができるように、図5A及び図5Bに示す実施形態の残りの特徴は、図4A及び図4Bに示す実施形態の特徴に本質的に対応しうる。
図6A及び図6Bは、本明細書に記載の方法に従って操作される、本明細書に記載の幾つかの実施形態による更なる堆積装置を示す。
図6A及び図6Bに示されるように、堆積装置100を堆積位置Iからサービス位置IIまで移動させることは、蒸発源の前の堆積エリアから基板10を移動させることを含みうる。材料収集ユニット、例えば、壁要素40’は、図6Aに示すように、堆積中に基板10背後に配置されうる。堆積後、基板は遠ざけられ、その後、出口22及びシールドデバイス30が、壁要素40に向かって方向付けられうる。
シールドデバイス30に付着した源材料は、シールドデバイスを加熱することによって再び蒸発し、その後、再び蒸発した源材料は、壁要素40’の方に伝播し、壁要素40’付着しうる。幾つかの実施形態において、材料収集ユニットは、本質的に平らな壁要素として設けられうる。
本明細書に記載の他の実施形態と組み合わせてもよい幾つかの実施形態において、洗浄することは、付着した源材料を加熱した表面セクションから解放するために、シールドデバイス30の一又は複数の表面セクションを熱電的に又は誘導的に加熱することを含みうる。
図6A及び図6Bに示す実施形態において、加熱要素51、例えば、熱電性ヒータが、シールドデバイス30内に統合される。本明細書に記載の他の実施形態と組み合わせてもよい幾つかの実施形態において、一又は複数の加熱要素が、シールドデバイス30に取り付けられてもよい。代替的には、シールドデバイスは、少なくとも部分的に加熱要素として構成されうる。例えば、シールドデバイス30の表面が、源材料の蒸発温度を上回る温度まで、例えば、100℃以上又は200℃以上、特に300℃以上まで、加熱することができる一又は複数のヒータエリアを備えるように、シールドデバイス30は、加熱材料で少なくとも部分的にコーティングされうる。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態において、シールドデバイスの開孔を取り囲むシールド壁部分は、例えば、スパッタリングなどの物理的気相堆積などを介して、ヒータ材料でコーティングされてもよく、又は少なくとも部分的にヒータ材料から作ることができる。
例えば、シールドデバイスの非加熱エリアは、保護材料、例えばテープなどでコーティングされ、その後、シールドデバイスが、ヒータ材料でコーティングされうる。保護材料は、コーティング後に除去することができ、電気接点がヒータ材料に結合されうる。その結果、シールドデバイスは、堆積中に源材料で覆われる傾向にある表面セクションで熱電的に加熱することができる。例えば、シールドデバイスの開孔を取り囲む表面セクションは、加熱することができる表面として構成されうる。
シールドデバイスの表面の少なくとも一セクションは、熱電的に又は誘導的に加熱することができる加熱表面として構成されうる。
図7A、図7B、及び図7は、本明細書に記載の実施形態による堆積装置100を操作するための方法の3つの連続的段階を示す。ここで繰り返さない上記説明を参照することができるように、堆積装置100は、本質的に、図1に示す堆積装置に対応しうる。堆積装置100は、図2Aから図6Bまでを参照して説明された特徴の幾つか又はすべてを更に含みうる。
図7Aに示した堆積装置は、蒸発した源材料を基板10に堆積させるように構成される蒸発源20を含みうる。蒸発源は、蒸発した源材料を、主要放出方向Xに沿って基板に向かって案内するための複数の出口を有する分配管を含む。蒸発した材料のプルームは、図7Aに示される。蒸発源20は、複数の出口22から下流に配置されたシールドデバイス30を更に含み、シールドデバイスは、蒸発した源材料のプルームを成形するように、特に放出コーンの外角範囲を遮断するように構成される。
シールドデバイス30は、複数の開孔を含み、各開孔が関連する出口から発生する蒸発した源材料のプルームを成形するように構成され、特に、マスクのシャドーイング効果を低減するために、各開孔32の周方向のエッジが、関連する出口から発生する蒸発した源材料のプルームの外側部分を遮断するように構成される。蒸発した源材料を遮断することは、シールドデバイス、特に開孔を取り囲むエッジそれぞれでの源材料の蓄積につながりうる。
図7Aに示すように、蒸発源20が、基板10の表面に沿って、基板の幅方向に移動する一方で、蒸発した源材料は、マスクを通して、基板10に向かって案内されうる。線形ガイド120は、基板表面に沿って蒸発源を線形に移動させるように設けられうる。
図7Bにおいて、蒸発源20は、基板の幅全体をコーティングできるように、基板の反対側の端部に到達している。
所定期間の堆積処理後に、洗浄期間が続いてもよい。堆積が停止されてもよい。例えば、コーティングされた基板10は、真空チャンバ110から除去されてもよい。シールドデバイス30を洗浄するために、堆積装置100は、図7Cに示されるサービス位置II内に移動させてもよい。とりわけ、蒸発源は、回転軸周囲を回転角度、例えば約90°で、回転させてもよい。
