JP6815355B2 - 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法 - Google Patents

発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法 Download PDF

Info

Publication number
JP6815355B2
JP6815355B2 JP2018126460A JP2018126460A JP6815355B2 JP 6815355 B2 JP6815355 B2 JP 6815355B2 JP 2018126460 A JP2018126460 A JP 2018126460A JP 2018126460 A JP2018126460 A JP 2018126460A JP 6815355 B2 JP6815355 B2 JP 6815355B2
Authority
JP
Japan
Prior art keywords
masp
inhibitor
lea
antibody
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018126460A
Other languages
English (en)
Other versions
JP2018162307A (ja
Inventor
ハンス‐ヴィルヘルム シュワエブル
ハンス‐ヴィルヘルム シュワエブル
グレゴリー エイ. デモプロス
グレゴリー エイ. デモプロス
Original Assignee
オメロス コーポレーション
オメロス コーポレーション
ユニバーシティー オブ レスター
ユニバーシティー オブ レスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オメロス コーポレーション, オメロス コーポレーション, ユニバーシティー オブ レスター, ユニバーシティー オブ レスター filed Critical オメロス コーポレーション
Publication of JP2018162307A publication Critical patent/JP2018162307A/ja
Application granted granted Critical
Publication of JP6815355B2 publication Critical patent/JP6815355B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Description

関連出願の相互参照
本願は、2012年4月6日に出願された米国特許仮出願第621,461号の恩典を主張するものである。
配列表に関する記載
本願に関連する配列表はハードコピーの代わりにテキスト形式で提供され、本明細書に参照により組み入れられる。配列表を含むテキストファイルの名前は、MP_1_0146_PCT_Sequence_20130327_ST25.txtである。このテキストファイルは85 KBであり、2013年4月1日に作成され、本明細書の出願と共にEFS-Webを介して提出されている。
背景
補体系は、ヒトおよび他の脊椎動物において微生物感染および他の急性傷害に対する免疫応答を開始、増幅、および組織化するための初期作用機構を提供する(M.K. Liszewski and J. P. Atkinson, 1993, in Fundamental Immunology, Third Edition, W.E, Paul編, Raven Press, Ltd., New York)。補体活性化は潜在的な病原体に対する有益な第一線の防御を提供するが、防御免疫応答を促進する補体の活性は宿主にとって潜在的な脅威となることもある(K.R, Kalli, et al., Springer Semin. Immunopathol. 15:417-431, 1994; B.P. Morgan, Eur. J. Clinical Investig. 24:219-228, 1994)。例えば、C3およびC5タンパク質分解産物は好中球を動員および活性化する。活性化好中球は宿主防御に不可欠であるが見境なく破壊酵素を放出し、臓器損傷を引き起こすことがある。さらに、補体活性化によって、近くの宿主細胞ならびに微生物標的の表面に溶解性補体成分が沈着し、その結果、宿主細胞が溶解することがある。
補体系はまた、心筋梗塞、脳卒中、ARDS、再灌流傷害、敗血症ショック、熱傷後の毛細血管漏出、心肺バイパス術後炎症、移植片拒絶、慢性関節リウマチ、多発性硬化症、重症筋無力症、およびアルツハイマー病を含む、非常に多くの急性疾患状態および慢性疾患状態の発生に結び付けられてきた。これらの状態のほぼ全てにおいて、補体は原因でないが、発生に関与するいくつかの因子の1つである。それにもかかわらず、補体活性化は主な病理学的機構である可能性があり、これらの疾患状態の多くにおける臨床管理のための有効な点である。様々な疾患状態において補体媒介性組織損傷が重要であるという認識の高まりは、有効な補体阻害性薬物の必要性を強調する。現在に至るまで、抗C5抗体であるエクリズマブ(Solaris(登録商標))がヒトでの使用に認可されている唯一の補体標的化薬物である。だが、C5は、補体系の「下流」に位置する、いくつかのエフェクター分子の1つであり、C5が遮断されても補体系活性化は阻害されない。従って、補体活性化の開始工程の阻害因子は「下流」補体阻害因子よりかなり優位に立っていると考えられる。
現在、補体系は3つの異なる経路:古典経路、レクチン経路、および第二経路を介して活性化できることが広く認められている。古典経路は、通常、外来粒子(すなわち、抗原)に結合した宿主抗体からなる複合体によって誘発され、従って、特異的抗体反応を発生させるために抗原への前曝露を必要とする。古典経路の活性化は宿主による以前の獲得免疫応答に左右されるので、古典経路は後天免疫系の一部である。対照的に、レクチン経路および第二経路はいずれも獲得免疫とは無関係であり、自然免疫系の一部である。
補体系が活性化されると、セリンプロテアーゼ酵素前駆体が連続して活性化される。古典経路活性化の第一段階は、特異的認識分子C1qと、抗原に結合したIgG分子およびIgM分子との結合である。C1qは、C1と呼ばれる複合体としてC1rおよびC1sセリンプロテアーゼプロ酵素と結合する。C1qと免疫複合体が結合すると、C1rのArg-Ile部位が自己タンパク分解によって切断された後に、C1rによって媒介されるC1sの切断および活性化が起こり、それによって、C4およびC2を切断する能力が獲得される。C4は、C4aおよびC4bと呼ばれる2つの断片に切断され、同様に、C2はC2aおよびC2bに切断される。C4b断片は、隣接するヒドロキシル基またはアミノ基と共有結合を結合し、活性化C2のC2a断片との非共有結合的相互作用を介してC3コンバターゼ(C4b2a)を生成することができる。C3コンバターゼ(C4b2a)は、C3aおよびC3b小成分へのタンパク質分解による切断によってC3を活性化し、それによって、C5コンバターゼ(C4b2a3b)が生成される。C5コンバターゼ(C4b2a3b)はC5を切断することによって、膜侵襲複合体(C5bとC6、C7、C8、およびC9との組み合わせで「MAC」とも呼ばれる)が形成される。膜侵襲複合体は細胞膜を破壊して細胞溶解を招き得る。C3およびC4の活性化型(C3bおよびC4b)は共有結合により外来標的表面に沈着し、複数の食細胞上にある補体受容体によって認識される。
独立して、レクチン経路を介した補体系活性化における第一段階も、特異的認識分子の結合と、それに続く、関連するセリンプロテアーゼプロ酵素の活性化である。しかしながら、C1qによる免疫複合体の結合ではなく、レクチン経路の認識分子は、総称してレクチンと呼ばれる炭水化物結合タンパク質(マンナン結合レクチン(MBL)、H-フィコリン、M-フィコリン、L-フィコリン、およびC型レクチンCL-11)の一群を含む。J. Lu et al., Biochim. Biophys. Acta 1572:387-400, (2002); Holmskov et al., Annu. Rev. Immunol. 21:547-578(2003); Teh et al., Immunology 101:225-232(2000))を参照されたい。J. Luet et al., Biochim Biophys Acta 1572:387-400(2002); Holmskov et al., Annu. Rev. Immunol. 21:547-578(2003); Teh et al., Immunology 101:225-232(2000); Hansen et al., J, Immunol 185(10):6096-6104(2010)も参照されたい。
Ikedaらは、C1qと同様にMBLが酵母マンナンでコーティングされた赤血球と結合すると、C4依存的に補体系を活性化できることを初めて証明した(Ikeda et al., J. Biol. Chem. 262:7451-7454, (1987))。コレクチンタンパク質ファミリーのメンバーであるMBLは、3-ヒドロキシ基および4-ヒドロキシ基がピラノース環の赤道結合面に配向されている炭水化物と結合するカルシウム依存性レクチンである。従って、MBLのよく目につくリガンドはD-マンノースおよびN-アセチル-D-グルコサミンであるのに対して、この立体要件に合わない炭水化物はMBLに対して検出不可能な親和性を有する(Weis et al., Nature 360:127-134, (1992))。MBLと一価糖との相互作用は極めて弱く、解離定数は典型的に1桁のミリモル範囲である。MBLは、アビディティによって、すなわち、互いに近くに位置する複数の単糖残基と同時に相互作用することによってグリカンリガンドと緊密で特異的な結合を実現する(Lee et al., Archiv. Biochem. Biophys. 299:129-136, (1992))。MBLは、一般的に、微生物、例えば、細菌、酵母、寄生生物、およびある特定のウイルスを装飾する炭水化物パターンを認識する。対照的に、MBLは、通常、哺乳動物の血漿糖タンパク質上および細胞表面糖タンパク質上に存在する「成熟」複合糖質を装飾する最後から2番目の糖および最後の糖であるD-ガラクトースおよびシアル酸を認識しない。この結合特異性は、「外来」表面の認識を促進し、「自己活性化」からの保護を助けると考えられる。しかしながら、MBLは、哺乳動物細胞の小胞体およびゴルジの中に隔離されたN結合糖タンパク質および糖脂質上にある高マンノース「前駆」グリカンクラスターに高親和性で結合する(Maynard et al., J. Biol. Chem. 257:3788-3794, (1982))。さらに、MBLが、壊死細胞およびアポトーシス細胞に曝露され得る、ポリヌクレオチド、DNA、およびRNAを結合させることができることが示されている(Palaniyar et al., Ann. N.Y. Acad. Sci., 1010:467-470 (2003); Nakamura et al., J. Leuk. Biol. 86:737-748 (2009))。従って、損傷細胞は、MBL結合を介したレクチン経路活性化の潜在的な標的である。
フィコリンは、フィブリノゲン様ドメインと呼ばれる、MBLとは異なるタイプのレクチンドメインを有する。フィコリンはCa++非依存的に糖残基に結合する。ヒトでは、3種類のフィコリン(L-フィコリン、M-フィコリン、およびH-フィコリン)が同定されている。2種類の血清フィコリンであるL-フィコリンおよびH-フィコリンは共通してN-アセチル-D-グルコサミンに対する特異性を有する。しかしながら、H-フィコリンはN-アセチル-D-ガラクトサミンにも結合する。L-フィコリン、H-フィコリン、CL-11、およびMBLの糖特異性が異なることは、異なるレクチンが補い合い、重複によって異なる複合糖質を標的とし得ることを意味する。この考えは、レクチン経路にある公知のレクチンのうちL-フィコリンだけが、全てのグラム陽性細菌に見られる細胞壁複合糖質であるリポテイコ酸に特異的に結合するという最近の報告によって裏付けられている(Lynch et al., J. Immunol. 172:1198-1202, (2004))。アセチル化された糖部分に加えて、フィコリンはまた、アセチル化されたアミノ酸およびポリペプチドを結合させることもできる(Thomsen et al., Mol. Immunol. 48(4):369-81 (2011))。コレクチン(すなわち、MBL)およびフィコリンはアミノ酸配列において有意な類似性を有さない。しかしながら、これらの2つのタンパク質グループは類似したドメイン構成を有し、C1qと同様に、集合して、多部位結合の可能性を最大にするオリゴマー構造を構築する。
MBLの血清中濃度は健常集団では極めて変わりやすく、これは、MBL遺伝子のプロモーター領域およびコード領域の両方にある多型/変異によって遺伝的に制御される。急性期タンパク質として、炎症中にMBL発現はさらにアップレギュレートされる。L-フィコリンは、MBLの濃度とほぼ同じ濃度で血清中に存在する。従って、レクチン経路のL-フィコリン分岐は強さが潜在的にMBL部門に匹敵する。MBLおよびフィコリンはオプソニンとしても機能することができる。このために、食細胞は、MBLによって装飾された表面およびフィコリンによって装飾された表面を標的とすることが可能になる(Jack et al., J Leukoc Biol., 77(3):328-36(2004), Matsushita and Fujita, Immunobiology, 205(4-5):490-7(2002), Aoyagi et al., J. Immunol, 174(1):418-25(2005)を参照されたい)。このオプソニン化は、これらのタンパク質と食細胞受容体との相互作用を必要とする(Kuhlman et al., J. Exp. Med. 169:1733, (1989); Matsushita et al., J. Biol. Chem. 271:2448-54, (1996))。食細胞受容体の正体は証明されていない。
ヒトMBLは、そのコラーゲン様ドメインを介して、MBL関連セリンプロテアーゼ(MASP)と呼ばれる独特のC1r/C1s様セリンプロテアーゼと特異的な、かつ高親和性の相互作用を形成する。現在に至るまで、3種類のMASPが述べられている。第1に、単一の酵素「MASP」が、補体カスケードの開始(すなわち、C2およびC4の切断)を担う酵素として同定され、特徴決定された(Matsushita et al., J Exp Med 176(6):1497-1502(1992):Ji et al., J. Immunol 150:571-578, (1993))。その後に、MASP活性は、実際には、2種類のプロテアーゼ:MASP-1およびMASP-2の混合物であることが確定された(Thiel et al., Nature 386:506-510, (1997))。しかしながら、補体活性化にはMBL-MASP-2複合体だけでも十分であることが証明された(Vorup-Jensen et al., J. Immunol 165:2093-2100, (2000))。さらに、MASP-2だけが高い割合でC2およびC4を切断した(Ambrus et al., J. Immunol, 170:1374-1382, (2003))。従って、MASP-2は、C4およびC2を活性化してC3コンバターゼであるC4b2aを生成するのを担うプロテアーゼである。これは、2種類の特異的なセリンプロテアーゼ(C1rおよびC1s)の協調作用が補体系活性化につながる古典経路のC1複合体とは大きな違いである。さらに、第3の新規プロテアーゼであるMASP-3が単離されている(Dahl, M.R. et al., Immunity 15:127-35, 2001)。MASP-1およびMASP-3は同じ遺伝子のオルタナティブスプライシング産物である。
MASPは、C1複合体の酵素成分であるC1rおよびC1sのドメイン構成と同一のドメイン構成を有する(Sim et al., Biochem. Soc. Trans. 28:545, (2000))。これらのドメインは、N末端C1r/C1s/ウニ(sea urchin)VEGF/骨形成タンパク質(CUB)ドメイン、上皮細胞成長因子様ドメイン、第二のCUBドメイン、補体制御タンパク質ドメインの縦列配列、およびセリンプロテアーゼドメインを含む。C1プロテアーゼと同様に、MASP-2の活性化は、セリンプロテアーゼドメインに隣接するArg-Ile結合の切断によって起こる。この切断によって、酵素はジスルフィド結合したA鎖およびB鎖に分けられる。後者はセリンプロテアーゼドメインからなる。
MBLはまた、MASP2の触媒活性を欠く、19kDaのMBL関連タンパク質(MAp19)または小MBL関連タンパク質(sMAP)として知られるオルタナティブスプライシング型MASP-2と結合することもできる(Stover, J. Immunol. 162:3481-90, (1999); Takahashi et al., Int. Immunol. 11:859-863, (1999))。MAp19は、MASP-2の最初の2つのドメインに続いて、4個の独特のアミノ酸からなる余分な配列を含む。Map19の機能は不明である(Degn et al., J. Immunol. Methods. 2011)。MASP-1遺伝子およびMASP-2遺伝子は、それぞれ、ヒト第3染色体および第1染色体に位置する(Schwaeble et al., Immunobiology 205:455-466, (2002))。
いくつかの証拠から、異なるMBL-MASP複合体があり、血清中のMASPの大部分はMBLと複合体を形成しないことが示唆されている(Thiel. et al., J. Immunol. 165:878-887, (2000))。H-フィコリンおよびL-フィコリンはいずれもMBLと同様に全てのMASPに結合し、レクチン補体経路を活性化する(Dahl et al., Immunity 15:127-35, (2001); Matsushita et al., J. Immunol. 168:3502-3506, (2002))。レクチン経路および古典経路はいずれも共通のC3コンバターゼ(C4b2a)を形成し、2つの経路はこの段階で1つになる。
レクチン経路は、ナイーブな宿主における感染からの宿主防御において主な役割を有すると広く考えられている。宿主防御においてMBLが関与する強力な証拠が機能的MBLの血清中レベルが低い患者の分析から得られた(Kilpatrick, Biochim. Biophys. Acta 1572:401-413, (2002))。このような患者は反復性の細菌感染および真菌感染に対して感受性を示す。これらの症状は、通常、若年期に、母由来抗体価が減少している時であるが、抗体反応の全レパートリーが発達する前の見かけの(apparent)脆弱期間に現れる。この症候群は、多くの場合、MBLオリゴマーの適切な形成を妨害する、MBLコラーゲン部分にある、いくつかの部位の変異に起因する。しかしながら、MBLは補体に関係なくオプソニンとして機能することができるので、感染に対する感受性の増大がどの程度まで補体活性化の障害によるものであるかは分かっていない。
古典経路およびレクチン経路とは対照的に、C1qおよびレクチンが他の2つの段階において果たす認識機能を、第二経路の開始因子が実行することはこれまで見出されていなかった。現在、第二経路は低レベルの代謝回転活性化を自発的に受けることが広く認められている。この代謝回転活性化は、自発的補体活性化を抑える適切な分子エレメントを欠く外来表面または他の異常表面(細菌、酵母、ウイルスに感染した細胞、または損傷組織)において容易に増幅することができる。第二経路活性化に直接関与する4種類の血漿タンパク質:C3、B因子およびD因子、ならびにプロペルジンがある。
非感染性ヒト疾患の発生に古典補体経路および第二補体経路を結び付ける幅広い証拠があるが、レクチン経路の役割は評価され始めたばかりである。最近の研究から、レクチン経路の活性化は虚血/再灌流傷害における補体活性化および関連炎症を担っている可能性があるという証拠が得られた。Collard et al.,(2000)は、酸化ストレスに供された培養内皮細胞はMBLに結合し、ヒト血清に曝露されるとC3沈着を示すと報告した(Collard et al., Am. J. Pathol 156:1549-1556,(2000))。さらに、ヒト血清を遮断抗MBLモノクローナル抗体で処理すると、MBL結合および補体活性化が阻害された。これらの知見をラット心筋虚血-再灌流モデルに広げた。このモデルでは、ラットMBLに対する遮断抗体で処置されたラットは、冠状動脈閉塞時に対照抗体処置ラットより有意に少ない心筋損傷を示した(Jordan et al., Circulation, 104:1413-1418,(2001))。酸化ストレス後の血管内皮とのMBL結合の分子機構は不明である。最近の研究から、酸化ストレス後のレクチン経路の活性化は血管内皮サイトケラチンとのMBL 結合によって媒介されるが、複合糖質によって媒介されない可能性があることが示唆されている(Collard e al., Am. J. Pathol. 159:1045-1054,(2001))。他の研究は虚血/再灌流傷害の発生に古典経路および第二経路を結び付けており、この疾患におけるレクチン経路の役割は議論の余地が残されている(Riedermann, N.C. et al., Am. J. Pathol. 162:363-367, 2003)。
最近の研究から、MASP-1およびMASP-3が、第二経路活性化酵素であるD因子を酵素前駆体型から酵素活性型に変換させることが分かっている(Takahashi M. et al., J Exp Med 207(1):29-37(2010);Iwaki et al., J. Immunol. 187:3751-58 (2011)を参照されたい)。このプロセスの生理学的重要性は、MASP-1/3欠損マウスの血漿中に機能的な第二経路活性が存在しないことで強調される。タンパク質分解によって天然C3からC3bが生成されるには第二経路が機能することが必要である。第二経路C3コンバターゼ(C3bBb)が必須のサブユニットであるC3bを含有するので、第二経路を介した最初のC3bの起源に関する疑問は不可解な問題であり、膨大な研究を活気づけてきた。
C3は、(C4およびα-2マクログロブリンと共に)チオエステル結合として知られる稀な翻訳後修飾を含有するタンパク質のファミリーに属する。チオエステル基は、3アミノ酸離れたシステインのスルフヒドリル基とチオエステル共有結合を形成する末端カルボニル基を有するグルタミンからなる。この結合は不安定であり、求電子性グルタミル-チオエステルはヒドロキシル基またはアミノ基などの求核性部分と反応し、従って、他の分子と共有結合を形成することができる。チオエステル結合は、インタクトなC3の疎水性ポケットの中に隔離された場合にかなり安定している。しかしながら、タンパク質分解によってC3がC3aおよびC3bに切断されると、反応性の高いチオエステル結合がC3b上に露出し、ヒドロキシル基またはアミノ基を含む隣接する部分による求核攻撃後に、C3bは標的と共有結合する。C3チオエステルは、C3bと補体標的との共有結合における詳細に記録が残された役割に加えて、第二経路の誘発において中心的な役割も有すると考えられている。広く認められている「アイドリング理論(tick-over theory)」によれば、第二経路は、加水分解チオエステルを有するC3(iC3; C3(H2O))およびB因子から形成される液相コンバターゼiC3Bbの発生によって開始される(Lachmann, P.J., et al., Springer Semin. Immunopathol. 7:143-162, (1984))。C3b様C3(H2O)は、天然C3から、このタンパク質にある内部チオエステルのゆっくりとした自発性的加水分解によって生成される(Pangburn, M.K., et al., J. Exp. Med. 154:856-867, 1981)。C3(H2O)Bbコンバターゼの活性によってC3b分子は標的表面に沈着され、それによって、第二経路が開始される。
本明細書に記載される本発見の前には第二経路活性化の開始因子についてほとんど知られていなかった。活性化因子は、酵母細胞壁(ザイモサン)、多くの純粋多糖、ウサギ赤血球、ある特定の免疫グロブリン、ウイルス、菌類、細菌、動物腫瘍細胞、寄生生物、および損傷細胞を含むと考えられていた。これらの活性化因子に共通する唯一の特徴は炭水化物の存在であるが、炭水化物構造の複雑性および多様性のために、認められた共通の分子決定基を証明することは難しい。第二経路活性化は、この経路の阻害性調節成分、例えば、H因子、I因子、DAF、およびCR1、ならびに、プロペルジンの間の微妙なバランスによって制御され、後者が第二経路の唯一の正の制御因子であることが広く認められている(Schwaeble W.J. and Reid K.B., Immunol Today 20(1):17-21(1999)を参照されたい)。
前記の明らかに無秩序な活性化機構に加えて、生成されたC3bがB因子と共に、さらなる第二経路C3コンバターゼ(C3bBb)の形成に関与することができるので、第二経路はレクチン/古典経路C3コンバターゼ(C4b2a)の強力な増幅ループも提供することができる。第二経路C3コンバターゼはプロペルジン結合によって安定化される。プロペルジンは、第二経路C3コンバターゼの半減期を6〜10倍、延長する。C3bを第二経路C3コンバターゼに添加すると、第二経路C5コンバターゼが形成される。
3つ全ての経路(すなわち、古典経路、レクチン経路、および第二経路)はC5において1つになると考えられてきた。C5は切断されて、複数の炎症誘発作用を有する産物を形成する。1つになった経路は終末補体経路と呼ばれてきた。C5aは、平滑筋緊張および血管緊張の変化ならびに血管透過性を誘導する最も強力なアナフィラトキシンである。C5aはまた好中球および単球の強力なケモタキシンおよび活性化因子である。C5aを介した細胞活性化は、サイトカイン、加水分解酵素、アラキドン酸代謝産物、および活性酸素種を含む複数種のさらなる炎症メディエーターの放出を誘導することによって炎症反応を著しく増幅することができる。C5が切断されると、膜侵襲複合体(MAC)とも知られるC5b-9が形成される。現在、溶解を引き起こすのに十分でない(sublytic)MAC沈着が、溶解性ポア形成複合体としての役割に加えて炎症において重要な役割を果たし得るという強力な証拠がある。
補体系は免疫防御における必須の役割に加えて、多くの臨床状態における組織損傷の一因となる。従って、これらの副作用を阻止するために治療上有効な補体阻害因子を開発する差し迫った必要性がある。
概要
一局面において、本発明は、発作性夜間血色素尿症(PNH)に罹患している対象においてMASP-3依存性補体活性化を阻害する方法を提供する。方法は、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質を含む組成物を対象に投与する工程を含む。一部の態様において、方法は、MASP-2阻害物質を含む組成物を対象に投与する工程をさらに含む。
別の局面において、本発明は、MASP-2阻害物質およびMASP-3阻害物質を含む少なくとも1つの阻害物質と、薬学的に許容される担体とを含む薬学的組成物を提供する。
別の局面において、本発明は、MASP-1(SEQ ID NO:10、完全長)の一部に結合しかつMASP-3(SEQ ID NO:8)の一部にも結合するMASP-3阻害物質と、薬学的担体とを含む薬学的組成物を提供する。
別の局面において、本発明は、MASP-2(SEQ ID NO:5、完全長)の一部に結合しかつMASP-3(SEQ ID NO:8)の一部にも結合するMASP-3阻害物質と、薬学的担体とを含む薬学的組成物を提供する。
別の局面において、本発明は、MASP-1(SEQ ID NO:10、完全長)の一部に結合しかつMASP-2(SEQ ID NO:5)の一部にも結合するMASP-3阻害物質と、薬学的担体とを含む薬学的組成物を提供する。
別の局面において、本発明は、MASP-1(SEQ ID NO:10、完全長)の一部に結合し、MASP-2(SEQ ID NO:5、完全長)の一部に結合し、かつMASP-3(SEQ ID NO:8)の一部にも結合するMASP-3阻害物質と、薬学的担体とを含む薬学的組成物を提供する。
本明細書に記載されるように、本発明の薬学的組成物は、本発明の方法に従って使用することができる。
[本発明1001]
発作性夜間血色素尿症(PNH)に罹患している対象においてMASP-3依存性補体活性化を阻害する方法であって、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質を含む組成物を該対象に投与する工程を含む、方法。
[本発明1002]
前記MASP-3阻害物質がMASP-3モノクローナル抗体またはその断片であり、該断片が、SEQ ID NO:8の一部に特異的に結合する、本発明1001の方法。
[本発明1003]
MASP-1阻害物質を含む組成物を前記対象に投与する工程をさらに含む、本発明1001の方法。
[本発明1004]
前記MASP-1阻害物質がMASP-1モノクローナル抗体またはその断片であり、該断片が、SEQ ID NO:10の一部に特異的に結合する、本発明1003の方法。
[本発明1005]
MASP-2阻害物質を含む組成物を前記対象に投与する工程をさらに含む、本発明1001の方法。
[本発明1006]
前記MASP-2阻害物質がMASP-2モノクローナル抗体またはその断片であり、該断片が、SEQ ID NO:5の一部に特異的に結合する、本発明1005の方法。
[本発明1007]
MASP-1阻害物質およびMASP-2阻害物質を含む組成物を前記対象に投与する工程をさらに含む、本発明1001の方法。
[本発明1008]
前記組成物が前記対象において赤血球の生存率を増加させる、本発明1001〜1007のいずれかの方法。
[本発明1009]
前記対象が、(i)正常より低いレベルのヘモグロビン;(ii)正常より低いレベルの血小板;(iii)正常より高いレベルの網状赤血球;および(iv)正常より高いレベルのビリルビンからなる群より選択される1つまたは複数の症状を示す、本発明1008の方法。
[本発明1010]
前記対象が、補体タンパク質C5の切断を阻害する終末補体阻害因子による治療を以前に受けたことがあるかまたは現在受けている、本発明1001の方法。
[本発明1011]
補体タンパク質C5の切断を阻害する終末補体阻害因子を前記対象に投与する工程をさらに含む、本発明1001の方法。
[本発明1012]
前記終末補体阻害因子が、ヒト化抗C5抗体またはその抗原結合断片である、本発明1011の方法。
[本発明1013]
前記終末補体阻害因子がエクリズマブである、本発明1012の方法。
[本発明1014]
前記MASP-3阻害物質が第二経路駆動型C3b沈着を阻害する、本発明1001の方法。
[本発明1015]
前記MASP-3阻害物質がD因子成熟を阻害する、本発明1001の方法。
[本発明1016]
前記MASP-1阻害物質が、MASP-3(SEQ ID NO:8)に結合する場合よりも少なくとも10倍大きい親和性でMASP-1の一部に特異的に結合する、本発明1003の方法。
[本発明1017]
前記MASP-1阻害物質が、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に特異的に結合する、本発明1003の方法。
[本発明1018]
前記MASP-3阻害物質が、MASP-1(SEQ ID NO:10)の一部にも結合する、本発明1001の方法。
[本発明1019]
前記MASP-3阻害物質が、CUBI-CCP2ドメイン内のコンセンサス領域に結合する二重MASP-1/MASP-3阻害因子である、本発明1018の方法。
[本発明1020]
前記MASP-3阻害物質が、CCP2ドメイン内のコンセンサス領域に結合する二重MASP-1/MASP-3阻害因子である、本発明1018の方法。
[本発明1021]
前記MASP-3阻害物質が二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体が、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、かつ、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)にも結合する、本発明1018の方法。
[本発明1022]
前記MASP-3阻害物質が、MASP-2(SEQ ID NO:5)の一部にも結合する、本発明1001の方法。
[本発明1023]
前記MASP-3阻害物質が、MASP-3およびMASP-2のセリンプロテアーゼドメイン内の保存領域に結合する二重MASP-3/MASP-2阻害因子である、本発明1022の方法。
[本発明1024]
前記MASP-3阻害物質が二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体が、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)に結合し、かつ、MASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)またはMASP-2のCCP-1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)の少なくとも1つにも結合する、本発明1022の方法。
[本発明1025]
前記MASP-3阻害物質が、MASP-3(SEQ ID NO:8)の一部に結合し、かつMASP-1またはMASP-2を阻害しない、本発明1001の方法。
[本発明1026]
前記MASP-3阻害物質が、MASP-1(SEQ ID NO:10)に結合する場合よりも少なくとも10倍大きい親和性でMASP-3の一部に特異的に結合する、本発明1001の方法。
[本発明1027]
前記MASP-3阻害物質が、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)に特異的に結合する、本発明1001の方法。
[本発明1028]
前記MASP-3阻害物質が、MASP-1、MASP-2、およびMASP-3についての汎(pan)阻害因子であり、かつ、CUB1-EGF-CUB2ドメイン中の保存領域に結合する、本発明1001の方法。
[本発明1029]
前記MASP-3阻害物質が、MASP-1、MASP-2、およびMASP-3についての三重特異性阻害因子である、本発明1001の方法。
[本発明1030]
前記組成物がMASP-2抗体をさらに含む、本発明1002の方法。
[本発明1031]
前記組成物がMASP-1抗体をさらに含む、本発明1002の方法。
[本発明1032]
前記組成物がMASP-1抗体ならびにMASP-2抗体およびMASP-3抗体を含む、本発明1007の方法。
[本発明1033]
MASP-2抗体、MASP-1抗体、またはMASP-3抗体の少なくとも1つを含む組成物の同時投与を含む、本発明1007の方法。
[本発明1034]
前記組成物がMASP-2抗体をさらに含む、本発明1018の方法。
[本発明1035]
前記組成物がMASP-1抗体をさらに含む、本発明1022の方法。
[本発明1036]
前記抗体またはその断片が、組換え抗体、低下したエフェクター機構を有する抗体、キメラ抗体、およびヒト化抗体またはヒト抗体からなる群より選択される、本発明1001の方法。
[本発明1037]
前記組成物が全身投与される、本発明1001の方法。
[本発明1038]
前記組成物が、皮下に、筋肉内に、静脈内に、動脈内に、または吸入剤として投与される、本発明1037の方法。
[本発明1039]
発作性夜間血色素尿症(PNH)に罹患している対象において赤血球の生存率を増加させる方法であって、赤血球の生存率を増加させるのに有効な量のMASP-1阻害物質および/またはMASP-3阻害物質の少なくとも1つを含む組成物を該対象に投与する工程を含む、方法。
[本発明1040]
前記組成物がMASP-1阻害物質を含む、本発明1039の方法。
[本発明1041]
前記組成物がMASP-3阻害物質を含む、本発明1039の方法。
[本発明1042]
前記組成物がMASP-1阻害物質およびMASP-3阻害物質を含む、本発明1039の方法。
[本発明1043]
MASP-2阻害物質を含む組成物を前記対象に投与する工程をさらに含む、本発明1039の方法。
[本発明1044]
前記MASP-1阻害物質がMASP-1モノクローナル抗体である、本発明1040の方法。
[本発明1045]
前記MASP-3阻害物質がMASP-3モノクローナル抗体である、本発明1041の方法。
[本発明1046]
前記MASP-2阻害物質がMASP-2モノクローナル抗体である、本発明1043の方法。
[本発明1047]
少なくとも1つの補体経路阻害物質と薬学的に許容される担体とを含み、該少なくとも1つの阻害物質が、MASP-2阻害物質と、MASP-3阻害物質および/またはMASP-1阻害物質の少なくとも1つとを含む、薬学的組成物。
[本発明1048]
前記少なくとも1つの阻害物質が、MASP-3阻害物質である第一の分子とMASP-2阻害物質である第二の分子との組み合わせを含む、本発明1047の薬学的組成物。
[本発明1049]
前記少なくとも1つの阻害物質が、MASP-3阻害物質としての活性と、MASP-2阻害物質としての活性とを含む単一の分子実体を含む、本発明1047の薬学的組成物。
[本発明1050]
前記MASP-3阻害物質がMASP-3モノクローナル抗体またはその断片である、本発明1047の薬学的組成物。
[本発明1051]
前記MASP-2阻害物質がMASP-2抗体またはその断片である、本発明1047の薬学的組成物。
[本発明1052]
前記MASP-3阻害物質が、B因子のMASP-3媒介性切断を阻害する、本発明1047の薬学的組成物。
[本発明1053]
前記MASP-3阻害物質がD因子成熟を阻害する、本発明1047の薬学的組成物。
[本発明1054]
前記MASP-1阻害物質がMASP-1抗体またはその断片である、本発明1047の薬学的組成物。
[本発明1055]
前記MASP-1阻害物質が、MASP-3(SEQ ID NO:8)に結合する場合よりも少なくとも10倍大きい親和性でMASP-1の一部に特異的に結合する、本発明1047の薬学的組成物。
[本発明1056]
前記MASP-1阻害物質が、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に特異的に結合する、本発明1047の薬学的組成物。
[本発明1057]
前記MASP-1阻害物質が、MASP-3(SEQ ID NO:8)の一部にも結合する、本発明1047の薬学的組成物。
[本発明1058]
前記MASP-3阻害物質が、CUBI-CCP2ドメイン内のコンセンサス領域に結合する二重MASP-1/MASP-3阻害因子である、本発明1057の薬学的組成物。
[本発明1059]
前記MASP-3阻害物質が、CCP2ドメイン内のコンセンサス領域に結合する二重MASP-1/MASP-3阻害因子である、本発明1057の薬学的組成物。
[本発明1060]
前記MASP-3阻害物質が二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体が、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、かつ、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)にも結合する、本発明1057の薬学的組成物。
[本発明1061]
前記MASP-1阻害物質が、MASP-2(SEQ ID NO:5)の一部にも結合する、本発明1047の薬学的組成物。
[本発明1062]
前記MASP-1阻害物質が、MASP-1およびMASP-2のセリンプロテアーゼドメイン内の保存領域に結合する二重MASP-1/MASP-2阻害因子である、本発明1061の薬学的組成物。
[本発明1063]
前記MASP-1阻害物質が二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体が、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、かつ、MASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)またはMASP-2のCCP-1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)の少なくとも1つにも結合する、本発明1061の薬学的組成物。
[本発明1064]
前記MASP-3阻害物質が、MASP-3(SEQ ID NO:8、完全長)の一部に特異的に結合する、本発明1047の薬学的組成物。
[本発明1065]
前記MASP-3阻害物質が、MASP-1(SEQ ID NO:10)に結合する場合よりも少なくとも10倍大きい親和性でMASP-3の一部に特異的に結合する、本発明1047の薬学的組成物。
[本発明1066]
前記MASP-3阻害物質が、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)に特異的に結合する、本発明1064の薬学的組成物。
[本発明1067]
前記MASP-3阻害物質が、MASP-2(SEQ ID NO:5)の一部にも結合する、本発明1047の薬学的組成物。
[本発明1068]
前記MASP-3阻害物質が、MASP-2およびMASP-3のセリンプロテアーゼドメイン内の保存領域に結合する二重MASP-2/MASP-3阻害因子である、本発明1067の薬学的組成物。
[本発明1069]
前記MASP-3阻害物質が二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体が、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)に結合し、かつ、MASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)またはMASP-2のCCP-1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)の少なくとも1つにも結合する、本発明1067の薬学的組成物。
[本発明1070]
前記MASP-3阻害物質が、MASP-1、MASP-2、およびMASP-3についての汎阻害因子であり、かつ、これら3つのタンパク質のCUB1-EGF-CUB2ドメイン中の保存領域に結合する、本発明1047の薬学的組成物。
[本発明1071]
前記MASP-3阻害物質が、MASP-1、MASP-2、およびMASP-3についての三重特異性阻害因子である、本発明1047の薬学的組成物。
[本発明1072]
前記MASP-3阻害物質がMASP-3抗体であり、かつ前記組成物がMASP-2抗体をさらに含む、本発明1047の薬学的組成物。
[本発明1073]
前記MASP-3阻害物質がMASP-3抗体であり、かつ前記組成物がMASP-1抗体をさらに含む、本発明1047の薬学的組成物。
[本発明1074]
前記MASP-3阻害物質がMASP-3抗体であり、かつ前記組成物がMASP-2抗体をさらに含む、本発明1047の薬学的組成物。
[本発明1075]
MASP-1抗体ならびにMASP-2抗体およびMASP-3抗体を含む、本発明1047の薬学的組成物。
[本発明1076]
MASP-2抗体をさらに含む、本発明1057の薬学的組成物。
[本発明1077]
MASP-3抗体をさらに含む、本発明1061の薬学的組成物。
[本発明1078]
MASP-1抗体をさらに含む、本発明1067の薬学的組成物。
[本発明1079]
前記抗体またはその断片が、組換え抗体、低下したエフェクター機構を有する抗体、キメラ抗体、およびヒト化抗体またはヒト抗体からなる群より選択される、本発明1047の薬学的組成物。
[本発明1080]
前記MASP-1阻害物質がD因子成熟を阻害する、本発明1047の薬学的組成物。
[本発明1081]
全身送達のために製剤化されている、本発明1047の薬学的組成物。
[本発明1082]
皮下への、筋肉内への、静脈内への、動脈内への、または吸入剤としての送達のために製剤化されている、本発明1081の薬学的組成物。
[本発明1083]
MASP-1(SEQ ID NO:10、完全長)の一部に結合しかつMASP-3(SEQ ID NO:8)の一部にも結合するMASP-3阻害物質と、薬学的担体とを含む、薬学的組成物。
[本発明1084]
前記MASP-3阻害物質が二重MASP-1/MASP-3阻害因子である、本発明1083の組成物。
[本発明1085]
前記MASP-3阻害物質が二重特異性抗体である、本発明1083の組成物。
[本発明1086]
前記MASP-3阻害物質が二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体が、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、かつ、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)にも結合する、本発明1085の組成物。
[本発明1087]
MASP-2(SEQ ID NO:5、完全長)の一部に結合しかつMASP-3(SEQ ID NO:8)の一部にも結合するMASP-3阻害物質と、薬学的担体とを含む、薬学的組成物。
[本発明1088]
前記MASP-3阻害物質が二重MASP-2/MASP-3阻害因子である、本発明1087の組成物。
[本発明1089]
前記MASP-3阻害物質が二重特異性MASP-2/MASP-3抗体である、本発明1087の組成物。
[本発明1090]
MASP-1(SEQ ID NO:10、完全長)の一部に結合しMASP-2(SEQ ID NO:5、完全長)の一部に結合しかつMASP-3(SEQ ID NO:8)の一部にも結合するMASP-3阻害物質と、薬学的担体とを含む、薬学的組成物。
[本発明1091]
前記阻害物質が汎MASP阻害因子である、本発明1090の組成物。
[本発明1092]
前記阻害物質が、MASP-1、MASP-2、およびMASP-3に対する三重特異性抗体である、本発明1090の組成物。
本明細書に記載される発明のこれらおよび他の局面および態様は、以下の詳細な説明および図面を参照することによって明らかになると考えられる。本明細書において引用される米国特許、米国特許出願公開公報、米国特許出願、外国特許、外国特許出願、および非特許刊行物はすべて参照により、それぞれが個々に組み入れられるごとく、全体として本明細書に組み入れられる。
本発明の前記の局面および付随する利点の多くは、以下の詳細な説明を添付図面と合わせて参照することにより、さらに容易に理解されると考えられる。
レクチンおよび第二経路の新たな理解を示す。 MASP-2およびMAp19タンパク質ドメインならびにそれらをコードするエキソンを示す、Schwaeble et al., Immunobiol 205:455-466 (2002)からの図をYongqing et al., BBA 1824:253 (2012)によって修飾した模式図である。 MASP-1、MASP-3、およびMAp44タンパク質ドメインならびにそれらをコードするエキソンを示す、Schwaeble et al., Immunobiol 205:455-466 (2002)からの図をYongqing et al., BBA 1824:253 (2012)によって修飾した模式図である。 MASP-1、MASP-2、およびMASP-3タンパク質のアミノ酸配列のアライメントを示し、それらの間のコンセンサス領域を示す。 MASP-1、MASP-2、およびMASP-3アルファ鎖のアミノ酸配列のアライメントを示す。 MASP-1、MASP-2、およびMASP-3ベータ鎖のアミノ酸配列のアライメントを示す。 MASP-1およびMASP-2プロテアーゼドメイン(ベータ鎖)のアミノ酸配列のペアワイズアライメントを示す。 MASP-1およびMASP-3プロテアーゼドメイン(ベータ鎖)のアミノ酸配列のペアワイズアライメントを示す。 MASP-2およびMASP-3プロテアーゼドメイン(ベータ鎖)のアミノ酸配列のペアワイズアライメントを示す。 実施例1に記載されるように、感染量2.6×107cfuの髄膜炎菌(N. meningitidis)血清群A Z2491投与後のMASP-2 KOマウスおよびWTマウスの生存率をグラフで示すカプラン・マイヤー(Kaplan-Meyer)プロットであり、MASP-2欠損マウスが髄膜炎菌誘発死から保護されることを実証するものである。 実施例1に記載されるように、感染量6×106cfuの髄膜炎菌血清群B株MC58投与後のMASP-2 KOマウスおよびWTマウスの生存率をグラフで示すカプラン・マイヤープロットであり、MASP-2欠損マウスが髄膜炎菌誘発死から保護されることを実証するものである。 実施例1に記載されるように、6×106cfuの髄膜炎菌血清群B株MC58を腹腔内感染させた後、様々な時点でMASP-2 KOマウスおよびWTマウスから回収された血液1mL中の髄膜炎菌血清群B株MC58のlog cfu/mLをグラフで示し(両マウス群に関して様々な時点でn=3)、MASP-2 KOマウスにWTマウスと同量の髄膜炎菌血清群B株MC58を感染させたが、MASP-2 KOマウスはWTと比較して菌血症のクリアランスが高められることを実証する。 実施例1に記載されるように、6×106cfuの髄膜炎菌血清群B株MC58を感染させて3、6、12および24時間後のMASP-2 KOマウスおよびWTマウスの平均疾患スコアをグラフで示し、MASP-2欠損マウスが、WTマウスと比べて、感染後6時間、12時間および24時間で大きく低下した疾患スコアを示したことを実証する。 実施例2に記載されるように、感染量4×106cfuの髄膜炎菌血清群B株MC58を投与して3時間後、阻害性MASP-2抗体(1mg/kg)または対照アイソタイプ抗体のいずれかを投与したマウスの生存率をグラフで示すカプラン・マイヤープロットであり、MASP-2抗体が、髄膜炎菌感染した対象を治療し、かつ生存率を改善するのに有効であることを実証するものである。 実施例3に記載されるように、髄膜炎菌血清群B株MC58とのインキュベーション後の様々な時点で記録された、表5に示すヒト血清試料中に様々な時点で回収された髄膜炎菌血清群B株MC58の生菌数のlog cfu/mLをグラフで示す。 実施例3に記載されるように、表7に示すヒト血清試料中に様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示し、ヒト20%(v/v)血清中の髄膜炎菌の補体依存性死滅がMASP-3およびMBL依存性であることを示す。 実施例3に記載されるように、表9に示すマウス血清試料中に様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示し、MASP-2-/-ノックアウトマウス(「MASP-2-/-」と呼ぶ)血清が、髄膜炎菌に関して、WTマウス血清よりも高レベルの殺菌活性を有するが、対照的に、MASP-1/3-/-マウス血清は任意の殺菌活性を有しないことを示す。 実施例4に記載されるように、WT、C4-/-、MASP-1/3-/-、B因子-/-およびMASP-2-/-マウス血清中、レクチン経路特異的条件下(1%血漿)、C3活性化の動態をグラフで示す。 実施例4に記載されるように、「従来の」第二経路特異的(AP特異的)条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)、ザイモサンコーティングされたマイクロタイタープレート上の第二経路駆動型(AP駆動型)C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損ヒト対象から採取された血清試料中の血清濃度の関数としてグラフで示す。 実施例4に記載されるように、「従来の」AP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損ヒト対象から採取された10%ヒト血清試料中の時間の関数としてグラフで示す。 実施例4に記載されるように、「従来の」AP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路(AP)が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、マンナンコーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスから採取された血清試料中の血清濃度の関数としてグラフで示す。 実施例4に記載されるように、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、ザイモサンコーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスから採取された血清試料中の血清濃度の関数としてグラフで示す。 実施例4に記載されるように、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、肺炎連鎖球菌(S. pneumoniae)D39コーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスから採取された血清試料中の血清濃度の関数としてグラフで示す。 実施例4に記載されるように、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、マンナンコーティングされたマイクロタイタープレート上で実施された高希釈血清中のC3b沈着アッセイ法の結果をグラフで示す。 実施例4に記載されるように、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、ザイモサンコーティングされたマイクロタイタープレート上で実施されたC3b沈着アッセイ法の結果をグラフで示す。 実施例4に記載されるように、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、肺炎連鎖球菌D39コーティングされたマイクロタイタープレート上で実施されたC3b沈着アッセイ法の結果をグラフで示す。 実施例5に記載されるように、生理学的条件下(すなわち、Ca++の存在下)、MASP-3-/-、熱不活化正常ヒト血清(HI NHS)、MBL-/-、NHS+MASP-2モノクローナル抗体およびNHS対照からの血清中、一定範囲の血清希釈度にわたり、ヒト血清によるマンナンコーティングされたマウス赤血球の溶血のレベル(上清への溶解マウス赤血球(Crry/C3-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。 実施例5に記載されるように、生理学的条件下(すなわち、Ca++の存在下)、MASP-3-/-、熱不活化(HI)NHS、MBL-/-、NHS+MASP-2モノクローナル抗体およびNHS対照からの血清中、一定範囲の血清濃度にわたり、ヒト血清によるマンナンコーティングされたマウス赤血球の溶血のレベル(上清への溶解マウス赤血球(Crry/C3-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。 実施例5に記載されるように、生理学的条件下(すなわち、Ca++の存在下)、3MC(MASP-3-/-)、熱不活化(HI)NHS、MBL-/-、NHS+MASP-2モノクローナル抗体およびNHS対照からの血清中、一定範囲の血清濃度にわたり、ヒト血清によるコーティングなしのマウス赤血球の溶血のレベル(上清への溶解WTマウス赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。 実施例5に記載されるように、生理学的条件下(すなわち、Ca++の存在下)、熱不活化(HI)NHS、MBL-/-、NHS+MASP-2モノクローナル抗体およびNHS対照からの血清中、一定範囲の血清濃度にわたり、ヒト血清によるコーティングなしのマウス赤血球の溶血(上清への溶解マウス赤血球(CD55/59-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。 実施例6に記載されるように、生理学的条件下(すなわち、Ca++の存在下)、一定範囲の血清濃度にわたり、MASP-1/3-/-マウス血清およびWT対照マウス血清によるマンナンコーティングされたウサギ赤血球の溶血(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。 実施例7に記載されるように、AP特異的条件下で実施されたC3沈着アッセイ法における、ザイモサンコーティングされたマイクロタイタープレート上のC3b沈着のレベル(OD 405nm)を、D因子-/-、MASP-2-/-およびWTマウス血清からの血清試料中の血清濃度の関数としてグラフで示す。 実施例7に記載されるように、生理学的条件下(Ca++の存在下)で実施されたC3沈着アッセイ法における、ザイモサンコーティングされたマイクロタイタープレート上のC3b沈着のレベル(OD 405nm)を、D因子-/-、MASP-2-/-およびWTマウス血清からの血清試料中の血清濃度の関数としてグラフで示す。 実施例7に記載されるように、生理学的条件下(Ca++の存在下)で実施されたC3b沈着アッセイ法における、ザイモサンコーティングされたマイクロタイタープレート上のC3b沈着のレベル(OD 405nm)を、D因子-/-、B因子-/-、さらにMASP-2モノクローナル抗体ありおよびなしから採取されたマウス血清中での血清インキュベーション時間(分)の関数としてグラフで示す。 図29Aは、実施例13に記載されるように、マウスMASP-2 MoAb 0.3mg/kgまたは1.0mg/kgのいずれかの皮下投与後の様々な時点でマウス(n=3マウス/群)から採取された非希釈血清試料中、エクスビボで測定された、ザイモサンコーティングされたマイクロタイタープレート上のレクチン経路特異的C4b沈着をグラフで示す。図29Bは、実施例13に記載されるように、マウスにおけるマウスMASP-2 MoAb 0.6mg/kgの1回の腹腔内投与ののち3週間にわたるレクチン経路回復の時間経過をグラフで示す。 図30Aは、実施例15に記載されるように、クローンM3J5に関するMASP-3抗原/抗体結合のFACSヒストグラムである。図30Bは、実施例15に記載されるように、クローンM3M1に関するMASP-3抗原/抗体結合のFACSヒストグラムである。 実施例15に記載されるように、MASP-3抗原に関するクローンM3J5(クローン5)の飽和結合曲線をグラフで示す。 図32Aは、実施例15に記載されるように、ニワトリのDT40 VH配列への、M3J5、M3M1、D14および1E10のVH領域のアミノ酸配列アライメントであり、点は、DT40配列とのアミノ酸同一性を表し、ダッシュは、アライメントを最大化するために導入された空間を示す。図32Bは、実施例15に記載されるように、ニワトリのDT40 VL配列への、M3J5、M3M1、D14および1E10のVL領域のアミノ酸配列アライメントであり、点は、DT40配列とのアミノ酸同一性を表し、ダッシュは、アライメントを最大化するために導入された空間を示す。 実施例15に記載されるように、アッセイキットとともに提供される陽性血清およびアイソタイプ対照抗体と比較したWieslab Complement System Screen, MBL PathwayにおけるmAb1E10の阻害活性を示す棒グラフであり、mAb1E10がLEA-2依存性活性化を部分的に阻害するが(MASP-2のMASP-1依存性活性の阻害により)、一方、アイソタイプ対照抗体はそれを阻害しないことを実証するものである。 実施例16に記載されるように、0.15〜1000nMの濃度範囲にわたり、1%正常ヒト血清+アイソタイプ対照、SGMI-1FcまたはSGMI-2Fcに関するC3b沈着のレベルをグラフで示し、マンナンコーティングされたELISAウェル中でSGMI-1FcおよびSGMI-2Fcの両方が正常血清からのC3b沈着を阻害し、IC50値がそれぞれ約27nMおよび300nMであったことを実証する。 実施例17に記載されるように、加熱殺菌された黄色ブドウ球菌(Staphylococcus aureus)上のC3b沈着のフローサイトメトリー分析の結果を提示し、レクチンおよび第二経路を不活化することが知られているEDTAの存在における正常ヒト血清においてはC3b沈着が認められず(パネル1)、Mg++/EGTAで処理された正常ヒト血清においては第二経路駆動型C3b沈着が認められ(パネル2)、パネル3、4および5に示すように、それぞれB因子枯渇血清、D因子枯渇血清およびプロパージン(P因子)枯渇血清においては第二経路駆動型C3b沈着が認められないことを実証する。 実施例17に記載されるように、加熱殺菌された黄色ブドウ球菌におけるC3b沈着のフローサイトメトリー分析の結果を提示し、EDTA処理された正常血清の場合(パネル1)と同様に、Mg++/EGTAの存在における3MC血清中ではAP駆動型C3b沈着は見られず(パネル3)、一方、パネル4および5は、活性完全長rMASP-3(パネル4)および活性rMASP-3(CCP1-CCP2-SP)(パネル5)がいずれも、3MC血清中のAP駆動型C3b沈着を、Mg++/EGTAで処理された正常ヒト血清中に認められるレベルまで回復させることを示すが(パネル2)、不活性rMASP-3(S679A)(パネル6)または野生型rMASP-1(パネル7)のいずれも3MC血清中のAP駆動型C3b沈着を回復させることができないことを実証する。 rMASP-3の存在または非存在における3MC血清中の黄色ブドウ球菌に応答したB因子切断を判定するためのウェスタンブロット分析の結果を示し、EDTAの存在における正常ヒト血清(陰性対照、レーン1)が、レーン2(陽性対照)に示されるMg++/EGTAの存在における正常ヒト血清に対して非常にわずかなB因子切断しか示さず、さらにレーン3に示すように、3MC血清がMg++/EGTAの存在において非常にわずかなB因子切断しか示さないことを実証する。しかし、実施例17に記載されるように、レーン4に示すように、B因子切断は、3MC血清への完全長組換えMASP-3タンパク質の添加およびプレインキュベーションによって回復する。 実施例17に記載されるように、B因子切断が分析されるタンパク質ゲルのクマシー染色を示し、B因子切断がC3、MASP-3およびプロD因子の存在において最適であり(レーン1)、レーン4および5に示すように、C3が存在する限り、MASP-3またはプロD因子はいずれも単独でB因子切断を媒介することができることを実証する。 実施例17に記載されるように、mAbD14(MASP-3に結合)、mAb1A5(陰性対照抗体)およびアイソタイプ対照抗体から得られた黄色ブドウ球菌のC3b染色の平均蛍光強さ(MFI)をrMASP-3の存在における3MC血清中のmAb濃度の関数としてグラフで示し、mAbD14がMASP-3依存性C3b沈着を濃度依存的に阻害することを実証する。 実施例18に記載されるように、プロD因子のみ(レーン1)または不活性完全長組換えMASP-3(S679A;レーン3)またはMASP-1(S646A;レーン4)に比較して、完全長野生型組換えMASP-3(レーン2)およびMASP-1(レーン5)がいずれもプロD因子を完全または部分的に切断して成熟D因子を生成する、プロD因子基質切断のウェスタンブロット分析を示す。 実施例18に記載されるように、MASP-3およびプロD因子のみを含む対照反応(mAbなし、レーン1)およびMASP-1には結合するが、MASP-3には結合しない、DTLacOライブラリーから得られたmAbを含む対照反応(レーン4)に比較した、MASP-3依存性プロD因子切断においてmAb D14(レーン2)およびM3M1(レーン3)に結合するMASP-3の阻害活性を示すウェスタンブロットである。 実施例19に記載されるように、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、MASP-3欠損対象(3MC)、C4欠損対象およびMBL欠損対象から採取された血清試料中の血清濃度の関数としてグラフで示し、患者2および患者3からのMASP-3欠損血清が、高い血清濃度(25%、12.5%、6.25%血清濃度)での残留AP活性を有し、ただし、有意に高いAP50(すなわち、最大C3沈着の50%を達成するために必要な血清の8.2%および12.3%)を有することを実証する。 実施例19に記載されるように、「従来の」AP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損ヒト対象から採取された10%ヒト血清試料中の時間の関数としてグラフで示す。 実施例19に記載されるように、Ca++の非存在下で測定した、2名の正常ヒト対象(NHS)および2名の3MC患者(患者2および患者3)からの血清中、一定範囲の血清濃度にわたり、マンナンコーティングされたウサギ赤血球の溶血率(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示し、MASP-3欠損が、正常ヒト血清に比べて、マンナンコーティングされた赤血球の補体媒介性溶解の割合を低下させることを実証する。 実施例19に記載されるように、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、ヒト3MC患者2(MASP-3-/-)から採取された血清試料に加えられる組換え完全長MASP-3タンパク質の濃度の関数としてグラフで示し、陰性対照不活性組換えMASP-3(MASP-3A;S679A)に比較して、活性組換えMASP-3タンパク質が、ザイモサンコーティングされたプレート上にAP駆動型C3b沈着を濃度依存的に再構成することを実証する。 実施例19に記載されるように、Ca++の非存在下で測定した、(1)正常ヒト血清(NHS);(2)3MC患者血清;(3)3MC患者血清+活性完全長組換えMASP-3(20μg/ml);および(4)熱不活化ヒト血清(HIS)中、一定範囲の血清濃度にわたり、マンナンコーティングされたウサギ赤血球の溶血率(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示し、rMASP-3を含有する3MC血清中のウサギ赤血球の溶解率が組換えMASP-3を含まない3MC血清中の溶解率に比べて有意に増大する(p=0.0006)ことを実証する。 実施例19に記載されるように、活性組換えMASP-3を0〜110μg/ml(BBS/Mg++/EGTA中)の濃度で含有する3MC患者2および3MC患者3からの7%ヒト血清中のウサギ赤血球溶解率をグラフで示し、ウサギ赤血球溶解率が組換えMASP-3の量とともに濃度依存的に増大することを実証する。 正常ヒト対象(NHS)、2名の3MC患者(患者2および患者3)、患者3の両親およびMBL欠損対象からの血清に関して、マンナンコーティングされたELISAプレート上のLEA-2駆動型C3b沈着のレベルを、BBS緩衝液中に希釈されたヒト血清の濃度の関数としてグラフで示す。
配列表の説明
SEQ ID NO:1 ヒトMAp19 cDNA
SEQ ID NO:2 ヒトMAp19タンパク質(リーダーあり)
SEQ ID NO:3 ヒトMAp19タンパク質(成熟)
SEQ ID NO:4 ヒトMASP-2 cDNA
SEQ ID NO:5 ヒトMASP-2タンパク質(リーダーあり)
SEQ ID NO:6 ヒトMASP-2タンパク質(成熟)
SEQ ID NO:7 ヒトMASP-3 cDNA
SEQ ID NO:8 ヒトMASP-3タンパク質(リーダーあり)
SEQ ID NO:9 ヒトMASP-1 cDNA
SEQ ID NO:10 ヒトMASP-1タンパク質(リーダーあり)
SEQ ID NO:11 ヒトMAp44タンパク質(リーダーあり)
SEQ ID NO:12 ラットMASP-2 cDNA
SEQ ID NO:13 ラットMASP-2タンパク質(リーダーあり)
SEQ ID NO:14 17D20_dc35VH21N11VL(OMS646)重鎖可変領域(VH)をコードするDNA(シグナルペプチドなし)
SEQ ID NO:15 17D20_dc35VH21N11VL(OMS646)重鎖可変領域(VH)ポリペプチド
SEQ ID NO:16 17N16mc重鎖可変領域(VH)ポリペプチド
SEQ ID NO:17 17D20_dc21N11VL(OMS644)軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:18 17N16_dc17N9(OMS641)軽鎖可変領域(VL)をコードするDNA(シグナルペプチドなし)
SEQ ID NO:19 17N16_dc17N9(OMS641)軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:20 scFv娘クローン17N16m_d17N9完全長ポリペプチド
SEQ ID NO:21 scFv娘クローン17D20m_d3521N11完全長ポリペプチド
SEQ ID NO:22 完全長ポリペプチドをコードするscFv娘クローン17N16m_d17N9 DNA(シグナルペプチドなし)
SEQ ID NO:23 完全長ポリペプチドをコードするscFv娘クローン17D20m_d3521N11 DNA(シグナルペプチドなし)
SEQ ID NO:24 親DTLacO重鎖可変領域(VH)ポリペプチド
SEQ ID NO:25 MASP-3特異性クローンM3J5重鎖可変領域(VH)ポリペプチド
SEQ ID NO:26 MASP-3特異性クローンM3M1重鎖可変領域(VH)ポリペプチド
SEQ ID NO:27 親DTLacO軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:28 MASP-3特異性クローンM3J5軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:29 MASP-3特異性クローンM3M1軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:30 MASP-3クローンD14重鎖可変領域(VH)ポリペプチド
SEQ ID NO:31 MASP-3クローンD14軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:32 MASP-1クローン1E10重鎖可変領域(VH)ポリペプチド
SEQ ID NO:33 MASP-1クローン1E10軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:34 SGMI-1ペプチド
SEQ ID NO:35 SGMI-2ペプチド
SEQ ID NO:36 ヒトIgG1-Fcポリペプチド
SEQ ID NO:37 ペプチドリンカー#1(12aa)
SEQ ID NO:38 ペプチドリンカー#2(10aa)
SEQ ID NO:39 ヒトIL-2-シグナル配列、SGMI-1、リンカー#1およびヒトIgG1-Fcを含むポリペプチド融合体をコードする核酸
SEQ ID NO:40 SGMI-1、リンカー#1およびヒトIgG1-Fcを含む成熟ポリペプチド融合体(SGMI-1Fc)
SEQ ID NO:41 ヒトIL-2-シグナル配列、SGMI-2、リンカー#1およびヒトIgG1-Fcを含むポリペプチド融合体をコードする核酸
SEQ ID NO:42 SGMI-2、リンカー#1およびヒトIgG1-Fcを含む成熟ポリペプチド融合体(SGMI-2Fc)
詳細な説明
I. 定義
本明細書において特に定義されない限り、本明細書において使用される全ての用語は、本発明の当業者によって理解されるものと同じ意味を有する。本発明を説明するために明細書および特許請求の範囲において使用される用語を明確にするために、以下の定義を提供する。
本明細書で使用するレクチン経路エフェクターアーム1(「LEA-1」)は、MASP-3によるB因子およびD因子のレクチン依存性活性化を指す。
本明細書で使用するレクチン経路エフェクターアーム2(「LEA-2」)は、MASP-2依存性補体活性化を指す。
本明細書で使用する「MASP-3依存性補体活性化」という用語は、2つの部分:(i)Ca++の存在において起こり、一般にC3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせる、LEA-1媒介性補体活性化に包含されるB因子およびD因子のレクチンMASP-3依存性活性化;および(ii)Ca++の非存在において起こることができ、一般に、C3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせる、B因子およびD因子のレクチン非依存性転換を含む。LEA-1媒介性補体活性化ならびにB因子およびD因子のレクチン非依存性転換は、オプソニン化および/または溶解を生じさせることがわかった。任意の特定の理論によって拘束されることを望まないが、複数のC3b分子が関連し、近接して結合する場合のみ、C3bBb C3コンバターゼがその基質特異性を変化させ、かつC5を、C3bBb(C3b)nと呼ばれる第二経路C5コンバターゼとして切断すると考えられる。
本明細書ではLEA-2媒介性補体活性化とも呼ばれる、本明細書で使用する「MASP-2依存性補体活性化」という用語は、Ca++の存在において起こり、レクチン経路C3コンバターゼC4b2aの形成を生じさせ、その後、C3切断産物C3bが蓄積すると、オプソニン化および/または溶解を生じさせることがわかっているC5コンバターゼC4b2a(C3b)nを生じさせる、MASP-2レクチン依存性活性化を含む。
「従来の第二経路」とも呼ばれる、本明細書で使用する「第二経路の従来の理解」という用語は、従来は補体因子C3からのC3bの自然発生的タンパク質分解生成から生じると考えられていた、本明細書に記載される発見以前の第二経路、すなわち、例えば真菌および酵母細胞壁からのザイモサン、グラム陰性外膜からのリポ多糖(LPS)およびウサギ赤血球ならびに多くの純粋な多糖、ウイルス、細菌、動物腫瘍細胞、寄生生物および損傷した細胞によって誘発される補体活性化を指す。本明細書で使用する、「第二経路」とも呼ばれる「従来の第二経路」の活性化は、Mg++/EGTA緩衝液中で(すなわち、Ca++の非存在において)測定される。
本明細書で使用される「レクチン経路」という用語は、マンナン結合レクチン(MBL)、CL-11およびフィコリン(H-フィコリン、M-フィコリンまたはL-フィコリン)を含む血清および非血清糖質結合タンパク質の特異的結合を介して起こる補体活性化を指す。本明細書に記載されるように、本発明者らは、レクチン経路が2つのエフェクターアーム、すなわち、今やMASP-3依存性であることが知られているレクチン経路エフェクターアーム1(LEA-1)およびMASP-2依存性であるレクチン経路エフェクターアーム2(LEA-2)によって駆動されることを見いだした。本明細書で使用されるレクチン経路の活性化は、Ca++含有緩衝液を使用して評価される。
本明細書で使用する「古典経路」という用語は、外来粒子に結合している抗体によって誘発され、かつ認識分子C1qの結合を必要とする補体活性化を指す。
本明細書で使用する「HTRA-1」という用語は、セリンペプチダーゼ高温要件セリンプロテアーゼA1を指す。
本明細書で使用する「MASP-3阻害物質」という用語は、MASP-3抗体およびそのMASP-3結合断片、天然および合成ペプチド、競合基質、小分子、発現阻害因子ならびに単離された天然阻害因子を含む、MASP-3に結合するかまたはそれと直接相互作用する作用物質を含む、MASP-3依存性補体活性化を直接的または間接的に阻害する任意の作用物質を指し、また、レクチン経路中の別の認識分子(例えば、MBL、CL-11、H-フィコリン、M-フィコリンまたはL-フィコリン)との結合に関してMASP-3と競合するペプチドも包含する。一態様において、MASP-3阻害物質はMASP-3に特異的であり、かつMASP-1またはMASP-2には結合しない。MASP-3を直接阻害する阻害物質は、直接的MASP-3阻害物質(例えばMASP-3抗体)と呼ぶことができ、一方、MASP-3を間接的に阻害する阻害物質は、間接的MASP-3阻害物質(例えば、MASP-3活性化を阻害するMASP-1抗体)と呼ぶことができる。直接的MASP-3阻害物質の一例が、MASP-3特異性阻害物質、例えば、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-3(SEQ ID NO:8)の一部に特異的に結合するMASP-3阻害物質である。一態様において、MASP-3阻害物質は、MASP-3活性、例えば、MASP-1媒介性MASP-3活性化の阻害因子を含むMASP-3活性化の阻害因子を間接的に阻害する(例えば、MASP-1抗体またはそのMASP-1結合断片、天然および合成ペプチド、小分子、発現阻害因子ならびに単離された天然阻害因子、また、MASP-3への結合に関してMASP-1と競合するペプチドを包含する)。別の態様において、MASP-3阻害物質はD因子のMASP-3媒介性成熟を阻害する。別の態様において、MASP-3阻害物質はB因子のMASP-3媒介性活性化を阻害する。本発明の方法において有用であるMASP-3阻害物質は、MASP-3依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させ得る。一態様において、MASP-3阻害物質はMASP-3依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-3補体活性化しか生じさせない)。MASP-3阻害は、LEA-1関連の溶解およびオプソニン化ならびにB因子およびD因子関連の溶解およびオプソニン化のレクチン非依存性転換を完全または部分的に阻止すると予想される。
本明細書で使用する「MASP-1阻害物質」という用語は、MASP-1に結合するかまたはそれと直接相互作用し、かつ(i)MASP-3依存性補体活性化および/または(ii)MASP-2依存性補体活性化および/または(iii)D因子のレクチン非依存性もしくはレクチン依存性MASP-1媒介性成熟の少なくとも1つを阻害する、任意の作用物質を指し、D因子のレクチン依存性MASP-1媒介性成熟は、MASP-1抗体およびそのMASP-1結合断片、天然および合成ペプチド、小分子、発現阻害因子ならびに単離された天然阻害因子を含むD因子の直接的活性化を含み、また、レクチン経路中の別の認識分子(例えば、MBL、CL-11、H-フィコリン、M-フィコリンまたはL-フィコリン)への結合に関してMASP-1と競合するペプチドも包含する。一態様において、本発明の方法において有用であるMASP-1阻害物質は、MASP-3依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させる。一態様において、MASP-1阻害物質はMASP-3依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-3補体活性化しか生じさせない)。別の態様において、本発明の方法において有用であるMASP-1阻害物質は、MASP-2依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させる。一態様において、MASP-1阻害物質はMASP-2依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-2補体活性化しか生じさせない)。
別の態様において、本発明の方法において有用であるMASP-1阻害物質は、MASP-3依存性補体活性化(LEA-1)、レクチン非依存性B因子およびD因子転換ならびにMASP-2依存性補体活性化(LEA-2)を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させる。一態様において、MASP-1阻害物質は、MASP-3依存性補体活性化(LEA-1)、レクチン非依存性B因子およびD因子転換ならびにMASP-2依存性補体活性化(LEA-2)を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-3補体活性化およびわずか10%またはそれ未満のMASP-2補体活性化しか生じさせない)。
直接的MASP-1阻害物質の一例が、MASP-1特異性阻害物質、例えば、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-1(SEQ ID NO:10)の一部に特異的に結合するMASP-1阻害物質である。多くの場合、MASP-1がMASP-3を活性化することができ、MASP-1がMASP-2を活性化することができるという条件で、MASP-1の阻害は、MASP-3および/またはMASP-2を阻害するのに有効であると予想されると考えられる。しかし、一部の場合、MASP-1またはMASP-3またはMASP-2の阻害が、他のMASP標的の阻害よりも好ましい態様であり得る。例えば、黄色ブドウ球菌(S. aureus)感染の状況においては、MASP-3が活性化され、MASP-1の非存在において黄色ブドウ球菌オプソニン化を担うことが示されている(Iwaki D. et al., J Immunol 187(7):3751-8 (2011)を参照されたい)。したがって、例えば発作性夜間血色素尿症(PNH)の治療においては、PNHのLEA-1阻害治療中、MASP-3ではなくMASP-1を直接阻害し、それにより、黄色ブドウ球菌への潜在的感受性を低下させることが有利であり得る。
本明細書で使用する「MASP-2阻害物質」という用語は、MASP-2に結合するか、またはそれと直接相互作用し、かつ(i)MASP-2依存性補体活性化および/または(ii)MASP-1依存性補体活性化の少なくとも1つを阻害する任意の作用物質を指し、MASP-2抗体およびそのMASP-2結合断片、天然および合成ペプチド、小分子、発現阻害因子ならびに単離された天然阻害因子を含み、また、レクチン経路中の別の認識分子(例えば、MBL、CL-11、H-フィコリン、M-フィコリンまたはL-フィコリン)への結合に関してMASP-2と競合するペプチドも包含する。本発明の方法において有用であるMASP-2阻害物質は、MASP-2依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させ得る。一態様において、MASP-2阻害物質はMASP-2依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-2補体活性化しか生じさせない)。直接的MASP-2阻害物質の一例が、MASP-2特異性阻害物質、例えば、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-2(SEQ ID NO:5)の一部に特異的に結合するMASP-2阻害物質である。
本明細書で使用する「抗体」という用語は、標的ポリペプチド、例えば、MASP-1、MASP-2、またはMASP-3のポリペプチドまたはその一部に特異的に結合する、任意の抗体産生哺乳動物(例えば、マウス、ラット、ウサギ、およびヒトを含む霊長類)に由来する、あるいはハイブリドーマ、ファージセレクション、組換え発現、またはトランスジェニック動物(または抗体もしくは抗体断片を産生する他の方法)に由来する抗体およびその抗体断片を包含する。「抗体」という用語は、抗体源、または抗体が作られるやり方の点で(例えば、ハイブリドーマ、ファージセレクション、組換え発現、トランスジェニック動物、ペプチド合成などによって)限定されることが意図されない。例示的な抗体は、ポリクローナル抗体、モノクローナル抗体、および組換え抗体;汎(pan)特異性抗体、多重特異性抗体(例えば、二重特異性抗体、三重特異性抗体);ヒト化抗体:マウス抗体;キメラ、マウス-ヒト、マウス-霊長類、霊長類-ヒトモノクローナル抗体;および抗イディオタイプ抗体を含み、任意のインタクトな抗体またはその断片でもよい。本明細書で使用する「抗体」という用語は、インタクトなポリクローナル抗体またはモノクローナル抗体だけでなく、その断片(例えば、dAb、Fab、Fab'、F(ab') 2、Fv)、単鎖(ScFv)、その合成変種、天然変種、抗体部分と、必要とされる特異性の抗原結合断片を含む融合タンパク質、ヒト化抗体、キメラ抗体、および必要とされる特異性の抗原結合部位または断片(エピトープ認識部位)を含む免疫グロブリン分子の他の任意の改変された構成も包含する。
「モノクローナル抗体」は均質な抗体集団を指す。ここで、モノクローナル抗体は、エピトープの選択的結合に関与するアミノ酸(天然および非天然)からなる。モノクローナル抗体は標的抗原に対して高度に特異的である。「モノクローナル抗体」という用語は、インタクトなモノクローナル抗体および完全長モノクローナル抗体だけでなく、その断片(例えば、Fab、Fab'、F(ab') 2、Fv)、単鎖(ScFv)、その変種、抗原結合部分を含む融合タンパク質、ヒト化モノクローナル抗体、キメラモノクローナル抗体、ならびに必要とされる特異性およびエピトープに結合する能力の抗原結合断片(エピトープ認識部位)を含む免疫グロブリン分子の他の任意の改変された構成も包含する。この用語は、抗体源、または抗体が作られるやり方の点で(例えば、ハイブリドーマ、ファージセレクション、組換え発現、トランスジェニック動物などによって)限定されることが意図されない。この用語は、「抗体」の定義で前述された免疫グロブリン全体および断片などを含む。
本明細書で使用する「抗体断片」という用語は、完全長抗体、例えば、MASP-1、MASP-2、もしくはMASP-3の抗体に由来するかまたはこれに関連する、一般的には、その抗原結合領域または可変領域を含む、部分を指す。抗体断片の例示的な例には、Fab、Fab'、F(ab) 2、F(ab') 2、およびFv断片、scFv断片、ダイアボディ、直鎖抗体、単鎖抗体分子、ならびに抗体断片から形成された多重特異性抗体が含まれる。
本明細書で使用する「単鎖Fv」または「scFv」抗体断片は、抗体のVHドメインまたはVLドメインを含む。これらのドメインは1本のポリペプチド鎖で存在する。一般的に、Fvポリペプチドは、VHドメインとVLドメインとの間にポリペプチドリンカーをさらに含み、このためにscFvは抗原結合のために望ましい構造を形成することができる。
本明細書で使用する「キメラ抗体」は、非ヒト種(例えば、げっ歯類)抗体に由来する可変ドメインおよび相補性決定領域を含有するが、抗体分子の残りはヒト抗体に由来する、組換えタンパク質である。
本明細書で使用する「ヒト化抗体」は、ヒト抗体フレームワークに移植された、非ヒト免疫グロブリンに由来する特異的な相補性決定領域に一致する最小配列を含むキメラ抗体である。ヒト化抗体は、典型的には、抗体相補性決定領域のみが非ヒトに由来する(ファージディスプレイまたは酵母から作製された抗体を含む)組換えタンパク質である。
本明細書で使用する「マンナン結合レクチン」(「MBL」)という用語は、マンナン結合タンパク質(「MBP」)と同義である。
本明細書で使用する「膜侵襲複合体」(「MAC」)は、膜に入り込み、膜を破壊する、5種類の終末補体成分の複合体(C5bとC6、C7、C8、およびC9との組み合わせ)(C5b-9とも呼ばれる)を指す。
本明細書で使用する「対象」は、ヒト、非ヒト霊長類、イヌ、ネコ、ウマ、ヒツジ、ヤギ、ウシ、ウサギ、ブタ、およびげっ歯類を含むが、それに限定されるわけではない、全ての哺乳動物を含む。
本明細書で使用するアミノ酸残基の略語は以下の通りである:アラニン(Ala;A)、アスパラギン(Asn;N)、アスパラギン酸(Asp;D)、アルギニン(Arg;R)、システイン(Cys;C)、グルタミン酸(Glu;E)、グルタミン(Gln;Q)、グリシン(Gly;G)、ヒスチジン(His;H)、イソロイシン(Ile;I)、ロイシン(Leu;L)、リジン(Lys;K)、メチオニン(Met;M)、フェニルアラニン(Phe;F)、プロリン(Pro;P)、セリン(Ser;S)、スレオニン(Thr;T)、トリプトファン(Trp;W)、チロシン(Tyr;Y)、およびバリン(Val;V)。
最も広い意味では、天然アミノ酸は、それぞれのアミノ酸の側鎖の化学特性に基づいてグループに分けることができる。「疎水性」アミノ酸とは、Ile、Leu、Met、Phe、Trp、Tyr、Val、Ala、CysまたはProを意味する。「親水性」アミノ酸とは、Gly、Asn、Gln、Ser、Thr、Asp、Glu、Lys、Arg、またはHisを意味する。このアミノ酸グループは、以下のように、さらにサブグループに分けることができる。「無電荷親水性」アミノ酸とは、Ser、Thr、Asn、またはGlnを意味する。「酸性」アミノ酸とはGluまたはAspを意味する。「塩基性」アミノ酸とはLys、Arg、またはHisを意味する。
本明細書で使用する「保存的アミノ酸置換」という用語は、以下のグループ:(1)グリシン、アラニン、バリン、ロイシン、およびイソロイシン、(2)フェニルアラニン、チロシン、およびトリプトファン、(3)セリンおよびスレオニン、(4)アスパラギン酸およびグルタミン酸、(5)グルタミンおよびアスパラギン、ならびに(6)リジン、アルギニンおよびヒスチジンのそれぞれの中でのアミノ酸間の置換によって例示される。
本明細書で使用する「オリゴヌクレオチド」という用語は、リボ核酸(RNA)もしくはデオキシリボ核酸(DNA)またはその模倣物のオリゴマーまたはポリマーを指す。この用語は、天然のヌクレオチド、糖、およびヌクレオシド間(バックボーン)共有結合からなるオリゴヌクレオ塩基(oligonucleobase)、ならびに非天然改変を有するオリゴヌクレオチドもカバーする。
本明細書で使用する「エピトープ」は、抗体が結合する、タンパク質(例えば、ヒトMASP-3タンパク質)上の部位を指す。「重複エピトープ」は、直鎖エピトープおよび非直鎖エピトープを含む、少なくとも1個(例えば、2個、3個、4個、5個、または6個)の共通アミノ酸残基を含む。
本明細書で使用する「ポリペプチド」、「ペプチド」、および「タンパク質」という用語は同義に用いられ、長さにも翻訳後修飾に関係なく任意のペプチド結合アミノ酸鎖を意味する。本明細書に記載のMASPタンパク質(MASP-1、MASP-2、またはMASP-3)は野生型タンパク質を含有してもよく、野生型タンパク質でもよく、50個以下(例えば、1個以下、2個以下、3個以下、4個以下、5個以下、6個以下、7個以下、8個以下、9個以下、10個以下、12個以下、15個以下、20個以下、25個以下、30個以下、35個以下、40個以下、または50個以下)の保存的アミノ酸置換を有する変種でもよい。保存的置換は、典型的には、以下のグループ;グリシンおよびアラニン;バリン、イソロイシン、およびロイシン;アスパラギン酸およびグルタミン酸;アスパラギン、グルタミン、セリン、およびスレオニン;リジン、ヒスチジン、およびアルギニン;ならびにフェニルアラニンおよびチロシンの中での置換を含む。
本明細書に記載されるヒトMASP-1タンパク質(SEQ ID NO:10と表記される)、ヒトMASP-2タンパク質(SEQ ID NO:5と表記される)およびヒトMASP-3タンパク質(SEQ ID NO:8と表記される)はまた、タンパク質の末端および内部欠失変異体を含むMASPタンパク質のペプチド断片を含む、完全長および/または未成熟(pre-pro)MASPタンパク質よりも短いタンパク質の「ペプチド断片」を含む。欠失変異体は、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19または20個のアミノ酸セグメント(2個またはそれ以上のアミノ酸の)または非隣接単一アミノ酸を欠失していることができる。一部の態様において、ヒトMASP-1タンパク質は、SEQ ID NO:10に記載されたアミノ酸配列を有するヒトMASP-1タンパク質と70(例えば71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99または100)%またはそれ以上同一であるアミノ酸配列を有することができる。
一部の態様において、ヒトMASP-3タンパク質は、SEQ ID NO:8に記載されたアミノ酸配列を有するヒトMASP-3タンパク質と70(例えば71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99または100)%またはそれ同一であるアミノ酸配列を有することができる。
一部の態様において、ヒトMASP-2タンパク質は、SEQ ID NO:5に記載されたアミノ酸配列を有するヒトMASP-2タンパク質と70(例えば71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99または100)%またはそれ同一であるアミノ酸配列を有することができる。
一部の態様において、ペプチド断片は、長さが少なくとも6(例えば、少なくとも7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、55、60、65、70、75、80、85、90、95、100、110、120、130、140、150、160、170、180、190、200、250、300、350、400、450、500または600個またはそれ以上の)アミノ酸残基(例えば、SEQ ID NO:5、8または10のいずれか1つの少なくとも6個の連続したアミノ酸残基)であることができる。一部の態様において、ヒトMASPタンパク質の抗原性ペプチド断片は、長さが500個未満(例えば、450個未満、400個未満、350個未満、325個未満、300個未満、275個未満、250個未満、225個未満、200個未満、190個未満、180個未満、170個未満、160個未満、150個未満、140個未満、130個未満、120個未満、110個未満、100個未満、95個未満、90個未満、85個未満、80個未満、75個未満、70個未満、65個未満、60個未満、55個未満、50個未満、49個未満、48個未満、47個未満、46個未満、45個未満、44個未満、43個未満、42個未満、41個未満、40個未満、39個未満、38個未満、37個未満、36個未満、35個未満、34個未満、33個未満、32個未満、31個未満、30個未満、29個未満、28個未満、27個未満、26個未満、25個未満、24個未満、23個未満、22個未満、21個未満、20個未満、19個未満、18個未満、17個未満、16個未満、15個未満、14個未満、13個未満、12個未満、11個未満、10個未満、9個未満、8個未満、7個未満または6個未満)のアミノ酸残基(例えば、SEQ ID NO:5、8または10のいずれか1つの500個未満の連続したアミノ酸残基)である。
一部の態様においては、MASP-1、MASP-2および/またはMASP-3に結合する抗体を生成することに関して、ペプチド断片は抗原性であり、完全長タンパク質が哺乳動物において抗原応答を誘発する能力の少なくとも10%(例えば、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも35%、少なくとも40%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.5%または100%もしくはそれ以上)を保持する(下記の「抗体を製造するための方法」を参照されたい)。
アミノ酸配列同一性パーセント(%)は、最大の配列同一性%を達成するために配列をアラインメントし、必要であればギャップを導入した後の、参照配列中のアミノ酸と同一である候補配列中のアミノ酸の割合と定義される。配列同一性%を決定するためのアライメントは、当技術分野における技術の範囲内の様々なやり方で、例えば、公的に利用可能なコンピューターソフトウェア、例えば、BLAST、BLAST-2、ALIGN、ALIGN-2、またはMegalign(DNASTAR)ソフトウェアを使用して達成することができる。比較される配列の完全長にわたって最大アラインメントを達成するために必要な任意のアルゴリズムを含む、アラインメントを測定するための適切なパラメータは公知の方法によって決定することができる。