幾つかの実施形態において、アクチュエータデバイスは、図7Bに示す堆積位置Iから図7Cに示すサービス位置IIまで、堆積装置を移動させるように設けられうる。アクチュエータデバイスは、蒸発源を移動させるように、例えば、蒸発源を回転させるように、構成された電気モータなどのモータを含みうる。
堆積装置100は、材料収集ユニット40、例えばシールド壁を更に含むことがあり、蒸発源がサービス位置IIにあるとき、シールドデバイス30は、材料収集ユニット40の方を向く。
サービス位置IIでは、シールドデバイス30は、例えば加熱デバイス50を介して、シールドデバイス30を少なくとも局部的に加熱することによって洗浄されうる。加熱デバイス50は、電磁放射源、例えばランプを含みうる。加熱することは、蓄積した源材料が再び蒸発し、再び蒸発した源材料が凝縮する材料収集ユニット40に向かって伝播するように、シールドデバイスを、源材料の蒸発温度を上回る温度まで少なくとも局部的に加熱することを含みうる。シールドデバイスは、洗浄されてもよい。
その後、幾つかの実施形態において、シールドデバイスは、源材料の蒸発温度未満の温度、例えば、50℃以下など100℃以下の温度まで能動的に又は受動的に冷却されうる。堆積が継続しうる。
幾つかの実施形態において、洗浄後、蒸発源は、シールドデバイスが更なる基板11に面する更なる堆積位置に対して第2の回転角度だけ回転させてもよい。図7Cに示す実施形態では、蒸発源は、シールドデバイス30が図7Cの右側に方向付けられるように、更に90°だけ反時計回りに回転させてもよい。
更なる段階(図示されず)で、蒸発源20が更なる基板の表面に沿って、即ち図7Cの上に向かって、線形移動する間に、更なる基板11がコーティングされてもよい。
更に、洗浄段階は、堆積工程の所定期間それぞれの後に続くとしてもよい。正確なピクセル形状だけではなく堆積したピクセルの良好な均一性も得ることができ、マスクに起因したシャドーイング効果を低減することができる。
図8は、本明細書の実施形態による堆積装置を操作する方法900を示すフロー図である。ボックス910において、蒸発源20の複数の出口22から基板10に向かって蒸発した源材料を案内することによって、蒸発した源材料が基板に堆積し、蒸発した源材料の一部は、複数の出口22と基板との間に配置されたシールドデバイス30によって遮断される。ボックス920では、シールドデバイス30を少なくとも局部的に加熱することによって、シールドデバイスが洗浄される。洗浄する前に、蒸発源は、例えば、蒸発源を回転角度だけ回転させることによって、サービス位置に移動させてもよい。オプションのボックス930では、蒸発した源材料の基板への又は更なる基板への堆積は、継続しうる。堆積が継続する前に、蒸発源は、サービス位置から堆積位置まで移動させてもよく及び/又は冷却されてもよい。
堆積中のシールドデバイスの表面温度は、洗浄中のシールドデバイスの表面温度よりも低く維持されうる。とりわけ、洗浄中のシールドデバイスの表面温度は、源材料の蒸発温度より高くてもよく、及び/又は堆積中のシールドデバイスの表面温度は、源材料の蒸発温度より低くてもよい。
図9は、本明細書の実施形態による堆積装置を操作する方法1000を示すフロー図である。ボックス1010において、蒸発した源材料が基板10に堆積する。蒸発した源材料が蒸発源20の複数の出口22から基板10に向かって案内される間に、蒸発源20は、基板10の表面に沿って線形に移動し、蒸発した源材料の一部が、堆積中に第1の温度で維持されうるシールドデバイス30によって遮断される。ボックス1020において、蒸発源は、第1の回転角度αで、堆積位置Iからサービス位置IIまで回転する。ボックス1030において、シールドデバイス30は、サービス位置IIのシールドデバイス30を、第1の温度より高い第2の温度まで少なくとも局部的に加熱することによって、洗浄される。
ボックス1040において、蒸発源20は、第2の回転角度だけ、再び堆積位置Iまで又は更なる堆積位置まで回転する。ボックス1050において、蒸発した源材料は、更なる基板11に堆積する。蒸発した源材料が複数の出口22から更なる基板に向かって案内される間、蒸発源は、基板又は更なる基板の表面に沿って線形に移動する。ボックス1050における蒸発源20の線形移動は、ボックス1010における蒸発源の線形移動と反対でありうる。堆積中に、シールドデバイスの温度は、第1の温度、即ち低い方の温度で維持されうる。
本明細書では諸例を用いて、ベストモードを含めて本開示を開示し、また当業者が本開示の主題を実施することを、任意のデバイス又はシステムを作製及び使用すること、及び組み込まれる任意の方法を実施することを含めて可能にしている。前述において様々な特定の実施形態を開示してきたが、上述した実施形態の相互に非排他的な特徴は、互いに組み合わせることが可能である。特許性のある範囲は特許請求の範囲によって規定され、その他の実施例は、それが特許請求の範囲の文字通りの言葉と相違しない構造要素を有する場合、又は特許請求の範囲の文字通りの言葉とは実質的な違いがない等価の構造要素を含む場合には、特許請求の範囲内にあるものとする。