代表的な態様において、ヒトMASP-1タンパク質(SEQ ID NO:10)は、SEQ ID NO:9と表記されるcDNA配列によってコードされ、ヒトMASP-2タンパク質(SEQ ID NO:5)は、SEQ ID NO:4と表記されるcDNA配列によってコードされ、ヒトMASP-3タンパク質(SEQ ID NO:8)は、SEQ ID NO:7と表記されるcDNA配列によってコードされる。当業者は、SEQ ID NO:9、SEQ ID NO:4、およびSEQ ID NO:7に開示されたcDNA配列が、それぞれヒトMASP-1、MASP-2、およびMASP-3の単一アレルを表し、アレル変異および選択的スプライシングが起こることが予想されることを認識すると考えられる。SEQ ID NO:9、SEQ ID NO:4およびSEQ ID NO:7に示すヌクレオチド配列のアレル変異は、沈黙突然変異を含むもの、および突然変異がアミノ酸配列変化を生じさせるもの含め、本発明の範囲内である。MASP-1、MASP-2またはMASP-3配列のアレル変異は、標準的手法に従って異なる個体からのcDNAまたはゲノムライブラリーを探索することによってクローニングすることもできるし、あるいはそのような情報を含むデータベースの相同性比較サーチ(例えばBLASTサーチ)によって同定し得る。
II. レクチン経路:新たな理解
i. 概略;レクチン経路は定義し直された
本明細書に記載されるように、本発明者らは、補体のレクチン経路が、いずれも糖質認識成分(MBL、CL-11およびフィコリン)で形成されたレクチン経路活性化複合体によって駆動される、補体を活性化するための2つのエフェクターアーム:(i)「レクチン経路エフェクターアーム1」または「LEA-1」と呼ばれる、レクチン経路関連セリンプロテアーゼMASP-1およびMASP-3によって形成されたエフェクターアーム;ならびに(ii)本明細書では「レクチン経路エフェクターアーム2」または「LEA-2」と呼ばれるMASP-2駆動型活性化エフェクターアームを有するという驚くべき発見を達成した。LEA-1およびLEA-2はいずれも溶解および/またはオプソニン化を実施することができる。
また、いずれもCa++の非存在において起こることができる、MASP-3によるレクチン非依存性B因子転換ならびにHTRA-1、MASP-1およびMASP-3によるレクチン非依存性D因子転換が一般に、C3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせるということがわかった。したがって、MASP-3を阻害することは、LEA-1ならびにレクチン非依存性B因子および/またはD因子活性化の両方を阻害することができ、それが、溶解および/またはオプソニン化の阻害を生じさせることができる。
図1は、補体活性化の経路のこの新たな理解を示す。図1に示すように、LEA-1はレクチン結合MASP-3によって駆動され、このレクチン結合MASP-3がD因子の酵素前駆体をその活性形態へと活性化する、および/またはC3b-もしくはC3b(H2O)結合B因子を切断して、C3bB酵素前駆体複合体をその酵素的に活性な形態C3bBbへと転換することができる。MASP-3によって生成される活性化D因子はまた、C3bBまたはC3b(H2O)酵素前駆体複合体をその酵素的に活性な形態へと転換することができる。MASP-1は迅速に自己活性化することができるが、一方、MASP-3はそれができない。多くの場合、MASP-1はMASP-3のアクチベーターである。
多くの例において、レクチン(すなわち、MBL、CL-11またはフィコリン)は活性を細胞面に向けることができるが、図1はまた、B因子活性化および/またはD因子成熟におけるMASP-3、MASP-1およびHTRA-1のレクチン非依存性機能を概説する。LEA-1中のMASP-3のレクチン関連形態と同様に、MASP-3のレクチン非依存形態は、C3bBまたはC3b(H20)のC3bBbへの転換(図36および37も参照されたい)およびプロD因子のD因子への転換(図39を参照されたい)を媒介することができる。MASP-1(図39も参照されたい)および非MASP関連タンパク質HTRA-1はまた、レクチン成分を必要としないやり方でD因子を活性化することもできる(Stanton et al., Evidence That the HTRA1 Interactome Influences Susceptibility to Age-Related Macular Degeneration, presented at The Association for Research in Vision and Ophthalmology 2011 conference on May 4, 2011)。
したがって、MASP-1(LEA-1およびレクチン非依存形態を経て)、MASP-3(LEA-1およびレクチン非依存形態を経て)およびHTRA-1(レクチン非依存性のみ)は、MASP-3-D因子-B因子軸の沿う1つまたは複数の地点における直接的または間接的のいずれかの活性化が可能である。その際、それらは、C3bBb、すなわち第二経路のC3コンバターゼを生成し、微生物表面におけるC3bの産生および沈着を刺激する。C3b沈着はオプソニン化において重要な役割を果たし、マクロファージのような宿主食細胞による破壊に備えて微生物の表面を標識する。本明細書における一例として(図35)、MASP-3は、黄色ブドウ球菌のオプソニン化において重要である。C3b沈着は、ヒト血清に曝露された黄色ブドウ球菌においてMASP-3依存的に速やかに起こる(図35)。
しかし、LEA-1の寄与およびMASP-3、MASP-1またはHTRA-1のレクチン非依存性機能はオプソニン化に限定されない。図1に示すように、これら3つの成分はまた、間接的または直接的なB因子活性化による細胞溶解およびC3bの産生を生じさせることができる。これらの成分は、第二経路C5コンバターゼ、すなわちC3bBb(C3b)nを生成する複合体を形成する。本明細書にさらに記載されるように、髄膜炎菌の溶解における、MASP-2ではなく(したがって、この例ではLEA-2でもない)MASP-3およびMBLの必要性(図13、14、および15を参照されたい)は、溶解におけるLEA-1の役割を実証する。要約すると、黄色ブドウ球菌研究から得られたオプソニン化結果および髄膜炎菌研究において認められた溶解結果は、両プロセスにおけるLEA-1の役割を裏付ける(図1に示すように)。さらに、これらの研究は、オプソニン化および溶解の両方がC3bBもしくはC3b(H20)の転換および/またはプロD因子のD因子への転換から生じることができることを実証する。したがって、両プロセスは、MASP-3、MASP-1またはHTRA-1のレクチン非依存性役割の結果であることができる。したがって、本発明者らによって開発された図1のモデルは、オプソニン化および/または溶解を阻止し、かつこれらのプロセスの調節不全によって生じる疾病を治療するための、主にMASP-3の阻害因子ならびにMASP-1および/またはHTRA-1の阻害因子の使用を裏付ける。
1. レクチン経路エフェクターアーム(LEA-1)
レクチン経路の第一のエフェクターアーム、すなわちLEA-1は、レクチン経路関連セリンプロテアーゼMASP-1およびMASP-3によって形成される。本明細書に記載されるように、本発明者らは今、MASP-3の非存在かつMASP-1の存在において、第二経路が面構造上で実質的に活性化されないことを示した。これらの結果は、MASP-3が、第二経路を開始させることにおいて、これまで開示されたことがない役割を果たすことを実証し、これは、MASP-3のセリンプロテアーゼドメインを機能不全にする突然変異を有する珍しい3MC常染色体劣性障害の患者から採取されたMASP-3欠損3MC血清を使用して確認されている(Rooryck C, et al., Nat Genet. 43(3):197-203 (2011))。これらの新規な発見に基づき、従来から定義されるような第二経路を伴う補体活性化はMASP-3依存性であると予想される。事実、MASP-3およびそのLEA-1活性化は、これまでわかりにくかった第二経路のイニシエーターを表し得る。
本明細書の実施例1〜4にさらに記載されるように、本発明者らは、MASP-2欠損血清中、髄膜炎菌に対してより高い殺菌活性(すなわち溶解活性)を生じさせるレクチン依存性第二経路活性化のより高い活性を認めた。任意の特定の理論によって拘束されることを望まないが、MASP-2の非存在において、MASP-1を有する糖質認識複合体は、MASP-3を有する糖質認識複合体と密に結合して、MASP-3を活性化する可能性が高いと考えられる。多くの場合、MASP-3は自己活性化酵素ではなく、非常に多くの場合、その酵素前駆体形態からその酵素的に活性な形態へと転換されるためにMASP-1の活性を必要とするため、MASP-3の活性化はMASP-1活性に依存することが知られている。MASP-1は(MASP-2と同様)自己活性化酵素であるが、MASP-3は自己活性化せず、多くの場合、その酵素的に活性な形態へと転換されるためにはMASP-1の酵素活性を必要とする。Zundel S, et al., J. Immunol., 172(7):4342-50 (2004)を参照されたい。MASP-2の非存在において、すべてのレクチン経路認識複合体はMASP-1またはMASP-3のいずれかを付加される。したがって、MASP-2の非存在は、MASP-3からその酵素的に活性な形態へのMASP-1媒介性転換を促進する。MASP-3が活性化されたら、活性化されたMASP-3は、C3bBからC3bBbへのおよび/またはプロD因子からD因子へのMASP-3媒介性転換を介して、今や「LEA-1」活性化と呼ばれる第二経路活性化を開始する。第二経路C3コンバターゼとも呼ばれるC3bBbは、さらなるC3分子を切断して、オプソニンC3b分子の沈着を生じさせる。いくつかのC3b断片がC3bBbコンバターゼ複合体に近接して結合するならば、その結果、第二経路C5コンバターゼC3bBb(C3b)nが形成し、それがMACの形成を促進する。加えて、表面に沈着したC3b分子がB因子結合のための新たな部位を形成し、それが今度はD因子および/またはMASP-3によって切断されて、第二経路C3およびC5コンバターゼ複合体が形成することができるさらなる部位を形成する。この後者のプロセスは、効果的な溶解のために必要であり、初期のC3b沈着が起こったらレクチンを必要としない。近年の刊行物(Iwaki D. et al., J Immunol 187(7):3751-8 (2011))および本発明者らから生成されたデータ(図37)は、活性化されたMASP-3によって第二経路C3コンバターゼ酵素前駆体複合体C3bBがその酵素的に活性な形態へと転換されることを実証する。本発明者らはこれまでのところ、B因子のMASP-3媒介性切断が、第二経路C3コンバターゼC3bBbのレクチン依存性形成を促進する、新たに記載されたLEA-1のサブコンポーネントを表すことを見いだした。
2. レクチン経路エフェクターアーム(LEA-2)
レクチン経路の第二のエフェクターアーム、すなわちLEA-2は、レクチン経路関連セリンプロテアーゼMASP-2によって形成される。MASP-2は、認識成分がそれぞれのパターンに結合した場合に活性化され、かつまた、MASP-1によっても活性化され得、その後、補体成分C4をC4aおよびC4bへと切断する。切断産物C4bが血漿C2に結合したのち、C4b結合C2は、C4b結合C2を酵素的に活性な複合体C4bC2aおよび小さなC2b切断断片へと転換する第二のMASP-2媒介性切断工程の基質になる。C4b2aは、豊富な血漿成分C3をC3aおよびC3bへと転換する、レクチン経路のC3転換C3コンバターゼである。C3bは、チオエステル結合を介して、近接する任意の面に結合する。いくつかのC3b断片がC3コンバターゼ複合体C4b2aに近接して結合するならば、このコンバターゼは、C5をC5bおよびC5aへと転換するようにその特異性を変化させて、C5コンバターゼ複合体C4b2a(C3b)nを形成する。このC5コンバターゼはMACの形成を開始することができるが、このプロセスは、それだけで溶解を促進するのには効果が不十分であると考えられる。むしろ、LEA-2によって産生される初期のC3bオプソニンが新たな第二経路C3コンバターゼおよびC5コンバターゼ部位の形成のための核を形成し、それが最終的に豊富なMAC形成および溶解を生じさせる。後者の事象は、LEA-2形成C3bと関連するB因子のD因子活性化によって媒介され、したがって、D因子の成熟におけるMASP-1の本質的役割のおかげでLEA-1に依存する。また、C4欠損マウスは虚血再灌流傷害から保護されないが、一方、MASP-2欠損マウスは保護されることから(前記Schwaeble et al., PNAS, 2011)、虚血再灌流傷害の病態生理学において重要な役割を果たす、C4の非存在においてC3を活性化するためのMASP-2依存性C4バイパス活性化経路がある。LEA-2はまた、プロトロンビンからトロンビンへの切断(共通経路)およびXII因子(ハーゲマン因子)をその酵素的に活性な形態XIIaへと転換するための切断を含む凝固経路に結び付いている。XIIa因子は他方で、XI因子をXIaに切断する(内因性経路)。凝固カスケードの内因性経路活性化は、血栓形成にとってきわめて重要であるフィブリン形成を生じさせる。
図1は、本明細書に提供される結果に基づくレクチン経路および第二経路の新たな理解を示す。図1は、オプソニン化および溶解の両方におけるLEA-2の役割を詳細に記載する。MASP-2は、生理学的に、複数のレクチン依存性状況における「下流側」C3b沈着(および結果的なオプソニン化)のイニシエーターであるが(図20A、20B、20C)、また、血清感受性菌の溶解においても役割を果たす。図1に示すように、髄膜炎菌のような血清感受性病原体に関するMASP-2欠損またはMASP-2枯渇血清/血漿の殺菌活性の増大を担う提案される分子機構は、細菌の溶解の場合、MASP-1およびMASP-3と関連したレクチン経路認識複合体が互いに近接した状態で細菌表面に結合し、それにより、MASP-1がMASP-3を切断することを可能にしなければならないということである。MASP-1およびMASP-2とは対照的に、MASP-3は自己活性化酵素ではないが、多くの場合、その酵素的に活性な形態へと転換されるためにはMASP-1による活性化/切断を必要とする。
図1にさらに示すように、その後、活性化されたMASP-3は、病原体表面上のC3b結合B因子を切断して、酵素的に活性な第二経路C3およびC5コンバターゼそれぞれC3bBbおよびC3bBb(C3b)nの形成により、第二活性化カスケードを開始させることができる。MASP-2を有するレクチン経路活性化複合体はMASP-3の活性化には役割を果たし、MASP-2の非存在において、またはMASP-2の枯渇ののち、すべてのレクチン経路活性化複合体はMASP-1またはMASP-3のいずれかを付加される。したがって、MASP-2の非存在において、微生物表面上でMASP-1およびMASP-3を有するレクチン経路活性化複合体が互いに近接して位置するようになり、より多くのMASP-3が活性化され、それにより、より高速のC3b結合B因子のMASP-3媒介性切断を生じさせて、微生物表面上に第二経路C3およびC5コンバターゼC3bBbおよびC3bBb(C3b)nを形成する可能性が顕著に増大する。これが、C6と関連した表面結合C5b、C7と関連したC5bC6、C8と関連したC5bC6C7およびC5bC6C7C8で構成され、C9の重合を生じさせる、膜侵襲複合体を形成する終末活性化カスケードC5b〜C9の活性化を生じさせ、このC9が細菌表面構造に入り込み、かつ細菌壁中に孔を形成し、それが、補体標的化細菌の浸透圧性死滅を生じさせる。
この新規な概念の核は、本明細書に提供されるデータが、レクチン経路活性化複合体が、図1に示すような、以下の2つの別個の活性化経路を駆動することを明らかに示すということである。
(i)LEA-1:アクチベーター表面上のB因子の初期切断および活性化を通して第二経路コンバターゼC3bBbを生成することによって補体の活性化を開始し、かつ駆動し、次いで、それが、C3b沈着および第二経路コンバターゼC3bBbの形成を触媒するMASP-3依存性活性化経路。MASP-3駆動型活性化経路は、微生物のオプソニン化および溶解において本質的な役割を果たし、細菌の表面上で第二経路を駆動して、膜侵襲複合体を生成するのに最適な活性化速度を生じさせる。
(ii)LEA-2:レクチン経路C3コンバターゼC4b2aの形成を生じさせ、C3切断産物C3bが蓄積すると、その後、C5コンバターゼC4b2a(C3b)nを生じさせるMASP-2依存性活性化経路。補体C4の非存在において、MASP-2は、C2および凝固因子XIを含む第二C3コンバターゼ複合体を形成することができる。
溶解におけるその役割に加えて、MASP-2駆動型活性化ルートは、微生物が共有結合C3bおよびその切断産物(すなわちiC3bおよびC3dg)でコーティングされることにつながる細菌オプソニン化において重要な役割を果たし、それは、C3レセプターを有する食細胞、例えば顆粒球、マクロファージ、単球、小グリア細胞および細網内皮系による取込みおよび死滅のために標的化される。これは、補体溶解に耐性である細菌および微生物のクリアランスに最も効果的なルートである。これらはグラム陽性細菌の大部分を含む。
LEA-1およびLEA-2に加えて、MASP-3、MASP-1および/またはHTRA-1によるD因子のレクチン非依存性活性化の可能性があり、また、MASP-3によるB因子のレクチン非依存性活性化の可能性がある。
任意の特定の理論によって拘束されることを望まないが、(i)LEA-1、(ii)LEA-2、ならびに(iii)レクチン非依存性B因子および/またはD因子活性化のそれぞれが、オプソニン化および/またはMACの形成ならびにその結果としての溶解を生じさせると考えられる。
ii. MASP-1、MASP-2、およびMASP-3の背景
現在、3つのマンナン結合レクチン関連セリンプロテアーゼ(MASP-1、MASP-2、およびMASP-3)がヒト血清中でマンナン結合レクチン(MBL)と関連していることが公知である。マンナン結合レクチンはまた、最近の文献においては、「マンノース結合タンパク質」または「マンノース結合レクチン」とも呼ばれている。MBL-MASP複合体は、多様な微生物上に存在する糖質構造へのMBLの結合のおかげで、先天性免疫において重要な役割を果たす。MBLと糖質構造の特定のアレイとの相互作用がMASP酵素前駆体の活性化を生じさせ、それが他方で、補体成分C4およびC2を切断してC3コンバターゼC4b2bを形成することによって補体を活性化する(Kawasaki et al., J. Biochem 106:483-489 (1989); Matsushita & Fujita, J. Exp Med. 176:1497-1502 (1992); Ji et al., J. Immunol. 150:571-578 (1993))。
MBL-MASP酵素前駆体複合体は、最近まで、1つのタイプのプロテアーゼ(MASP-1)しか含まないと考えられていたが、今や、MBLと関連する他2つの別々のプロテアーゼ(すなわち、MASP-2およびMASP-3)(Thiel et al., Nature 386:506-510 (1997); Dahl et al., Immunity 15:127-135 (2001))および「MAp19」または「sMAP」と呼ばれる19kDaのさらなる血清タンパク質(Stover et al., J. Immunol. 162:3481-3490 (1999); Stover et al., J. Immunol. 163:6848-6859 (1999); Takahashi et al., Int. Immunol 11:859-63 (1999))があることが明らかである。
MAp19は、MASP-2の構造遺伝子の選択的スプライシングされた遺伝子産物であり、かつセリンエンドペプチダーゼドメインを含むMASP-2の4つのC末端ドメインを欠く。MAp19をコードする豊富に発現した切断型mRNA転写物は、MASP-2遺伝子の選択的スプライシング/ポリアデニル化事象によって生成される。類似した機構により、MASP-1/3遺伝子は、3つの主要な遺伝子産物、すなわち2つのセリンプロテアーゼMASP-1およびMASP-3ならびに「MAp44」と呼ばれる44kDaの切断型遺伝子産物を生じさせる(Degn et al., J. Immunol 183(11):7371-8 (2009); Skjoedt et al., J Biol Chem 285:8234-43 (2010))。
MASP-1は、当初、血清Ra反応性因子のP-100プロテアーゼ成分と記載されていたが、それが今や、MBLに加えてMASPで構成された複合体であると認識されている(Matsushita et al., Collectins and Innate Immunity, (1996); Ji et al., J Immunol 150:571-578 (1993)。補体の古典経路のC1q-(C1r)2-(C1s)2複合体内のC1s酵素と明らかに同一のやり方で補体成分C4およびC2に作用するMBL-MASP複合体内のMBL関連エンドペプチダーゼの能力は、C1q-(C1r)2-(C1s)2複合体に機能的に類似するMBL-MASP複合体が存在することを示唆する。C1q-(C1r)2-(C1s)2複合体は、C1qと免疫複合体中に存在する抗体IgGまたはIgMのFc領域との相互作用によって活性化される。これがC1r酵素前駆体の自己活性化を生じさせ、それが他方でC1s酵素前駆体を活性化し、次いでC1s酵素前駆体が補体成分C4およびC2に作用する。
MBL-MASP複合体の化学量論は、様々なMBLオリゴマーがMASP-1/MAp19またはMASP-2/MASP-3の様々な割合と関連するように見える点で、C1q-(C1r)2-(C1s)2複合体に見られる化学量論とは異なる(Dahl et al., Immunity 15:127-135 (2001)。血清中に見られるMASPおよびMAp19の大部分は、MBLとは複合化しておらず(Thiel et al., J Immunol 165:878-887 (2000))、かつ部分的に、微生物面上のN-アセチルグルコサミン残基に結合することができるフィブリノゲン様ドメインを有する最近記載されたレクチンの群であるフィコリンと関連し得る(Le et al., FEBS Lett 425:367 (1998); Sugimoto et al., J. Biol Chem 273:20721 (1998))。これらのうち、ヒトL-フィコリン、H-フィコリンおよびM-フィコリンはMASPおよびMAp19と関連し、かつフィコリンによって認識される特定の糖質構造に結合すると、レクチン経路を活性化し得る(Matsushita et al., J Immunol 164:2281-2284 (2000); Matsushita et al., J Immunol 168:3502-3506 (2002))。フィコリンおよびMBLに加えて、CL-11と呼ばれるMBL様レクチンであるコレクチンがレクチン経路認識分子として同定されている(Hansen et al. J Immunol 185:6096-6104 (2010); Schwaeble et al. PNAS 108:7523-7528 (2011))。これらの代替糖質認識分子の生理学的重要性を強調する圧倒的な証拠があり、したがって、MBLがレクチン活性化経路の唯一の認識成分ではなく、MBL欠損がレクチン経路欠損と誤解されてはならないことを理解することが重要である。おそらくは、MBLに構造的に関連した代替糖質認識複合体のアレイの存在は、補体の活性化によって先天性免疫系の直接応答を開始させる微生物構造のスペクトルを広げ得る。
すべてのレクチン経路認識分子は、それらのコラーゲン相同性茎領域内の特定のMASP結合モチーフを特徴とする(Wallis et al. J. Biol Chem 279:14065-14073 (2004))。MBL、CL-11およびフィコリン中のMASP結合部位は、このドメイン内の別個のモチーフ:Hyp-Gly-Lys-Xaa-Gly-Proを特徴とし、Hypはヒドロキシプロリンであり、Xaaは概して脂肪族残基である。この配列中の点突然変異がMASP結合を分断する。
1. それぞれの構造、配列、染色体上の位置確認、およびスプライス変異
図2は、MASP-2ポリペプチド(SEQ ID NO:5)およびMAp19ポリペプチド(SEQ ID NO:2)ならびにそれらをコードするエキソンのドメイン構造を示す略図である。図3は、MASP-1ポリペプチド(SEQ ID NO:10)、MASP-3ポリペプチド(SEQ ID NO:8)およびMAp44ポリペプチド(SEQ ID NO:11)ならびにそれらをコードするエキソンのドメイン構造を示す略図である。図2および3に示すように、セリンプロテアーゼMASP-1、MASP-2、およびMASP-3は、C1rおよびC1sに見られるように配置された6つの別々ドメイン;すなわち(I)N末端C1r/C1s/ウニVEGF/骨形成タンパク質(またはCUBI)ドメイン;(II)上皮成長因子(EGF)様ドメイン;(III)第二のCUBドメイン(CUBII);(IVおよびV)2つの補体制御タンパク質(CCP1およびCCP2)ドメイン;および(VI)セリンプロテアーゼ(SP)ドメインからなる。
ヒトおよびマウスMASP-1(Sato et al., Int Immunol 6:665-669 (1994); Takada et al., Biochem Biophys Res Commun 196:1003-1009 (1993); Takayama et al., J. Immunol. 152:2308-2316 (1994))、ヒト、マウスおよびラットMASP-2(Thiel et al., Nature 386:506-510 (1997); Endo et al., J Immunol 161:4924-30 (1998); Stover et al., J. Immunol. 162:3481-3490 (1999); Stover et al., J. Immunol. 163:6848-6859 (1999))ならびにヒトMASP-3(Dahl et al., Immunity 15:127-135 (2001))のcDNA由来アミノ酸配列は、これらのプロテアーゼが、それらの推定触媒ドメイン内にHis、AspおよびSer残基の特徴的な三連構造を有するセリンペプチダーゼであることを示す(2012年2月15日にGenbankにアクセスした場合、Genbankアクセッション番号:ヒトMASP-1:BAA04477.1;マウスMASP-1:BAA03944;ラットMASP-1:AJ457084;ヒトMASP-3:AAK84071;マウスMASP-3:AB049755。それぞれ参照により本明細書に組み入れられる)。
図2および3にさらに示すように、酵素前駆体が活性形態へと転換されると、重鎖(アルファまたはA鎖)および軽鎖(ベータまたはB鎖)が分割されて、ジスルフィド結合したA鎖と、セリンプロテアーゼドメインを表す、より小さなB鎖とを生じさせる。第二のCCPドメイン(ドメインV)とセリンプロテアーゼドメイン(ドメインVI)との間に位置するArg-Ile結合の切断により、単鎖酵素前駆体MASP-1が活性化される(酵素前駆体C1rおよびC1sのように)。酵素前駆体MASP-2およびMASP-3は、MASP-1と同様なやり方で活性化されると考えられる。各MASPタンパク質がホモ二量体を形成し、かつCa++依存的にMBLおよびフィコリンと個々に関連する。
2. MASP-1/3
ヒトMASP-1ポリペプチド(SEQ ID NO:10)およびMASP-3ポリペプチド(SEQ ID NO:8)は1つの構造遺伝子から生じ(Dahl et al., Immunity 15:127-135 (2001)、その遺伝子は3番染色体の長腕の3q27〜28領域にマッピングされている(Takada et al., Genomics 25:757-759 (1995))。MASP-3およびMASP-1 mRNA転写物は一次転写物から選択的スプライシング/ポリアデニル化プロセスによって生成される。MASP-3翻訳産物は、MASP-1およびMASP-3の両方に共通であるアルファ鎖と、MASP-3に固有であるベータ鎖(セリンプロテアーゼドメイン)と構成される。図3に示すように、ヒトMASP-1遺伝子は18のエキソンを包含する。ヒトMASP-1 cDNA(SEQ ID NO:9と表記される)はエキソン2、3、4、5、6、7、8、10、11、13、14、15、16、17、および18によってコードされる。図3にさらに示すように、ヒトMASP 3遺伝子は12のエキソンを包含する。ヒトMASP-3 cDNA(SEQ ID NO:7と表記される)はエキソン2、3、4、5、6、7、8、10、11、および12によってコードされる。選択的スプライシングが、エキソン2、3、4、5、6、7、8、および9から生じる、MBL関連タンパク質44(「MAp44」)(SEQ ID NO:11と表記される)と呼ばれるタンパク質を生じさせる。
ヒトMASP-1ポリペプチド(SEQ ID NO:10、Genbank BAA04477.1より)は699のアミノ酸残基を有し、それが19の残基のリーダーペプチドを含む。リーダーペプチドを除くと、MASP-1の計算上の分子量は76,976Daである。図3に示すように、MASP-1アミノ酸配列は4つのN結合グリコシル化部位を含む。ヒトMASP-1タンパク質(SEQ ID NO:10を参照されたい)のドメインは、図3に示され、かつ、N末端C1r/C1s/ウニVEFG/骨形成タンパク質(CUBI)ドメイン(SEQ ID NO:10のaa25〜137)、上皮成長因子様ドメイン(SEQ ID NO:10のaa139〜181)、第二のCUBドメイン(CUBII)(SEQ ID NO:10のaa185〜296)ならびに補体制御タンパク質ドメインのタンデム(SEQ ID NO:10のCCP1 aa301〜363およびCCP2 aa367〜432)、ならびにセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)を含む。
ヒトMASP-3ポリペプチド(Genbank AAK84071からのSEQ ID NO:8)は728のアミノ酸残基を有し、それが19の残基のリーダーペプチドを含む。リーダーペプチドを除くと、MASP-3の計算上の分子量は81,873Daである。図3に示すように、MASP-3中には7つのN結合グリコシル化部位がある。ヒトMASP-3タンパク質(SEQ ID NO:8を参照されたい)のドメインが図3に示され、N末端C1r/C1s/ウニVEFG/骨形成タンパク質(CUBI)ドメイン(SEQ ID NO:8のaa25〜137)、上皮成長因子様ドメイン(SEQ ID NO:8のaa139〜181)、第二のCUBドメイン(CUBII)(SEQ ID NO:8のaa185〜296)ならびに補体制御タンパク質ドメインのタンデム(SEQ ID NO:8のCCP1 aa301〜363およびCCP2 aa367〜432)およびセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)を含む。
MASP-3翻訳産物は、MASP-1およびMASP-3の両方に共通である、CUB-1-EGF-CUB-2-CCP-1-CCP-2ドメインを含むアルファ鎖(重鎖)(アルファ鎖:SEQ ID NO:8のaa1〜448)と、MASP-3およびMASP-1に固有である、セリンプロテアーゼドメインを含む軽鎖(ベータ鎖:SEQ ID NO:8のaa449〜728)と構成される。
3. MASP-2
ヒトMASP-2遺伝子は染色体1p36.3-2上に位置し(Stover et al., Cytogenet and Cell Genet. 84:148-149 (1999))、図2に示すように、12のエキソンを包含する。MASP-2(SEQ ID NO:5)およびMAp19(SEQ ID NO:2)は、選択的スプライシング/ポリアデニル化によって生成される単一の構造遺伝子の転写物によってコードされる(Stover et al., Genes and Immunity 2:119-127 (2001))。ヒトMASP-2 cDNA(SEQ ID NO:4)はエキソン2、3、4、6、7、8、9、10、11、および12によってコードされる。(SEQ ID NO:1)によってコードされる、MBL関連タンパク質19(「MAp19」、「sMAP」とも呼ばれる)と呼ばれる20kDaタンパク質(SEQ ID NO:2)がエキソン2、3、4、および5から生じる。MAp19は、図2に示すようにエキソン5に由来する4つのさらなる残基(EQSL)を有するMASP-2のN末端CUB1-EGF領域を含む非酵素的タンパク質である。
MASP-2ポリペプチド(SEQ ID NO:5)は686個のアミノ酸残基を有し、それが15の残基のリーダーペプチドを含み、このリーダーペプチドが分泌後に切断されて、成熟形態のヒトMASP-2(SEQ ID NO:6)を生じさせる。図2に示すように、MASP-2アミノ酸配列は任意のN結合グリコシル化部位を含まない。MASP-2ポリペプチドは、MASP-1、MASP-3ならびにC1rおよびC1s、すなわちC1補体系のプロテアーゼに類似した分子構造を示す。ヒトMASP-2タンパク質(SEQ ID NO:5を参照して番号を付した)のドメインが図2に示され、かつN末端C1r/C1s/ウニVEFG/骨形成タンパク質(CUBI)ドメイン(SEQ ID NO:5のaa24〜136)、上皮成長因子様ドメイン(SEQ ID NO:5のaa138〜180)、第二のCUBドメイン(CUBII)(SEQ ID NO:5のaa184〜295)ならびに補体制御タンパク質ドメインのタンデム(SEQ ID NO:5のCCP1 aa300〜359およびCCP2 aa364〜431)およびセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)を含む。
図2に示すように、MASP-2ポリペプチドは、CUB-1-EGF-CUB-2-CCP-1-CCP-2ドメインを含むアルファ鎖(重鎖)(アルファ鎖:SEQ ID NO:5のaa1〜443)と、セリンプロテアーゼドメインを含むベータ鎖(軽鎖)(ベータ鎖:aa444〜686)とを有する。CUB-1、EGFおよびCUB-2ドメインは二量体化のために必要であり、CUB-1、EGF、CUB-2およびCCP-1ドメインはMBPのための結合部位を含む。Wallis et al., J. Biol Chem 279:14065-14073 (2004)に記載されているように、各MASP-2二量体が2つのMBLサブユニットに結合する。
4. MASP-1、MASP-2、およびMASP-3のアミノ酸配列の比較
図4は、CUBI、EGF、CUBII、CCP1、CCP2ドメインおよびセリンプロテアーゼ(SP)ドメイン中の保存された触媒三連構造残基(H、D、S)を示す、MASP-1(SEQ ID NO:10)、MASP-2(SEQ ID NO:6)およびMASP-3(SEQ ID NO:8)のタンパク質配列のアミノ酸アライメントである。記号「.」は同一のアミノ酸配列を示す。
図5は、MASP-1(アルファ鎖:SEQ ID NO:10のaa1〜447)、MASP-2(アルファ鎖:SEQ ID NO:5のaa1〜443)およびMASP-3(アルファ鎖:SEQ ID NO:8のaa1〜448)のCUBI-EGF-CUBII-CCP1-CCP2を含むアルファ鎖配列のアミノ酸アライメントである。図5の点線ボックスによって示すように、CUBI、EGFおよびCUBIIドメイン中に数多くの同一性部分がある。CCP1およびCCP2ドメインは暗色のボックスによって示されている。ヒトMASP1/3のアルファ鎖とヒトMASP-2のアルファ鎖との間の全同一性%を以下の表1に提示する。
図6は、MASP-1(ベータ鎖:SEQ ID NO:10のaa448〜699)、MASP-2(ベータ鎖:SEQ ID NO:5のaa444〜686)およびMASP-3(ベータ鎖:SEQ ID NO:8のaa449〜728)のベータ鎖配列(セリンプロテアーゼドメインを含む)のアミノ酸アライメントである。図7Aは、MASP-1(ベータ鎖:SEQ ID NO:10のaa448〜699)のベータ鎖配列とMASP-2(ベータ鎖:SEQ ID NO:5のaa444〜686)のベータ鎖配列との間のペアワイズアミノ酸配列を示す。図7Bは、MASP-1(ベータ鎖:SEQ ID NO:10のaa448〜699)のベータ鎖配列とMASP-3(ベータ鎖:SEQ ID NO:8のaa449〜728)のベータ鎖配列との間のペアワイズアミノ酸配列を示す。図7Cは、MASP-2(ベータ鎖:SEQ ID NO:5のaa444〜686)のベータ鎖配列とMASP-3(ベータ鎖:SEQ ID NO:8のaa449〜728)のベータ鎖配列との間のペアワイズアミノ酸配列を示す。図5〜7における同一性領域は、同一のアミノ酸を包囲する点線のボックスとして示されている(「.」記号として示す)。
ヒトMASP-1、MASP-2、およびMASP-3タンパク質のアルファ鎖間およびベータ鎖間の同一性%を以下の表1に提示する。
(表1)ヒトMASPタンパク質間の同一性%
Figure 0006815355
アルファ鎖(重鎖)に関しては、上記表1に示すように、MASP-1アルファ鎖とMASP-3アルファ鎖とは同一である(3'端の15アミノ酸配列を除き)。MASP-2アルファ鎖とMASP-3アルファ鎖との間の全同一性%は45.4%であり、図5に示すように、CUBI-EGF-CUBIIドメイン中に数多くの同一性部分がある。
ベータ鎖(軽鎖)に関しては、3つのベータ鎖間の全同一性%は低く、27%〜28%の範囲である。しかし、3つのB鎖間の全同一性は低いが、図6に示すように、数多くの同一性部分がある。図7A〜Cにさらに示すように、配列の同一部分は、MASP-1とMASP-2との間またはMASP-1とMASP-3との間よりもMASP-2とMASP-3の間でより広く分布している。
MASP-2、MASP-3、C1r、およびC1sにおいて存在するすべてのシステイン残基はMASP-1中の等価残基と整列する。しかし、MASP-1は、MASP-2、MASP-3、C1rおよびC1s中には見られない2つのシステイン残基を有する(L鎖中の465位および481位)。MASP-1中のこれら2つのシステイン残基は、トリプシンおよびキモトリプシン中に見られるような「ヒスチジンループ」ジスルフィドブリッジを形成するために使用される予想位置にある。これは、MASP-2、MASP-3、C1rおよびC1sが、MASP-1からの遺伝子複製および多様化によって進化した可能性があることを暗示する(Nonaka & Miyazawa, Genome Biology 3 Reviews 1001.1-1001.5 (2001))。
5. 関連するヒト遺伝子データを含むそれぞれの生物学的機能活性
先天性免疫におけるMBL/フィコリン-MASP複合体の役割は、C型レクチンドメイン(MBL分子中に存在)のカルシウム依存性結合によって、または酵母、細菌、ウイルスおよび真菌において見られる糖質構造へのフィブリノゲン様ドメイン(フィコリン分子中に存在)の結合によって媒介される。この認識段階が酵素前駆体MASP-2の活性化をもたらし、その後それが、C4およびC2を切断してC3コンバターゼC4b2bを形成することにより、C1q-(C1r)2-(C1s)2複合体内の活性化されたC1の作用を模倣する。これが、標的病原体上のC4bおよびC3bの沈着を可能にし、ひいては、食作用による死滅およびクリアランスを促進する。
最近の文献における証拠は、レクチン経路活性化複合体が、C4およびC2を切断するためにMASP-2の活性のみを必要とすることを暗示している:(i)組換えMBLおよび組換え的に発現したMASP-2を使用する最小レクチン経路活性化複合体の再構成が、インビトロでC4およびC2の両方を効果的に切断するのに十分であると考えられ(Vorup-Jensen et al., J. Immunol. 165:2093-2100 (2000); Rossi et al., J Biol Chem 276:40880-40887 (2001); Ambrus et al., J Immunol 170:1374-1382 (2003); Gal et al, J Biol Chem 280:33435-33444 (2005));さらに(ii)MASP-2の遺伝子標的化欠損を有するマウスの血清は任意のレクチン経路機能活性を欠く(Schwaeble et al., PNAS 108:7523-7528 (2011))。最近、遺伝的に判定されたMASP-2の欠損が記載された(Stengaard-Pedersen et al., New Eng. J. Med. 349:554-560, (2003))。1つのヌクレオチドの突然変異がCUB1ドメイン中のAsp-Gly交換を生じさせ、MASP-2がMBLに結合することを不可能にする。
加えて、MASP-1およびMASP-3の両方を欠損したマウスの血清の機能的特性決定は、野生型マウスの血清とMASP-1/MASP-3ノックアウト(MASP-1/3-/-)マウスの血清とを生理学的条件下で比較した場合、レクチン経路活性がよりスローであるが、存在しないわけではないことを示す(Takahashi et al., J. Immunol. 180:6132-6138 (2008); Schwaeble et al., PNAS (2011))。これらの研究は、古典経路エフェクターエンドペプチダーゼC1sとは対照的に、MASP-2の活性化は、他のMBL関連セリンエンドペプチダーゼ(すなわち、MASP-1またはMASP-3)のいずれの活性も含まず、または要さず、MASP-2のタンパク質分解活性が、レクチン経路の糖質認識分子(すなわち、MBL、フィコリンまたはCL-11)の結合を補体活性化へと翻訳するのに十分であることを暗示する。しかし、より最近の研究が、MASP-2は自己活性化の能力を有するが、MASP-2酵素前駆体のMASP-1活性化の触媒速度は、それ自体の酵素前駆体形態のMASP-2切断の速度を約85,000倍超えることを実証した(Heja et al., PNAS 106:10498-503 (2011); Megyeri et al., J. Biol. Chem. 288(13):8922-34 (2013))。したがって、生理学的状況におけるMASP-2の一次アクチベーターがMASP-1である可能性は高い。生成されるC4の断片のサイズおよび生成される機能的C3コンバターゼ活性によって判断すると、活性化されたMASP-2は、活性化されたClsによって実施されるやり方と同一のやり方で、すなわち、C4のアルファ鎖内の単一のアルギニル結合(Arg76 A1a77)およびC2の酵素前駆体鎖内の単一のアルギニル結合(Arg223 Lys224)において、C4およびC2を切断する可能性が高いと考えられる。また、マウスMASP(Ra反応性因子と呼ばれるマウスMBL-MASP複合体の形態にある)が、C1sとは違い、補体成分C3のアルファ鎖を切断して生物学的に活性の断片C3aおよびC3bを生成することができることが報告されている(Ogata et al, J. Immunol. 154:2351-2357 (1995))。これがヒト系の中で起こるならば、C3のアルファ鎖内の単一のアルギニル結合(Arg77 Ser78)の切断を必要とすると考えられる。活性化されたMASP-2は、活性化されたC1sと同様、補体成分C5を切断することができない。MASP-1およびMASP-2のタンパク質分解活性はC1阻害因子によって阻害されるが(Matsushita et al., J Immunol 165:2637-2642 (2000)、一方、C1阻害因子はMASP-3とは反応しない(Dahl et al., Immunity 15:127-135 (2001); Zundel et al., J Immunol 172:4342-4350 (2004))。
MASP-1およびMASP-3の生物学的機能はゆっくりと出現するものであった。MASP-1の基質特異性および生理学的役割は、その発見以来、論議の対象であった。近年、数多くの潜在的な基質が同定されている。MASP-1は天然のC3をゆっくりと切断することができ、この直接的なC3の切断が、おそらくは第二経路の寄与によって補体カスケードを開始し得ると暗示された(Matsushita et al., J Immunol 165:2637-2642 (2000))。のちに、組換えMASP-1が、補体カスケードを開始させる点では非生産性であるC3の不活性(チオエステル加水分解)形態を切断することが示された(Ambrus et al., J Immunol 170:1374-1382 (2003))。MASP-2欠損マウスの血清希釈物中のレクチン経路活性の欠如は、MASP-1駆動型C3バイパス機構が存在しないことを疑う余地なく証明した(Schwaeble et al., PNAS 108:7523-7528 (2011))。MASP-1によってかなりの効率で切断される補体成分は、C2(Rossi et al., J Biol Chem 276:40880-40887 (2001); Ambrus et al., J Immunol 170:1374-1382 (2003))およびD因子の酵素前駆体形態(Takahashi et al., J Exp Med 207:29-37 (2010))である。したがって、C2を切断するMASP-1の能力に関しては、MASP-1が、C2切断によってMASP-2のC3コンバターゼ(C4b2a)形成能力を増強することができると考えられる。この示唆は、MASP-1枯渇ヒト血清およびMASP-1/3欠損マウスの血清中でレクチン経路の活性が減退するという観測によって裏付けされ(Takahashi et al., J Immunol 180:6132-6138 (2008))、この観測はまた、MASP-1がMASP-2の活性化において役割を有することを示唆する。そのうえ、MBL-MASP複合体によって沈着するC4bはすべてがC4b2aコンバターゼを形成することができるが、古典経路C1複合体によって沈着するC4bは、4つのうち1つしかそれを形成することができない(Rawal et al., J Biol Chem 283 (12):7853-63 (2008))。
MASP-1はまた、MASP-2およびMASP-3を切断する(Megyeri M., et al, J Biol. Chem. 2013 Mar. 29;288(13):8922-34)。最近の実験が、MASP-2は自己活性化することができるが、MASP-1は酵素前駆体MASP-2の一次アクチベーターであることを示唆する。MASP-2の活性化は、MASP-1ノックアウトマウスの血清中では遅延し(Takahashi et al., J Immunol 180:6132-6138 (2008))、正常ヒト血清中の特定の阻害因子によってMASP-1の活性を遮断した場合に同様な結果が得られた(Kocsis et al., J Immunol 185(7):4169-78 (2010))。そのうえ、Degn et al.(J. Immunol. 189(8):3957-69 (2012))は、MASP-1が、ヒト血清中でMASP-2活性化およびその後のC4切断にとってきわめて重要であることを見いだした。活性MASP-2への酵素前駆体MASP-2の転換の触媒速度は、MASP-2が自己活性化することができる速度の85,000倍を超える大きさである(Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013); Heja et al., J. Biol. Chem. 287(24):20290-300 (2012); Heja et al., PNAS 109:10498-503 (2012))。
また、最近の発見がMASP-1を第二経路に関連づけた。MASP-1は、酵素前駆体D因子をその酵素的に活性な形態へと転換することができる(図39;Takahashi et al., J Exp Med 207:29-37 (2010))。さらに、MASP-1はMASP-3の酵素前駆体形態を活性化し(Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013); Degn et al. J. Immunol. 189(8):3957-69 (2012))、それ自体が酵素前駆体D因子を活性化することができ(図39)、また、第二経路の別の必須成分であるB因子をその活性形態へと切断することができる(Iwaki et al., J. Immunol. 187:3751-58 (2011))。しかし、プロD因子およびプロB因子の転換は、LEA-2の活性化状態に依存しない可能性が高く、かつ非複合体結合MASP-1を通して起こり得る。
いくつかの線の証拠は、MASP-1がトロンビン様酵素であり、かつ凝固経路の活性化において重要であることを示す。MASP-1は、フィブリノゲン(Hajela K. et al., Immunobiology 205(4-5):467-75 (2002))、XIII因子(Krarup et al., Biochim Biophys Acta 1784(9):1294-1300 (2008))およびプロテアーゼ活性化レセプター4(PAR4)(Megyeri et al., J Immunol 183(5):3409-16 (2009))を含む、トロンビンのいくつかの基質を切断することができる。そのうえ、ヘパリンの存在における抗トロンビンは、C1阻害因子よりもMASP-1の効率的な阻害因子である(Dobo et al., J Immunol 183:1207-1214 (2009))。補体と凝固経路との間の接続もまた、MASP-2がプロトロンビンを活性化することができるという観測によって強調される(Krarup A. et al., PLoS One 2(7):e623 (2007))。限定的な凝固は、浸入する病原体の伝播がフィブリン血餅によって防がれる場合には古代タイプの先天性免疫ということになる。放出するフィブリノペプチドBは炎症誘発活性を有する。PAR4のMASP-1媒介性切断は内皮細胞開始性炎症反応を活性化する(Megyeri et al., J Immunol 183(5):3409-16 (2009))。
MASP-3は、C4、C2またはC3基質に対してタンパク質分解活性を有しない。逆に、MASP-3は、レクチン経路の阻害因子として作用することが報告された(Dahl et al., Immunity 15:127-135 (2001))。この結論は、MASP-3が、MASP-1およびMASP-2とは対照的に、自己活性化酵素ではないことから生まれ得たものである(Zundel S. et al., J Immunol 172:4342-4350 (2004); Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013)。
最近、MASP-1欠損およびMASP-3欠損を併せ持つマウス系統を使用するトランスジェニックマウス研究から、MASP-1およびMASP-3の可能な生理学的機能の証拠が出た。MASP-1/3ノックアウトマウスは機能的レクチン経路を有するが(Schwaeble et al., PNAS 108:7523-7528 (2011))、それらは第二経路活性を欠くと考えられる(Takahashi et al., JEM 207(1):29-37 (2010))。第二経路活性の欠如は、第二経路活性に必要である補体D因子の処理欠陥によるものと考えられる。MASP-1/3ノックアウトマウスにおいて、すべてのD因子はタンパク質分解的に不活性な前駆形態として循環しているが、一方、正常なマウスの血清中では、D因子の実質すべては活性形態にある。生化学的分析は、MASP-1が補体D因子をその酵素前駆体形態からその酵素的に活性な形態へと転換することができることを示唆する(図39;Takahashi et al., JEM 207(1):29-37 (2010))。MASP-3はまた、インビトロでプロD因子酵素前駆体を切断し、活性D因子を産生する(図39;Takahashi et al., JEM 207(1):29-37 (2010))。D因子は、正常な個体中で循環しながら活性酵素として存在し、MASP-1およびMASP-3ならびにHTRA-1がこの活性化を担い得る。さらに、MBL欠損とフィコリン欠損とを併せ持つマウスは、それでも、正常レベルのD因子を産生し、かつ十分に機能的な第二経路を有する。したがって、MASP-1およびMASP-3のこれらの生理学的機能は必ずしもレクチンを伴わず、したがってレクチン経路とは無関係である。組換えマウスおよびヒトMASP-3はまた、インビトロでB因子を切断し、黄色ブドウ球菌へのC3沈着を支持すると考えられる(図36;Iwaki D. et al., J Immunol 187(7):3751-8 (2011))。
3MC症候群(以前はCarnevale、Mingarelli、MalpuechおよびMichels症候群と呼ばれていた。OMIM #257920)の患者の最近の研究から、MASP-3の予想外の生理学的役割が明らかになった。これらの患者は、口蓋裂、口唇裂、頭蓋奇形および精神遅滞を含む重篤な発達異常を示す。遺伝分析が、機能不全MASP-3遺伝子に関してホモ接合性である3MC患者を特定した(Rooryck et al., Nat. Genet. 43(3):197-203 (2011))。別の3MC患者群が、機能的MASP-1およびMASP-3タンパク質の非存在を生じさせるMASP-1遺伝子における突然変異に関してホモ接合性であることがわかった。さらに別の3MC患者群が機能的CL-11遺伝子を欠損していた(Rooryck et al., Nat. Genet. 43(3):197-203 (2011))。したがって、CL-11 MASP-3軸が胚発生中に役割を果たすと考えられる。この発生経路の分子機構は不明確である。しかし、共通の補体成分C3の欠損を有する個体はこの症候群を発症しないため、従来の補体駆動型プロセスによって媒介される可能性は低い。したがって、本明細書に記載される、本発明者らの発見よりも前に、レクチン依存性補体活性化におけるMASP-3の機能的役割は予め確立されていなかった。
MASP-1およびMASP-2の触媒断片の構造はX線結晶構造解析法によって決定されている。MASP-1プロテアーゼドメインと他の補体プロテアーゼのドメインとの構造比較が、その弛緩した基質特異性の基礎を明らかにした(Dobo et al., J. Immunol. 183:1207-1214 (2009))。MASP-2の基質結合溝のアクセス可能性は表面ループによって制限されるが(Harmat et al., J Mol Biol 342:1533-1546 (2004))、MASP-1は、他の補体プロテアーゼのものよりもトリプシンのそれに似ている開口した基質結合ポケットを有する。MASP-1構造のトロンビン様性質が、基質と相互作用し得る異常に大きな60アミノ酸ループ(ループB)である。MASP-1構造の別の興味深い特徴が、S1 Asp189とArg224との間の内部塩橋である。D因子の基質結合ポケット中にも、そのプロテアーゼ活性を調節することができる類似した塩橋を見いだすことができる。C1sとMASP-2とはほぼ同一の基質特異性を有する。驚くことに、基質特異性を決定するMASP-2の8つの表面ループのいくつかは、C1sの立体配座に比べて全く異なる立体配座を有する。これは、2つの機能的に関連する酵素が同じ基質と異なるやり方で相互作用することを意味する。酵素前駆体MASP-2の構造は、分断されたオキシアニオンホールおよび基質結合ポケットを有する不活性プロテアーゼドメインを示す(Gal et al., J Biol Chem 280:33435-33444 (2005))。驚くことに、酵素前駆体MASP-2は、大きなタンパク質基質C4に対してかなりの活性を示す。酵素前駆体MASP-2の構造は非常フレキシブルであり、不活性形態と活性形態との間の遷移を可能にする可能性が高い。構造中に反映されるこのフレキシビリティが自己活性化プロセスにおいて役割を果たし得る。
ノーザンブロット分析が、肝臓がMASP-1およびMASP-2 mRNAの主要な供給源であることを示す。MASP-1の場合に5'特異性cDNAプローブを使用すると、大きなMASP-1転写物が4.8kbで見られ、小さなものが約3.4kbで見られ、いずれもヒトおよびマウス肝臓中に存在した(Stover et al., Genes Immunity 4:374-84 (2003))。MASP-2 mRNA(2.6kb)およびMAp19 mRNA(1.0kb)は肝組織中に豊富に発現する。MASP-3は、肝臓および、神経組織を含む他の多くの組織中に発現する(Lynch N. J. et al., J Immunol 174:4998-5006 (2005))。
感染症および慢性炎症性疾患の病歴を有する患者が、活性MBL-MASP複合体を形成することができない突然変異形態のMASP-2を有することがわかった(Stengaard-Pedersen et al., N Engl J Med 349:554-560 (2003))。一部の研究者は、MBLの欠損が、幼少期における頻繁な感染症の傾向(Super et al., Lancet 2:1236-1239 (1989); Garred et al., Lancet 346:941-943 (1995)およびHIV感染に対する抵抗力の低下(Nielsen et al., Clin Exp Immunol 100:219-222 (1995); Garred et al., Mol Immunol 33 (suppl 1):8 (1996))につながると判定している。しかし、他の研究は、低いMBLレベルと感染症の増大との有意な相関関係を実証していない(Egli et al., PLoS One. 8(1):e51983 (2013); Ruskamp et al., J Infect Dis. 198(11):1707-13 (2008); Israels et al., Arch Dis Child Fetal Neonatal Ed. 95(6):F452-61 (2010))。文献は意見がさまざまであるが、MASPの欠損、すなわち非利用性は、特定の病原体に対して速やかな非抗体依存性の防御を展開する個体の能力に悪影響を及ぼし得る。
iii. Ca ++ を欠く従来のアッセイ条件を強調する新たな理解の裏付けデータおよびCa ++ を含むより生理学的な条件セットを使用して得られた結果
補体のレクチン経路活性化ルートが、2つの独立したエフェクター機構:(i)LEA-2:補体駆動型オプソニン化、走化性(Schwaeble et al., PNAS 108:7523-7528 (2011))および細胞溶解を媒介するMASP-2駆動型経路、ならびに(ii)LEA-1:アクチベーター表面上のB因子の切断および活性化によって第二経路コンバターゼC3bBbを生成することによって補体活性化を開始し、次いでそれがC3b沈着および第二経路コンバターゼC3bBbの形成を触媒し、それが結果として細胞溶解および微生物オプソニン化を生じさせることができる新規なMASP-3依存性活性化ルートを介して、補体を活性化するという結論を指摘する、いくつかの独立した線の強力な実験的証拠が本明細書に提供される。加えて、本明細書に記載されるように、MASP-1、MASP-3もしくはHTRA-1またはこれら3つのいずれかの組み合わせによるB因子および/またはD因子の別々のレクチン非依存性活性化が、第二経路を介する補体活性化を生じさせることもできる。
第二経路のレクチン経路依存性MASP-3駆動型活性化は、十分に確立されたD因子媒介C3b結合B因子切断に寄与して、細胞表面上のC5b-9膜侵襲複合体(MAC)の形成によって細菌細胞を溶解するための終末活性化カスケードによる補体依存性溶解の最適な活性化速度を達成すると考えられる(図14〜15)。この律速事象は、MASP-3機能活性の非存在およびD因子機能活性の非存在においては不完全であるため、最適な協調を必要とするように考えられる。本明細書の実施例1〜4に記載されるように、本発明者らは、髄膜炎菌感染の実験マウスモデルにおいてMASP-2欠損およびMASP-2阻害の表現型を研究している場合、このMASP-3依存性レクチン経路機能を見いだした。遺伝子標的化MASP-2欠損マウスおよび抗体ベースのMASP-2阻害因子で処理された野生型マウスは実験的髄膜炎菌感染に対して対抗力が高かった(図8〜12を参照されたい)。野生型同腹子中で約60%の死亡率が得られるように感染量を調節した場合、MASP-2欠損またはMASP-2枯渇マウスのすべては感染をクリアし、生き延びた(図8および図12を参照されたい)。このきわめて高度な抵抗力は、MASP-2欠損またはMASP-2枯渇マウス血清中の血清殺菌活性の有意な増大に反映された。さらなる実験が、この殺菌活性が第二経路駆動型溶菌に依存することを示した。B因子もしくはD因子またはC3を欠損したマウス血清は髄膜炎菌に対して殺菌活性を示さず、第二経路が終末活性化カスケードの駆動にとって不可欠であることを示した。驚くべき結果は、MBL-AおよびMBL-C(いずれも髄膜炎菌を認識するレクチン経路認識分子である)を欠損しているマウス血清ならびにレクチン経路関連セリンプロテアーゼMASP-1およびMASP-3を欠損しているマウス血清が髄膜炎菌に対するすべての溶菌活性を失ったことである(図15)。最近の論文(Takahashi M. et al., JEM 207:29-37 (2010))およびその中に提示された研究(図39)が、MASP-1が酵素前駆体形態のD因子をその酵素的に活性な形態へと転換することができ、かつこれらの血清中の酵素的に活性なD因子の非存在による溶解活性の損失を部分的に説明し得ることを実証している。これは、MBL欠損マウスにおける殺菌活性の欠如を説明しない。理由は、これらのマウスが正常な酵素的に活性なD因子を有するからである(Banda et al., Mol Immunol 49(1-2):281-9 (2011))。驚いたことに、MASP-3のセリンプロテアーゼドメインを機能不全にする突然変異を有する珍しい3MC常染色体劣性障害の患者からのヒト血清を試験した場合(Rooryck C, et al., Nat. Genet. 43(3):197-203)、髄膜炎菌に対する殺菌活性は検出されなかった(注:これらの血清はMASP-1およびD因子を有するが、MASP-3を有しない)。
ヒト血清が細菌活性を発現するためにはレクチン経路媒介MASP-3依存性活性を必要とするという仮説は、MBL欠損ヒト血清が髄膜炎菌を溶解することもできないという観測によってさらに裏付けられる(図13〜14)。MBLは、この病原体に結合する唯一のヒトレクチン経路認識分子である。MASP-3は自己活性化しないため、本発明者らは、MASP-2欠損血清中のより高い溶菌活性は、MASP-1を通してのMASP-3の好都合な活性化によって説明することもできると仮説を立てる。理由は、MASP-2の非存在においては、細菌面に接合するすべてのレクチン経路活性化複合体がMASP-1またはMASP-3のいずれかを付加されるからである。活性化されたMASP-3はインビトロでD因子(図39)およびB因子の両方を切断して、それぞれの酵素的に活性な形態を生成するため(図37およびIwaki D., et al., J. Immunol. 187(7):3751-3758 (2011))、MASP-3の最も可能性の高い機能は、第二経路C3コンバターゼ(すなわちC3bBb)の形成を促進することである。
レクチン依存性役割のデータは説得力があるが、複数の実験が、MASP-3およびMASP-1は必ずしもレクチン分子との複合体において機能することを強いられるわけではないことを示唆する。図35Bに示すような実験が、レクチンとの複合体が存在しない条件下(すなわちEGTAの存在下)、第二経路を活性化するMASP-3の能力を実証する(黄色ブドウ球菌に対するC3b沈着によって実証されるように)。図35Aは、これらの条件下での沈着が、いずれも第二経路の重要成分であるB因子、D因子およびP因子に依存することを実証する。加えて、MASP-3およびMASP-1によるD因子活性化(図39)ならびにMASP-3によるB因子活性化(図37)がレクチンの非存在においてインビトロで起こることができる。最後に、ヒト血清の存在におけるマウス赤血球の溶血研究が、細胞溶解に関するMBLおよびMASP-3の明らかな役割を実証する。しかし、MBLの欠損は、すべての機能的MASP-3がMBLと複合した場合に予想されるものとは対照的に、MASP-3の欠損の重篤さを完全には再現しない。したがって、本発明者らは、本明細書に実証されるMASP-3(およびMASP-1)の役割のすべてが、レクチンと関連した機能にのみ帰されることができるという概念によって制約されることを望まない。
レクチン経路の2つのエフェクターアームの同定ならびにMASP-1、MASP-3およびHTRA-1の可能なレクチン非依存性機能は、微生物病原体または変化した宿主細胞もしくは代謝沈着物の存在における過度な補体活性化によって生じる特定のヒト疾病を効果的に治療するための治療的介入の新規な機会を表す。本明細書に記載されるように、本発明者らは今、MASP-3の非存在かつMASP-1の存在において、表面構造上で第二経路が活性化されないことを見いだした(図17〜18、35B、41〜42、45〜46を参照されたい)。第二経路は、溶菌および細胞溶解を生じさせる律速事象を駆動するのに重要であるため(Mathieson P W, et al., J Exp Med 177(6):1827-3 (1993))、本発明者らの結果は、活性化されたMASP-3が補体の溶解活性において重要な役割を果たすことを実証する。図14〜15、21〜23、43〜44および46-47に示すように、MASP-3を欠損しているが、MASP-1を欠損していない3MC患者の血清中、補体の溶解終末活性化カスケードは不完全である。図14および15に示すデータは、MASP-3および/またはMASP-1/MASP-3機能活性の非存在における溶菌活性の損失を実証する。同様に、MASP-3欠損ヒト血清における溶血活性の損失(図21〜23、43〜44および46〜47)が、組換えMASP-3を加えることによって溶血を再構成する能力(図46〜47)と合わさって、標的面上の第二経路の活性化(補体媒介性溶解を駆動するのに不可欠)が、活性化されたMASP-3存在に依存するという結論を強く支持する。したがって、上に詳述したレクチン経路の新たな理解に基づき、標的面の第二経路活性化は、LEA-1および/または、同じくMASP-3によって媒介されるレクチン非依存性B因子および/またはD因子活性化に依存し、したがって、MASP-3依存性補体活性化を阻止する作用物質は標的面上の第二経路活性化を防ぐ。
第二経路活性化のMASP-3依存性開始の不可欠な役割の開示は、本質的にすべての現在の医学書および補体に関する最近の評論記事に記載されているように、第二経路が独立型の補体活性化経路ではないことを暗示する。広く支持されている現在の科学的見解は、第二経路が特定の粒子状標的(微生物、ザイモサンおよびウサギ赤血球)の表面上で自発的な「平穏な」C3活性化の増幅によって活性化されるということである。しかし、ザイモサンコーティングされたプレートおよび2つの異なる細菌(髄膜炎菌および黄色ブドウ球菌)上のMASP-1およびMASP-3二重欠損マウスの血清およびヒト3MC患者血清中の任意の第二経路活性化の非存在ならびにヒトおよびマウスからのMASP-3欠損血清中の赤血球の溶血の減少は、これらの面上の第二経路活性化の開始が機能的MASP-3を必要とすることを示す。MASP-3に求められる役割は、レクチン依存性かレクチン非依存性であり得、第二経路C3コンバターゼおよびC5コンバターゼ複合体、すなわちそれぞれC3bBbおよびC3bBb(C3b)nの形成を生じさせる。したがって、本発明者らは、本明細書において、以前はわかりにくかった第二経路の開始ルートの存在を開示する。この開始ルートは、(i)新たに発見されたレクチン経路活性化アームであるLEA-1、および/または(ii)タンパク質MASP-3、MASP-1およびHTRA-1のレクチン非依存性役割に依存する。
III. 発作性夜間血色素尿症におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を用いた治療方法
i. PNHの概略
発作性夜間血色素尿症(PNH)は、時としてマルキアファーヴァ・ミケーリ症候群とも呼ばれ、後天的な、潜在的に命にかかわる血液疾患である。PNHは自然発症することがあり、これは「一次PNH」と呼ばれるか、または再生不良性貧血などの他の骨髄障害の状況では「二次PNH」と呼ばれる。症例の大半は一次PNHである。PNHは、補体誘導性の赤血球破壊(溶血)、少ない赤血球数(貧血)、血栓症、および骨髄機能不全を特徴とする。実験室におけるPNHの所見は、考えられる原因として自己反応性RBC結合抗体の非存在下で、血管内溶血性貧血:低ヘモグロビン、多量の乳酸デヒドロゲナーゼ、多数の網状赤血球数(破壊された細胞を交換するために未熟血球が骨髄によって放出される)、高ビリルビン(ヘモグロビンの破壊産物)と一致する変化を示す。
PNHの顕著な特徴は、循環RBC表面上での、膜侵襲複合体を含む終末補体成分の無秩序な活性化によって引き起こされる慢性的な補体媒介性溶血である。PNH RBCは、その表面上に補体制御因子CD55およびCD59が存在しないために、制御されていない補体活性化および溶血を受ける(Lindorfer, M.A., et al., Blood 115(11):2283-91(2010)、Risitano, et al., Mini-Reviews in Medicinal Chemistry, 11:528-535(2011))。CD55およびCD59は正常RBCにおいて豊富に発現しており、補体活性化を制御する。CD55は第二経路の負の制御因子として作用し、第二経路C3コンバターゼ(C3bBb)複合体の集合を阻害し、予め形成されたコンバターゼの崩壊を促進し、従って、膜侵襲複合体(MAC)の形成を遮断する。CD59は、C5b678複合体に直接結合し、C9が結合し、重合しないようにすることによって補体膜侵襲複合体を阻害する。
溶血および貧血はPNHの主な臨床特徴であるが、この疾患は、臨床所見の一部として血栓症および骨髄機能不全をさらに含む複雑な血液学的障害である(Risitano et al., Mini Reviews in Med Chem 11:528-535(2011))。分子レベルでは、PNHは、機能的PIG A 遺伝子を欠く造血幹細胞の異常なクローン増殖によって引き起こされる。PIG Aは、CD55およびCD59を含むGPIアンカー型クラスA糖タンパク質の安定な表面発現に必要とされるグリコシル-ホスファチジルイノシトールトランスフェラーゼをコードするX連鎖遺伝子である。現在、調査中の理由で、自然体細胞変異の結果として生じた機能不全PIG A遺伝子を有する造血幹細胞は、その子孫が末梢造血細胞プールのかなりの部分を構成する点までクローン増殖することができる。変異幹細胞クローンの赤血球子孫およびリンパ球子孫はいずれもCD55およびCD59を欠くが、循環に入った後にRBCだけが明らかな溶解を受ける。
PNHの現行の治療法には、貧血の場合は輸血、血栓症の場合は血液凝固阻止、および補体系を阻害することによって免疫破壊から血球を守るモノクローナル抗体エクリズマブ(Soliris(登録商標))の使用が含まれる(Hillmen P. et al., N. Engl. J. Med. 350(6):552-559(2004))。エクリズマブ(Soliris(登録商標))は、補体成分C5を標的とするヒト化モノクローナル抗体であり、C5コンバターゼによるC5切断を遮断し、それによって、C5aの産生およびMACの集合を阻止する。エクリズマブによるPNH患者の治療は、乳酸デヒドロゲナーゼ(LDH)によって測定された場合に血管内溶血を減少させ、患者の約半分におけるヘモグロビン安定化および輸血非依存性につながった(Risitano et al., Mini-Reviews in Medicinal Chemistry, 11(6)(2011))。エクリズマブ療法を受けたほぼ全員の患者においてLDHレベルが正常またはほぼ正常になったが(血管内溶血の管理のため)、患者の約1/3しか約11gr/dLのヘモグロビン値に達せず、エクリズマブを服用した残りの患者は中程度から重度の(すなわち、輸血依存性)貧血をほぼ同じ割合で示し続ける(Risitano A.M. et al., Blood 113:4094-100(2009))。Risitano et al., Mini-Reviews in Medicinal Chemistry 11:528-535(2011)に記載のように、エクリズマブを服用したPNH患者は、多量のPNH赤血球に結合したC3断片を含有する(が、未治療患者は含有しなかった)ことが証明された。この所見は、Solirisで治療されたPNH患者では、C5遮断のためにもはや溶血されなくなったPNH RBCは今や多量の膜結合C3断片を蓄積できるという認識につながっている。膜結合C3断片はオプソニンとして働き、その結果、特異的C3受容体を介して細網内皮細胞の中に捕捉され、その後に、血管外溶血が生じる。従って、エクリズマブ療法は血管内溶血および結果として生じる後遺症を阻止するが、これらのRBCの性質を単に血管内溶血から血管外溶血に変えるだけであり、その結果、多くの患者において未治療の貧血がかなり残る(Risitano A.M. et al., Blood 113:4094-100(2009))。従って、C3断片を介した血管外溶血を発症している患者は赤血球輸血を必要とし続けるので、これらの患者には、エクリズマブの使用の他に治療方針が必要とされる。このようなC3断片を標的とするアプローチは実験系において有用性を証明している(Lindorfer et al., Blood 115:2283-91, 2010)。
ii. PNHにおける補体開始機構
PNHにおける負の補体制御因子CD55およびCD59の不完全な表面発現の間の因果関係と、血管内溶血の阻止におけるエクリズマブの有効性の組み合わせから、PNHは、補体系によって媒介される状態であるとはっきりと定義される。このパラダイムは広く受け入れられているが、補体活性化を開始する事象、および関与する補体活性化経路がどういったものであるかは未解決のままである。CD55およびCD59は、全ての補体開始経路に共通する補体カスケード中の終末増幅段階を負に調節するので、補体活性化がレクチン経路によって開始されるか、古典経路によって開始されるか、第二経路の自発的代謝回転によって開始されるかに関係なく、これらの分子が欠損すると膜侵襲複合体の形成と膜組込みが悪化する。従って、PNH患者では、RBC表面上でのC3b沈着につながる、全ての補体活性化事象が、その後の増幅ならびに病理学的溶血(血管内溶血および/または血管外溶血)を誘発し、溶血発作を突然引き起こすことができる。PNH患者における溶血発作を誘発する分子事象のはっきりとした機構理解はまだなされていない。溶血発作を起こしているPNH患者における補体開始事象はまったく明らになってないので、PNHにおける補体活性化は低レベルの第二経路「アイドリング」活性化により自然発生する可能性があり、その後に、CD55およびCD59の欠如による不適切な終末補体活性化制御によって増大するというのが主流となっている見解である。
しかしながら、PNHの自然経過において、通常、PNHは補体活性化を誘発することが示されてきたある特定の事象、例えば、感染または損傷の後に発症または悪化することに注目することが重要である(Risitano, Biologics 2:205-222(2008))。この補体活性化反応は、刺激性の病原体に対する以前の宿主免疫に依存せず、従って、古典経路が関与しない可能性が高い。もっと正確に言うと、この補体活性化反応は、微生物作用物質または損傷宿主組織の表面に発現している外来炭水化物パターンまたは「変化した自己(altered self)」炭水化物パターンとのレクチン結合によって開始すると考えられる。従って、PNHにおいて溶血発作を突然引き起こす事象は、レクチンを介して開始する補体活性化と密接に関連している。このため、レクチン活性化経路は、最終的にPNH患者における溶血につながる開始トリガーを提供する可能性が非常に高い。
活性化カスケードを分子レベルで詳細に分析するために、本発明者らは、レクチンを介して補体を活性化する十分に明確な病原体を実験モデルとして使用して、誘因微生物に依存して、LEA-2またはLEA-1のいずれかによって補体活性化を開始させ、オプソニン化および/または溶解を生じさせることができることを十分に実証する。レクチン開始事象に対するこの同じ二重応答(すなわち、オプソニン化および/または溶解)の原理は、他のタイプの感染病原体または宿主への組織損傷後のレクチンによる補体活性化またはPNHを引き起こし得る他のレクチン駆動型補体活性化事象にも当てはまる可能性が高い。レクチン経路におけるこの二重性に基づいて、本発明者らは、PNH患者におけるLEA-2および/またはLEA-1開始補体活性化が、C3bによるRBCのオプソニン化および/または溶解ならびにその後の血管外および血管内溶血を促進すると推定する。したがって、PNHの状況において、LEA-1およびLEA-2両方の阻害は、血管外溶血および血管内溶血の両方に対処し、C5阻害因子エクリズマブに対する有意な利点を提供すると期待され得る。
肺炎連鎖球菌への曝露がレクチン依存性LEA-2活性化を優先的に発動させ、それが、C3bによるこの微生物のオプソニン化を生じさせることがわかった。肺炎連鎖球菌はMAC媒介性溶解に耐性であるため、循環からのクリアランスはC3bによるオプソニン化を通して起こる。このオプソニン化およびその後の循環からの除去は、MASP-2欠損マウスおよびMASP-2モノクローナル抗体で処理されたマウスにおける損なわれた細菌抑制によって示されるように、LEA-2依存性である(PLOS Pathog., 8:e1002793. (2012))。
微生物に対する生得的宿主反応におけるLEA-2の役割を調査する際、本発明者らはさらなる病原体を試験した。髄膜炎菌をモデル生物として研究した場合、劇的に異なる結果が認められた。髄膜炎菌もまた、レクチンを介して補体を活性化し、髄膜炎菌感染をナイーブな宿主中に封じ込めるためには、補体活性化が必要である。しかし、LEA-2はこの反応において宿主保護的機能的役割を果たさない。図8および9に示すように、MASP-2の遺伝的除去によるLEA-2の遮断は髄膜炎菌感染後の生存率を低下させない。逆に、これらの研究において、MASP-2除去によるLEA-2遮断は生存率(図8および9)および疾患スコア(図11)を有意に改善した。MASP-2抗体の投与によるLEA-2遮断が同じ結果を出し(図12)、可能な原因としてのノックアウトマウス系統における二次的または代償的効果を排除した。LEA-2除去動物におけるこれらの好ましい結果は、血液からの髄膜炎菌のより迅速な除去と関連するものであった(図10)。また、本明細書に記載されるように、正常ヒト血清との髄膜炎菌のインキュベーションが髄膜炎菌を死滅させた(図13)。LEA-2を遮断するヒトMASP-2に特異的な機能的モノクローナル抗体の添加がこの死滅応答を増強し得るが、アイソタイプ対照モノクローナル抗体の投与はそれをし得ない。それにもかかわらず、MBL欠損ヒト血清または熱不活化ヒト血清は髄膜炎菌を死滅させることができなかったため、このプロセスは、レクチンおよび少なくとも部分的に機能的補体系に依存する(図13)。総合的に、これら新規な発見は、機能的補体系の存在における髄膜炎菌感染が、レクチン依存性であるがLEA-2非依存性である補体活性化経路によって抑制されることを示唆する。
3MC患者からの血清標本を使用して、LEA-1がレクチン依存性の髄膜炎菌死滅を担う補体経路であり得るという仮説を試験した。この患者は、MASP-1/3遺伝子のエキソン12中のナンセンス突然変異に関してホモ接合性であった。その結果、この患者は、機能的MASP-3タンパク質を欠損していたが、他の点では補体充分であった(エキソン12はMASP-3転写物に特異的であり、突然変異はMASP-1機能または発現レベルに対して影響を及ぼさない)(Nat Genet. 43(3):197-203 (2011)を参照されたい)。正常ヒト血清は髄膜炎菌を効率的に死滅させるが、MBL(レクチン経路の認識分子の1つ)を欠損している熱不活化血清およびMASP-3欠損血清は髄膜炎菌を死滅させることができなかった(図14)。したがって、LEA-1は髄膜炎菌死滅を媒介すると考えられる。この発見は、ノックアウトマウス系統からの血清試料を使用して確認された。正常マウス血清を含む補体は髄膜炎菌を容易に死滅させたが、MBL欠損またはMASP-1/3欠損マウス血清は、機能的補体を欠損している熱不活化血清と同じくらい無効であった(図15)。逆に、MASP-2欠損血清は髄膜炎菌の効率的な死滅を示した。
これらの発見は、レクチン依存性補体活性化の別々のLEA-2およびLEA-1経路の存在を明らかにすることにより、これまで知られていなかったレクチン経路の二重性の証拠を提供する。上述した例において、LEA-2およびLEA-1は非重複性であり、別々の機能的結果を媒介する。データは、特定のタイプのレクチン経路アクチベーター(肺炎連鎖球菌を含むが、これに限定されない)は、LEA-2を介して補体活性化を優先的に開始させてオプソニン化を生じさせるが、一方、他のもの(例えば髄膜炎菌)は、LEA-1を介して補体活性化を優先的に開始させ、かつ細胞溶解プロセスを促進することを示唆する。しかし、他の状況においては両経路がオプソニン化および/または溶解を媒介することができるため、データは必ずしも、LEA-2をオプソニン化に限定し、かつLEA-1を細胞溶解プロセスに限定するものではない。
髄膜炎菌によるレクチン依存性補体活性化という状況では、LEA-2の遮断がインビトロで生物のLEA-1依存性溶解的破壊を増強したため、LEA-2およびLEA-1アームは互いに競合すると考えられる(図15)。上述したように、この発見は、MASP-2の非存在においてレクチンMASP-1複合体がレクチンMASP-3複合体に近接して存在し、それがLEA-1活性化を増強し、ひいてはより効果的な髄膜炎菌の溶解を促進する可能性の増大によって説明することができる。髄膜炎菌の溶解はナイーブな宿主における主要な保護機構であるため、インビボでのLEA-2の遮断は髄膜炎菌クリアランスを増大し、かつ死滅の増強を生じさせる。
上述した例は、髄膜炎菌感染後の転帰に関してLEA-2とLEA-1とで反対の効果を示すが、LEA-2とLEA-1とが共に相乗効果を発揮して特定の転帰を生じさせ得る他の状況があり得る。以下に詳述するように、PNHにおいて存在するような、レクチンを介する病理学的補体活性の他の状況において、LEA-2およびLEA-1駆動型補体活性化は相乗的に協働してPNHの病態全体に寄与し得る。加えて、本明細書に記載されるように、MASP-3もまた、B因子およびD因子のレクチン非依存性転換に寄与し、それはCa++の非存在において起こることができ、一般に、C3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせ、それがさらにPNHの病態に寄与し得る。
iii. PNHにおける生物学および予想される機能活性
このセクションは、PNHのインビトロモデルにおける溶血に対するLEA-2およびLEA-1遮断の阻害効果を記載する。この発見は、PNHの1つまたは複数の局面に罹患している患者を治療するためのLEA-2遮断物質(MASP-2に結合し、かつその機能を遮断する抗体を含むが、それに限定されない)およびLEA-1遮断物質(MASP-3、MASP-3または両方に結合し、かつそのMASP-1媒介性活性化の機能を遮断する抗体を含むが、それに限定されない)の有用性、ならびにエクリズマブのようなC5阻害因子による治療を受けるPNH患者においてC3断片媒介血管外溶血の効果を緩和するためののLEA-2および/またはLEA-1および/またはMASP-3依存性レクチン非依存性補体活性化の阻害因子(MASP-2阻害因子、MASP-3阻害因子、およびMASP-2/MASP-3またはMASP-1/MASP-2二重または二重特異性阻害因子、ならびに、汎特異性MASP-1/MASP-2/MASP-3阻害因子を含む)の使用を裏付ける。
iv. 細網内皮系を介するPNH RBCのオプソニン化および血管外溶血を遮断するためのMASP-2阻害因子
上に詳述したように、PNH患者は、循環からのRBCクリアランスの2つの別々の機構:膜侵襲複合体(MAC)の活性化による血管内溶血、ならびにC3bによるオプソニン化後の血管外溶血およびその後の細網内皮系による補体レセプター結合および取込み後のクリアランスにより、貧血になる。血管内溶血は、患者がエクリズマブで治療された場合に概ね予防される。エクリズマブは、補体開始活性化事象およびその後のオプソニン化の両方よりも下流で起こる終末溶解エフェクター機構を遮断するため、エクリズマブは血管外溶血を遮断しない(Risitano A.M. et. al., Blood 113:4094-100(2009))。その代わり、未治療PNH患者においては溶血を起こしたと考えられるRBCが、今や、活性化されたC3bタンパク質をその表面に蓄積できることができ、それが、細網内皮系による取込みを増強し、その血管外溶血を増強する。したがって、エクリズマブ治療は、実質的に、RBCの性質を血管内溶血から潜在的な血管外溶血に変える。結果として、エクリズマブで治療される一部のPNH患者は依然として貧血のままである。したがって、上流で補体活性化を遮断し、かつPNH RBCのオプソニン化を阻止する作用物質は、エクリズマブを用いてときおり見られる血管外溶血を遮断するのに特に適していることができるということになる。
本明細書に提示される微生物データは、LEA-2が、多くの場合、レクチン依存性オプソニン化の支配的なルートであることを示唆する。さらに、レクチン依存性オプソニン化(C3b沈着として測定)を3つのプロトタイプレクチン活性化面(マンナン、図19A;ザイモサン、図19Bおよび肺炎連鎖球菌、図19C)上で評価すると、LEA-2が、生理学的条件下(すなわち、すべての補体経路が作動可能であるCa++の存在において)、レクチン依存性オプソニン化の支配的なルートであると考えられる。これらの実験条件下、MASP-2欠損血清(LEA-2を欠く)は、試験面をオプソニン化する効果がWT血清よりも実質的に低い。MASP-1/3欠損血清(LEA-1を欠く)もまた損なわれているが、この効果は、LEA-2を欠く血清に比較してはるかに目立たない。レクチン駆動型オプソニン化へのLEA-2およびLEA-1の寄与の相対的大きさが図20A〜20Cにさらに示されている。レクチン経路または古典経路の非存在において補体の第二経路がレクチン活性化面のオプソニン化を支持することが報告されているが(Selander et al., J Clin Invest 116(5):1425-1434 (2006))、単離された第二経路(Ca++フリーのアッセイ条件下で測定)は、本明細書に記載されるLEA-2およびLEA-1開始プロセスよりも実質的に効果が低いと考えられる。補外法により、これらのデータは、PNH RBCのオプソニン化が、LEA-2によって優先的に開始され得、LEA-1によっては、レクチン非依存性第二経路活性化の結果よりも低い程度にしか開始され得ないことを示唆する(おそらくは第二経路増幅ループによって増幅される)。したがって、LEA-2阻害因子は、PNHにおいてオプソニン化を抑制し、かつ血管外溶血を防止するのに最も効果的であると予想され得る。しかし、MBL以外のレクチン、例えばフィコリンが非糖質構造、例えばアセチル化タンパク質に結合し、MASP-3がH-フィコリンと優先的に関連する(Skjoedt et al., Immunobiol. 215:921-931, 2010)という事実の認識は、PNH関連のRBCオプソニン化におけるLEA-1の有意な役割の可能性を残す。したがって、LEA-1阻害因子は、さらなる抗オプソニン効果を有すると予想され、LEA-1阻害因子とLEA-2阻害因子との組み合わせが最適であり、かつPNH患者におけるオプソニン化および血管外溶血を抑制する中で最も強い治療有益性を媒介すると予想される。この概念は、図28に示すオプソニン化データによってさらに裏付けられる。D因子欠損マウス血清(流体相中で第二経路を活性化する能力を欠くが、機能的古典経路ならびに機能的LEA-1およびLEA-2経路を有する)は、WT血清に比べてオプソニン化の欠損を示さない。LEA-1を欠くB因子欠損血清はオプソニン化の低下を示すが、一方、LEA-2媒介性補体活性化を遮断するためにMASP-2モノクローナル抗体で処理されたD因子欠損血清は、より強いオプソニン化抑制を生じさせる(図28)。重要なことに、B因子欠損血清へのMASP-2モノクローナル抗体の添加は、MASP-2遮断またはD因子遮断のいずれかのみよりも効果的にオプソニン化を抑制した。したがって、LEA-2およびLEA-1は、付加的または相乗的に作用してオプソニン化を促進し、交差反応性または二重特異性LEA-1/LEA-2阻害因子は、PNHにおけるオプソニン化および血管外溶血を阻止するのに最も効果的であると予想される。
v. PNHにおけるMASP-3阻害因子の役割
PNHのインビトロモデルを使用して、本発明者らは、PNHにおける補体活性化および結果的な溶血が実際にLEA-2および/またはLEA-1活性化によって開始され、それが、第二経路の独立した機能ではないことを実証した。これらの研究は、Crry欠損マウスからのRBC(マウスにおける終末補体経路の重要な負の調節物質)およびPNH患者には存在しない同じ補体調節物質を欠くCD55/CD59欠損マウスからのRBCをはじめとする様々なマウス系統のマンナン感作RBCを使用した。マンナン感作Crry欠損RBCを補体充分なヒト血清に曝露すると、RBCは、3%の血清濃度で実質的に溶血したが(図21および22)、一方、補体欠損血清(HI:熱不活化)は溶血性ではなかった。驚いたことに、MASP-2抗体の添加によってLEA-2が遮断された補体充分な血清は溶血活性が低下しており、効果的な溶血のためには6%血清が必要であった。CD55/CD59欠損RBCを試験した場合にも同様な観察結果が得られた(図24)。MASP-2モノクローナル抗体で補充された補体充分なヒト血清(すなわち、LEA-2が抑制された血清)は、溶血の支持において未処理の血清よりも効果が約2倍の低さであった。さらに、未処理の血清に比べて未処理のWT RBCの効果的な溶血を促進するためには、より高濃度のLEA-2遮断血清(すなわち、抗MASP-2モノクローナル抗体で処理された)が必要であった(図23)。
さらに驚くことに、機能不全MASP-3タンパク質に関してホモ接合性の3MC患者からの血清(したがって、LEA-1を欠く)は、マンナン感作Crry欠損RBCを溶血することが全くできなかった(図22および図23)。非感作正常RBCを使用した場合にも同様な結果が観察された。図23に示すように、3MC患者から単離したLEA-1欠損血清は、溶血を媒介する効果を全く有しなかった。要約すると、これらのデータは、LEA-2は血管内溶血応答に有意に寄与するが、LEA-1が、溶血を生じさせる支配的な補体開始経路であることを示す。したがって、LEA-2遮断物質は、PNH患者におけるRBCの血管内溶血を有意に減少させると予想されるが、LEA-1遮断物質はより深い効果を有し、補体駆動型溶血を概ね排除すると予想される。
この研究に使用されたLEA-1欠損3MC患者の血清は、従来の第二経路アッセイ条件下で試験した場合、減退しているが機能的である第二経路を有していたことが留意されるべきである(図17)。この発見は、LEA-1が、溶血に対し、このPNH実験状況において従来から定められている第二経路活性よりも大きな寄与を達成することを示唆する。推論すると、PNH患者における血管内溶血を予防または治療することにおいて、LEA-1遮断物質は、第二経路の他の局面を遮断する作用物質と少なくとも同じくらい有効であることが暗示される。
vi. PNHにおけるMASP-2阻害因子の役割
本明細書に提示されるデータは、PNHにおける貧血に関して以下の病原性機構を示唆する。主としてであるがただし排他的でなくLEA-1によって開始される、終末補体成分の調節されない活性化およびMACの形成によるRBCの溶解による血管内溶血、ならびに、主としてLEA-2によって開始されると考えられる、C3bによるRBCのオプソニン化によって生じる血管外溶血。補体活性化を開始し、MAC形成および溶血を促進することにおけるLEA-2の認められる役割は明らかであるが、このプロセスは、溶血を生じさせるLEA-1開始補体活性化よりも効果が実質的に低いと考えられる。したがって、LEA-2遮断物質は、PNH患者における血管内溶血を有意に減少させると予想されるが、この治療活性は部分的でしかないと予想される。比較により、LEA-1遮断物質の場合に、PNH患者における血管内溶血のより実質的な減少が予想される。
PNHにおいて貧血を生じさせる、それほど劇的ではないが等しく重要なRBC破壊機構である血管外溶血は、主として、主にLEA-2によって媒介されると考えられるC3bによるオプソニン化の結果である。したがって、LEA-2遮断物質は、PNHにおけるRBCオプソニン化およびその後に起こる血管外溶血を優先的に阻止すると予想され得る。この病原プロセスを体験するPNH患者のための治療は今のところ存在しないため、LEA-2遮断物質のこの特有の治療活性は、すべてのPNH患者に有意な治療有益性を提供すると予想される。
vii. LEA-1阻害因子または終末補体遮断物質に対する補助治療としてのLEA-2阻害因子
本明細書に提示されるデータは、別々のクラスの治療剤によって別々に、または組み合わせて標的化することができる、PNHにおけるRBCクリアランスおよび貧血の以下の2つの病原性機構を明示する:主としてであるがただし排他的でなくLEA-1によって開始され、したがって、LEA-1遮断物質によって効果的に予防されると予想される血管内溶血、および主としてLEA-2によって駆動され、したがってLEA-2遮断物質によって効果的に予防されるC3bオプソニン化による血管外溶血。
溶血の血管内機構および血管外機構の両方がPNH患者における貧血を生じさせることは十分に文献で立証されている(Risitano et al., Blood 113:4094-4100 (2009))。したがって、血管内溶血を防ぐLEA-1遮断物質が、主に血管外溶血を防ぐLEA-2遮断物質と組み合わさると、PNH患者において発症する貧血を防ぐことにおいて、いずれかの作用物質単独よりも効果的になると予想される。事実、LEA-1遮断物質とLEA-2遮断物質との組み合わせは、PNHにおける補体開始の関連するすべての機構を防ぎ、ひいてはPNHにおける貧血のすべての症候を阻止すると予想される。
また、C5遮断物質(例えばエクリズマブ)は、血管内溶血を効果的に阻止するが、オプソニン化を妨害しないことも公知である。これは、一部の抗C5治療PNH患者を、治療されないままであるLEA-2によって媒介される血管外溶血による実質的な残留貧血を抱える状態に放置する。したがって、血管内溶血を防ぐC5遮断物質(例えばエクリズマブ)が、血管外溶血を減少させるLEA-2遮断物質と組み合わさると、PNH患者において発症する貧血を防ぐことにおいて、いずれかの作用物質単独よりも効果的になると予想される。
C5活性化およびMAC沈着を生じさせる補体系の終末増幅ループを遮断する他の作用物質(プロパージン、B因子、もしくはD因子を遮断するかまたはI因子、H因子もしくは他の補体阻害因子の阻害活性を増強する、作用物質を含むが、これらに限定されない)もまた、血管内溶血を阻害すると予想される。しかし、これらの作用物質は、PNH患者におけるLEA-2媒介性オプソニン化を妨害するとは予想されない。これは、そのような作用物質で治療される一部のPNH患者を、治療されないままであるLEA-2によって媒介される血管外溶血による実質的な残留貧血を抱える状態に放置する。したがって、血管内溶血を防ぐそのような作用物質による治療が、血管外溶血を最小限にするLEA-2遮断物質と組み合わさると、PNH患者において発症する貧血を防ぐことにおいて、いずれかの作用物質単独よりも効果的になると予想される。事実、そのような作用物質とLEA-2遮断物質との組み合わせは、PNHにおけるRBC破壊の関連するすべての機構を防ぎ、ひいてはPNHにおける貧血のすべての症候を阻止すると予想される。