Claims (19)

  1. 蒸発した源材料を基板に堆積する方法であって、
    蒸発した源材料を、蒸発源(20)の一又は複数の出口(22)から、前記蒸発源(20)に含まれ前記一又は複数の出口(22)と基板(10)との間に配置されたシールドデバイス(30)を通って前記基板(10)に向かって案内することと、
    堆積位置(I)から、前記シールドデバイス(30)が材料収集ユニット(40)の方を向くサービス位置(II)まで、前記材料収集ユニット(40)に対して前記蒸発源(20)を移動させること及び前記サービス位置(II)において前記シールドデバイス(30)を少なくとも局部的に加熱することによって、前記シールドデバイス(30)を洗浄することと
    を含み、
    前記サービス位置(II)まで前記蒸発源(20)を移動させることが、前記一又は複数の出口の方向が60°〜120°の角度だけ移動されるように前記蒸発源(20)を移動させることを含む、方法。
  2. 前記洗浄後に、前記サービス位置(II)から再び前記堆積位置(I)まで、前記蒸発源(20)を移動させることと、
    蒸発した前記源材料を前記基板に継続的に堆積させることと
    を更に含む、請求項に記載の方法。
  3. 堆積及び洗浄が交互に実行され、所定の堆積期間後に、前記シールドデバイスが洗浄される、請求項に記載の方法。
  4. 前記シールドデバイスが、前記シールドデバイスの洗浄後に冷却される、請求項に記載の方法。
  5. 前記加熱することが、前記シールドデバイス(30)の一又は複数の表面セクションを熱電的に又は誘導的に加熱することを含む、請求項に記載の方法。
  6. 前記加熱することが、マイクロ波放射、熱放射、レーザ放射及びUV放射からなる群から選択された電磁放射を、前記シールドデバイス(30)に堆積した前記源材料の上に方向付けることを含む、請求項に記載の方法。
  7. 前記シールドデバイス(30)が、前記一又は複数の出口(22)から蒸発した前記源材料の主要放出方向(X)に対して45°を上回る放出角度を有する蒸発した前記源材料を遮断する、請求項に記載の方法。
  8. 蒸発した源材料を基板に堆積する方法であって、
    前記基板(10)の表面に沿って蒸発源(20)を移動させることと、
    蒸発した前記源材料を、前記蒸発源(20)の一又は複数の出口(22)から、前記蒸発源(20)に含まれ前記一又は複数の出口(22)と前記基板(10)との間に配置されたシールドデバイス(30)を通って前記基板に向かって案内することであって、蒸発した前記源材料の一部が、前記ールドデバイス(30)によって遮断されかつ当該シールドデバイス(30)に付着する、案内することと、
    堆積位置(I)からサービス位置(II)まで、前記一又は複数の出口の方向が第1の移動角度だけ移動するように、前記蒸発源(20)を移動させることと、
    前記サービス位置(II)で前記シールドデバイス(30)を少なくとも局部的に加熱することによって、前記シールドデバイス(30)を洗浄することと、
    前記堆積位置(I)に戻るまで又は更なる堆積位置まで、前記一又は複数の出口の方向が第2の移動角度だけ移動するように、前記蒸発源(20)を移動させることと、
    前記基板(10)又は更なる基板の表面に沿って前記蒸発源(20)を移動させることと、
    前記一又は複数の出口(22)から基板に向かって蒸発した前記源材料を案内することと
    を含み、
    前記第1の移動角度及び前記第2の移動角度は60°〜120°の範囲である、方法。
  9. 前記一又は複数の出口の方向が第1の移動角度だけ移動するように前記蒸発源を移動させることが、前記堆積位置(I)からサービス位置(II)まで第1の回転角度だけ前記蒸発源を回転させることを含み、
    前記一又は複数の出口の方向が第2の移動角度だけ移動するように前記蒸発源を移動させることが、再び前記堆積位置(I)に戻るまで又は更なる堆積位置まで第2の回転角度だけ前記蒸発源を回転させることを含む、
    請求項に記載の方法。
  10. 蒸発した源材料を基板に堆積させるように構成された蒸発源(20)であって、
    蒸発した前記源材料を前記基板(10)に向かって案内するための一又は複数の出口(22)を有する分配管(106)と、
    前記一又は複数の出口(22)から下流に配置され、前記基板に向かって伝播する蒸発した前記源材料を部分的に遮断するように構成されたシールドデバイス(30)と
    を備える蒸発源と、