viii. PNHを治療するためのLEA-1およびLEA-2多重特異性、二重特異性、または汎特異性抗体の使用
上に詳述したように、個々にLEA-1およびLEA-2を遮断し、ひいては組み合わさって、血管内溶血および血管外溶血を媒介するすべての補体活性化事象を遮断する薬理学的物質の組み合わせの使用は、PNH患者にとって最良の臨床転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、LEA-1およびLEA-2複合遮断活性を有するそのような実体は、血管内溶血および血管外溶血を効果的に阻止し、PNHにおける貧血を予防する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、LEA-1を遮断し、LEA-2を減少させ、第二の抗原結合部位がMASP-2を特異的に認識し、さらにLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。あるいはまた、そのような実体は二重特異性モノクローナル抗体からなり得、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、第二の抗原結合部位がMASP-2を特異的に認識し、LEA-2を遮断する。そのような実体は最適には二重特異性モノクローナル抗体からなり得、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、LEA-2を減少させ、その上、第二の抗原結合部位がMASP-2を特異的に認識し、さらにLEA-2を遮断する。また、タンパク質配列およびアーキテクチャ全体の類似性に基づき、機能的にMASP-1、MASP-2、およびMASP-3に特異的に結合し、ひいてはLEA-1およびLEA-2の機能的遮断を達成する、2つの同一の結合部位を有する従来の抗体を開発することができると考えることができる。汎MASP阻害活性を有するそのような抗体は、血管内溶血および血管外溶血の両方を阻止し、ひいてはPNH患者における貧血を効果的に治療すると予想される。
IV. MASP阻害物質
補体のレクチン経路が2つの主要な補体活性化アームLEA-1およびLEA-2で構成され、また、レクチン非依存性補体活性化アームがあるという認識の上で、補体の免疫防御能力を完全には停止させることなく(すなわち、古典経路を完全なままにしておいて)、PNHと関連する病状を生じさせるこれらのエフェクターアームの1つまたは複数を特異的に阻害することが非常に望ましいと理解される。これは、免疫複合体処理を取り扱い、感染に対する宿主防御を支援するために、C1q依存性補体活性化系を完全なままにさせておくと考えられる。
i. LEA-1媒介性補体活性化を阻害するための組成物
本明細書に記載されるように、本発明者らは、溶解を生じさせるLEA-1の活性化がMASP-3依存性であることを予想外に発見した。本明細書にさらに記載されるように、生理学的条件下、MASP-3依存性LEA-1活性化はオプソニン化にも寄与し、それにより、LEA-2媒介性補体活性化との付加的効果を提供する。実施例7に実証されるように、Ca++の存在においては、MASP-3がD因子-/-血清中でLEA-1の活性化を駆動することができるため、D因子は必要とされない。MASP-3、MASP-1およびHTRA-1は、プロD因子を活性D因子へと転換することができる。同様に、MASP-3(MASP-1およびMASP-2とは対照的に)は、自己活性化酵素ではなく、MASP-1の支援なしにはその活性形態へと転換されることができないため、MASP-3活性化は、多くの場合、MASP-1に依存すると考えられる(Zundel, S. et al., J. Immunol. 172:4342-4350 (2004); Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013)。MASP-3は自己活性化せず、多くの場合、MASP-1の活性がその酵素的に活性な形態へと転換されることを必要とするため、第二経路C3コンバターゼC3BbのMASP-3媒介性活性化は、MASP-3酵素前駆体もしくはすでに活性化されたMASP-3を標的化すること、またはMASP-3のMASP-1媒介性活性化を標的化すること、またはその両方により、阻害することができる。理由は、多くの場合、MASP-1機能活性の非存在においては、MASP-3はその酵素前駆体形態にとどまり、第二経路C3コンバターゼ(C3bBb)の直接形成を通してLEA-1を駆動することができないからである。
したがって、本発明の一局面において、LEA-1を特異的に阻害するための治療剤の開発において標的化するのに好ましいタンパク質成分はMASP-3の阻害因子(MASP-1媒介性MASP-3活性化の阻害因子(例えばMASP-3活性化を阻害するMASP-1阻害因子)を含む)である。
前記に従って、一局面において、本発明は、PNHに罹患しているかまたはPNHを発症する危険のある対象においてLEA-1の有害作用(すなわち溶血およびオプソニン化)を阻害する方法であって、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質と、薬学的に許容される担体とを含む薬学的組成物を対象に投与する工程を含む、方法を提供する。
MASP-3阻害物質は、PNHに罹患しているかまたはPNHを発症する危険のある、生きた対象においてMASP-3依存性補体活性化を阻害するのに有効な量で投与される。本発明のこの局面の実施において、代表的なMASP-3阻害物質としては、B因子のレクチンMASP-3依存性活性化、プロD因子のレクチンMASP-3依存性活性化、B因子のMASP-3依存性レクチン非依存性活性化およびプロD因子のMASP-3依存性レクチン非依存性活性化の少なくとも1つまたは複数を阻害する分子(例えば小分子阻害因子、MASP-3抗体およびその断片、または、MASP-3と相互作用するかまたはタンパク質-タンパク質相互作用を妨害する遮断性ペプチド)ならびにMASP-3の発現を低下させる分子(例えばMASP-3アンチセンス核酸分子、MASP-3特異性RNAi分子、およびMASP-3リボザイム)を含む、MASP-3の生物学的活性を阻害する分子が挙げられる。MASP-3阻害物質は、MASP-3タンパク質-タンパク質相互作用を効果的に遮断し、MASP-3二量体化またはアセンブリを妨害し、Ca++結合を阻止し、MASP-3セリンプロテアーゼ活性部位を妨害し、またはMASP-3タンパク質発現を低下させて、それによりMASP-3がLEA-1媒介性またはレクチン非依存性補体活性化を活性化することを防ぎ得る。MASP-3阻害物質は、一次療法として単独で使用することもできるし、または本明細書にさらに記載されるように、他の医学的治療の治療有益性を高めるために、他の治療と組み合わせて補助療法として使用することもできる。
一態様において、MASP-3阻害物質は、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-3(SEQ ID NO:8)の一部に特異的に結合する。別の態様において、MASP-3阻害物質は、補体系中の他の成分に対する場合よりも少なくとも100倍大きい結合親和性でMASP-3(SEQ ID NO:8)の一部に特異的に結合する。一態様において、MASP-3阻害物質は、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)に特異的に結合し、かつMASP-3依存性補体活性化を阻害するが、ただし、MASP-3阻害物質は、MASP-1(SEQ ID NO:10)のセリンプロテアーゼドメインに結合せず、MASP-2(SEQ ID NO:5)のセリンプロテアーゼドメインにも結合しない。一態様において、MASP-3阻害物質は、MASP-3モノクローナル抗体またはその断片であり、その断片はMASP-3に特異的に結合する。
別の態様において、MASP-3阻害物質は、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-1(SEQ ID NO:10)の一部に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。別の態様において、MASP-3阻害物質は、補体系中の他の成分(すなわち、ポリペプチドまたはその断片)に対する場合よりも少なくとも100倍大きい結合親和性でMASP-1(SEQ ID NO:10)の一部に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。一部の態様において、MASP-3阻害物質は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。ただし、この阻害物質は、MASP-2(SEQ ID NO:5)のセリンプロテアーゼドメインに結合せず、これはMASP-3(SEQ ID NO:8)のセリンプロテアーゼドメインに結合しない。一態様において、MASP-3阻害物質は、MASP-1モノクローナル抗体またはその断片であり、その断片はMASP-1に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。一部の態様において、MASP-1に結合するMASP-3阻害物質は、MASP-3のMASP-1媒介性活性化を阻害し、かつ、D因子のMASP-1媒介性成熟をさらに阻害する。
別の態様において、MASP-3阻害物質は、MASP-3(SEQ ID NO:8)の一部に結合し、かつMASP-1(SEQ ID NO:10)の一部にも結合する。ただし、この阻害物質は、MASP-2(SEQ ID NO:5)またはMAp19(SEQ ID NO:3)には結合しない。一態様において、MASP-3阻害物質は、MASP-3(SEQ ID NO:8)の一部に結合し、かつMASP-1(SEQ ID NO:10)の一部にも結合する。ただし、この阻害物質は、MASP-2(SEQ ID NO:5)またはMAp19(SEQ ID NO:3)には結合しない。一態様において、MASP-3阻害物質は、MASP-3(SEQ ID NO:8)の一部に結合し、かつMASP-1(SEQ ID NO:10)の一部にも結合する。ただし、MASP-2(SEQ ID NO:5)、MAp19(SEQ ID NO:3)またはMAp44(SEQ ID NO:11)には結合せず、それにより、ヒト血清中に高濃度で存在するMAp44への結合の欠如のせいで、MASP-3依存性補体活性化を阻害するための有効用量を低下させることができる。
一態様において、MASP-3阻害物質は、図3〜5に示すような、MASP-1とMASP-3との間で保存されているアミノ酸領域、例えばCUBI-CCP2ドメイン(SEQ ID NO:10のaa25〜432)内のエピトープに結合するMASP-1/MASP-3二重阻害物質である。一態様において、MASP-3阻害物質は、MASP-1とMASP-3との間で保存されているアミノ酸領域内のエピトープに結合するが、ただし、MAp44、例えばCCPドメイン(SEQ ID NO:10のaa367〜432)には結合しない、MASP-1/MASP-3二重阻害物質である。別の態様において、MASP-3阻害物質は、MASP-3タンパク質(SEQ ID NO:8)上のエピトープおよびMASP-1タンパク質(SEQ ID NO:10)上のエピトープに特異的に結合する二重特異性阻害物質、例えば二重特異性モノクローナル抗体である。一部の態様において、MASP-3阻害物質は二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、かつMASP-3のセリンプロテアーゼ中のドメイン(SEQ ID NO:8のaa450〜711)にも結合する。
MASP-3阻害物質の結合親和性は、適切な結合アッセイ法を使用して測定することができる。
MASP-3依存性補体活性化の阻害は、本発明の方法によるMASP-3阻害物質の投与の結果として起こる補体系の成分における以下の変化の少なくとも1つを特徴とする:LEA-1媒介性補体活性化の阻害(溶血および/またはオプソニン化の阻害);B因子のレクチン非依存性転換の阻害;D因子のレクチン非依存性転換の阻害、MASP-3セリンプロテアーゼ基質特異性切断の阻害、溶血の減少(例えば実施例5に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば実施例4および11に記載されるように測定)。
一部の態様において、MASP-3阻害物質はMASP-3依存性補体活性化(すなわち、LEA-1媒介性補体活性および/またはB因子のレクチン非依存性転換および/またはD因子のレクチン非依存性転換)を選択的に阻害して、C1q依存性補体活性化系を機能的に完全な状態のままにしておく。
一部の態様において、MASP-3阻害物質は、抗体またはその断片、例えばMASP-3抗体およびそのMASP-3結合断片、MASP-1抗体およびその断片、天然および合成ペプチドまたは小分子である。一部の態様において、MASP-3阻害物質は、MASP-1に関して選択的またはMASP-3に関して選択的またはMASP-1およびMASP-3に関して選択的である小分子プロテアーゼ阻害因子である。
ii. LEA-2の活性化を阻害するための組成物
本明細書に記載されるように、LEA-2媒介性補体活性化はMASP-2依存性であり、オプソニン化および/または溶解を生じさせる。したがって、LEA-2レクチン依存性補体系を特異的に阻害するための治療剤の開発において標的化するのに好ましいタンパク質成分はMASP-2である。いくつかのタンパク質が、タンパク質-タンパク質相互作用を介してMASP-2に結合またはMASP-2と相互作用することが示されている。例えば、MASP-2は、レクチンタンパク質MBL、H-フィコリンおよびL-フィコリンならびにコレクチン-11に結合し、それらと一緒にカルシウム依存性複合体を形成することが知られている。Ma Y., et al., J Innate Immun. Epub Dec. 4 (2012)。各MASP-2/レクチン複合体は、タンパク質C4およびC2のMASP-2依存性切断によって補体を活性化することが示されている(Ikeda, K., et al., J. Biol. Chem. 262:7451-7454, (1987); Matsushita, M., et al., J. Exp. Med. 176:1497-2284, (2000); Matsushita, M., et al., J. Immunol. 168:3502-3506, (2002))。研究は、MASP-2のCUB1-EGFドメインがMBLとのMASP-2の関連に不可欠であることを示している(Thielens, N. M., et al., J. Immunol. 166:5068, (2001))。また、CUB1EGFCUBIIドメインが、活性MBL複合体の形成に必要であるMASP-2の二量体化を媒介することが示されている(Wallis, R., et al., J. Biol. Chem. 275:30962-30969, 2000)。したがって、MASP-2依存性補体活性化にとって重要であることが知られているMASP-2標的領域に結合するかまたはそれを妨害するMASP-2阻害物質を同定することができる。
前記に従って、一局面において、本発明は、PNHに罹患しているか、またはPNHを発症する危険のある、対象においてLEA-2媒介性補体活性化の有害作用を阻害する方法であって、MASP-2依存性補体活性化を阻害するのに有効な量のMASP-2阻害物質と、薬学的に許容される担体とを含む薬学的組成物を対象に投与する工程を含む、方法を提供する。
MASP-2阻害物質は、PNHに罹患しているかまたはPNHを発症する危険のある、生きた対象においてMASP-2依存性LEA-2を阻害するのに有効な量で投与される。本発明のこの局面の実施において、代表的なMASP-2阻害物質としては、MASP-2の生物学的活性を阻害する分子(例えば小分子阻害因子、MASP-2抗体、またはMASP-2と相互作用するかもしくはタンパク質-タンパク質相互作用を妨害する遮断性ペプチド)およびMASP-2の発現を低下させ、それにより、MASP-2がLEA-2を活性化することを防ぐ分子(例えばMASP-2アンチセンス核酸分子、MASP-2特異性RNAi分子、およびMASP-2リボザイム)が挙げられる。
MASP-2阻害物質は、MASP-2タンパク質-タンパク質相互作用を効果的に遮断し、MASP-2二量体化またはアセンブリを妨害し、Ca++結合を阻止し、MASP-2セリンプロテアーゼ活性部位を妨害し得るか、またはMASP-2タンパク質発現を低下させ得て、それによりMASP-2がLEA-2を活性化することを防ぎ得る。MASP-2阻害物質は、一次療法として単独で使用することもできるし、または本明細書にさらに記載されるように、他の医学的治療の治療有益性を高めるために、他の治療と組み合わせて補助療法として使用することもできる。
一態様において、MASP-2阻害物質は、補体系中の他の抗原に対する場合よりも少なくとも10倍大きい結合親和性でMASP-2(SEQ ID NO:5)の一部に特異的に結合する。別の態様において、MASP-2阻害物質は、補体系中の他の抗原に対する場合よりも少なくとも100倍大きい結合親和性でMASP-2(SEQ ID NO:5)の一部に特異的に結合する。一態様において、MASP-2阻害物質は、(i)CCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つに特異的に結合し、かつMASP-2依存性補体活性化を阻害する。ただし、該阻害物質は、MASP-1(SEQ ID NO:10)のセリンプロテアーゼドメインには結合せず、MASP-3(SEQ ID NO:8)のセリンプロテアーゼドメインに結合しない。一態様において、MASP-2阻害物質は、MASP-2モノクローナル抗体またはその断片であり、その断片はMASP-2に特異的に結合する。
MASP-2阻害物質の結合親和性は、適切な結合アッセイ法を使用して測定することができる。
MASP-2依存性補体活性化の阻害は、本発明の方法によるMASP-2阻害物質の投与の結果として起こる補体系の成分における以下の変化の少なくとも1つを特徴とする:MASP-2依存性補体活性化系産物C4b、C3a、C5aおよび/またはC5b-9(MAC)の生成または産生の阻害(例えば米国特許第7,919,094号の実施例2に記載されているように測定)、C4切断およびC4b沈着の減少(例えば実施例8または実施例9に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば実施例11に記載されるように測定)。
一部の態様において、MASP-2阻害物質はMASP-2補体活性化(すなわちLEA-2)を選択的に阻害して、C1q依存性補体活性化系を機能的に完全な状態のままにしておく。
一部の態様において、MASP-2阻害物質は、抗体またはその断片、例えばMASP-2抗体およびそのMASP-2結合断片、天然および合成ペプチドまたは小分子である。一部の態様において、MASP-2阻害物質は、MASP-2に関して選択的である小分子プロテアーゼ阻害因子である。
iii. LEA-1媒介性補体活性化およびLEA-2媒介性補体活性化を阻害するための組成物
別の局面において、本発明は、PNHの1つまたは複数の局面に罹患しているか、またはPNHを発症する危険のある、対象においてLEA-1の有害作用を阻害し、LEA-2の有害作用を阻害するための方法を提供する。
一態様において、本発明のこの局面は、PNHに罹患している対象において赤血球の生存率を増加させる方法であって、赤血球の生存率を増加させるのに有効な量のMASP-1阻害物質および/またはMASP-3阻害物質の少なくとも1つを含む組成物を対象に投与する工程を含む、方法に指向している。
一態様において、組成物はMASP-1阻害物質を含む。一態様において、MASP-1阻害物質は、MASP-3媒介性補体活性化を阻害し、MASP-2媒介性補体活性化も阻害する。
一態様において、組成物はMASP-3阻害物質を含む。一態様において、MASP-3阻害物質は、B因子のレクチンMASP-3依存性活性化;D因子のレクチンMASP-3依存性活性化;B因子のMASP-3依存性レクチン非依存性活性化;および/またはD因子のMASP-3依存性レクチン非依存性活性化の少なくとも1つを阻害する。
一態様において、組成物はMASP-1阻害物質およびMASP-3阻害物質を含む。
一部の態様において、方法は、MASP-2阻害物質を含む組成物を対象に投与する工程をさらに含む。
別の態様において、本発明のこの局面は、MASP-2依存性補体活性化を阻害するのに有効な量のMASP-2阻害物質と、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質と、薬学的に許容される担体とを含む薬学的組成物を、PNHに罹患している対象に投与する工程を含む。
一部の態様において、組成物は、LEA-1およびLEA-2の両方を阻害する単一の作用物質(すなわち、二重MASP-2/MASP-3阻害物質、二重MASP-1/MASP-2阻害物質、二重特異性MASP-2/MASP-3阻害物質、二重特異性MASP-1/MASP-2阻害物質、または汎MASP-1/2/3阻害物質もしくは三重特異性MASP-1/2/3阻害物質)を含む。一部の態様において、組成物は、本明細書にさらに記載されるような、組み合わさってLEA-1およびLEA-2の両方を阻害する、本明細書に記載されるような、LEA-1阻害物質とLEA-2阻害物質との組み合わせ、例えば二重阻害物質と単一阻害物質との組み合わせ、二重特異性阻害物質と単一阻害物質との組み合わせまたはMASP-1、MASP-2および/またはMASP-3阻害物質のいずれかの組み合わせを含む。
一態様において、本発明は、少なくとも1つのMASP-3阻害物質と、少なくとも1つのMASP-2阻害物質と、薬学的に許容される担体とを含む、LEA-1およびLEA-2の両方を阻害するための薬学的組成物を提供する。一態様において、薬学的組成物は、MASP-3阻害物質である第一の分子と、MASP-2阻害物質である第二の分子との組み合わせを含む。別の態様において、薬学的組成物は、MASP-3阻害物質としての活性およびMASP-2阻害物質としての活性を含む単一の分子実体(すなわち、MASP-2媒介性LEA-2活性化およびMASP-3媒介性LEA-1活性化の両方を阻害する阻害物質)を含む。一態様において、阻害物質は、図4、6および7Cに示すような、MASP-2(SEQ ID NO:5)とMASP-3(SEQ ID NO:8)との間で保存されているアミノ酸領域、例えばセリンプロテアーゼドメイン、例えばベータ鎖のN末端領域(例えば、SEQ ID NO:5およびSEQ ID NO:8のベータ鎖のN末端領域の最初の150aa)内のエピトープに結合するMASP-2/MASP-3二重阻害物質である。一態様において、阻害物質は、MASP-2タンパク質(SEQ ID NO:5)上のエピトープおよびMASP-3タンパク質(SEQ ID NO:8)上のエピトープに特異的に結合する二重特異性阻害物質、例えば二重特異性モノクローナル抗体である。一部の態様において、阻害物質は二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体は、MASP-2のCCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つに結合し、かつMASP-3のセリンプロテアーゼ中のエピトープ(SEQ ID NO:8のaa450〜711)にも結合する。
別の態様において、本発明は、MASP-2媒介性LEA-2活性化およびMASP-3のMASP-1媒介性活性化の両方を阻害し、それによりMASP-3媒介性LEA-1活性化を阻害する(また任意で、D因子のMASP-1媒介性成熟も阻害する)阻害物質を含む、LEA-1およびLEA-2の両方を阻害するための組成物を提供する。一態様において、阻害物質は、図4、6および7Aに示すような、MASP-1(SEQ ID NO:10)とMASP-2(SEQ ID NO:5)との間で保存されているアミノ酸領域、例えばセリンプロテアーゼドメイン内のエピトープに結合するMASP-1/MASP-2二重阻害物質である。一態様において、阻害物質は、MASP-1タンパク質(SEQ ID NO:10)上のエピトープおよびMASP-2タンパク質(SEQ ID NO:5)上のエピトープに特異的に結合する二重特異性阻害物質、例えば二重特異性モノクローナル抗体である。一部の態様において、阻害物質は二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、MASP-2のCCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つにも結合する。
別の態様において、本発明は、MASP-2媒介性LEA-2活性化を阻害し、MASP-3に直接結合することによってMASP-3媒介性LEA-1活性化を阻害し、かつMASP-3のMASP-1媒介性活性化も阻害し、それにより、MASP-3媒介性LEA-1活性化を阻害する(また任意で、D因子のMASP-1媒介性成熟も阻害する)阻害物質を含む、LEA-1およびLEA-2の両方を阻害するための組成物を提供する。一態様において、阻害物質は、図4および5に示すような、MASP-1(SEQ ID NO:10)とMASP-2(SEQ ID NO:5)とMASP-3(SEQ ID NO:8)との間で保存されているアミノ酸領域、例えばCUBI-EGF-CUB2ドメイン中の保存領域に結合する汎MASP阻害因子である。図4および5に示すように、CUBI-EGF-CUBIIドメイン中には、MASP-1、MASP-2、およびMASP-3の間で共有される数多くの同一性部分があり、それにより、汎特異性MASP抗体の生成を可能にする。一部の態様において、汎特異性MASP抗体は、MASP-1のCUB2ドメイン(SEQ ID NO:10のaa185〜296)、MASP-2のCUB2ドメイン(SEQ ID NO:5のaa184〜295)およびMASP-3のCUB2ドメイン(SEQ ID NO:8のaa185〜296)内のエピトープに結合することができる。MASP-1、MASP-2、およびMASP-3のCUBI-EGFに結合する汎特異性MASP阻害因子はまた、MAp19およびMAp44にも結合し、したがって、そのような阻害因子の有効治療用量は、この結合を補償するために高めのレベルに調節されることが留意される。さらに、MASP-1、MASP-2、およびMASP-3のCUBIIドメインに結合する汎特異性MASP阻害因子はまた、MAp44にも結合し、したがって、そのような阻害因子の有効治療用量は、この結合を補償するために高めのレベルに調節されることが留意される。
一態様において、阻害物質は、MASP-1タンパク質(SEQ ID NO:10)上のエピトープ、MASP-2タンパク質(SEQ ID NO:5)上のエピトープおよびMASP-3タンパク質(SEQ ID NO:8)上のエピトープに結合する三重特異性MASP-1/2/3阻害因子である。一部の態様において、阻害物質は三重特異性モノクローナル抗体であり、該三重特異性モノクローナル抗体は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、MASP-2のCCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つに結合し、かつMASP-3のセリンプロテアーゼ(SEQ ID NO:8のaa450〜711)中のエピトープにも結合する。
LEA-1、LEA-2またはLEA-1およびLEA-2を阻害するための例示的な阻害物質を以下の表2に記載する。
(表2)MASP阻害物質
Figure 0006815355
Figure 0006815355
Figure 0006815355
Figure 0006815355
*表2に記載されている交差反応性の列に関して、指定されたMASP阻害因子は、「結合しない」と記されている他の補体成分(すなわち、ポリペプチドまたはその断片)に対する場合よりも少なくとも10倍(例えば少なくとも20倍、少なくとも50倍または少なくとも100倍)大きい結合親和性で阻害因子結合ドメインに結合する。
一部の態様において、組成物は、LEA-1阻害物質とLEA-2阻害物質との組み合わせ、例えば、上述され、かつ表2に示された単一阻害物質の組み合わせを含む。例えば、一態様において、組成物は、MASP-1抗体とMASP-2抗体との組み合わせを含む。一態様において、組成物は、MASP-1抗体とMASP-3抗体との組み合わせを含む。一態様において、組成物は、MASP-2抗体とMASP-3抗体との組み合わせを含む。一態様において、組成物は、MASP-1抗体とMASP-2抗体とMASP-3抗体との組み合わせを含む。一部の態様において、本発明の方法は、阻害物質の組み合わせを含む単一組成物の投与を含む。他の態様において、本発明の方法は、別々の組成物の同時投与を含む。
一部の態様において、組成物は、二重阻害物質と単一阻害物質との組み合わせ(すなわち、MASP-2/3二重阻害因子+MASP-1阻害因子;MASP-1/3二重阻害因子+MASP-2阻害因子またはMASP-1/2二重阻害因子+MASP-3阻害因子)を含む。他の態様において、本発明の方法は、二重阻害因子および単一阻害因子を含む別々の組成物の同時投与を含む。
一部の態様において、組成物は、二重特異性阻害物質+単一阻害物質の組み合わせ(すなわち、MASP-2/3二重特異性阻害因子+MASP-1阻害因子;MASP-1/3二重特異性阻害因子+MASP-2阻害因子;またはMASP-1/2二重特異性阻害因子+MASP-3阻害因子)を含む。他の態様において、本発明の方法は、二重特異性阻害因子および単一阻害因子を含む別々の組成物の同時投与を含む。
本発明の様々な態様に従って、MASP-3阻害物質および/またはMASP-2阻害物質および/またはMASP-1阻害物質は、作用の部位を限局化しなければならないC5抗体に比べて、標的タンパク質を血漿から掃去するために使用されることが留意される。
V. MASP抗体
本発明のこの局面のいくつかの態様において、MASP阻害物質は、LEA-1および/またはLEA-2補体活性化経路の少なくとも1つを阻害するMASP抗体(例えば、MASP-1、MASP-2またはMASP-3抗体)を含む。本発明のこの局面において有用なMASP抗体は、任意の抗体産生哺乳動物由来のポリクローナル、モノクローナルまたは組換え抗体を含み、かつ、多重特異性(すなわち、二重特異性または三重特異性)、キメラ、ヒト化、完全ヒト、抗イディオタイプ、および抗体断片であり得る。抗体断片としては、本明細書にさらに説明するFab、Fab'、F(ab)2、F(ab')2、Fv断片、scFv断片および単鎖抗体がある。
MASP抗体は、本明細書に記載されるアッセイ法を使用して、LEA-1またはLEA-2依存性補体活性化系を阻害する能力に関してスクリーニングすることができる。いくつかのMASP-1、MASP-2、およびMASP-3抗体が文献に記載されており、いくつかが新たに生成されており、その一部は以下の表3に記載されている。これらの例示的なMASP抗体は、本明細書に記載されるアッセイ法を使用して、LEA-1および/またはLEA-2依存性補体活性化系を阻害する能力に関してスクリーニングすることができる。例えば、本明細書の実施例11〜13に記載されるように、MASP-2依存性補体活性化を遮断する抗ラットMASP-2 Fab2抗体が同定されている。実施例14にさらに記載されるように、MASP-2依存性補体活性化を遮断する完全ヒトMASP-2 scFv抗体が同定されている。実施例15にさらに記載されるように、MASP-3抗体が生成されている。LEA-1またはLEA-2の阻害因子として機能するMASP抗体が同定されたら、それを、本明細書に記載される薬学的組成物において使用することができ、また、それを表2に記載され、かつ本明細書においてさらに記載されるような二重特異性および三重特異性阻害物質を生成するために使用することができる(例えば実施例8を参照されたい)。
(表3)MASP-1、MASP-2、およびMASP-3特異性抗体
Figure 0006815355
Figure 0006815355
Figure 0006815355
i. エフェクター機能が低下したMASP抗体
本発明のこの局面の一部の態様において、古典的補体経路の活性化から生じ得る炎症を減少させるために、本明細書記載のMASP抗体はエフェクター機能が低下している。IgG分子が古典的補体経路を誘発する能力は、この分子のFc部分の中にあることが示されている(Duncan, A.R.. et al., Nature 332:738-740 (1988))。この分子のFc部分が酵素切断によって除去されているIgG分子には、このエフェクター機能がない(Harlow, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1988を参照されたい)。従って、エフェクター機能を最小化する遺伝子操作Fc配列を有することによって、またはヒトIgG2もしくはIgG4アイソタイプにすることによって、この分子のFc部分を欠いた結果としてエフェクター機能が低下した抗体を作製することができる。
エフェクター機能が低下した抗体は、Jolliffe et al., Int'l Rev. Immunol. 10:241-250 (1993)およびRodrigues et al., J. Immunol. 151:6954-6961 (1998)に記載のように、IgG重鎖のFc部分の標準的な分子生物学的操作によって作製することができる。エフェクター機能が低下した抗体はまた、補体を活性化する、および/またはFc受容体と相互作用する能力が低下したヒトIgG2およびIgG4アイソタイプも含む(Ravetch, J. V., et al., Annu. Rev. Immunol. 9:457-492 (1991); Isaacs, J.D., et al., J. Immunol. 148:3062-3071, 1992; van de Winkel, J.G., et al., Immunol Today 14:215-221 (1993))。IgG2またはIgG4アイソタイプからなる、ヒトMASP-1、MASP-2、またはMASP-3に特異的なヒト化抗体または完全ヒト抗体(二重抗体、汎抗体、二重特異性抗体、または三重特異性抗体を含む)は、Vaughan, T.J., et al., Nature Biotechnical 16:535-539 (1998)に記載のように当業者に公知のいくつかの方法の1つによって作製することができる。
ii. MASP-3抗体の作製
MASP-1、MASP-2、またはMASP-3抗体は、MASP-1、MASP-2、もしくはMASP-3ポリペプチド(例えば、完全長のMASP-1、MASP-2、もしくはMASP-3)を用いてまたは抗原性MASP-1、MASP-2、もしくはMASP-3エピトープ含有ペプチド(例えば、MASP-2ポリペプチドの一部)を用いて作製することができる。免疫原性ペプチドは5アミノ酸残基と小さくてもよい。例えば、本発明の方法において有用なMASP-2抗体を誘導するために、SEQ ID NO:5の全アミノ酸配列を含むMASP-2ポリペプチドが用いられてもよい。例えば表2に示される、タンパク質-タンパク質間相互作用に関与することが公知の特定のMASPドメイン、例えば、CUBIおよびCUBI-EGFドメイン、ならびにセリン-プロテアーゼ活性部位を含む領域が、当技術分野で周知の方法を用いて組換えポリペプチドとして発現され、抗原として用いられてもよい。さらに、MASP-1ポリペプチド(SEQ ID NO:10)またはMASP-2ポリペプチド(SEQ ID NO:5)またはMASP-3ポリペプチド(SEQ ID NO:8)の少なくとも6アミノ酸の部分を含むペプチドもまた、それぞれMASP-1、MASP-2、またはMASP-3抗体を誘導するのに有用である。抗体を産生させるのに用いられるMASPのペプチドおよびポリペプチドは、天然ポリペプチドまたは組換えペプチドもしくは合成ペプチドおよび触媒的に不活性な組換えポリペプチドとして単離されてもよい。MASP抗体の作製において有用な抗原はまた、融合ポリペプチド、例えば、MASPポリペプチドまたはその一部と免疫グロブリンポリペプチドまたはマルトース結合タンパク質との融合も含む。ポリペプチド免疫原は完全長分子またはその一部でもよい。ポリペプチド部分がハプテン様であれば、このような部分は、免疫のために、都合よく、巨大分子担体(例えば、キーホールリンペットヘモシアニン(KLH)、ウシ血清アルブミン(BSA)、または破傷風トキソイド)に接続または連結されてもよい。
iii. ポリクローナル抗体
MASP-1、MASP-2、またはMASP-3に対するポリクローナル抗体は、当業者に周知の方法を用いて、動物をMASP-1、MASP-2、またはMASP-3ポリペプチドまたはその免疫原性部分で免疫することによって調製することができる。例えば、Green et al.,「Production of Polyclonal Antisera」, Immunochemical Protocols(Manson, ed.)を参照されたい。MASPポリペプチドの免疫原性は、ミネラルゲル、例えば、水酸化アルミニウムまたはフロイントアジュバント(完全もしくは不完全)、界面活性物質、例えば、リゾレシチン、プルロニックポリオール、ポリアニオン、油エマルジョン、KLHおよびジニトロフェノールを含むアジュバントを用いて高まることができる。ポリクローナル抗体は、典型的には、動物、例えば、ウマ、ウシ、イヌ、ニワトリ、ラット、マウス、ウサギ、モルモット、ヤギ、またはヒツジにおいて産生される。または、本発明において有用なMASP抗体はまた、ヒトに近い霊長類に由来してもよい。ヒヒにおいて診断および治療に有用な抗体を産生するための一般的な技法は、例えば、Goldenberg et al.,国際特許公報WO91/11465、およびLosman, M.J., et al., Int. J. Cancer 46:310 (1990)において見られ得る。次いで、免疫学的に活性な抗体を含有する血清が、当技術分野において周知の標準的な手順を用いて、このような免疫動物の血液から生成される。
iv. モノクローナル抗体
一部の態様において、LEA-2阻害物質はMASP-2モノクローナル抗体であり、かつ/またはLEA-1阻害物質はMASP-3モノクローナル抗体またはMASP-1モノクローナル抗体である。上記のように、一部の態様において、MASP-1、MASP-2、またはMASP-3モノクローナル抗体は、単一のMASP-1、MASP-2、またはMASP-3エピトープに対して作られているので高度に特異的である。本明細書で使用する「モノクローナル」という修飾語は、抗体が実質的に均一な抗体集団から得られているという特徴を示し、特定の方法による抗体の作製を必要とすると解釈してはならない。モノクローナル抗体は、連続培養細胞株による抗体分子の作製を提供する任意の技法、例えば、Kohler, G., et al., Nature 256:495 (1975)に記載のハイブリドーマ法を用いて得ることができる。または、モノクローナル抗体は、組換えDNA法(例えば、Cabillyに対する米国特許第4,816,567号を参照されたい)によって作られてもよい。モノクローナル抗体は、Clackson, T., et al., Nature 352:624-628 (1991)、およびMarks, J.D., et al., J. Mol Biol. 222:581-597 (1991)に記載の技法を用いてファージ抗体ライブラリーから単離することもできる。このような抗体は、IgG、IgM、IgE、IgA、IgDを含む任意の免疫グロブリンクラスおよびその任意のサブクラスの抗体でよい。
例えば、モノクローナル抗体は、適切な哺乳動物(例えば、BALB/cマウス)に、MASP-1ポリペプチド、MASP-2ポリペプチド、もしくはMASP-3ポリペプチドまたはその一部を含む組成物を注射することによって得ることができる。予め決められた期間の後に、脾臓細胞をマウスから取り出し、細胞培地に懸濁する。次いで、脾臓細胞を不死細胞株と融合して、ハイブリドーマを形成する。形成されたハイブリドーマを細胞培養において増殖させ、MASP-1、MASP-2、またはMASP-3に対するモノクローナルを産生する能力についてスクリーニングする(Current Protocols in Immunology, Vol.1., John Wiley & Sons, 2.5.1-2.6.7頁, 1991も参照されたい)。
抗原曝露に反応して特異的ヒト抗体を産生するように操作されたトランスジェニックマウスを用いて、ヒトモノクローナル抗体を得ることができる。この技法では、ヒト免疫グロブリン重鎖遺伝子座および軽鎖遺伝子座の要素を、内因性免疫グロブリン重鎖遺伝子座および軽鎖遺伝子座の標的破壊を含有する胚性幹細胞株に由来するマウスの系統に導入する。このトランスジェニックマウスは、ヒト抗原、例えば、本明細書に記載のMASP-2抗原に特異的なヒト抗体を合成することができ、従来のケーラー・ミルステイン技術を用いて、このような動物に由来するB細胞を適切なミエローマ細胞株と融合することによってヒトMASP-2抗体分泌ハイブリドーマを作製するのに使用することができる。トランスジェニックマウスからヒト抗体を得るための方法は、例えば、Green, L.L., et al., Nature Genet. 7:13, 1994; Lonberg, N., et al., Nature 368:856, 1994;およびTaylor, L.D., et al., Int. Immun. 6:579, 3994によって述べられている。
モノクローナル抗体は、十分に確立した様々な技法によってハイブリドーマ培養物から単離および精製することができる。このような単離法には、プロテインA Sepharoseを用いたアフィニティークロマトグラフィー、サイズ排除クロマトグラフィー、およびイオン交換クロマトグラフィーが含まれる(例えば、Coliganの2.7.1-2.7.12頁および2.9.1-2.9.3頁; Baines et al., 「Purification of Immunoglobulin G(IgG)」, Methods in Molecular Biology, The Humana Press, Inc., Vol.10, 79-104頁, 1992を参照されたい)。
ポリクローナル、モノクローナルまたはファージ由来抗体は、製造されたら、まず、MASP-1、MASP-2、もしくはMASP-3特異的結合、または所望の場合にはMASP-1/3、MASP-2/3、もしくはMASP-1/2二重結合に関して試験される。抗体がタンパク質抗原に結合するかどうかおよび/またはタンパク質抗原に対する抗体の親和性を決定するための方法は当技術分野において公知である。例えば、タンパク質抗原への抗体の結合は、ウェスタンブロット法、ドットブロット法、表面プラズモン共鳴法(例えば、BIAcore system; Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, NJ)または酵素結合免疫吸着測定法(ELISA)を含むが、これらに限定されない多種多様な技術を使用して検出および/または定量化することができる。例えば、Harlow and Lane (1988) "Antibodies:A Laboratory Manual" Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.;Benny K. C. Lo (2004) "Antibody Engineering: Methods and Protocols," Humana Press (ISBN:1588290921); Borrebaek (1992) "Antibody Engineering, A Practical Guide," W.H. Freeman and Co., NY; Borrebaek (1995) "Antibody Engineering," 2nd Edition, Oxford University Press, NY, Oxford; Johne et al. (1993), Immunol. Meth. 160:191-198; Jonsson et al. (1993) Ann. Biol. Clin. 51:19-26;およびJonsson et al. (1991) Biotechniques 11:620-627を参照されたい。また、米国特許第6,355,245号も参照されたい。
MASPモノクローナル抗体の親和性は、当業者が容易に決定することができる(例えば、Scatchard, A., NY Acad. Sci. 51:660-672, 1949を参照されたい)。一態様において、本発明の方法に有用なMASP-1、MASP-2またはMASP-3モノクローナル抗体は、<100nM、好ましくは<10nMおよび最も好ましくは<2nMの結合親和性でMASP-1、MASP-2またはMASP-3に結合する。
MASP-1、MASP-2、またはMASP-3に特異的に結合する抗体が同定されたら、例えば表2に記載されているように、いくつかの機能アッセイ法の1つにおいて、LEA-1阻害物質またはLEA-2阻害物質として機能する能力に関してMASP-1、MASP-2またはMASP-3抗体を試験する。例えば表2に記載されているように、例えば、いくつかのアッセイ法の1つにおいて、LEA-2阻害物質として機能する能力に関して、MASP-2に特異的に結合する同定された抗体を試験する(例えば、レクチン特異性C4切断アッセイ法(例えば実施例8または実施例9に記載されるアッセイ法)またはC3b沈着アッセイ法(実施例4または実施例11に記載されるアッセイ法))。さらなる例として、例えば表2に記載されているように、いくつかのアッセイ法の1つにおいて、LEA-1阻害物質として機能する能力に関して、MASP-1またはMASP-3に特異的に結合する同定された抗体を試験する(例えば実施例5に記載されるように測定される溶血の減少または実施例4および実施例11に記載されるように測定されるC3切断およびC3b沈着の減少)。
v. キメラ/ヒト化抗体
本発明の方法において有用なモノクローナル抗体には、重鎖および/または軽鎖の一部が、特定の種に由来する抗体または特定の抗体クラスもしくはサブクラスに属する抗体の対応する配列と同一または相同であるが、鎖の残りが、別の種に由来する抗体または別の抗体クラスもしくはサブクラスに属する抗体の対応する配列と同一または相同であるキメラ抗体、ならびにこのような抗体の断片が含まれる(Cabillyに対する米国特許第4,816,567号;およびMorrison, S.L., et al., Proc. Nat'l Acad. Sci. USA 81:6851-6855, (1984))。
本発明において有用なキメラ抗体の一形態は、ヒト化モノクローナルMASP-1、MASP-2、またはMASP-3抗体である。非ヒト(例えば、マウス)抗体のヒト化型は、非ヒト免疫グロブリンに由来する最小配列を含有するキメラ抗体である。ヒト化モノクローナル抗体は、マウス免疫グロブリンの可変重鎖および可変軽鎖に由来する非ヒト(例えば、マウス)相補性決定領域(CDR)をヒト可変ドメインに導入することによって作製される。次いで、典型的に、非ヒト対応物のフレームワーク領域においてヒト抗体残基が代用される。さらに、ヒト化抗体は、レシピエント抗体にもドナー抗体にも見られない残基を含んでもよい。これらの改変は、抗体の性能にさらに磨きをかけるためになされる。一般的に、ヒト化抗体は、少なくとも1つの、および典型的には2つの可変ドメインの実質的に全てを含む。超可変ループの全てまたは実質的に全てが非ヒト免疫グロブリンの超可変ループに対応し、Fvフレームワーク領域の全てまたは実質的に全てがヒト免疫グロブリン配列のFvフレームワーク領域に対応する。ヒト化抗体はまた、任意で、免疫グロブリン定常領域(Fc)の少なくとも一部、典型的には、ヒト免疫グロブリンの免疫グロブリン定常領域(Fc)の少なくとも一部を含む。さらなる詳細については、Jones, P.T, et al., Nature 321:522-525 (1986); Reichmann, L., et al., Nature 332:323-329 (1988);およびPresta, Curr. Op. Struct. Biol. 2:593-596 (1992)を参照されたい。
本発明において有用なヒト化抗体には、少なくともMASP-1、MASP-2、またはMASP-3結合CDR3領域を含むヒトモノクローナル抗体が含まれる。さらに、IgA抗体またはIgM抗体ならびにヒトIgG抗体を作製するためにFc部分が交換されてもよい。このようなヒト化抗体は、ヒトMASP-1、MASP-2、またはMASP-3を特異的に認識するが、ヒトにおいて抗体それ自体に対する免疫応答を惹起しないので特に臨床において有用であると考えられる。その結果、このようなヒト化抗体は、ヒトでのインビボ投与に、特に、反復投与または長期投与が必要な場合により適している。
ヒト化モノクローナル抗体を作製するための技法は、例えば、Jones, P.T, et al., Nature 321:522, (1986); Carter, P., et al., Proc. Nat'l Acad. Sci. USA 89:4285, 1992; Sandhu, J.S., Crit. Rev. Biotech. 12:437, (1992); Singer, I.I., et al., J. Immun. 150:2844, (1993); Sudhir(ed.), Antibody Engineering Protocols, Humana Press, Inc., (1995); Kelley, 「Engineering Therapeutic Antibodies」, Protein Engineering:Principles and Practice, Cleland et al.(eds.), John Wiley & Sons, Inc., 399-434頁, (1996);およびQueen, (1997)に対する米国特許第5,693,762号にも記載されている。さらに、Protein Design Labs (Mountain View, CA)などの特定のマウス抗体領域からヒト化抗体を合成する事業実体がある。
vi. 組換え抗体
MASP-1、MASP-2、またはMASP-3抗体は組換え法を用いて作ることもできる。例えば、ヒト抗体断片(VH、VL、Fv、D因子、Fab、またはF(ab') 2)を作製するようにヒト免疫グロブリン発現ライブラリー(例えば、Stratagene, Corp., La Jolla, CAから入手可能)を用いてヒト抗体を作ることができる。次いで、キメラ抗体の作製法に類似した技法を用いて、これらの断片を用いてヒト抗体全体を構築する。
vii. 抗イディオタイプ抗体
望ましい阻害活性を有するMASP-1、MASP-2、またはMASP-3抗体が同定されたら、これらの抗体を用いて、当技術分野において周知の技法を用いてMASP-1、MASP-2、またはMASP-3の一部に似ている抗イディオタイプ抗体を生成することができる。例えば、Greenspan, N.S., et al., FASEB J. 7:437 (1993)を参照されたい。例えば、MASP-2に結合し、補体活性化に必要とされるMASP-2タンパク質相互作用を完全に阻害する抗体を用いて、MASP-2タンパク質上のMBL結合部位に似ている、従って、MASP-2の結合リガンド、例えば、MBLに結合し、これを中和する抗イディオタイプを生成することができる。
viii. 免疫グロブリン断片
本発明の方法において有用なMASP-2およびMASP-3阻害物質は、インタクトな免疫グロブリン分子だけでなく、抗体断片から形成された、Fab、Fab'、F(ab) 2、F(ab') 2、およびFv断片、scFv断片、ダイアボディ、直鎖抗体、単鎖抗体分子、ならびに多重特異性抗体(例えば、二重特異性抗体および三重特異性抗体)を含む周知の断片も包含する。
抗体とそのエピトープの結合には抗体分子の小さな部分であるパラトープしか関与しないことは当技術分野において周知である(例えば、Clark, W.R., The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., NY, 1986を参照されたい)。抗体のpFc'およびFc領域は古典的補体経路のエフェクターであるが、抗原結合に関与しない。pFc'領域が酵素切断されている抗体、またはpFc'領域なしで作製されている抗体はF(ab')2断片と呼ばれ、インタクトな抗体の抗原結合部位を両方とも保持する。単離されたF(ab') 2断片は、その2つの抗原結合部位のために二価モノクローナル断片と呼ばれる。同様に、Fc領域が酵素切断されている抗体、またはFc領域なしで作製されている抗体はFab断片と呼ばれ、インタクトな抗体分子の抗原結合部位のうちの1つを保持する。
抗体断片は、従来の方法による抗体全体のタンパク質加水分解、例えば、ペプシン消化またはパパイン消化によって得ることができる。例えば、抗体断片は、抗体をペプシンで酵素切断して、F(ab') 2と呼ばれる5S断片を得ることによって作製することができる。この断片は、3.5S Fab'一価断片を生じるチオール還元剤を用いてさらに切断することができる。任意で、ジスルフィド結合を切断する、スルフヒドリル基のブロック基を用いて、切断反応を行うことができる。代替として、ペプシンを用いた酵素切断によって、2つの一価Fab断片および1つのFc断片が直接、生成される。これらの方法は、例えば、Goldenbergに対する米国特許第4,331,647号; Nisonoff, A., et al., Arch. Biochem. Biophys. 89:230 (1960); Porter, R.R., Biochem, J. 73:119, (1959); Edelman, et al., Methods in Enzymology 1:422, Academic Press (1967);ならびにColiganの2.8.1-2.8.10頁および2.10.-2.10.4頁に記載されている。
一部の態様において、FcとFcγ受容体が結合すると開始する古典的補体経路の活性化を回避するためには、Fc領域の無い抗体断片を使用することが好ましい。Fcγ受容体相互作用を回避するモノクローナル抗体を作製することができる、いくつかの方法がある。例えば、モノクローナル抗体のFc領域をタンパク質分解酵素による部分消化(例えば、フィシン消化)を用いて化学的に除去し、それによって、例えば、抗原結合抗体断片、例えば、Fab断片またはF(ab) 2断片を生成することができる(Mariani, M., et al., Mol. Immunol. 28:69-71 (1991))。または、Fcγ受容体に結合しないヒトγ4 IgGアイソタイプを、本明細書に記載のようにヒト化抗体の構築中に使用することができる。Fcドメインの無い抗体、単鎖抗体、および抗原結合ドメインはまた、本明細書に記載の組換え法を用いて操作することもできる。
ix. 単鎖抗体断片
または、重鎖Fv領域および軽鎖Fv領域が連結されている、MASP-1、MASP-2、またはMASP-3に特異的なペプチド単鎖結合分子を作製することができる。Fv断片は、単鎖抗原結合タンパク質(scFv)を形成するようにペプチドリンカーで連結されてもよい。これらの単鎖抗原結合タンパク質は、オリゴヌクレオチドで連結された、VHドメインをコードするDNAおよびVLドメインをコードするDNAを含む構造遺伝子を構築することによって調製される。構造遺伝子は発現ベクターに挿入され、その後に、大腸菌などの宿主細胞に導入される。組換え宿主細胞は、2つのVドメインを架橋するリンカーペプチドを有する1本のポリペプチド 鎖を合成する。scFvを作製するための方法は、例えば、Whitlow, et al.,「Methods:A Companion to Methods in Enzymology」2:97 (1991); Bird, et al., Science 242:423 (1988); Ladnerに対する米国特許第4,946,778号; Pack, P., et al., Bio/Technology 11:1271 (1993)に記載されている。
例示的な例として、MASP-3特異的scFvは、インビトロでリンパ球をMASP-3ポリペプチドに曝露し、(例えば、固定化または標識されたMASP-3タンパク質またはペプチドを使用することによって)ファージベクターまたは類似ベクターの中にある抗体ディスプレイライブラリーを選択することによって得ることができる。潜在的なMASP-3ポリペプチド結合ドメインを有するポリペプチドをコードする遺伝子は、ファージまたは細菌、例えば、大腸菌にディスプレイされたランダムペプチドライブラリーをスクリーニングによって得ることができる。これらのランダムペプチドディスプレイライブラリーを用いて、MASP-3と相互作用するペプチドをスクリーニングすることができる。このようなランダムペプチドディスプレイライブラリーを作製し、スクリーニングするための技法は当技術分野において周知である(Lardnerに対する米国特許第5,223,409号; Ladnerに対する米国特許第4,946,778号; Ladnerに対する米国特許第5,403,484号; Ladnerに対する米国特許第5,571,698号;およびKay et al., Phage Display of Peptides and Proteins Academic Press, Inc., 1996)。このようなライブラリーをスクリーニングするためのランダムペプチドディスプレイライブラリーおよびキットは、例えば、CLONTECH Laboratories, Inc.(Palo Alto, Calif.)、Invitrogen Inc.(San Diego, Calif.)、New England Biolabs, Inc.(Beverly, Mass.)、およびPharmacia LKB Biotechnology Inc.(Piscataway, N.J.)から市販されている。
本発明のこの局面において有用なMASP-3抗体断片の別の形態が、MASP-3抗原上のエピトープに結合し、かつMASP-3依存性補体活性化(すなわちLEA-1)を阻害する単一の相補性決定領域(CDR)をコードするペプチドである。本発明のこの局面において有用なMASP-1抗体断片の別の形態が、MASP-1抗原上のエピトープに結合し、かつMASP-3依存性補体活性化(すなわちLEA-1)を阻害する単一の相補性決定領域(CDR)をコードするペプチドである。本発明のこの局面において有用なMASP-2抗体断片の別の形態が、MASP-2抗原上のエピトープに結合し、かつMASP-2依存性補体活性化(すなわちLEA-2)を阻害する単一の相補性決定領域(CDR)をコードするペプチドである。
CDRペプチド(「最小認識ユニット」)は、関心対象の抗体のCDRをコードする遺伝子を構築することによって得ることができる。このような遺伝子は、例えば、ポリメラーゼ鎖反応を用いて抗体産生細胞のRNAから可変領域を合成することによって調製される(例えば、Larrick et al., Methods; A Companion to Methods in Enzymology 2:106 (1991); Courtenay-Luck, 「Genetic Manipulation of Monoclonal Antibodies」, Monoclonal Antibodies:Production, Engineering and Clinical Application, Ritter et al., (eds.), 166頁, Cambridge University Press (1995);およびWard et al.,「Genetic Manipulation and Expression of Antibodies」, Monoclonal Antibodies:Principles and Applications, Birch et al., (eds,), 137頁, Wiley-Liss, Inc., 1995を参照されたい)。
LEA-1、LEA-2、またはLEA-1とLEA-2の組み合わせの補体活性化を阻害するために、本明細書に記載のMASP抗体は、それを必要とする対象に投与される。一部の態様において、MASP阻害物質は、エフェクター機能が低下した、高親和性ヒトまたはヒト化モノクローナルMASP-1、MASP-2、またはMASP-3抗体である。
x. 二重特異性抗体
本発明の方法において有用なMASP-2およびMASP-3阻害物質は、多重特異性(すなわち、二重特異性および三重特異性)抗体を包含する。二重特異性抗体は、少なくとも2つの異なる抗原への結合特異性を有するモノクローナル抗体、好ましくはヒトまたはヒト化抗体である。上述され、かつ表2に示されているように、一態様において、方法は、MASP-2への結合特異性(例えば、MASP-2のCCP1-CCP2またはセリンプロテアーゼドメインの少なくとも1つへの結合)およびMASP-3への結合特異性(例えば、MASP-3のセリンプロテアーゼドメインへの結合)を含む二重特異性抗体の使用を含む。別の態様において、方法は、MASP-1への結合特異性(例えば、MASP-1のセリンプロテアーゼドメインへの結合)およびMASP-2への結合特異性(例えば、MASP-2のCCP1-CCP2またはセリンプロテアーゼドメインの少なくとも1つへの結合)を含む二重特異性抗体の使用を含む。別の態様において、方法は、MASP-1への結合特異性(例えば、MASP-1のセリンプロテアーゼドメインへの結合)およびMASP-3への結合特異性(例えば、MASP-3のセリンプロテアーゼドメインへの結合)を含む二重特異性抗体の使用を含む。別の態様において、方法は、MASP-1への結合特異性(例えば、MASP-1のセリンプロテアーゼドメインへの結合)、MASP-2への結合特異性(例えば、MASP-2のCCP1-CCP2またはセリンプロテアーゼドメインの少なくとも1つへの結合)およびMASP-3への結合特異性(例えば、MASP-3のセリンプロテアーゼドメインへの結合)を含む三重特異性抗体の使用を含む。
二重特異性抗体を作製するための方法は当業者の知識の範囲内である。従来、二重特異性抗体の組換え製造は、2つの重鎖が異なる特異性を有する、2つの免疫グロブリン重鎖/軽鎖対の同時発現に基づく(Milstein and Cuello, Nature 305:537-539 (1983))。所望の結合特異性を有する抗体可変ドメイン(抗体-抗原結合部位)を免疫グロブリン定常ドメイン配列に融合させることができる。融合は、好ましくは、ヒンジ、CH2およびCH3領域の少なくとも一部を含む免疫グロブリン重鎖定常ドメインとの融合である。免疫グロブリン重鎖融合物および所望の場合には免疫グロブリン軽鎖をコードするDNAが、別々の発現ベクターに挿入され、かつ適切な宿主生物の中に同時トランスフェクトされる。二重特異性抗体を生成するための現在公知の例示的方法のさらなる詳細に関しては、例えば、Suresh et al., Methods in Enzymology 121:210 (1986); WO96/27011; Brennan et al., Science 229:81 (1985); Shalaby et al., J. Exp. Med. 175:217-225 (1992); Kostelny et al., J. Immunol. 148(5):1547-1553 (1992); Hollinger et al. Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993); Gruber et al., J. Immunol. 152:5368 (1994);およびTuft et al., J. Immunol. 147:60 (1991)を参照されたい。二重特異性抗体はまた、架橋またはヘテロコンジュゲート抗体を含む。ヘテロコンジュゲート抗体は、任意の好都合な架橋法を使用して作製し得る。適切な架橋剤は当技術分野において周知であり、いくつかの架橋技術とともに米国特許第4,676,980号に開示されている。
また組換え細胞培養から直接、二重特異性抗体断片を作製および分離するための様々な技術も記載されている。例えば、ロイシンジッパーを使用して二重特異性抗体が製造されている(例えば、Kostelny et al. J. Immunol. 148(5):1547-1553 (1992))。Hollinger et al. Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993)によって記載されている「ダイアボディ」技術が、二重特異性抗体断片を作製するための第二の機構を提供した。断片は、同じ鎖上の2つのドメイン間のペアリングを可能にするには短すぎるリンカーによって軽鎖可変ドメイン(VL)に接続された重鎖可変ドメイン(VH)を含む。したがって、1つの断片のVHおよびVLドメインが別の断片の相補的VLおよびVHドメインと対合させられ、それにより、2つの抗原結合部位を形成する。二重特異性ダイアボディはまた、大腸菌(E. coli)中で容易に構築し、かつ発現させることができるため、二重特異性完全抗体とは違って、特に有用であり得る。適切な結合特異性のダイアボディ(および抗体断片のような多くの他のポリペプチド)は、ライブラリーからのファージディスプレイ(WO94/13804)を使用して容易に選択することができる。ダイアボディの一方のアームを例えば抗原Xに対する特異性で一定に維持するのならば、他方のアームが変化するライブラリーを作製することができ、適切な特異性の抗体を選択することができる。
また、単鎖Fv(scFv)二量体の使用によって二重特異性抗体断片を作製するための別の戦略が報告されている(例えば、Gruber et al. J. Immunol., 152:5368 (1994)を参照されたい)。あるいはまた、抗体は、例えばZapata et al., Protein Eng. 8(10):1057-1062 (1995)に記載されているような「リニア抗体」であることができる。簡潔に説明するならば、これらの抗体は、抗原結合領域の対を形成するタンデムD因子セグメント(VH-CHI-VH-CHI)の対を含む。リニア抗体は二重特異性または単一特異性であることができる。本発明の方法はまた、二重特異性抗体の変異形態、例えば、Wu et al., Nat Biotechnol 25:1290-1297 (2007)に記載されているような四価二重可変ドメイン免疫グロブリン(DVD-Ig)分子の使用を包含する。DVD-Ig分子は、2つの異なる親抗体からの2つの異なる軽鎖可変ドメイン(VL)が組換えDNA技術によって直接または短いリンカーを介してタンデムにリンクされたのち、軽鎖定常ドメインがリンクされるように設計されている。2つの親抗体からDVD-Ig分子を生成するための方法は、例えば、それぞれの開示内容が全体として参照により本明細書に組み入れられるWO08/024188およびWO07/024715にさらに記載されている。
VI. 非ペプチド阻害因子
一部の態様において、MASP-3またはMASP-2阻害物質は、MASP-3もしくはMASP-2もしくはMASP-1阻害ペプチドまたはMASP-3もしくはMASP-2もしくはMASP-1の非ペプチド阻害因子である。非ペプチドMASP阻害物質は、例えば、動脈内、静脈内、筋肉内、皮下もしくは他の非経口投与または経口投与によって対象に全身投与され得る。MASP阻害物質は、慢性状態の治療または抑制のために長期にわたって定期的に投与され得るし、急性外傷または傷害の前、期間中または後の期間中に単回または反復投与され得る。
VII. 薬学的組成物および送達法
投薬
別の局面において、本発明は、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質と、薬学的に許容される担体とを含む組成物を対象に投与することを含む、PNHのような溶血性疾患に罹患している対象においてMASP-3依存性補体活性化の有害作用を阻害するための組成物を提供する。一部の態様において、方法は、MASP-2阻害物質を含む組成物を投与する工程をさらに含む。MASP-3およびMASP-2阻害物質は、MASP-3依存性補体活性化(LEA-1)とおよびまた任意でMASP-2依存性補体活性化(LEA-2)と関連する状態を治療または寛解するための治療的に有効な用量で、それを必要とする対象に投与することができる。治療的に有効な用量とは、状態の症候の寛解を生じさせるのに十分な、MASP-3阻害物質またはMASP-3阻害物質とMASP-2阻害物質との組み合わせの量を指す。
MASP-3およびMASP-2阻害物質の毒性および治療有効性は、実験動物モデルを用いる標準的な薬学的手法によって決定することができる。このような動物モデルを使用して、NOAEL(無毒性量)およびMED(最小有効量)を標準的な方法を使用して決定することができる。NOAEL効果とMED効果との用量比が治癒比であり、比NOAEL/MEDとして表される。大きな治癒比または指数を示すMASP-3阻害物質およびMASP-2阻害物質が最も好ましい。細胞培養アッセイ法および動物研究から得られたデータを、ヒトに使用する場合の範囲の投与量を処方するのに使用することができる。MASP-3阻害物質およびMASP-2阻害物質の投与量は、好ましくは、毒性がほとんどまたはまったくないMEDを含む循環濃度の範囲内にある。投与量は、用いられる剤形および利用される投与ルートに依存して、この範囲内で変化し得る。
任意の複合製剤の場合、治療有効量は、動物モデルを使用して評価することができる。例えば、MEDを含む循環血漿中濃度範囲を達成するための用量を動物モデルにおいて処方することができる。また、血漿中のMASP-3阻害物質またはMASP-2阻害物質の定量レベルを例えば高速液クロマトグラフィーによって測定し得る。
毒性研究に加えて、有効投与量はまた、生きた対象中に存在する標的MASPタンパク質の量およびMASP-3またはMASP-2阻害物質の結合親和性に基づいて推定し得る。
正常ヒト対象におけるMASP-1レベルは、血清中1.48〜12.83μg/mLの範囲のレベルで存在することが報告されている(Terai I. et al, Clin Exp Immunol 110:317-323 (1997); Theil et al., Clin. Exp. Immunol. 169:38 (2012))。正常ヒト対象における平均血清MASP-3濃度は約2.0〜12.9μg/mLの範囲であると報告されている(Skjoedt M et al., Immunobiology 215(11):921-31 (2010); Degn et al., J. Immunol. Methods, 361-37 (2010); Csuka et al., Mol. Immunol. 54:271 (2013)。正常ヒト対象におけるMASP-2レベルは、血清中500ng/mLの範囲の低いレベルで存在すると報告されており、特定の対象におけるMASP-2レベルは、Moller-Kristensen M., et al., J. Immunol. Methods 282:159-167 (2003)およびCsuka et al., Mol. Immunol. 54:271 (2013)に記載されている、MASP-2に関する定量アッセイ法を使用して測定することができる。
概して、MASP-3阻害物質またはMASP-2阻害物質を含む、投与される組成物の投与量は、対象の年齢、体重、身長、性別、全般的医学的状態および既往歴のような要因に依存して異なる。例示として、MASP-3阻害物質またはMASP-2阻害物質(例えばMASP-3抗体、MASP-1抗体またはMASP-2抗体)は、約0.010〜100.0mg/kg対象体重、好ましくは0.010〜10mg/kg対象体重、好ましくは0.010〜1.0mg/kg対象体重、より好ましくは0.010〜0.1mg/kg対象体重の投与量範囲で投与することができる。一部の態様において、MASP-2阻害物質(例えばMASP-2抗体)は、約0.010〜10mg/kg対象体重、好ましくは0.010〜1.0mg/kg対象体重、より好ましくは0.010〜0.1mg/kg対象体重の投与量範囲で投与される。一部の態様において、MASP-1阻害物質(例えばMASP-1抗体)またはMASP-3阻害物質(例えばMASP-3抗体)は、約0.010〜100.0mg/kg対象体重、好ましくは0.010〜10mg/kg対象体重、好ましくは0.010〜1.0mg/kg対象体重、より好ましくは0.010〜0.1mg/kg対象体重の投与量範囲で投与される。
所与の対象における本発明の、任意でMASP-2阻害組成物と組み合わされたMASP-3阻害組成物または任意でMASP-2阻害組成物と組み合わされたMASP-1阻害組成物および方法の治療有効性ならびに適切な投与量は、当業者に周知の補体アッセイ法に従って判定することができる。補体は非常に多くの特異的産物を生成する。過去十年間に、小さな活性化断片C3a、C4aおよびC5aならびに大きな活性化断片iC3b、C4d、BbおよびsC5b-9を含む、これらの活性化産物の大部分に関して高感度の特異的アッセイ法が開発され、かつ市販されている。これらのアッセイ法の大部分は、新たな抗原(ネオ抗原)と反応するモノクローナル抗体を利用し、新たな抗原は、断片上に露出しているが、それが形成される天然タンパク質の上には露出していないものであり、このことがこれらのアッセイ法を非常に簡単かつ特異的にする。大部分はELISA技術に頼るが、C3aおよびC5aの場合、まだラジオイムノアッセイ法が使用されることもある。これらの後者のアッセイ法は、処理されていない断片、および循環中に見られる主な形態である、それらの「desArg」断片の両方を測定する。処理されていない断片およびC5adesArgは、細胞表面レセプターに結合することによって迅速に掃去され、したがって、非常に低い濃度でしか存在しないが、C3adesArgは細胞に結合せず、血漿中に蓄積する。C3aの測定は、高感度の経路非依存的な補体活性化指標を提供する。第二経路活性化は、Bb断片の測定および/またはD因子活性化の測定によって評価することができる。膜侵襲経路活性化の液相産物sC5b-9の検出が、補体が完全に活性化されているという証拠を提供する。レクチン経路および古典経路はいずれも同じ活性化産物C4aおよびC4dを生成するため、これらの2つの断片の測定は、これらの2つの経路のどちらが活性化産物を生成したかに関する任意の情報を提供しない。
MASP-3依存性補体活性化の阻害は、本発明の方法によるMASP-3阻害物質の投与の結果として生じる補体系の成分における以下の変化の少なくとも1つを特徴とする:LEA-1媒介性補体活性化の阻害(溶血およびオプソニン化の阻害);MASP-3セリンプロテアーゼ基質特異性切断の阻害、溶血の減少(例えば実施例5に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば実施例4または実施例11に記載されるように測定)。
MASP-2依存性補体活性化の阻害は、本発明の方法によるMASP-2阻害物質の投与の結果として生じる補体系の成分における以下の変化の少なくとも1つを特徴とする:MASP-2依存性補体活性化系の産物C4b、C3a、C5aおよび/またはC5b-9(MAC)の生成または産生の阻害(例えば、米国特許第7,919,094号の実施例2に記載されているように測定)、C4切断およびC4b沈着の減少(例えば、実施例8または実施例9に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば、実施例11に記載されるように測定)。
i. 薬学的担体および送達ビヒクル
一般的に、本発明のMASP-3阻害物質組成物およびMASP-2阻害物質組成物、または、MASP-2阻害物質とMASP-3阻害物質の組み合わせを含む組成物は、他の任意の選択された治療剤と組み合わされてもよく、適宜、薬学的に許容される担体中に含まれる。担体は、無毒で、生体適合性があり、MASP-3阻害物質またはMASP-2阻害物質(およびMASP-2阻害物質と組み合わされた他の任意の治療剤)の生物学的活性に悪影響を及ぼさないように選択される。ペプチド用の例示的な薬学的に許容される担体は、Yamadaに対する米国特許第5,211,657号に記載されている。本明細書に記載される、本発明において有用なMASP抗体は、経口投与、非経口投与、または外科的投与を可能にする、固体、半固体、ゲル、液体、または気体の形をした調製物、例えば、錠剤、カプセル、散剤、顆粒、軟膏、溶液、デポジトリ(depository)、吸入剤、および注射剤に処方されてもよい。本発明はまた、医療装置などをコーティングすることによる組成物の局所投与も意図する。
注射、注入、または灌注、および局部送達を介した非経口送達に適した担体には、蒸留水、生理的リン酸緩衝食塩水、通常のリンガー液もしくは乳酸加リンガー液、デキストロース液、ハンクス液、またはプロパンジオールが含まれる。さらに、溶媒または分散媒として滅菌不揮発性油が使用されることもある。この目的のために、合成モノグリセリドまたはジグリセリドを含む、任意の生体適合性油を使用することができる。さらに、オレイン酸などの脂肪酸が注射液の調製において有用である。担体および作用物質は、液体、懸濁液、重合可能もしくは重合不可能なゲル、ペースト、または軟膏として配合されてもよい。
担体はまた、作用物質の送達を持続(すなわち、延長、遅延、もしくは調節)するために、または治療剤の送達、取り込み、安定性、もしくは薬物動態を増強するために送達ビヒクルを含んでもよい。このような送達ビヒクルは、非限定的な例として、タンパク質、リポソーム、炭水化物、合成有機化合物、無機化合物、ポリマーまたはコポリマーのヒドロゲル、およびポリマーミセルからなる、微粒子、マイクロスフェア、ナノスフェア、またはナノ粒子を含んでもよい。適切なヒドロゲルおよびミセル送達系には、WO2004/009664A2に開示されるPEO:PHB:PEOコポリマーおよびコポリマー/シクロデキストリン複合体、ならびに米国特許出願公開第2002/0019369A1号に開示されるPEOおよびPEO/シクロデキストリン複合体が含まれる。このようなヒドロゲルは目的の作用部位に局所に注射されてもよく、持効性デポーを形成するように皮下または筋肉内に注射されてもよい。
本発明の組成物は、皮下に、筋肉内に、静脈内に、動脈内に、または吸入剤として送達されるために製剤化されてもよい。
関節内送達の場合、MASP-3阻害物質またはMASP-2阻害物質は、注射可能な前記の液体担体もしくはゲル担体、注射可能な前記の持効性送達ビヒクル、またはヒアルロン酸もしくはヒアルロン酸誘導体の中に入れて運ばれてもよい。
非ペプチド物質の経口投与の場合、MASP-3阻害物質またはMASP-2阻害物質は、スクロース、コーンスターチ、またはセルロースなどの不活性な増量剤または希釈剤の中に入れて運ばれてもよい。
局部投与の場合、MASP-3阻害物質またはMASP-2阻害物質は、軟膏、ローション剤、クリーム、ゲル、点眼薬、坐剤、スプレー、液体もしくは粉末の中に入れて運ばれてもよく、ゲルまたはマイクロカプセル送達系の中に入れて経皮パッチを介して運ばれてもよい。
エアゾール剤、定量吸入器、ドライパウダー吸入器、およびネブライザーを含む様々な鼻送達系および肺送達系が開発中であり、それぞれ、エアゾール剤、吸入剤、または噴霧送達ビヒクルの中に入れて本発明の送達用に適切に適合化させることができる。
くも膜下腔内(IT)送達または脳室内(ICV)送達の場合、適切に滅菌した送達系(例えば、液体;ゲル、懸濁液など)を用いて、本発明の組成物を投与することができる。
本発明の組成物はまた、生体適合性の賦形剤、例えば、分散剤または湿潤剤、懸濁剤、希釈剤、緩衝液、浸透促進剤、乳化剤、結合剤、増粘剤、調味料(経口投与の場合)を含んでもよい。
ii. 抗体およびペプチドのための薬学的担体
本明細書に記載されるMASP抗体に関してより具体的には、例示的な製剤を、水、油、食塩水、グリセロール、またはエタノールなどの滅菌液体でもよい薬学的担体と共に、生理学的に許容される希釈剤に溶解した化合物の注射投与量の溶液または懸濁液として非経口投与することができる。さらに、MASP抗体を含む組成物中には、補助物質、例えば、湿潤剤または乳化剤、界面活性剤、pH緩衝物質などが存在してもよい。薬学的組成物のさらなる成分には、石油(例えば、動物由来、野菜由来、または合成由来の石油)、例えば、ダイズ油および鉱油が含まれる。一般的に、グリコール、例えば、プロピレングリコールまたはポリエチレングリコールが注射液に好ましい液体担体である。
MASP抗体はまた、活性物質を徐放または拍動放出(pulsatile release)するように処方することができるデポー注射剤または移植片調製物の形で投与することができる。
VIII. 投与の方法
MASP-3阻害物質またはMASP-2阻害物質を含む薬学的組成物は、局所投与方法または全身投与方法が、治療されている状態に最も適しているかどうかに応じて多くのやり方で投与することができる。さらに、本発明の組成物を移植可能な医療装置の表面に、または移植可能な医療装置の中にコーティングまたは組み込むことによって、本発明の組成物を送達することができる。
i. 全身送達
本明細書で使用する「全身送達」および「全身投与」という用語は、筋肉内(IM)投与経路、皮下投与経路、静脈内(IV)投与経路、動脈内投与経路、吸入投与経路、舌下投与経路、頬投与経路、局部投与経路、経皮投与経路、鼻投与経路、直腸投与経路、腟投与経路、および送達作用物質を1つまたは複数の目的の治療作用部位に効果的に分散させる他の投与経路を含む、経口経路および非経口経路を含むが、これに限定されないことが意図される。本組成物の好ましい全身送達経路には、静脈内経路、筋肉内経路、皮下経路、動脈内経路、および吸入経路が含まれる。本発明の特定の組成物において用いられる選択された作用物質の正確な全身投与経路は、一つには、ある特定の投与経路に関連した代謝変換経路に対する作用物質感受性を説明するように決定されることが理解されると考えられる。例えば、ペプチド物質は、最も適切には、経口以外の経路によって投与することができる。
本明細書に記載されるMASP阻害性抗体を、それを必要とする対象に任意の適切な手段によって送達することができる。MASP抗体およびポリペプチドの送達方法は、経口投与経路、肺投与経路、非経口投与経路(例えば、筋肉内投与経路、腹腔内投与経路、静脈内(IV)投与経路、もしくは皮下注射投与経路)、吸入投与経路(例えば、細粉製剤を介した吸入投与経路)、経皮投与経路、鼻投与経路、腟投与経路、直腸投与経路、または舌下投与経路を含み、それぞれの投与経路に適した剤形で処方することができる。
代表的な例として、ポリペプチドを吸収することができる身体の膜、例えば、鼻、胃腸、および直腸の膜に適用することによって、MASP阻害性抗体およびペプチドを生体内に導入することができる。ポリペプチドは典型的には浸透促進剤と共に吸収性の膜に適用される(例えば、Lee, V.H.L., Crit. Rev. Ther. Drug Carrier Sys. 5:69 (1988); Lee, V.H.L., J. Controlled Release 13:213 (1990); Lee, V.H.L,, Ed., Peptide and Protein Drug Delivery, Marcel Dekker, New York(1991); DeBoer, A.G., et al., J. Controlled Release 13:241 (1990)を参照されたい)。例えば、STDHFは、胆汁塩と構造が類似し、鼻送達用の浸透促進剤として用いられてきたステロイド性界面活性剤であるフシジン酸合成誘導体である(Lee, W.A., Biopharm. 22, Nov./Dec. 1990)。
酵素分解からポリペプチドを保護するために、本明細書に記載されるMASP阻害性抗体を脂質などの別の分子と結合させて導入することができる。例えば、ある特定のタンパク質を体内の酵素加水分解から保護し、従って、半減期を延長するために、ポリマー、特にポリエチレングリコール(PEG)の共有結合が用いられてきた(Fuertges, P., et al., J. Controlled Release 11:139 (1990))。タンパク質送達のための多くのポリマー系が報告されている(Bae, Y.H., et al., J. Controlled Release 9:271 (1989); Hori, R., et al., Pharm. Res. 6:813 (1989):Yamakawa, L, et al., J. Pharm. Sci. 79:505 (1990); Yoshihiro, I., et al., Controlled Release 10:195 (1989); Asano, M., et al., J. Controlled Release 9:111 (1989); Rosenblatt, J., et al., J. Controlled Release 9:195 (1989); Makino, K., J. Controlled Release 12:235 (1990); Takakura, Y., et al., J. Pharm. Sci. 78:117 (1989); Takakura, Y., et al., J. Pharm. Sci. 78:219 (1989))。
最近、血清安定性および循環半減期が改善したリポソームが開発された(例えば、Webbに対する米国特許第5,741,516号を参照されたい)。さらに、潜在的な薬物担体としてのリポソームおよびリポソーム様調製の様々な方法が詳しく調べられている(例えば、Szokaに対する米国特許第5,567,434号;Yagiに対する米国特許第5,552,157号;Nakamoriに対する米国特許第5,565,213号;Shinkarenkoに対する米国特許第5,738,868号;およびGaoに対する米国特許第5,795,587号を参照されたい)。
経皮適用の場合、本明細書に記載されるMASP阻害性抗体は担体および/またはアジュバントなどの他の適切な成分と組み合わされてもよい。目的の投与のために薬学的に許容されなければならなず、組成物の活性成分の活性を分解することができないことを除けば、このような他の成分がどういったものかには制限はない。適切なビヒクルの例には、精製コラーゲンを含む、または含まない、軟膏、クリーム、ゲル、または懸濁液が含まれる。MASP阻害性抗体はまた、好ましくは、液体または半液体の形で、経皮パッチ、硬膏、および包帯に含浸されてもよい。
本発明の組成物は、望ましいレベルの治療効果を維持するよう決定された間隔で定期的に全身投与されてもよい。例えば、組成物は、例えば、皮下注射によって2〜4週間ごとにまたはそれより少ない頻度で投与されてもよい。投与計画は、作用物質の組み合わせの作用に影響を及ぼし得る様々な要因を考慮して医師によって決定されると考えられる。これらの要因は、治療されている状態の進行の程度、患者の年齢、性別、および体重、ならびに他の臨床要因を含むと考えられる。それぞれの個々の作用物質の投与量は、組成物に含まれるMASP-3阻害物質またはMASP-2阻害物質、ならびに任意の薬物送達ビヒクル(例えば、持効性送達ビヒクル)の存在および内容の関数として変化すると考えられる。さらに、送達作用物質の投与頻度および薬物動態学的挙動の変動の原因となるように投与量を調節することができる。
ii. 局所送達
本明細書で使用する「局所」という用語は、目的の限局作用の部位の中に、または目的の限局作用の部位の周囲に薬物を適用することを包含し、例えば、皮膚または他の患部組織への局部送達、眼送達、くも膜下腔内(IT)、脳室内(ICV)、関節内、洞内、頭蓋内、もしくは小胞内の投与、留置、または灌注を含んでもよい。局所投与は、低用量の投与が全身副作用を回避するために、ならびに局所送達部位に活性物質を送達および濃縮するタイミングをより正確に制御するために好ましい場合がある。局所投与は、代謝、血流などの患者間のばらつきに関係なく標的部位において既知濃度を供給する。改善された投与量制御は直接的な送達方法によっても提供される。
MASP-3阻害物質またはMASP-2阻害物質の局所送達は、疾患または状態を治療するための外科的方法の状況において、例えば、動脈バイパス外科手術、アテレクトミー、レーザー処置、超音波処置、バルーン血管形成術、およびステント留置などの処置中に実現することができる。例えば、バルーン血管形成術と共にMASP-3阻害物質またはMASP-2阻害物質を対象に投与することができる。バルーン血管形成術は、収縮したバルーンを有するカテーテルを動脈に挿入することを伴う。収縮したバルーンはアテローム性動脈硬化巣の近くに配置され、プラークが血管壁に押しつけられるように膨張される。結果として、バルーン表面は血管の表面にある血管内皮細胞の層と接触する。MASP-3阻害物質またはMASP-2阻害物質は、アテローム性動脈硬化巣の部位に該物質を放出できるようにバルーン血管形成術カテーテルに取り付けられてもよい。該物質は、当技術分野において公知の標準的な手順に従ってバルーンカテーテルに取り付けることができる。例えば、バルーンが膨張されるまで、該物質はバルーンカテーテルの一区画に保管されてもよく、膨張時に該物質は局所環境に放出される。または、バルーンが膨張された場合に、該物質は動脈壁細胞と接触するようにバルーン表面に含浸されてもよい。該物質はまた、穴のあいたバルーンカテーテル、例えば、Flugelman, M.Y., et al., Circulation 85:1110-1117 (1992)に開示される穴のあいたバルーンカテーテルの中に入れて送達されてもよい。治療用タンパク質をバルーン血管形成術カテーテルに取り付けるための例示的な手順については、公開されたPCT出願WO95/23161も参照されたい。同様に、MASP-3阻害物質またはMASP-2阻害物質は、ステントに適用されるゲルまたはポリマーコーティングの中に含まれてもよく、血管留置後にステントがMASP-3阻害物質またはMASP-2阻害物質を溶出するようにステント材料に組み込まれてもよい。
関節炎および他の筋骨格障害の治療において用いられるMASP-3阻害物質またはMASP-2阻害物質は関節内注射によって局所送達されてもよい。このような組成物は、適宜、持効性送達ビヒクルを含んでもよい。局所送達が望ましいことがある場合のさらなる例として、泌尿生殖器状態の治療において用いられるMASP-2阻害性組成物は、適宜、膀胱内に、または別の泌尿生殖器構造の中に点滴注入されてもよい。
IX. 治療レジメン
予防用途では、薬学的組成物は、PNHにかかりやすいか、またはそうでなければPNHを発症するリスクのある対象に、状態の症状を発症するリスクを排除するかまたは低下させるのに十分な量で投与される。治療用途では、薬学的組成物は、PNHに罹患していると疑われるか、またはPNHに既に罹患している対象に、状態の症状を軽減するかまたは少なくとも部分的に低下させるのに十分な治療的有効量で投与される。
一態様において、対象の赤血球は組成物の非存在下ではC3断片によってオプソニン化され、組成物を対象に投与すると対象における赤血球の生存が向上する。一態様において、対象は、組成物の非存在下では、(i)正常より少ないレベルのヘモグロビン;(ii)正常より少ないレベルの血小板;(iii)正常より多いレベルの網状赤血球;および(iv)正常より多いレベルのビリルビンからなる群より選択される1つまたは複数の症状を示す。対象に組成物を投与すると症状の少なくとも1つまたは複数が改善され、その結果、(i)ヘモグロビンのレベルが増加する、正常になる、もしくはほぼ正常になる、(ii)血小板のレベルが増加する、正常になる、もしくはほぼ正常になる、(iii)網状赤血球レベルが減少する、正常になる、もしくはほぼ正常になる、および/または(iv)ビリルビンのレベルが減少する、正常になる、もしくはほぼ正常になる。
予防レジメンおよび治療レジメンの両方において、MASP-3阻害物質および任意でMASP-2阻害物質を含む組成物は、対象において十分な治療アウトカムが得られるまで、いくつかの投与量に分けて投与されてもよい。本発明の一態様において、MASP-3阻害物質および/またはMASP-2阻害物質はMASP-1抗体、MASP-2抗体、またはMASP-3抗体を含み、それらは、適切には、0.1mg〜10,000mg、より適切には1.0mg〜5,000mg、より適切には10.0mg〜2,000mg、より適切には10.0mg〜1,000mg、さらにより適切には50.0mg〜500mg、または10mg〜200mgの投与量で成人患者(例えば、70kgの平均成人体重)に投与されてもよい。小児患者の場合、投与量は患者の体重に比例して調節することができる。
本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、PNH治療の場合、組成物(例えば、MASP-2およびMASP-3に対する阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物、あるいは別々の組成物の同時投与)の単回投与、あるいは限られた回数の連続投与によって実施され得る。あるいはまた、組成物は、PNH治療の場合、長期間にわたり、毎日、週2回、週1回、2週に1回、月1回または月に2回のような定期的間隔で投与されてもよい。
一部の態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物が、PNHに罹患している対象に投与される。一態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は同時に(すなわち、約15分またはそれ未満、例えば10分以下、5分以下または1分以下のいずれかの時間間隔で)投与される。一態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は順次に投与される(すなわち、第一の組成物が第二の組成物の投与の前または後のいずれかで投与され、投与の時間間隔は15分超である)。一部の態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は同時並行的に投与される(すなわち、第一の組成物の投与期間が第二の組成物の投与と重複する)。例えば、一部の態様において、第一の組成物および/または第二の組成物は、少なくとも1週、2週、3週、もしくは4週、またはそれ以上の期間にわたり投与される。一態様において、少なくとも1つのMASP-3阻害物質および少なくとも1つのMASP-2阻害物質は単位剤形に組み合わされる。一態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は、PNHの治療に使用するためのキットとして一緒にパッケージングされる。
一部の態様において、PNHに罹患している対象は、補体タンパク質C5の切断を阻害する終末補体阻害因子による治療を以前に受けたことがあるかまたは現在受けている。一部の態様において、前記方法は、MASP-3阻害物質および任意でMASP-2阻害因子を含む本発明の組成物を対象に投与する工程を含み、補体タンパク質C5の切断を阻害する終末補体阻害因子を対象に投与する工程をさらに含む。一部の態様において、終末補体阻害因子はヒト化抗C5抗体またはその抗原結合断片である。一部の態様において、終末補体阻害因子はエクリズマブである。
X. 実施例
以下の実施例は、本発明の実施について意図された最良の態様(best mode)の単なる例示であり、本発明を限定すると解釈してはならない。本明細書中の全ての文献引用が明確に参照により組み入れられる。
実施例1
本実施例は、MASP-2欠損マウスが、髄膜炎菌血清群Aまたは髄膜炎菌血清群Bのどちらかに感染した後に髄膜炎菌誘導死から保護されることを証明する。
方法
MASP-2ノックアウトマウス(MASP-2 KOマウス)を、本明細書に参照として組み入れられるUS 7,919,094の実施例1に記載のように生成した。100μl体積で投与量2.6×107CFUの髄膜炎菌血清群A Z2491を腹腔内(i.p.)注射することによって、10週齢MASP-2 KOマウス(n=10)および野生型(WT)C57/BL6マウス(n=10)に接種した。感染用量を、最終濃度400mg/kgの鉄デキストランと一緒にマウスに投与した。72時間の期間にわたって感染後のマウスの生存をモニタリングした。