    前記シールドデバイス(30)を含む蒸発源(20)を60°〜120°の角度け回転させることにより、堆積装置(100)を堆積位置(I)からサービス位置(II)に置くように構成されたアクチュエータデバイスと、
    前記堆積装置が前記サービス位置(II)にあるとき、前記シールドデバイス(30)を少なくとも局部的に加熱するための加熱装置(50)と
    を備える、堆積装置(100)。
  11. 前記シールドデバイス(30)が、関連する出口(22)から発生する蒸発した源材料のプルームを成形するように構成された複数の開孔を備える、請求項10に記載の堆積装置。
  12. 各開孔(32)の周方向のエッジが、前記関連する出口(22)から発生する蒸発した源材料の前記プルームの外側部分を遮断するように構成される、請求項11に記載の堆積装置。
  13. 前記加熱装置が、前記シールドデバイス(30)内に置かれ又は統合される、請求項10から12のいずれか一項に記載の堆積装置。
  14. 前記加熱装置が、熱電装置又は誘導装置である、請求項10から12のいずれか一項に記載の堆積装置。
  15. 材料収集ユニット(40)を更に備え、前記蒸発源(20)が前記サービス位置(II)にあるとき、前記シールドデバイス(30)が前記材料収集ユニット(40)の方を向く、請求項10から12の何れか一項に記載の堆積装置。
  16. 前記加熱装置(50)が、電磁放射を前記サービス位置(II)で前記シールドデバイス(30)に向かって方向付けるように構成された電磁放射源を備える、請求項10から12の何れか一項に記載の堆積装置。
  17. 前記加熱装置が、光源、レーザ、LED、UVランプ、IR光源、ハロゲン加熱ランプ、及びマイクロ波発振器からなる群から選択される、請求項10から12の何れか一項に記載の堆積装置。
  18. 材料収集ユニット(40)を更に備え、前記蒸発源(20)が前記サービス位置(II)にあるとき、前記シールドデバイス(30)が前記材料収集ユニット(40)の方を向き、前記加熱装置(50)が、電磁放射を前記サービス位置(II)で前記シールドデバイス(30)に向かって方向付けるように構成された電磁放射源を備え、前記電磁放射源が、材料収集ユニット(40)に置かれ又は統合される、請求項10から12の何れか一項に記載の堆積装置。
  19. 堆積装置(100)を操作する方法であって、
    蒸発した源材料を、蒸発源(20)の一又は複数の出口(22)から、前記蒸発源(20)に含まれ前記一又は複数の出口(22)と基板(10)との間に配置されたシールドデバイス(30)を通って前記基板(10)に向かって案内することによって、蒸発した源材料を前記基板(10)に堆積させることであって、前記蒸発した源材料の一部が、前記シールドデバイス(30)によって遮断されかつ当該シールドデバイスに付着する、堆積させることと、
    付着した前記源材料の少なくとも一部を前記シールドデバイス(30)から離すために、前記シールドデバイス(30)を少なくとも局部的に加熱することによって、前記シールドデバイス(30)を洗浄することと
    を含み、
    前記洗浄することは、堆積位置(I)から、前記シールドデバイス(30)が材料収集ユニット(40)の方を向くサービス位置(II)まで、材料収集ユニット(40)に対して前記蒸発源(20)を移動させることを含み、前記シールドデバイス(30)が前記サービス位置(II)において加熱され、
    前記サービス位置(II)まで前記蒸発源(20)を移動させることが、前記一又は複数の出口の方向が60°〜120°の角度だけ移動されるように前記蒸発源(20)を移動させることを含む、方法。
JP2018512121A 2016-05-10 2016-05-10 堆積装置を操作する方法、蒸発した源材料を基板に堆積する方法、及び堆積装置 Active JP6815390B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/060440 WO2017194098A1 (en) 2016-05-10 2016-05-10 Methods of operating a deposition apparatus, and deposition apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019167960A Division JP2020023750A (ja) 2019-09-17 2019-09-17 堆積装置を操作する方法、蒸発した源材料を基板に堆積する方法、及び堆積装置