別の実験では、100μl体積で投与量6×106CFUの髄膜炎菌血清群B MC58株をi.p.注射することによって、10週齢MASP-2 KOマウス(n=10)およびWTC57/BL6マウス(n=10)に接種した。感染用量を、最終用量400mg/kgの鉄デキストランと一緒にマウスに投与した。72時間の期間にわたって感染後のマウスの生存をモニタリングした。感染後72時間の期間中に、以下の表4に記載の疾病スコアリングパラメータに基づいて、WTマウスおよびMASP-2 KOマウスの疾病スコアも求めた。この疾病スコアリングはFransen et al., (2010)の手法に基づき、これにわずかな変更を加えた。
(表4)感染マウスにおける臨床徴候に関連した疾患スコアリング
Figure 0006815355
感染を検証し、血清からの細菌クリアランスの割合を決定するために、感染後1時間おきにマウスから血液試料を採取し、分析して、髄膜炎菌の血清レベル(log cfu/mL)を求めた。
結果
図8は、感染用量2.6×107cfuの髄膜炎菌血清群A Z2491を投与させた後のMASP-2 KOマウスおよびWTマウスの生存率(%)を図示したカプラン・マイヤープロットである。図8に示したように、感染後72時間の期間全体を通じて100%のMASP-2 KOマウスが生存した。対照的に、感染24時間後、WTマウスの80%しか生存しておらず(p=0.012)、感染72時間後、WTマウスの50%しか生存していなかった。これらの結果から、MASP-2欠損マウスは髄膜炎菌血清群A Z2491誘導死から保護されることが証明される。
図9は、感染用量6×106cfuの髄膜炎菌血清群B MC58株を投与した後のMASP-2 KOマウスおよびWTマウスの生存率(%)を図示したカプラン・マイヤープロットである。図9に示したように、感染後72時間の期間全体を通じてMASP-2 KOマウスの90%が生存した。対照的に、感染24時間後、WTマウスの20%しか生存していなかった(p=0.0022)。これらの結果から、MASP-2欠損マウスは髄膜炎菌血清群B MC58株誘導死から保護されることが証明される。
図10は、6×106cfuの髄膜炎菌血清群B MC58株にi.p.感染させた後のMASP-2 KOマウスおよびWTマウスから採取された血液試料中にある様々な時点で回収された髄膜炎菌血清群B MC58株のlog cfu/mLを図示する(両マウス群において様々な時点でn=3)。結果を平均±SEMとして表した。図10に示したように、WTマウスにおいて、血中の髄膜炎菌レベルは感染24時間後に約6.0 log cfu/mLのピークに達し、感染後36時間までに約4.0 log cfu/mLまで落ちた。対照的に、MASP-2 KOマウスにおいて、髄膜炎菌レベルは感染12時間後に約4.0 log cfu/mLのピークに達し、感染後36時間までに約1.0 log cfu/mLまで落ちた。(記号「*」はp<0.05を示す;記号「**」はp=0.0043を示す)。これらの結果から、MASP-2 KOマウスにWTマウスと同用量の髄膜炎菌血清群B MC58株を感染させたが、MASP-2 KOマウスはWTと比較して菌血症のクリアランスを増強したことが証明される。
図11は、6×106cfuの髄膜炎菌血清群B MC58株を感染させて3時間後、6時間後、12時間後、および24時間後のMASP-2 KOマウスおよびWTマウスの平均疾病スコアを図示する。図11に示したように、MASP-2欠損マウスは感染に対して高い耐性を示し、感染させて6時間後(記号「*」はp=0.0411を示す)、12時間後(記号「**」はp=0.0049を示す)、および24時間後(記号「***」はp=0.0049を示す)の疾病スコアは非常にWTマウスと比較して非常に低かった。図11の結果を平均±SEMとして表した。
要約すると、本実施例の結果から、MASP-2欠損マウスは、髄膜炎菌血清群A感染後または髄膜炎菌血清群B感染後に髄膜炎菌誘導死から保護されることが証明される。
実施例2
本実施例は、髄膜炎菌感染後のMASP-2抗体の投与が髄膜炎菌感染マウスの生存率を増加させることを実証する。
背景/原理
参照により本明細書に組み入れられる米国特許第7,919,094号の実施例24に記載されているように、ラットMASP-2タンパク質を使用してFabファージディスプレイライブラリーをパンニングし、そこからFab2#11を機能的に活性な抗体として同定した。ラットIgG2cおよびマウスIgG2aアイソタイプの完全長抗体をFab2#11から生成した。マウスIgG2aアイソタイプの完全長MASP-2抗体を薬力学的パラメータに関して特徴決定した(米国特許第7,919,094号の実施例38に記載されているとおり)。
この実施例においては、Fab2#11由来のマウスMASP-2完全長抗体を髄膜炎菌感染のマウスモデルにおいて分析した。
方法
上記のように生成したFab2#11由来のマウスIgG2a完全長MASP-2抗体アイソタイプを、以下のように、髄膜炎菌感染マウスモデルにおいて試験した。
1. 感染後のマウスMASP-2モノクローナル抗体(MoAb)の投与
9週齢C57/BL6チャールズリバーマウスを、高用量(4×106cfu)の髄膜炎菌血清型B株MC58の腹腔内注射から3時間後、阻害性マウスMASP-2抗体(1.0mg/kg)(n=12)または対照アイソタイプ抗体(n=10)で処理した。
結果
図12は、感染量4×106cfuの髄膜炎菌血清群B株MC58の投与ののち、阻害性MASP-2抗体(1.0mg/kg)または対照アイソタイプ抗体のいずれかを感染後3時間で投与したマウスの%生存率をグラフで示すカプラン・マイヤー(Kaplan-Meyer)プロットである。図12に示すように、MASP-2抗体で処理されたマウスは、90%が感染後72時間を通して生存した。対照的に、アイソタイプ抗体で処理されたマウスは、50%しか感染後72時間を通して生存しなかった。「*」という記号は、2つの生存曲線の比較によって決定されたp=0.0301を示す。
これらの結果は、MASP-2抗体の投与が、髄膜炎菌感染対象を治療し、その生存率を改善するのに有効であることを実証する。
本明細書に実証されるように、髄膜炎菌感染対象の治療におけるMASP-2抗体の使用は、感染後3時間以内に投与された場合に有効であり、感染後24時間〜48時間以内で有効であると予想される。髄膜炎菌性の疾病(髄膜炎菌血症または髄膜炎)は緊急事態であり、治療は通常、髄膜炎菌性の疾病が疑われるならばただちに(すなわち、髄膜炎菌が病原物質として陽性と特定される前に)開始される。
実施例1において実証されたMASP-2KOマウスの結果を考慮すると、髄膜炎菌感染前のMASP-2抗体の投与が、感染を予防するのにまたは感染の重篤さを軽減するのにも有効であると考えられる。
実施例3
本実施例は、ヒト血清中の髄膜炎菌の補体依存性死滅がMASP-3依存性であることを実証する。
原理
機能的MBLの血清レベルが低下した患者は、再発性の細菌および真菌感染への罹患性の増大を示す(Kilpatrick et al., Biochim Biophys Acta 1572:401-413 (2002))。髄膜炎菌がMBLによって認識されることは公知であり、MBL欠損血清が髄膜炎菌を溶解しないことが示されている。
実施例1および2に記載された結果を考慮して、補体欠損血清および対照ヒト血清における髄膜炎菌感染を治療するためのMASP-2抗体投与の有効性を決定するための一連の実験を実施した。補体経路を保持するために、高い血清濃度(20%)で実験を実施した。
方法
1. 様々な補体欠損ヒト血清におけるおよびヒトMASP-2抗体で処理されたヒト血清における血清殺菌活性
この実験には、以下の補体欠損ヒト血清および対照ヒト血清を使用した。
(表5)試験したヒト血清試料(図13に示す)
Figure 0006815355
組換えヒトMASP-2Aを抗原として使用して、ヒトMASP-2に対する組換え抗体をコンビナトリアル抗体ライブラリー(Knappik, A., et al., J. Mol. Biol. 296:57-86 (2000))から単離した(Chen, C. B. and Wallis, J. Biol. Chem. 276:25894-25902 (2001))。ヒト血漿中のC4およびC3のレクチン経路媒介活性化を強く阻害する(IC50〜20nM)抗ヒトscFv断片を同定し、完全長ヒトIgG4抗体へと転換した。
髄膜炎菌血清型B-MC58を、表5に示す様々な血清とともに、それぞれ20%の血清濃度で、阻害性ヒトMASP-2抗体(全量100μl中3μg)を添加し、または添加せずに、振とうしながら37℃でインキュベートした。試料を以下の時点:0、30、60および90分間隔で採取し、平板培養したのち、生菌数を測定した。熱不活化ヒト血清を陰性対照として使用した。
結果
図13は、表5に示すヒト血清試料中、様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示す。表6は、図13のスチューデントt検定の結果を提示する。
(表6)図13に関するスチューデントt検定結果(60分時点)
Figure 0006815355
図13および表6に示すように、ヒトMASP-2阻害抗体の添加によってヒト20%血清中の髄膜炎菌の補体依存性死滅が有意に高められた。
2. 様々な補体欠損ヒト血清における血清殺菌活性
この実験には、以下の補体欠損ヒト血清および対照ヒト血清を使用した。
(表7)試験したヒト血清試料(図14に示す)
Figure 0006815355
注記:試料DにおけるMASP-3-/-(MASP-1+)血清は、特徴が重なるCarnevale症候群、Mingarelli症候群、Malpuech症候群およびMichels症候群の統一用語である3MC症候群の対象から採取したものである。実施例4にさらに記載されるように、MASP-1/3遺伝子のエキソン12の突然変異は、MASP-3のセリンプロテアーゼドメインを機能不全にするが、MASP-1のセリンプロテアーゼドメインを機能不全にしない。また、D因子は3MC血清中では完全であることが公知である。
髄膜炎菌血清型B-MC58を、様々な補体欠損ヒト血清とともに、それぞれ20%の血清濃度で、振とうしながら37℃でインキュベートした。試料を以下の時点:0、30、60、および90分間隔で採取し、平板培養したのち、生菌数を測定した。熱不活化ヒト血清を陰性対照として使用した。
結果
図14は、表7に示すヒト血清試料中、様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示す。図14に示すように、WT(NHS)血清が、髄膜炎菌に関して最高レベルの殺菌活性を有する。対照的に、MBL-/-およびMASP-3-/-(MASP-1充分である)ヒト血清は任意の殺菌活性を有しない。これらの結果は、ヒト20%(v/v)血清中の髄膜炎菌の補体依存性死滅がMASP-3およびMBL依存性であることを示す。表8は図14のスチューデントt検定の結果を提示する。
(表8)図14のスチューデントt検定結果
Figure 0006815355
要約すると、図14および表8に示す結果は、20%ヒト血清中の髄膜炎菌の補体依存性死滅がMASP-3-およびMBL依存性であることを実証する。
3. MASP-2、MASP-1/3、またはMBL A/Cを欠損している20%(v/v)マウス血清中の髄膜炎菌の補体依存性死滅
この実験には、以下の補体欠損マウス血清および対照マウス血清を使用した。
(表9)試験したマウス血清試料(図15に示す)
Figure 0006815355
髄膜炎菌血清型B-MC58を、様々な補体欠損マウス血清とともに、それぞれ20%の血清濃度で、振とうしながら37℃でインキュベートした。試料を以下の時点:0、15、30、60、90、および120分間隔で採取し、平板培養したのち、生菌数を測定した。熱不活化ヒト血清を陰性対照として使用した。
結果
図15は、表9に示すマウス血清試料中、様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示す。図15に示すように、MASP-2-/-マウス血清は、WTマウス血清よりも髄膜炎菌に関して高いレベルの殺菌活性を有する。対照的に、MASP-1/3-/-マウス血清は任意の殺菌活性を有しない。記号「**」はp=0.0058を示し、記号「***」はp=0.001を示す。表10は、図15のスチューデントt検定の結果を提示する。
(表10)図15に関するスチューデントt検定結果
Figure 0006815355
要約すると、この実施例における結果は、MASP-2-/-血清が、WT血清よりも髄膜炎菌に関して高いレベルの殺菌活性を有すること、および20%血清中の髄膜炎菌の補体依存性死滅がMASP-3-およびMBL依存性であることを実証する。
実施例4
本実施例は、実施例1〜3に記載されるような、MASP-2 KOマウスにおいて認められた髄膜炎菌感染に対するMASP-3依存性抵抗の機構を決定するために実施された一連の実験を記載する。
原理
以下のように、MASP-2 KOマウスにおいて認められた髄膜炎菌感染に対するMASP-3依存性抵抗の機構(上記実施例1〜3に記載)を決定するために一連の実験を実施した。
1. MASP-1/3欠損マウスはレクチン経路機能活性(「LEA-2」とも呼ばれる)を欠損していない
方法
MASP-1/3欠損マウスがレクチン経路機能活性(「LEA-2」とも呼ばれる)を欠損しているかどうかを判定するために、参照により本明細書に組み入れられるSchwaeble W. et al., PNAS vol 108(18):7523-7528 (2011)に記載されているとおりに、レクチン活性化経路特異的アッセイ条件下(1%血漿)、試験される様々な補体欠損マウス系統からの血漿中のC3コンバターゼ活性の動態を測定するためのアッセイ法を実施した。
以下のように、WT、C4-/-、MASP-1/3-/-;B因子-/-およびMASP-2-/-マウスからの血漿を試験した。
C3活性化を測定するために、マイクロタイタープレートを、マンナン(1μg/ウェル)、コーティング緩衝液(15mM Na2Co3、35mM NaHCO3)中ザイモサン(1μg/ウェル)またはコーティング緩衝液中1%ヒト血清アルブミン(HSA)でコーティングすることによってインサイチューで生成した免疫複合体でコーティングし、次いで、TBS(10mM Tris、140mM NaCl、pH7.4)中ヒツジ抗HAS血清(2μg/mL)を0.05% Tween 20および5mM Ca++とともに加えた。プレートをTBS中0.1% HSAでブロッキングし、TBS/Tween 20/Ca++で3回洗浄した。血漿試料を4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH7.4で希釈し、プレートに加え、37℃で1.5時間インキュベートした。洗浄後、ウサギ抗ヒトC3c(Dako)、次いでアルカリホスファターゼコンジュゲート化ヤギ抗ウサギIgGおよびp-ニトロフェニルホスフェートを使用して、結合したC3bを検出した。
結果
レクチン経路特異的条件下のC3活性化の動態(1%血清を有するマンナンコーティングされたプレート上のC3b沈着によって測定)を図16に示す。MASP-2-/-血漿中にはC3切断は見られなかった。B因子-/-(B因子-/-)血漿は、おそらくは増幅ループの損失のせいで、WT血漿の半分の速度でC3を切断した。C4-/-(T1/2=33分)およびMASP-1/3-/-欠損血漿(T1/2=49分)においてC3からC3bへのレクチン経路依存性転換の有意な遅延が見られた。MASP-1/3-/-血漿におけるC3活性化のこの遅延は、MASP-3依存性ではなくMASP-1依存性であることが示されている(Takahashi M. et al., J Immunol 180:6132-6138 (2008)を参照されたい)。これらの結果は、MASP-1/3-欠損マウスがレクチン経路機能活性(「LEA-2」とも呼ばれる)を欠損していないことを実証する。
2. 第二経路活性化に対する遺伝性MASP-3欠損の影響
原理
MASP-3のセリンプロテアーゼをコードするエキソン中のフレームシフト突然変異によって生じる3MC症候群を有するMASP-3欠損患者の血清を試験することにより、第二経路活性化に対する遺伝性MASP-3欠損の影響を判定した。3MC症候群とは、特徴が重なるCarnevale症候群、Mingarelli症候群、Malpuech症候群およびMichels症候群の統一用語である。この珍しい常染色体劣性障害は、特徴的な顔面異形症、口唇裂および/または口蓋裂、頭蓋骨癒合症、学習障害ならびに性器、四肢および膀胱直腸異常を含む一連の発達的特徴を示す。Rooryck et al., Nature Genetics 43:197-203 (2011)は、3MC症候群の11家族を研究し、突然変異した2つの遺伝子COLEC11およびMASP-1を特定した。MASP-1遺伝子の突然変異は、MASP-3のセリンプロテアーゼドメインをコードするエキソンを機能不全にするが、MASP-1のセリンプロテアーゼドメインをコードするエキソンを機能不全にはしない。したがって、MASP-3のセリンプロテアーゼをコードするエキソン中に突然変異を有する3MC患者は、MASP-3を欠損しているが、MASP-1を充分に有する。
方法
MASP-3欠損血清は、3MC患者、その3MC患者の母親および父親(両親とも、MASP-3セリンプロテアーゼドメインをコードするエキソンを機能不全にする突然変異を有するアレルに関してヘテロ接合性)ならびにC4欠損患者(両方のヒトC4遺伝子を欠損している)およびMBL欠損対象から得た。Bitter-Suermann et al., Eur. J. Immunol. 11:291-295 (1981))に記載されているような従来のAP特異的条件下(BBS/Mg++/EGTA、Ca++なし、ここで、BBS=スクロースを含有するバルビタール緩衝食塩水)、ザイモサンコーティングされたマイクロタイタープレート上、0.5〜25%の範囲の血清濃度で第二経路アッセイ法を実施し、時間の経過とともにC3b沈着を測定した。
結果
図17は、ザイモサンコーティングされたマイクロタイタープレート上の第二経路駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損対象から採取された血清試料中の血清濃度の関数としてグラフで示す。図17に示すように、MASP-3欠損患者の血清は、高い血清濃度(25%、12.5%、6.25%血清濃度)で残留第二経路(AP)活性を有するが、有意に高いAP50(すなわち、最大C3沈着の50%を達成するために必要な血清の9.8%)を有する。
図18は、「従来の」第二経路特異的(AP特異的)条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)、ザイモサンコーティングされたマイクロタイタープレート上の第二経路駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損ヒト対象から採取された10%ヒト血清試料中の時間の関数としてグラフで示す。
以下の表11は、図17に示すAP50結果および図18に示すC3b沈着の半減期をまとめたものである。
(表11)図17および18に示す結果のまとめ
Figure 0006815355
注記:BBS/Mg++/EGTA緩衝液中、レクチン経路媒介効果は、この緩衝液中のCa++の非存在のせいで失われている。
任意の特定の理論によって拘束されることを望まないが、MASP-3欠損血清において認められたより低い第二経路活性は、3MC患者が自らの血清中に活性D因子を有するために生じるものであり、この患者はなおもMASP-1およびHTRA1を発現するため、プロD因子の転換は、MASP-3の非存在においてもなお、より低いレベルでではあるが、起こることができると考えられる。
3. MASP-2またはMASP-1/3を欠損しているマウス血清におけるマンナン、ザイモサン、および肺炎連鎖球菌D39上のC3b沈着の測定
方法
MASP-2-/-、MASP-1/3-/-およびWTマウスから採取された0%〜20%の範囲のマウス血清濃度を使用して、マンナン、ザイモサンおよび肺炎連鎖球菌D39でコーティングされたマイクロタイタープレート上のC3b沈着を測定した。「従来の」第二経路特異的条件下(すなわちCa++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(すなわちBBS/Mg++/Ca++)、C3b沈着アッセイ法を実施した。
結果
図19Aは、従来の第二経路特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、マンナンコーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスから採取された血清試料中の血清濃度の関数としてグラフで示す。図19Bは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、ザイモサンコーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスからの血清試料中の血清濃度の関数としてグラフで示す。図19Cは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、肺炎連鎖球菌D39コーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスからの血清試料中の血清濃度の関数としてグラフで示す。
図20Aは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、マンナンコーティングされたマイクロタイタープレート上で実施された高希釈血清中のC3b沈着アッセイ法の結果をグラフで示す。図20Bは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/EGTA/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、ザイモサンコーティングされたマイクロタイタープレート上で実施されたC3b沈着アッセイ法の結果をグラフで示す。図20Cは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/EGTA/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、肺炎連鎖球菌D39コーティングされたマイクロタイタープレート上で実施されたC3b沈着アッセイ法の結果をグラフで示す。
また、図20A〜Cに示すように、従来の第二経路特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、0%〜1.25%血清の範囲の高めの希釈度を使用して、マンナンコーティングされたプレート上(図20A);ザイモサンコーティングされたプレート上(図20B)および肺炎連鎖球菌D39コーティングされたプレート上(図20C)で、C3b沈着アッセイ法を実施した。第二経路は高めの血清希釈度下で次第に消失し、そのため、Ca++の存在においてMASP-1/3欠損血清中に認められた活性はMASP-2媒介性LP活性であり、Ca++の存在におけるMASP-2欠損血清中の活性はAPのMASP-1/3媒介性残留活性である。
考察
この実施例に記載された結果は、MASP-2阻害因子(またはMASP-2 KO)が、MASP-3駆動型第二経路活性化を促進することにより、髄膜炎菌感染からの有意な保護を提供することを実証する。マウス血清溶菌アッセイ法およびヒト血清溶菌アッセイ法の結果はさらに、髄膜炎菌に対する血清殺菌活性をモニターすることにより、髄膜炎菌に対する殺菌活性がMBL欠損(マウスMBL AおよびMBL C二重欠損血清およびヒトMBL欠損血清)中には存在しないことを示す。
図1は、本明細書に提供される結果に基づくレクチン経路および第二経路の新たな理解を示す。図1は、オプソニン化および溶解の両方におけるLEA-2の役割を表す。MASP-2は、生理学的に複数のレクチン依存状況における「下流」C3b沈着(および結果的なオプソニン化)のイニシエーターであるが(図20A、20B、20C)、それは血清感受性細菌の溶解においても役割を果たす。図1に示すように、髄膜炎菌のような血清感受性病原体の場合のMASP-2欠損またはMASP-2枯渇血清/血漿の殺菌活性の増大の原因であると考えられる分子機構は、溶菌の場合、MASP-1およびMASP-3と関連したレクチン経路認識複合体が細菌表面上で互いに近接して結合し、それにより、MASP-1がMASP-3を切断することを可能にしなければならないということである。MASP-1およびMASP-2とは対照的に、MASP-3は自己活性化酵素ではなく、多くの場合、その酵素的に活性な形態へと転換されるためにはMASP-1による活性化および切断を必要とする。
図1に示すように、活性化されたMASP-3はしたがって、病原体表面上のC3b結合B因子を切断して、酵素的に活性な第二経路C3およびC5コンバターゼそれぞれC3bBbおよびC3bBb(C3b)nの形成により、第二経路活性化カスケードを開始させることができる。MASP-2を有するレクチン経路活性化複合体は、MASP-3の活性化において役割を有さず、MASP-2の非存在において、またはMASP-2の枯渇後、全レクチン経路活性化複合体はMASP-1またはMASP-3のいずれかを付加される。したがって、MASP-2の非存在において、微生物表面上で、MASP-1およびMASP-3を有するレクチン経路活性化複合体が互いに近接するようになり、より多くのMASP-3が活性化され、それにより、より高速のC3b結合B因子のMASP-3媒介性切断を生じさせて、微生物表面上に第二経路C3およびC5コンバターゼC3bBbおよびC3bBb(C3b)nが形成する可能性が顕著に増大する。これが、表面結合C5bがC6と関連し、C5bC6がC7と関連し、C5bC6C7がC8と関連し、そしてC5bC6C7C8がC9を重合させる、終末活性化カスケードC5b-C9を活性化させて膜侵襲複合体を形成させ、それが細菌表面構造に入り込み、細菌壁中の孔を形成し、それが補体標的化細菌の浸透圧性死滅を生じさせる。
この新規な概念の核心は、本明細書に提供されるデータが、図1に示すように、レクチン経路活性化複合体が以下の2つの別々の活性化ルートを駆動することを明らかに示すということである。
実施例5
本実施例は、発作性夜間血色素尿症(PNH)のマウスモデルから得られた血液試料に由来する赤血球の溶解に対するMASP-2欠損および/またはMASP-3欠損の阻害作用を証明する。
原理/背景:
発作性夜間血色素尿症(PNH)はマルキアファーヴァ・ミケーリ症候群とも呼ばれ、補体誘導性の血管内溶血性貧血を特徴とする、後天的な、潜在的に命にかかわる血液疾患である。PNHの顕著な特徴は、補体制御因子CD55およびCD59がPNH赤血球上に存在しないために補体第二経路が無秩序に活性化した結果である慢性的な補体媒介性血管内溶血と、その後に起こるヘモグロビン尿症および貧血である。Lindorfer, M.A., et al., Blood 115(11)(2010)、Risitano, A.M, Mini-Reviews in Medicinal Chemistry, 11:528-535(2011)。PNHにおける貧血は血流中の赤血球の破壊が原因である。PNHの症状には、尿中のヘモグロビンの出現による赤色尿、背部痛、疲労、息切れ、および血栓症が含まれる。PNHは自然発症することがあり、これは「一次PNH」と呼ばれるか、または再生不良性貧血などの他の骨髄障害の状況では「二次PNH」と呼ばれる。PNHの治療には、貧血の場合は輸血、血栓症の場合は血液凝固阻止、および補体系を阻害することによって免疫破壊から血球を保護するモノクローナル抗体エクリズマブ(Soliris(登録商標))の使用(Hillmen P. et al., N. Engl. J. Med. 350(6) 552-9(2004))が含まれる。エクリズマブ(Soliris(登録商標))は、補体成分C5を標的とし、C5コンバターゼによるC5切断を遮断し、それによって、C5aの産生およびMACの集合を阻止するヒト化モノクローナル抗体である。エクリズマブによるPNH患者の治療は、乳酸デヒドロゲナーゼ(LDH)によって測定されるように血管内溶血を減少させ、そのため、患者の約半分におけるヘモグロビン安定化および輸血非依存性につながった(Hillmen P, et al., Mini-Reviews in Medicinal Chemistry, vol11(6)(2011))。エクリズマブ療法を受けているほぼ全員の患者においてLDHレベルが正常またはほぼ正常になったが(血管内溶血の管理のため)、患者の約1/3しかヘモグロビン値 約11gr/dLに達せず、エクリズマブを服用した残りの患者は中程度から重度の(すなわち、輸血依存性)貧血をほぼ同じ割合で示し続ける(Risitano A.M. et al., Blood 113:4094-100(2009))。Risitano et al., Mini-Reviews in Medicinal Chemistry 11:528-535(2011)に記載のように、エクリズマブを服用しているPNH患者は、PNH赤血球のかなりの部分に結合しているC3断片を含んだ(が、未治療患者は含んでいなかった)ことが証明された。このことから、膜に結合しているC3はPNH赤血球に対してオプソニンとして働き、その結果、特異的C3受容体を介して細網内皮細胞内に閉じ込められ、その後に、血管外溶血が起こるという結論が導かれた。従って、C3断片を介した血管外溶血を発症している患者は赤血球輸血を必要とし続けるので、これらの患者には、エクリズマブの使用の他に治療方針が必要とされる。
この実施例は、PNHのマウスモデルから採取された血液試料からの赤血球の溶解に対するMASP-2およびMASP-3欠損血清の効果を評価するための方法を記載し、PNHに罹患している対象を治療するためのMASP-2阻害および/またはMASP-3阻害の有効性を実証し、また、エクリズマブのようなC5阻害因子による治療を受けているPNH対象においてC3断片媒介血管外溶血の影響を緩和するためのMASP-2の阻害因子および/またはMASP-3の阻害因子(二重または二重特異性MASP-2/MASP-3阻害因子を含む)の使用を裏付ける。
方法
PNH動物モデル
CrryおよびC3を欠損した(Crry/C3-/-)遺伝子標的化マウスおよびCD55/CD59欠損マウスから血液試料を採取した。これらのマウスは、赤血球上のそれぞれの表面補体制御因子を欠き、したがって、これらの赤血球はPNHヒト血球と同様に自発的に補体自己溶解を受けやすい。
これらの赤血球をさらに感作させるために、これらの細胞を、マンナンコーティングした状態およびマンナンコーティングされない状態で使用し、次いで、WT C56/BL6血漿、MBLヌル血漿、MASP-2-/-血漿、MASP-1/3-/-血漿、ヒトNHS、ヒトMBL-/-血漿およびヒトMASP-2抗体で処理されたNHS中での溶血に関して試験した。
1. MASP-2欠損/枯渇血清および対照におけるCrry/C3およびCD55/CD59二重欠損マウス赤血球の溶血アッセイ法
1日目、マウスRBC(±マンナンコーティング)の調製
材料は以下を含むものであった:新鮮なマウス血液、BBS/Mg++/Ca++(4.4mMバルビツール酸、1.8mMナトリウムバルビトン、145mM NaCl、pH7.4、5mM Mg++、5mM Ca++)、塩化クロム、CrCl3・6H2O(BBS/Mg++/Ca++中0.5mg/mL)、およびマンナン、BBS/Mg++/Ca++中100μg/mL。
全血(2mL)を、4℃の冷却遠心分離機中、2000×gで1〜2分間スピンダウンした。血漿およびバフィーコーティングを吸引した。次いで、RBCペレットを氷冷BBS/ゼラチン/Mg++/Ca++2mL中に再懸濁させ、遠心処理工程を繰り返すことによって試料を3回洗浄した。3回目の洗浄後、ペレットをBBS/Mg++/Ca++4mL中に再懸濁させた。RBCの2mLアリコートをコーティングなしの対照として取っておいた。残る2mLに、CrC132mLおよびマンナン2mLを添加し、試料を穏やかに混合しながら室温で5分間インキュベートした。BBS/ゼラチン/Mg++/Ca++7.5mLを添加することによって反応を停止させた。上記のように試料をスピンダウンし、BBS/ゼラチン/Mg++/Ca++2mL中に再懸濁させ、上記のようにさらに2回洗浄したのち、4℃で貯蔵した。
2日目、溶血アッセイ法
材料は、BBS/ゼラチン/Mg++/Ca++(上記)、試験血清、96ウェル丸底および平底プレートならびに410〜414nmで96ウェルプレートを読み取る分光光度計を含むものであった。
まず、RBC濃度を測定し、細胞を109/mLに調節し、この濃度で貯蔵した。使用前、細胞をアッセイ緩衝液中で108/mLまで希釈し、次いで、1ウェルあたり100ulを使用した。410〜414nmで溶血を測定した(541nmより大きな感度を可能にする)。試験血清希釈物を氷冷BBS/ゼラチン/Mg++/Ca++中に調製した。各血清希釈物100μlをピペットで丸底プレートに入れた。適切に希釈したRBC調製物100μlを添加し(すなわち、108/mL)、37℃で約1時間インキュベートし、溶解に関して観察した(この時点でプレートの写真を撮り得る)。次いで、プレートを最大速度で5分間スピンダウンした。流体相100μlを吸引し、平底プレートに移し、410〜414nmでODを記録した。RBCペレットを保持した(その後、これらを水で溶解して逆の結果を得ることができる)。
実験#1
上記プロトコールに詳述したように、CD55/CD59二重欠損マウスおよびCrry/C3二重欠損マウスから新鮮な血液を採取し、赤血球を調製した。赤血球を分割し、赤血球の半分をマンナンでコーティングし、他方の半分を未処理のままにし、最終濃度を108/mLに調節し、そのうち100μlを、上記のように実施した溶血アッセイ法に使用した。
実験#1の結果:レクチン経路はPNH動物モデルにおける赤血球溶解に関与する
最初の実験において、コーティングなしのWTマウス赤血球が任意のマウス血清中で溶解しないことがわかった。さらに、マンナンコーティングされたCrry-/-マウス赤血球は、WTマウス血清中ではゆっくりと溶解するが(37度で3時間超)、MBLヌル血清中では溶解しないことがわかった(データ示さず)。
マンナンコーティングされたCrry-/-マウス赤血球はヒト血清中では急速に溶解するが、熱不活化NHS中では溶解しないことがわかった。重要なことに、マンナンコーティングされたCrry-/-マウス赤血球は、NHS中、1/640まで希釈されても溶解した(すなわち、1/40、1/80、1/160、1/320、および1/640希釈物が全て溶解した)(データ示さず)。この希釈度では、第二経路は作用しない(AP機能活性は血清濃度8%未満で有意に低下する)。
実験#1からの結論
マンナンコーティングされたCrry-/-マウス赤血球は、MBLを含む高希釈ヒト血清中では非常に良好に溶解するが、MBLを含まない高希釈ヒト血清中ではそうはならない。試験した各血清濃度での効率的な溶解は、第二経路がこの溶解に関与せず、または必要とされないことを暗示する。MBL欠損マウス血清およびヒト血清がマンナンコーティングされたCrry-/-マウス赤血球を溶解できないことは、古典経路もまた、観察された溶解とは関係がないことを示す。レクチン経路認識分子(すなわちMBL)が必要とされるため、この溶解はレクチン経路によって媒介される。
実験#2
Crry/C3およびCD55/CD59二重欠損マウスから新鮮な血を採取し、マンナンコーティングされたCrry-/-マウス赤血球を、上記のような溶血アッセイ法において、以下のヒト血清:MASP-3-/-;MBLヌル;WT;ヒトMASP-2抗体で前処理されたNHS;および対照としての熱不活化NHSの存在において分析した。
実験#2の結果:MASP-2阻害因子およびMASP-3欠損はPNH動物モデルにおける赤血球溶解を阻止する
マンナンコーティングされたCrry-/-マウス赤血球とともにNHSを、1/640まで(すなわち、1/40、1/80、1/160、1/320および1/640)希釈された希釈物、ヒトMBL-/-血清、ヒトMASP-3欠損血清(3MC患者からのもの)およびMASP-2mAbで前処理されたNHSおよび対照として熱不活化NHSの中でインキュベートした。
ELISAマイクロタイタープレートをスピンダウンし、非溶解赤血球をラウンドウェルプレートの底に捕集した。各ウェルの上清を捕集し、ELISAリーダーにおいてOD 415nmを読み取ることにより、溶解した赤血球から放出されたヘモグロビンの量を測定した。
MASP-3-/-血清はマンナンコーティングされたマウス赤血球をまったく溶解しないことが認められた。対照の熱不活化NHS(陰性対照)においては、予想どおり、溶解は認められなかった。MBL-/-ヒト血清は、1/8および1/16希釈度で、マンナンコーティングされたマウス赤血球を溶解した。MASP-2抗体で前処理されたNHSは、1/8および1/16希釈度で、マンナンコーティングされたマウス赤血球を溶解したが、一方、WTヒト血清は、1/32の希釈度まで、マンナンコーティングされたマウス赤血球を溶解した。
図21は、MASP-3-/-、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からの血清中、一定範囲の血清希釈度にわたり、ヒト血清によるマンナンコーティングされたマウス赤血球の溶血(上清への溶解マウス赤血球(Crry/C3-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。
図22は、MASP-3-/-、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からの血清中、一定範囲の血清濃度にわたり、ヒト血清によるマンナンコーティングされたマウス赤血球の溶血(上清への溶解マウス赤血球(Crry/C3-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。
図21および22に示す結果から、MASP-3の阻害が、自己由来の補体活性化からの保護を欠損している感作赤血球の任意の補体媒介性溶解を阻止することが実証される。MASP-2抗体によるMASP-2阻害は、CH50を有意にシフトさせ、ある程度まで保護性であったが、MASP-3阻害はより有効であった。
実験#3
Crry/C3およびCD55/CD59二重欠損マウスからの新鮮な血液から採取されたコーティングなしのCrry-/-マウス赤血球を、上記のような溶血アッセイ法において、以下の血清:MASP-3-/-;MBL-/-;WT血清;ヒトMASP-2抗体で前処理されたNHSおよび対照として熱不活化NHSの存在において分析した。
結果
図23は、3MC(MASP-3-/-)患者、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からのヒト血清中、一定範囲の血清濃度にわたり、コーティングなしのマウス赤血球の溶血(上清への溶解WTマウス赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図23に示し、表12にまとめているように、MASP-3の阻害が非感作WTマウス赤血球の補体媒介性溶解を阻害することが実証される。
図24は、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からのヒト血清中、一定範囲の血清濃度にわたり、ヒト血清によるコーティングなしのマウス赤血球の溶血(上清への溶解マウス赤血球(CD55/59-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。図24に示し、表12にまとめているように、MASP-2の阻害は、限られた程度まで保護的であることが実証される。
(表12)血清濃度として表されたCH50
Figure 0006815355
注記:「CH50」とは、補体媒介溶血が50%に達する点である。
要約すると、この実施例における結果は、MASP-3の阻害が、自己由来補体活性化からの保護を欠損している感作および非感作赤血球の任意の補体溶解を阻止することを実証する。MASP-2阻害もまた、ある程度まで保護的である。したがって、単独のまたは組み合わされる(すなわち、同時投与され、順次に投与される)MASP-2およびMASP-3阻害因子またはMASP-2/MASP-3二重特異性または二重阻害因子は、PNHに罹患している対象を治療するために使用され得、かつエクリズマブ(Soliris(登録商標))のようなC5阻害因子による治療を受けているPNH患者における血管外溶血を緩和する(すなわち、阻害するか、予防するか、またはその重篤さを低下させる)ために使用され得る。
実施例6
本実施例は、WTまたはMASP-1/3-/-マウス血清の存在における溶解に関してマンナンコーティングされたウサギ赤血球を試験する溶血アッセイ法を記載する。
方法
1. マウスMASP-1-3欠損血清およびWT対照血清におけるウサギRBC(マンナンコーティングされた)の溶血アッセイ法
1日目、ウサギRBCの調製
材料は以下を含むものであった:新鮮なウサギ血液、BBS/Mg++/Ca++(4.4mMバルビツール酸、1.8mMナトリウムバルビトン、145mM NaCl、pH7.4、5mM Mg++、5mM Ca++)、0.1%ゼラチンを含むBBS/Mg++/Ca++、緩衝液に含まれた塩化クロム、すなわちCrCl3.6H2O(BBS/Mg++/Ca++中0.5mg/mL)およびマンナン、BBS/Mg++/Ca++中100μg/mL。
1. ウサギ全血(2mL)を、2つの1.5mLエッペンドルフ管に分割し、4℃の冷却エッペンドルフ遠心分離機中、80000rpm(約5.9rcf)で3分間遠心処理した。氷冷BBS/Mg++/Ca++中に再懸濁させたのち、RBCペレットを3回洗浄した。3回目の洗浄後、ペレットをBBS/Mg++/Ca++4mL中に再懸濁させた。このアリコート2mLを、コーティングなし対照として使用するために、15mLファルコンチューブに加えた。残り2mLのRBCアリコートをCrC13緩衝液2mL中に希釈し、マンナン溶液2mLを添加し、懸濁液を穏やかに混合しながら室温で5分間インキュベートした。BBS/0.1%ゼラチン/Mg++/Ca++7.5mLを混合物に加えることによって反応を停止させた。上記のように赤血球をペレット化し、RBCをBBS/0.1%ゼラチン/Mg++/Ca++で2回洗浄した。RBC懸濁液をBBS/0.1%ゼラチン/Mg++/Ca++中、4℃で貯蔵した。
2. 懸濁させたRBC100μlを水1.4mLで希釈し、8000rpm(約5.9rcf)で3分間スピンダウンし、上清のODを541nmで0.7に調節した(541nmで0.7のODは赤血球約109個/mLに相当)。
3. 再懸濁させたRBCをBBS/0.1%ゼラチン/Mg++/Ca++で108個/mLの濃度まで希釈した。
4. 試験血清の希釈物を氷冷BBS/ゼラチン/Mg++/Ca++中に調製し、各血清希釈物100μlを丸底プレートの対応するウェルにピペットで移した。適切に希釈したRBC100μl(108/mL)を各ウェルに加えた。完全な溶解のための対照として、精製水(100μL)を希釈RBC(100μL)と混合して100%溶解を生じさせ、一方、血清なしのBBS/0.1%ゼラチン/Mg++/Ca++(100μL)を陰性対照として使用した。次いで、プレートを37℃で1時間インキュベートした。
5. 丸底プレートを3250rpmで5分間遠心処理した。各ウェルからの上清(100μL)を平底プレートの対応するウェルに移し、ELISAリーダー中、415〜490nmでODを読み取った。結果を、490nmでのODに対する415nmでのODの比として報告する。
結果
図25は、MASP-1/3-/-およびWT対照からの血清中の一定範囲の血清濃度にわたり、マウス血清によるマンナンコーティングされたウサギ赤血球の溶血(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図25に示すように、MASP-3の阻害が、マンナンコーティングされたWTウサギ赤血球の補体媒介性溶解を阻止することが実証される。これらの結果はさらに、実施例5に記載されたようなPNHの1つまたは複数の局面の治療のためのMASP-3阻害因子の使用を裏付ける。
実施例7
本実施例は、D因子欠損血清中、Ca++の存在において第二経路が活性化されることを実証する。
実験#1:第二経路特異的条件下でのC3b沈着アッセイ法
方法
第二経路特異的条件下(BBS/EGTA/Mg++、Ca++なし)、以下のマウス血清:D因子-/-;MASP- -/-;およびWTの希釈度を高めながら使用して、ザイモサンコーティングされたマイクロタイタープレート上でC3b沈着アッセイ法を実施した。
結果
図26は、第二経路特異的条件下で実施されたC3沈着アッセイ法におけるC3b沈着(OD 405nm)のレベルを、D因子-/-、MASP-2-/-;およびWTマウス血清からの血清試料中の血清濃度の関数としてグラフで示す。図26に示すように、これらの条件下、D因子-/-マウス血清はC3をまったく活性化せず、第二経路は作用していない。MASP-2-/-血清は、WT血清と同様な速度で第二経路活性化を示す。これらの結果は、Ca++の非存在においては、C3b沈着のためにD因子が必要とされることを確認させる。これは、MASP-1、MASP-3活性化酵素およびMASP-3とそれぞれの糖質認識成分との相互作用がCa++依存性であるため、これらの条件下ではMASP-3をその酵素的に活性な形態へと転換することができないという証拠と合致している。
実験#2:生理学的条件下でのC3b沈着アッセイ法
方法
生理学的条件下(BBS/Ca++/Mg++)(LPおよびAPの両方が機能することを可能にする)、以下のマウス血清:D因子-/-;MASP-2-/-;およびWTの希釈度を高めながら使用して、C3b沈着アッセイ法を実施した。
結果
図27は、生理学的条件下(Ca++の存在下)で実施されたC3b沈着アッセイ法におけるC3b沈着(OD 405nm)のレベルを、D因子-/-;MASP-2-/-;およびWTマウスからの血清の試料を使用する血清濃度の関数としてグラフで示す。図27に示すように、D因子-/-マウス血清は、指示された血清希釈度を通して、WT血清に比べて差なく、レクチン経路および第二経路の両方を介してC3を活性化する。MASP- -/-血清は、第二経路(すなわちMASP-3駆動型第二経路活性化)のみによって、より低い血清希釈度でC3のターンオーバーを示す。これらの結果は、Ca++の存在においては、MASP-3が第二経路活性化を駆動することができるという条件で、D因子が必要とされないことを示す。
実験#3:MASP-2mAbの存在または非存在においてB因子またはD因子を欠損しているマウス血清を使用するC3b沈着アッセイ法
方法
以下のとおりに、生理学的条件下(BBS/Ca++/Mg++)、マンナンコーティングされたマイクロタイタープレート上でC3b沈着アッセイ法を実施した。
1. マイクロタイターELISAプレートを、コーティング緩衝液(15mM Na2CO3、35mM NaHCo3、0.02%アジ化ナトリウム、pH9.6)中のマンナン(1μg/mL)で4℃において一晩コーティングした。
2. 翌日、BBS(4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH 7.4)中0.1% HSAを250μl/ウェルで用いて残留タンパク質結合部位を室温で2時間ブロッキングした。
3. プレートを洗浄緩衝液(0.05% Tween 20および5mM CaCl2を含むTBS)で3回洗浄した。
4. BBS中1:10希釈血清試料を指定の時点でウェルに加えた。緩衝液のみを入れたウェルを陰性対照として使用した。プレートを37℃で40分間インキュベートした。
5. 次いで、プレートを洗浄緩衝液で3回洗浄した。