Publications (2)

Publication Number Publication Date
JP2018538430A JP2018538430A (ja) 2018-12-27
JP6815390B2 true JP6815390B2 (ja) 2021-01-20

Family

ID=55963363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018512121A Active JP6815390B2 (ja) 2016-05-10 2016-05-10 堆積装置を操作する方法、蒸発した源材料を基板に堆積する方法、及び堆積装置

Country Status (7)

Country Link
US (1) US10483465B2 (ja)
EP (1) EP3417085A1 (ja)
JP (1) JP6815390B2 (ja)
KR (1) KR101930522B1 (ja)
CN (2) CN109477204B (ja)
TW (4) TWI658157B (ja)
WO (1) WO2017194098A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019063061A1 (en) * 2017-09-26 2019-04-04 Applied Materials, Inc. MATERIAL DEPOSITION ARRANGEMENT, VACUUM DEPOSITION SYSTEM, AND ASSOCIATED METHODS
WO2019238245A1 (en) * 2018-06-15 2019-12-19 Applied Materials, Inc. Cooling system for cooling a deposition area, arrangement for material deposition in deposition area, and method of deposition on a substrate in a deposition area
KR102641512B1 (ko) * 2018-07-20 2024-02-28 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법
KR102609612B1 (ko) * 2018-07-30 2023-12-05 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법
WO2020025145A1 (en) * 2018-08-03 2020-02-06 Applied Materials, Inc. An evaporation source to deposit evaporated source materials, a method of shielding evaporated source materials and a shielding device for an evaporation source
KR20210103546A (ko) * 2018-12-21 2021-08-23 어플라이드 머티어리얼스, 인코포레이티드 기상 증착 장치 및 진공 챔버에서 기판을 코팅하기 위한 방법
CN114645249A (zh) * 2020-12-21 2022-06-21 应用材料公司 在基板上沉积已蒸发源材料的方法和沉积设备
CN113088888A (zh) * 2021-03-25 2021-07-09 浙江焜腾红外科技有限公司 一种vcsel及vcsel表面偏振光膜镀膜装置
CN115369373B (zh) * 2021-05-17 2024-04-02 鑫天虹(厦门)科技有限公司 遮挡构件及具有遮挡构件的基板处理腔室
TWI782532B (zh) * 2021-05-17 2022-11-01 天虹科技股份有限公司 遮擋構件及具有遮擋構件的基板處理腔室
CN113621934B (zh) * 2021-08-16 2023-06-23 辽宁分子流科技有限公司 一种卷绕镀膜设备
CN113621933B (zh) * 2021-08-16 2023-06-23 辽宁分子流科技有限公司 一种用于卷绕镀膜设备的移动式挡板系统
CN113621935B (zh) * 2021-08-16 2023-06-23 辽宁分子流科技有限公司 一种基于卷绕镀膜设备的卷绕镀膜方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365016B1 (en) * 1999-03-17 2002-04-02 General Electric Company Method and apparatus for arc plasma deposition with evaporation of reagents
US20030010288A1 (en) * 2001-02-08 2003-01-16 Shunpei Yamazaki Film formation apparatus and film formation method
JP3802846B2 (ja) 2002-06-20 2006-07-26 株式会社エイコー・エンジニアリング 薄膜堆積用分子線源セル
KR100532657B1 (ko) * 2002-11-18 2005-12-02 주식회사 야스 다증발원을 이용한 동시증착에서 균일하게 혼합된 박막의증착을 위한 증발 영역조절장치
KR100623730B1 (ko) 2005-03-07 2006-09-14 삼성에스디아이 주식회사 증발원 어셈블리 및 이를 구비한 증착 장치
JP2007126727A (ja) * 2005-11-07 2007-05-24 Hitachi Zosen Corp 真空蒸着用防着装置
US20080131587A1 (en) * 2006-11-30 2008-06-05 Boroson Michael L Depositing organic material onto an oled substrate
JP2009228091A (ja) * 2008-03-25 2009-10-08 Canon Inc 蒸着装置
US20100159132A1 (en) * 2008-12-18 2010-06-24 Veeco Instruments, Inc. Linear Deposition Source
JP5244725B2 (ja) * 2009-07-21 2013-07-24 株式会社日立ハイテクノロジーズ 成膜装置
KR20110014442A (ko) * 2009-08-05 2011-02-11 삼성모바일디스플레이주식회사 박막 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법
US8486737B2 (en) * 2009-08-25 2013-07-16 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
KR101708420B1 (ko) 2010-09-15 2017-02-21 삼성디스플레이 주식회사 기판 증착 시스템 및 이를 이용한 증착 방법
JP5400749B2 (ja) * 2010-12-01 2014-01-29 株式会社日立ハイテクノロジーズ 蒸着装置
JP2012216373A (ja) 2011-03-31 2012-11-08 Hitachi High-Technologies Corp 真空蒸着装置及び有機el表示装置の製造方法
EP2508645B1 (en) * 2011-04-06 2015-02-25 Applied Materials, Inc. Evaporation system with measurement unit
EP2747122B1 (en) * 2012-12-20 2019-07-03 Applied Materials, Inc. Plasma enhanced deposition arrangement for evaporation of dielectric materials, deposition apparatus and methods of operating thereof
KR101456690B1 (ko) 2012-12-28 2014-11-04 엘아이지에이디피 주식회사 유기발광소자 제조용 벨트마스크, 이를 이용한 유기물 증착장치 및 유기물 증착방법
JP2014152365A (ja) * 2013-02-12 2014-08-25 Hitachi High-Technologies Corp 真空蒸着装置
JP5798171B2 (ja) * 2013-04-26 2015-10-21 ジージェイエム カンパニー リミテッド 量産用蒸発装置および方法
CN106995911B (zh) 2013-12-10 2020-07-31 应用材料公司 蒸发源、沉积设备以及用于蒸发有机材料的方法
CN105917019A (zh) * 2014-02-04 2016-08-31 应用材料公司 用于有机材料的蒸发源、具有用于有机材料的蒸发源的设备、具有带有用于有机材料的蒸发源的蒸发沉积设备的系统以及用于操作用于有机材料的蒸发源的方法
WO2016160665A1 (en) * 2015-03-30 2016-10-06 Siva Power, Inc Fluid-assisted thermal management of evaporation sources
EP3245313B1 (en) * 2015-07-13 2018-12-05 Applied Materials, Inc. Evaporation source.

Also Published As

Publication number Publication date
JP2018538430A (ja) 2018-12-27
CN109477204B (zh) 2020-10-23
TW201837210A (zh) 2018-10-16
TW201805453A (zh) 2018-02-16
US20190148642A1 (en) 2019-05-16
KR20180037277A (ko) 2018-04-11
TW201839153A (zh) 2018-11-01
EP3417085A1 (en) 2018-12-26
WO2017194098A1 (en) 2017-11-16
TWI658157B (zh) 2019-05-01
US10483465B2 (en) 2019-11-19
TWI658159B (zh) 2019-05-01
CN109477204A (zh) 2019-03-15
CN112458404A (zh) 2021-03-09
TWI658158B (zh) 2019-05-01
KR101930522B1 (ko) 2018-12-18
TW201837211A (zh) 2018-10-16
TWI619821B (zh) 2018-04-01

Similar Documents

Publication Publication Date Title
JP6815390B2 (ja) 堆積装置を操作する方法、蒸発した源材料を基板に堆積する方法、及び堆積装置
JP6941564B2 (ja) 蒸発した材料を堆積させるための蒸発源、及び蒸発した材料を堆積させるための方法
JP6466469B2 (ja) 有機材料用の蒸発源
KR101877908B1 (ko) 유기 재료를 위한 증발 소스, 유기 재료를 위한 증발 소스를 갖는 장치, 및 유기 재료를 증착시키기 위한 방법
JP6633185B2 (ja) 材料堆積装置、真空堆積システム及びそのための方法
TWI664303B (zh) 沈積系統、沈積設備、及操作一沈積系統之方法
JP2023002518A (ja) 蒸発した材料を堆積させるための蒸発源、及び蒸発した材料を堆積させるための方法
JP6594986B2 (ja) 真空堆積のための材料源アレンジメント及び材料分配アレンジメント
JP2020023750A (ja) 堆積装置を操作する方法、蒸発した源材料を基板に堆積する方法、及び堆積装置
JP6488397B2 (ja) 真空堆積のための材料源アレンジメント及びノズル
WO2019063061A1 (en) MATERIAL DEPOSITION ARRANGEMENT, VACUUM DEPOSITION SYSTEM, AND ASSOCIATED METHODS
JP2019503431A (ja) 基板上に材料を堆積する装置、基板上に1つ以上の層を堆積するシステム、及び真空堆積システムをモニタする方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180612

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190917

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190925

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191001

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191108

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191112

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200804

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201110

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201215

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6815390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250