6. 次いで、洗浄緩衝液中で1:5000に希釈したウサギ抗ヒトC3c(Dako)100μlをウェルに加え、プレートを37℃で90分間インキュベートした。
7. 洗浄緩衝液で3時間洗浄したのち、洗浄緩衝液中で1:5000に希釈したアルカリホスファターゼコンジュゲート化抗ウサギ100μlをウェルに加え、その後、室温で90分間インキュベートした。
8. 洗浄後、基質溶液100μlを加えることによってアルカリホスファターゼを検出した。
9. 15分間インキュベートしたのち、光学密度をOD 405nmで測定した。
結果
図28は、MASP-2 mAbの存在または非存在におけるD因子-/-またはB因子-/-マウスから採取されたマウス血清中、生理学的条件下(Ca++の存在下)で実施されたC3b沈着アッセイ法におけるC3b沈着(OD 405nm)のレベルを血清インキュベーション時間(分)の関数としてグラフで示す。図28に示すように、WTおよびD因子-/-血清におけるC3b沈着の量に差はなく、D因子の非存在でさえ、MASP-3が第二経路活性化を開始させることができるという結論の強力な支持を提供する。観察されたシグナルは、レクチン経路活性化および第二経路活性化の両方によるものと考えられる。図28にさらに示すように、D因子-/-+MASP-2 mAbはMASP-3-媒介第二経路活性化のみを示す。B因子-/-+MASP-2 mAbはバックグラウンドのみであった(データ示さず)。熱不活化血清をバックグラウンド対照値として使用すると、それは、MASP-2とのD因子-/-およびB因子-/-と同一であった(データ示さず)。
要約すると、この実施例の結果は、非生理学的条件下では(すなわち、BBS/EGTA/Mg++中、Ca++の非存在において第二経路活性化を試験する場合)D因子のみが不可欠であることを実証する。対照的に、第二経路がMASP-3を介して活性化されることを可能にする生理学的条件下(Ca++の存在において)第二経路活性化を試験する場合、D因子欠損血清は、WT対照に比較して第二経路活性を全く欠損していない。したがって、生理学的条件下、第二経路活性化の開始がMASP-3によって駆動されるという点で、D因子は冗長である。これらの結果は、レクチン経路がMASP-3依存性活性化事象を通してAP活性化を指図するという結論を裏付ける。
実施例8
本実施例は、ヒトMASP-1、MASP-2またはMASP-3ポリペプチドに対するマウスモノクローナル抗体を製造し、二重、二重特異性、または汎特異性MASP抗体を生成する例示的方法を記載する。
1. MASP抗体を生成するための方法
8〜12週齢のオスA/Jマウス(Harlan, Houston, Tex.)に、pH7.4のリン酸緩衝食塩水(PBS)200μl中、完全フロイントアジュバント(Difco Laboratories, Detroit, Mich.)中のヒト完全長ポリペプチド:rMASP-1(SEQ ID NO:10)、rMASP-2(SEQ ID NO:5)もしくはrMASP-3(SEQ ID NO:8)または例えば表2に記載したようなそれらの抗原断片100μgを皮下注射する。2週間後、不完全フロイントアジュバント中の同じヒトポリペプチド50μgをマウスに皮下注射する。6週目、PBS中の同じヒトポリペプチド50μgをマウスに注射し、4日後に融合させる。
融合ごとに、免疫化マウスの脾臓から単細胞懸濁液を調製し、Sp2/0ミエローマ細胞との融合に使用する。50%ポリエチレングリコール(M.W.1450)(Kodak, Rochester, N.Y.)および5%ジメチルスルホキシド(Sigma Chemical Co., St. Louis. Mo.)を含有する培地中、5×108個のSp2/0および5×108個の脾臓細胞を融合させる。次いで、10%ウシ胎児血清、100単位/mLのペニシリン、100μg/mLのストレプトマイシン、0.1mMヒポキサンチン、0.4μMアミノプテリンおよび16μMチミジンで補充したIscove培地(Gibco, Grand Island, N.Y.)中、細胞を懸濁液200μlあたり脾臓細胞1.5×105個の濃度まで調節する。細胞懸濁液200マイクロリットルを、約20の96ウェルマイクロ培養プレートに含まれた各ウェルに加える。約10日後、ELISAアッセイ法において標的精製抗原(MASP-1、MASP-2もしくはMASP-3または表2からの抗原断片)との反応性に関してスクリーニングするために培養上清を回収する。
ELISAアッセイ法(MASP-2を参照して説明):
50ng/mLの精製hMASP-2 50μlを室温で一晩加えることによってImmulon 2(Dynatech Laboratories, Chantilly, Va.)マイクロテストプレートのウェルをコーティングする。コーティングに使用されるMASP-2の低い濃度が高親和性抗体の選択を可能にする。プレートを軽くたたくことによってコーティング溶液を除去したのち、非特異的部位をブロッキングするために、PBS中BLOTTO(無脂肪ドライミルク)200μlを各ウェルに1時間加える。次いで、1時間後、ウェルを緩衝液PBST(0.05% Tween20を含有するPBS)で洗浄する。各融合ウェルからの培養上清(50uL)をBLOTTO 50μlと混合したのち、マイクロテストプレートの個々のMASP-2コーティングされたウェルに加える。1時間のインキュベーションののち、ウェルをPBSTで洗浄し、西洋ワサビペルオキシダーゼ(HRP)コンジュゲート化ヤギ抗マウスIgG(Fc特異的)(Jackson ImmunoResearch Laboratories, West Grove, Pa.)を加えることによってMASP-2に結合する抗体を検出する。HRPコンジュゲート化抗マウスIgGは、適切なSN比を提供するようにBLOTTO中で適切に希釈し、各試料含有ウェルに加える。洗浄後、ペルオキシダーゼ基質溶液を用いて結合HRPコンジュゲート化抗体を検出する。発色のために、0.1% 3,3,5,5テトラメチルベンジジン(Sigma, St. Louis, Mo.)および0.0003%過酸化水素(Sigma)を含有するペルオキシダーゼ基質溶液を30分間ウェルに加える。1ウェルあたり50μlの2M H2SO4を加えることによって反応を停止させ、反応混合物の450nmでの光学密度をBioTek ELISA Reader(BioTek Instruments, Winooski, Vt.)によって測定する。
結合アッセイ法(MASP-2に関して記載):
前記のMASP-2 ELISAアッセイ法の試験において陽性と判定された培養上清を、MASP-2に対してMASP-2阻害物質が有する結合親和性を決定するために結合アッセイ法において試験することができる。阻害物質が補体系の他の抗原に結合するかどうか判定するために類似アッセイ法も使用することができる。
ポリスチレンマイクロタイタープレートウェル(96ウェル培地結合プレート, Corning Costar, Cambridge, MA)を、リン酸緩衝食塩水(PBS)pH7.4に溶解したMASP-2(20ng/100μl/ウェル, Advanced Research Technology, San Diego, CA)で4℃において一晩コーティングする。MASP-2溶液を吸引した後に、ウェルを、1%ウシ血清アルブミン(BSA; Sigma Chemical)を含有するPBSで室温において2時間ブロッキングする。MASP-2コーティングのないウェルはバックグラウンド対照として役立つ。BSA PBSブロッキング溶液に溶解した様々な濃度のハイブリドーマ上清または精製MASP-2 MoAbのアリコートをウェルに添加する。室温で2時間のインキュベーション後に、ウェルをPBSで大規模にリンスする。ブロッキング溶液に溶解したペルオキシダーゼ結合ヤギ抗マウスIgG(Sigma Chemical)を添加し、室温で1時間インキュベートすることによって、MASP-2に結合したMASP-2 MoAbを検出する。プレートをPBSで徹底的に再度リンスし、100μlの3,3',5,5'テトラメチルベンジジン(TMB)基質(Kirkegaard and Perry Laboratories, Gaithersburg, MD)を添加する。TMBの反応を、100μlの1Mリン酸を添加することによってクエンチし、プレートをマイクロプレートリーダー(SPECTRA MAX 250, Molecular Devices, Sunnyvale, CA)において450nmで読み取る。
次いで、陽性ウェルからの培養上清を、機能アッセイ法、例えば、本明細書に記載されるC4切断アッセイ法(実施例9)において補体活性化を阻害する能力について試験する。次いで、陽性ウェル中の細胞を限界希釈によってクローニングする。MoAbを、前記のようにELISAアッセイ法においてhMASP-2との反応性について再試験する。選択されたハイブリドーマをスピナーフラスコの中で増殖させ、プロテインAアフィニティークロマトグラフィーによる抗体精製のために、使用済みの培養上清を収集する。
MASP-2抗体は、例えば実施例9に記載されるようなC4切断アッセイ法において、LEA-2阻害活性に関してアッセイされ得る。
上記ELISAおよび結合アッセイ法はMASP-2を参照して説明されているが、MASP-1またはMASP-3ポリペプチドおよびそれらの抗原断片(例えば表2に記載されるような)を使用して同じELISAおよび結合アッセイ法を実施し得ることが当業者には理解されると考えられる。MASP-3抗体は、例えば実施例4に記載されるようなC3b沈着アッセイ法および実施例5に記載されるような溶血アッセイ法において、MASP-3基質のMASP-3セリンプロテアーゼ切断の阻害およびLEA-1阻害活性に関してアッセイされ得る。MASP-1抗体は、例えば実施例4に記載されるようなC3b沈着アッセイ法および実施例5に記載されるような溶血アッセイ法において、MASP-1基質のMASP-1セリンプロテアーゼ切断の阻害、MASP-3活性化の阻害およびLEA-1阻害活性に関してアッセイされ得る。
2. 二重MASP抗体を生成するための方法
MASP-2/3二重阻害抗体:図4、6、および7Cに示すように、SEQ ID NO:5およびSEQ ID NO:8のベータ鎖によってコードされた、セリンプロテアーゼドメイン中のMASP-2とMASP-3との間で保存された領域がある。したがって、二重MASP-2/3抗体は、MASP-2(またはMASP-3)のセリンプロテアーゼドメイン、例えばSEQ ID NO:5(またはSEQ ID NO:8)のベータ鎖を含む、またはそれからなる抗原を使用して、上記のようにモノクローナル抗体を生成することによって生成することもできるし、あるいはまた、これらの抗原を使用して、これらの抗原に特異的に結合するクローンに関してファージライブラリーをスクリーニングし、その後、MASP-3(またはMASP-1)への二重結合に関してスクリーニングし得る。次いで、二重MASP-2/3抗体を、例えば表2に記載されるように、機能アッセイ法において阻害活性に関してスクリーニングする。
MASP-1/3二重阻害抗体:図3〜5に示すように、MASP-1およびMASP-3は、CUBI-CCP2ドメイン(SEQ ID NO:10のaa25〜432)中に、MAp44によっても共有される同一の保存領域を共有する。図3に示すように、MAp44はCCP2ドメインを含まない。したがって、MAp44を含めた二重MASP-1/3抗体は、MASP-1(またはMASP-3)のCUBI-CCP-2ドメインを含む、またはそれからなる抗原を使用して、上記のようにモノクローナル抗体を生成することによって生成されるか、あるいはまた、この抗原を使用して、この抗原に特異的に結合するクローンに関してファージライブラリーをスクリーニングし、その後、MASP-3(またはMASP-1)への二重結合に関してスクリーニングする。MAp44を除く二重MASP-1/3抗体は、MASP-1(またはMASP-3)のCCP2ドメインを含む、またはそれからなる抗原を使用して、同様なやり方で生成される。次いで、二重MASP-1/3抗体を、例えば表2に記載されるように、機能アッセイ法において阻害活性に関してスクリーニングする。
MASP-1/2二重阻害抗体:図4、6、および7Aに示すように、MASP-1およびMASP-2のセリンプロテアーゼドメインは、保存されている領域を含む。したがって、二重MASP-1/2抗体は、MASP-1(またはMASP-2)のセリンプロテアーゼドメインを含む、またはそれからなる抗原を使用して、上記のようにモノクローナル抗体を生成することによって生成されるか、あるいはまた、この抗原を使用して、この抗原に特異的に結合するクローンに関してファージライブラリーをスクリーニングし、その後、MASP-2(またはMASP-1)への二重結合に関してスクリーニングする。次いで、二重MASP-1/2抗体を、例えば表2に記載されるように、機能アッセイ法において阻害活性に関してスクリーニングする。
3. 汎特異性MASP抗体を生成するための方法:
アルファ鎖:MASP-2とMASP-1/3との間の同一性の数多くの部分は、MASP-1/3およびMASP-2に結合するモノクローナル抗体を生成することが可能であり得ることを示唆する。特に、同一性の大部分は、図5に示すようにCUB1-EGF-CUB2ドメイン内にある。図5に示す様々なドメインは、Yongqing, et al., Biochemica et Biophysica Acta 1824:253-262 (2012); Teillet et al., J. Biol. Chem. 283:25715-25724 (2008);およびMarchler-Bauer et al., Nucleic Acids Res. 39:D225-229 (2011)に従って同定されたものである。
ベータ鎖:図6に示すような、MASP-2とMASP-1/3との間の同一性の数多くの部分は汎特異性MASP-1/2/3阻害因子の生成を可能にすると考えられる。
方法
汎特異性MASP阻害抗体(すなわち、MASP-1、2および3活性を阻害する抗体)は以下のとおりに生成される。
1. MASP-1/3およびMASP-2アルファ鎖CUB1-EGF-CUB2ドメインに対してライブラリーをスクリーニングし、MASP-1/3およびMASP-2の両方と交差反応するクローンを選択する。
2. 例えば表2に記載されるような機能活性を阻害する能力に関してクローンをスクリーニングする。
3. DTLacO親和性/機能的成熟技術(Yabuki et al., PLoS ONE, 7(4):e36032 (2012))を使用して、3つすべてのタンパク質への結合および阻害機能を最適化する。
4. 表2に記載されるように、汎MASP阻害因子を使用してLEA-1-およびLEA-2媒介性補体活性化を阻害することができる。
4. 二重特異性MASP-2/3抗体を生成するための方法
二重特異性MASP-2/3阻害抗体は以下のとおりに生成される。
1. 実施例11〜14に記載されるように、CCP1ドメインに結合し、かつMASP-2依存性補体活性化を阻害する例示的なMASP-2特異性阻害抗体は同定されている。
2. MASP-3特異性阻害抗体は、実施例15に記載されるようにMASP-3ポリペプチドに対してライブラリーをスクリーニングし、かつMASP-3抗体を同定したのち、例えば表2に記載されるように機能アッセイ法においてLEA-1阻害活性に関して抗体をアッセイすることによって生成される。例示的なMASP-3抗体は実施例15に記載される。
3. MASP-2およびMASP-3に特異的な抗原結合領域をフレームワークにクローニングして二重特異性抗体を生成する。免疫グロブリンG様フォーマットならびに様々な融合タンパク質および単鎖可変断片構成を含む数多くの二重特異性抗体フォーマットが記載されている(Holmes, Nature Reviews, Drug Discovery 10:798-800 (2011), Muller and Kontermann, Biodrugs 24:89-98 (2010))。一例において、二重特異性抗体は、2つの別々の抗原に対する抗体を発現する2つのハイブリドーマを融合して、様々な重鎖および軽鎖対合を生じさせることによって生成することができ、該対合の一定の割合が、一方の抗原に特異的な重鎖および軽鎖と対合した他方の抗原に特異的な重鎖および軽鎖を含む(Milstein and Cuello, Nature 305:537-539 (1983))。2つの重鎖が異なる特異性を有する2つの免疫グロブリン重鎖/軽鎖対を同時発現させることにより、同様な二重特異性抗体を組換え的に生成し得る。所望の結合特異性を有する抗体可変ドメイン(抗体-抗原結合部位)(例えば、実施例11〜14に記載されるようなMASP-2抗体、実施例15に記載されるようなMASP-3抗体)を免疫グロブリン定常ドメイン配列に融合することができる。融合は、好ましくは、ヒンジ、CH2およびCH3領域の少なくとも一部を含む免疫グロブリン重鎖定常ドメインとの融合である。免疫グロブリン重鎖融合物および所望の場合には免疫グロブリン軽鎖をコードするDNAを別々の発現ベクターに挿入し、適切な宿主生物中に同時トランスフェクトする。
対合した免疫グロブリン重鎖および軽鎖に加えて、2つの異なる標的に特異的な単鎖可変断片の結合がKipriyanov et al., J. Mol. Biol. 293:41 (1999))に例示されている。この例においては、単一のポリヌクレオチド発現構築物が、リンカーペプチドによって分けられた2対の重鎖および軽鎖可変領域をコードするように設計されており、各対が別個のタンパク質標的への特異性を付与する。発現すると、ポリペプチドは、1つの標的に特異的な重鎖および軽鎖対がタンパク質の1つの抗原結合面を形成し、他方の対が別個の抗原結合面を形成して、単鎖ダイアボディと呼ばれる分子を創製する構成にアセンブルする。また、中心の重鎖および軽鎖可変領域対の間のリンカーの長さに依存して、ポリペプチドは二量体化を強いられ、その結果、タンデムダイアボディを形成することもできる。
例えば、以下の免疫グロブリンポリペプチドをコードするDNAを1つまたは複数のベクターに挿入し、適切な宿主生物中に発現させて、以下の二重特異性抗体の例示的かつ非限定的な例を生成し得る。
MASP-2/3二重特異性抗体
一態様において、二重特異性抗体が提供され、該二重特異性抗体が、ヒトMASP-2およびヒトMASP-3に結合し、かつ、
(I)以下:(a)(i) SEQ ID NO:21の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii) SEQ ID NO:21の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:21の95〜102のアミノ酸配列を含む重鎖CDR3を含む、重鎖可変領域、の少なくとも1つまたは複数;および/または以下:(b)(i)SEQ ID NO:25またはSEQ ID NO:27いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:27いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:27いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3を含む、軽鎖可変領域、の少なくとも1つまたは複数を含む、MASP-2特異的結合領域;ならびに
(II)MASP-3特異的結合領域、任意で、以下の少なくとも1つを含むMASP-3特異的結合領域:(a)(i)SEQ ID NO:25またはSEQ ID NO:26の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:26の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:26の95〜102のアミノ酸配列を含む重鎖CDR3を含む、重鎖可変領域;および
(b)(i)SEQ ID NO:28またはSEQ ID NO:29いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:28またはSEQ ID NO:29いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:28またはSEQ ID NO:29いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3を含む、軽鎖可変領域
を含む。
MASP-1/2二重特異性抗体
一態様において、二重特異性抗体が提供され、該二重特異性抗体が、ヒトMASP-1およびヒトMASP-2に結合し、かつ、
(I)以下:(a)(i)SEQ ID NO:21の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii)SEQ ID NO:21の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:21の95〜102のアミノ酸配列を含む重鎖CDR3を含む、重鎖可変領域、の少なくとも1つまたは複数;および/または以下:(b)(i)SEQ ID NO:25またはSEQ ID NO:27いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:27いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:27いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3を含む、軽鎖可変領域、の少なくとも1つまたは複数を含む、MASP-2特異的結合領域;ならびに
(II)MASP-1特異的結合領域
を含む。
4. MASP-2および/またはMASP-3に対する機能阻害活性の試験は、例えば、表2に記載され、本明細書にさらに記載されるように実施される。
実施例9
本実施例は、L-フィコリン/P35、H-フィコリン、M-フィコリン、またはマンナンを介したMASP-2依存性補体活性化を遮断することができるMASP-2阻害物質を同定するための機能スクリーニングとして用いられるインビトロC4切断アッセイ法について述べる。
C4切断アッセイ法:C4切断アッセイ法は、Petersen, S.V., et al., J. Immunol. Methods 257:107, 2001によって述べられており、L-フィコリンに結合する黄色ブドウ球菌におけるリポテイコ酸(LTA)に起因するレクチン経路活性化を測定する。
試薬:ホルマリン固定黄色ブドウ球菌(DSM20233)を以下のように調製する。細菌をトリプティックソイ血液培地中で37℃において一晩増殖させ、PBSで3回洗浄し、次いで、PBS/0.5%ホルマリン中で室温において1時間固定し、PBSでさらに3回洗浄した後に、コーティング緩衝液(15mM Na2CO3、35mM NaHCO3、pH9.6)に再懸濁する。
アッセイ法:Nunc MaxiSorbマイクロタイタープレート(Nalgene Nunc International, Rochester, NY)のウェルを、コーティング緩衝液に溶解した1μgのL-フィコリンと共に、コーティング緩衝液に溶解した100μlのホルマリン固定黄色ブドウ球菌DSM20233(OD550=0.5)でコーティングする。一晩のインキュベーション後、ウェルを、TBS(10mM Tris-HCl、140mM NaCl pH7.4)に溶解した0.1%ヒト血清アルブミン(HSA)でブロッキングし、次いで、0.05%Tween20および5mM CaCl2を含有するTBS(洗浄液緩衝液)で洗浄する。ヒト血清試料を、内因性C4の活性化を阻止し、C1複合体(C1q、C1r、およびC1sからなる)を解離する、20mM Tris-HCl、1M NaCl、10mM CaCl2、0.05%Triton X-100、0.1%HSA、pH7.4で希釈する。MASP-2 MoAbを含むMASP-2阻害物質を様々な濃度で血清試料に添加する。希釈試料をプレートに添加し、4℃で一晩インキュベートする。24時間後、プレートを洗浄緩衝液で徹底的に洗浄する。次いで、100μlの4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH7.4に溶解した、0.1μgの精製ヒトC4(Dodds, A.W., Methods Enzymol. 223:46, 1993に記載のように入手した)を各ウェルに添加する。37℃で1.5時間後に、プレートを再洗浄し、C4b沈着をアルカリホスファターゼ結合ニワトリ抗ヒトC4c(Immunsystem, Uppsala, Swedenから入手した)を用いて検出し、比色分析基質p-ニトロフェニルリン酸を用いて測定する。
マンナン上でのC4アッセイ法:MBLを介したレクチン経路活性化を測定するために、プレートをLSPおよびマンナンでコーティングした後に、様々なMASP-2阻害物質と混合した血清を添加することによって、前記のアッセイ法を適合化させる。
H-フィコリン(Hakata Ag)上でのC4アッセイ法:H-フィコリンを介したレクチン経路活性化を測定するために、プレートをLSPおよびH-フィコリンでコーティングした後に、様々なMASP-2阻害物質と混合した血清を添加することによって、前記のアッセイ法を適合化させる。
実施例10
以下のアッセイ法を用いて、免疫複合体によって古典経路が開始する条件下でMASP阻害物質の効果を分析することによって、MASP阻害物質が古典経路を遮断するかどうか試験する。
方法
免疫複合体によって古典経路が開始する補体活性化の状態に対するMASP阻害物質の効果を試験するために、90%NHSを含有する3つ組の試料50μlを、10μg/mL免疫複合体またはPBSの存在下で37℃においてインキュベートする。37℃でのインキュベーション中に、200nM抗プロペルジンモノクローナル抗体を含有する3つ組の対応する試料(+/-免疫複合体)も含める。37℃で2時間のインキュベーション後に、さらなる補体活性化を止めるために、13mM EDTAを全ての試料に添加し、すぐに、試料を5℃まで冷却する。次いで、試料を-70℃で保管した後に、ELISAキット(Quidelカタログ番号A015およびA009)を用いて製造業者の説明書に従って補体活性化産物(C3aおよびsC5b-9)をアッセイする。
実施例11
本実施例は、MASP-2活性を遮断する高親和性MASP-2 Fab2抗体断片の同定について述べる。
背景および原理:MASP-2は、MBLおよびフィコリンの結合部位、セリンプロテアーゼ触媒部位、タンパク質分解基質C2の結合部位、タンパク質分解基質C4の結合部位、MASP-2酵素前駆体自己活性化のためのMASP-2切断部位、ならびに2つのCa++結合部位を含む、多くの別個の機能ドメインを有する複合タンパク質である。高親和性でMASP-2に結合するFab2抗体断片を同定し、同定されたFab2断片がMASP-2機能活性を遮断できるかどうか判定するために機能アッセイ法において試験した。
MASP-2機能活性を遮断するためには、抗体またはFab2抗体断片は、MASP-2機能活性に必要とされるMASP-2上の構造エピトープに結合し、これを妨害しなければならない。従って、MASP-2機能活性に直接関与するMASP-2上の構造エピトープに結合しないのでなければ、高親和性結合MASP-2 Fab2の多くまたは全てがMASP-2機能活性を阻害しない可能性がある。
レクチン経路C3コンバターゼ形成の阻害を測定する機能アッセイ法を用いて、MASP-2 Fab2の「遮断活性」を評価した。レクチン経路におけるMASP-2の最も重要な生理学的役割は、レクチンによって媒介される補体経路の次の機能成分、すなわち、レクチン経路C3コンバターゼを生成することであることが公知である。レクチン経路C3コンバターゼは、C3をC3aおよびC3bにタンパク分解によって切断する重要な酵素複合体(C4bC2a)である。MASP-2はレクチン経路C3コンバターゼ(C4bC2a)の構造成分ではない。しかしながら、レクチン経路C3コンバターゼを構成する2つのタンパク質成分(C4b、C2a)を生成するために、MASP-2の機能活性が必要とされる。さらに、MASP-2がレクチン経路C3コンバターゼを生成するためには、前記で列挙されたMASP-2の別個の機能活性の全てが必要であるように見える。これらの理由で、MASP-2 Fab2の「遮断活性」の評価において使用するための好ましいアッセイ法は、レクチン経路C3コンバターゼ形成の阻害を測定する機能アッセイ法だと考えられる。
高親和性Fab2の生成:ヒト軽鎖抗体可変配列および重鎖抗体可変配列のファージディスプレイライブラリー、ならびに関心対象の選択されたリガンドと反応するFab2を同定するための自動抗体選択技術を用いて、ラットMASP-2タンパク質(SEQ ID NO:13)に対する高親和性Fab2を作製した。抗体スクリーニングのために、既知量のラットMASP-2(約1mg、>85%純粋)タンパク質を利用した。親和性が最も高い抗体を選択するために3回の増幅を利用した。ELISAスクリーニングのために、抗体断片を発現する約250個の異なるヒットを選んだ。この後に、異なる抗体のユニークさ(uniqueness)を決定するために高親和性ヒットを配列決定した。
50個のユニークなMASP-2抗体を精製し、それぞれの精製Fab2抗体250μgを、以下でさらに詳述するように、MASP-2結合親和性の特徴決定および補体経路の機能試験に使用した。
MASP-2 Fab2の阻害(遮断)活性の評価に用いられるアッセイ法
1.レクチン経路C3コンバターゼ形成の阻害を測定するためのアッセイ法:
背景:レクチン経路C3コンバターゼは、C3を2つの強力な炎症誘発断片であるアナフィラトキシンC3aおよびオプソニンC3bにタンパク分解によって切断する酵素複合体(C4bC2a)である。C3コンバターゼの形成は、炎症を媒介する点でレクチン経路の重要な段階であると考えられる。MASP-2はレクチン経路C3コンバターゼ(C4bC2a)の構造成分ではない。従って、MASP-2抗体(またはFab2)は、既にあるC3コンバターゼの活性を直接阻害しない。しかしながら、レクチン経路C3コンバターゼを構成する2つのタンパク質成分(C4b、C2a)を生成するために、MASP-2セリンプロテアーゼ活性が必要とされる。従って、MASP-2機能活性を阻害するMASP-2 Fab2(すなわち、遮断MASP-2 Fab2)はレクチン経路C3コンバターゼの新規形成を阻害する。C3は、その構造の一部として、珍しく、かつ高反応性のチオエステル基を含有する。このアッセイ法ではC3がC3コンバターゼによって切断されると、C3b上のチオエステル基は、エステル結合またはアミド結合を介してプラスチックウェルの底に固定化された巨大分子上のヒドロキシル基またはアミノ基と共有結合を形成することができ、従って、ELISAアッセイ法におけるC3bの検出が容易になる。
酵母マンナンはレクチン経路の公知の活性化因子である。C3コンバターゼ形成を測定する以下の方法では、マンナンでコーティングされたプラスチックウェルを希釈ラット血清と37℃で30分間インキュベートして、レクチン経路を活性化した。次いで、ウェルを洗浄し、標準的なELISA法を用いて、ウェル上に固定化されたC3bについてアッセイした。このアッセイ法において生成されたC3bの量は、レクチン経路C3コンバターゼの新規形成を直接反映するものである。このアッセイ法では、選択された濃度のMASP-2 Fab2がC3コンバターゼ形成を阻害し、その結果として起きるC3b生成を阻害する能力を試験した。
方法
96ウェルCostar Medium Bindingプレートを、1μg/50μl/ウェルで、50mM炭酸緩衝液、pH9.5で希釈したマンナンと5℃で一晩インキュベートした。一晩のインキュベーション後、200μl PBSで各ウェルを3回洗浄した。次いで、ウェルを、PBSに溶解した100μl/ウェルの1%ウシ血清アルブミンでブロッキングし、穏やかに混合しながら室温で1時間インキュベートした。次いで、各ウェルを200μlのPBSで3回洗浄した。MASP-2 Fab2試料を、5℃で、Ca++およびMg++を含有するGVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)で選択された濃度まで希釈した。0.5%ラット血清を5℃で前記試料に添加し、100μlを各ウェルに移した。プレートに蓋をし、補体活性化を可能にするために37℃水浴中で30分間インキュベートした。37℃水浴から、氷と水の混合物を含む容器にプレートを移すことによって、反応を止めた。各ウェルを、PBS-Tween20(0.05%Tween20を含むPBS)で200μlで5回洗浄し、次いで、200μlのPBSで2回洗浄した。2.0mg/mLウシ血清アルブミンを含有するPBSに溶解した100μl/ウェルの一次抗体(ウサギ抗ヒトC3c、DAKO A0062)1:10,000希釈液を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを5回200μlのPBSで洗浄した。2.0mg/mLウシ血清アルブミンを含有するPBSに溶解した、100μl/ウェルの二次抗体(ペルオキシダーゼ結合ヤギ抗ウサギIgG, American Qualex A102PU)1:10,000希釈液を添加し、シェーカーに載せて穏やかに混合しながら室温で1時間インキュベートした。各ウェルをPBSで200μlで5回洗浄した。100μl/ウェルのペルオキシダーゼ基質TMB(Kirkegaard & Perry Laboratories)を添加し、室温で10分間インキュベートした。100Tl/ウェルの1.0M H3PO4を添加することによってペルオキシダーゼ反応を止め、OD450を測定した。
2.MASP-2依存性C4切断の阻害を測定するためのアッセイ法:
背景:MASP-2のセリンプロテアーゼ活性は高度に特異的であり、MASP-2のタンパク質基質はC2およびC4の2種類しか同定されていない。C4の切断によってC4aおよびC4bが生成される。MASP-2 Fab2は、C4切断に直接関与するMASP-2上の構造エピトープ(例えば、C4のMASP-2結合部位;MASP-2セリンプロテアーゼ触媒部位)に結合し、それによって、MASP-2のC4切断機能活性を阻害する可能性がある。
酵母マンナンはレクチン経路の公知の活性化因子である。MASP-2のC4切断活性を測定する以下の方法では、マンナンでコーティングされたプラスチックウェルを希釈ラット血清と37℃で30分間インキュベートして、レクチン経路を活性化した。このELISA法において用いられる一次抗体はヒトC4しか認識しないので、希釈ラット血清にヒトC4(1.0μg/mL)も補充した。次いで、ウェルを洗浄し、標準的なELISA方法を用いて、ウェルに固定化されたヒトC4bについてアッセイした。このアッセイ法において生成されたC4bの量はMASP-2依存性C4切断活性の尺度である。このアッセイ法では、選択された濃度のMASP-2 Fab2がC4切断を阻害する能力を試験した。
方法:96ウェルCostar Medium Bindingプレートを、1.0Tg/50μl/ウェルで、50mM炭酸緩衝液、pH9.5で希釈したマンナンと5℃で一晩インキュベートした。200μl PBSで各ウェルを3回洗浄した。次いで、ウェルを、PBSに溶解した100μl/ウェルの1%ウシ血清アルブミンでブロッキングし、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで3回洗浄した。MASP-2 Fab2試料を、5℃で、Ca++およびMg++を含有するGVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)で選択された濃度まで希釈した。これらの試料に1.0μg/mL/ヒトC4(Quidel)も含めた。前記試料に0.5%ラット血清を5℃で添加し、100μlを各ウェルに移した。プレートに蓋をし、補体を活性化するために37℃水浴中で30分間インキュベートした。37℃水浴から、氷と水の混合物を含む容器にプレートを移すことによって、反応を止めた。各ウェルを、PBS-Tween20(0.05%Tween20を含むPBS)で200μlで5回洗浄した。次いで、各ウェルを200μlのPBSで2回洗浄した。2.0mg/mLウシ血清アルブミン(BSA)を含有するPBSに溶解した、100μl/ウェルのビオチン結合ニワトリ抗ヒトC4c(Immunsystem AB, Uppsala, Sweden)1:700希釈液を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。2.0mg/mL BSAを含有するPBSに溶解した、100μl/ウェルの0.1μg/mLのペルオキシダーゼ結合ストレプトアビジン(Pierce Chemical#21126)を添加し、シェーカーに載せて穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。100μl/ウェルのペルオキシダーゼ基質TMB(Kirkegaard & Perry Laboratories)を添加し、室温で16分間インキュベートした。100μl/ウェルの1.0M H3PO4を添加することによってペルオキシダーゼ反応を止め、OD450を測定した。
3.抗ラットMASP-2 Fab2と「天然」ラットMASP-2との結合アッセイ法
背景:MASP-2は、通常、特異的レクチン分子(マンノース結合タンパク質(MBL)およびフィコリン)も含むMASP-2二量体複合体として血漿中に存在する。従って、MASP-2 Fab2と生理学的に関連する形態のMASP-2との結合の研究に興味があるのであれば、精製組換えMASP-2ではなく、Fab2と血漿中の「天然」MASP-2との相互作用が用いられる結合アッセイ法を開発することが重要である。この結合アッセイ法では、最初に、10%ラット血清に由来する「天然」MASP-2-MBL複合体をマンナンコーティングウェルに固定化した。次いで、標準的なELISA法を用いて、固定化「天然」MASP-2に対する様々なMASP-2 Fab2の結合親和性を研究した。
方法:96ウェルCostar High Bindingプレートを、1μg/50μl/ウェルで、50mM炭酸緩衝液、pH9.5で希釈したマンナンと5℃で一晩インキュベートした。200μlのPBSで各ウェルを3回洗浄した。ウェルを100μl/ウェルの、PBST(0.05%Tween20を含むPBS)に溶解した0.5%無脂肪ドライミルクでブロッキングし、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのTBS/Tween/Ca++洗浄緩衝液(5.0mM CaCl2を含有するTris緩衝食塩水、0.05%Tween20、pH7.4)で3回洗浄した。High Salt Binding Buffer(20mM Tris、1.0M NaCl、10mM CaCl2、0.05%Triton-X100、0.1%(w/v)ウシ血清アルブミン、pH7.4)に溶解した10%ラット血清を氷上で調製した。100μl/ウェルを添加し、5℃で一晩インキュベートした。ウェルを200μlのTBS/Tween/Ca++洗浄緩衝液で3回洗浄した。次いで、ウェルを200μlのPBSで2回洗浄した。Ca++およびMg++を含有するGVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)で希釈した100μl/ウェルの選択された濃度のMASP-2 Fab2を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。2.0mg/mLウシ血清アルブミンを含むPBSで1:5000に希釈した100μl/ウェルのHRP結合ヤギ抗Fab2(Biogenesisカタログ番号0500-0099)を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。100μl/ウェルのペルオキシダーゼ基質TMB(Kirkegaard & Perry Laboratories)を添加し、室温で70分間インキュベートした。100μl/ウェルの1.0M H3PO4を添加することによってペルオキシダーゼ反応を止め、OD450を測定した。
結果
ELISAスクリーニングのために、高親和性でラットMASP-2タンパク質と反応した約250個の異なるFab2を選んだ。異なる抗体のユニークさを決定するために、これらの高親和性Fab2を配列決定した。さらなる分析のために、50個のユニークなMASP-2抗体を精製した。それぞれの精製Fab2抗体250μgを、MASP-2結合親和性の特徴決定および補体経路の機能試験に使用した。この分析の結果を以下の表13に示した。
(表13)レクチン経路補体活性化を遮断するMASP-2 FAB2
Figure 0006815355
表13に示したように、試験した50個のMASP-2 Fab2のうち17個が、10nM Fab2に等しいかまたは10nM Fab2未満のIC50でC3コンバターゼ形成を強力に阻害するMASP-2遮断Fab2であると同定された(34%の陽性ヒット率)。17個のFab2のうち8個のIC50はnM以下の範囲である。さらに、表13に示したMASP-2遮断Fab2のうち17個全てが、レクチン経路C3コンバターゼアッセイ法においてC3コンバターゼ形成の本質的に完全な阻害を示した。それぞれのMASP-2分子がFab2に結合している場合でも、「遮断」Fab2がMASP-2機能をほんのわずかにしか阻害しない場合があるのは理論上可能なので、これは重要な考慮事項である。
マンナンはレクチン経路の公知の活性化因子であるが、ラット血清中に抗マンナン抗体が存在することでも古典経路が活性化し、古典経路C3コンバターゼを介してC3bが生成され得ることも理論上可能である。しかしながら、本実施例において列挙された17個の遮断MASP-2 Fab2はそれぞれC3b生成を強力に阻害する(>95%)。従って、このことから、レクチン経路C3コンバターゼに対する、このアッセイ法の特異性が証明される。
それぞれの遮断Fab2の見かけのKdを算出するために、17個全ての遮断Fab2を用いて結合アッセイ法も行った。遮断Fab2のうちの6個を対象にした、天然ラットMASP-2に対する抗ラットMASP-2 Fab2の結合アッセイ法の結果も表13に示した。他のFab2についても同様の結合アッセイ法を行った。この結果を表13に示した。一般的に、6個のFab2のそれぞれと「天然」MASP-2の結合について得られた見かけのKdは、C3コンバターゼ機能アッセイ法におけるFab2のIC50と妥当によく一致する。MASP-2はそのプロテアーゼ活性が活性化されると「不活性」型から「活性」型へとコンフォメーション変化を受けるという証拠がある(Feinberg et al., EMBO J 22:2348-59(2003); Gal et al., J. Biol.Chem. 250:33435-44(2005))。C3コンバターゼ形成アッセイ法において用いられる正常ラット血漿中には、MASP-2は主に「不活性な」酵素前駆体コンフォメーションの状態で存在する。対照的に、結合アッセイ法では、MASP-2は、固定化マンナンと結合したMBLとの複合体の一部として存在する。従って、MASP-2は「活性」コンフォメーション状態にあると考えられる(Petersen et al., J. Immunol Methods 257:107-16, 2001)。その結果、これらの2つの機能アッセイ法において試験された17個の遮断Fab2のそれぞれについてIC50とKdの間に厳密な対応関係が予想されるとは限らないと考えられる。なぜなら、それぞれのアッセイ法において、Fab2は異なるコンフォメーション型のMASP-2を結合するからである。にもかかわらず、Fab2#88を除いて、2つのアッセイ法において試験された他の16個のFab2のそれぞれについてIC50と見かけのKdの間に妥当に密接な対応関係があると考えられる(表13を参照されたい)。
MASP-2によって媒介されるC4切断の阻害について遮断Fab2のいくつかを評価した。図13に示したように、試験されたFab2の全てが、C3コンバターゼアッセイ法において得られたIC50とほぼ同じIC50でC4切断を阻害することが見出された。
マンナンはレクチン経路の公知の活性化因子であるが、ラット血清中に抗マンナン抗体が存在することでも古典経路が活性化し、それによって、C1sを介したC4切断によってC4bが生成され得ることも理論上可能である。しかしながら、いくつかのMASP-2 Fab2がC4b生成を強力に阻害する(>95%)ことが特定されている。従って、このことから、MASP-2によって媒介されるC4切断に対する、このアッセイ法の特異性が証明される。C4はC3と同様に、その構造の一部として、珍しく、かつ高反応性のチオエステル基を含有する。このアッセイ法においてC4がMASP-2によって切断されると、C4b上のチオエステル基は、エステル結合またはアミド結合を介してプラスチックウェルの底に固定化された巨大分子上のヒドロキシル基またはアミノ基と共有結合を形成することができ、従って、ELISA法におけるC4bの検出が容易になる。
これらの結果から、C4およびC3コンバターゼ活性を両方とも機能的に遮断する、ラットMASP-2タンパク質に対する高親和性FAB2が作り出され、それによって、レクチン経路活性化が阻止されることがはっきりと証明される。
実施例12
本実施例は、実施例11に記載のように生成された遮断抗ラットMASP-2 Fab2抗体のいくつかのエピトープマッピングについて述べる。
方法:
全てN末端6XHisタグを有する以下のタンパク質を、pED4ベクターを用いてCHO細胞において発現させた:
ラットMASP-2A、活性中心にあるセリンをアラニンに変えることによって不活性化された完全長MASP-2タンパク質(S613A);
ラットMASP-2K、自己活性化を減少させるように変えられた完全長MASP-2タンパク質(R424K);
CUBI-II、CUBIドメイン、EGF様ドメイン、およびCUBIIドメインしか含まないラットMASP-2 N末端断片;ならびに
CUBI/EGF様、CUBIドメインおよびEGF様ドメインしか含まないラットMASP-2 N末端断片。
以前に述べられたように(Chen et al., J. Biol. Chem. 276:25894-02(2001))、これらのタンパク質をニッケル-アフィニティークロマトグラフィーによって培養上清から精製した。
ラットMASP-2のCCPIIおよびセリンプロテアーゼドメインを含有するC末端ポリペプチド(CCPII-SP)を、pTrxFus(Invitrogen)を用いてチオレドキシン融合タンパク質として大腸菌において発現させた。タンパク質を、Thiobondアフィニティー樹脂を用いて細胞溶解産物から精製した。チオレドキシン融合パートナーを陰性対照として空のpTrxFusから発現させた。
全ての組換えタンパク質をTBS緩衝液で透析し、280nmのODを測定することによって濃度を求めた。
ドットブロット分析:
前述した5個の組換えMASP-2ポリペプチドの段階希釈液(ならびにCCPII-セリンプロテアーゼポリペプチドの陰性対照としてチオレドキシンポリペプチド)をニトロセルロース膜上にスポットした。スポットされたタンパク質の量は5倍段階で100ng〜6.4pgであった。後の実験において、スポットされたタンパク質の量は、再度、5倍段階で50ng〜16pgであった。膜を、TBS(ブロッキング緩衝液)に溶解した5%スキムミルク粉末でブロッキングし、次いで、ブロッキング緩衝液(5.0mM Ca++を含有する)に溶解した1.0μg/mLの抗MASP-2 Fab2とインキュベートした。結合しているFab2を、HRP結合抗ヒトFab(AbD/Serotec;1/10,000に希釈した)およびECL検出キット(Amersham)を用いて検出した。1枚の膜を、陽性対照としてポリクローナルウサギ抗ヒトMASP-2 Ab(Stover et al., J Immunol 163:6848-59(1999)に記載)とインキュベートした。この場合、結合しているAbを、HRP結合ヤギ抗ウサギIgG(Dako; 1/2,000に希釈した)を用いて検出した。
MASP-2結合アッセイ法:
ELISAプレートを、炭酸緩衝液(pH9.0)に溶解した1.0μg/ウェルの組換えMASP-2AまたはCUBI-IIポリペプチドで4℃において一晩コーティングした。ウェルを、TBSに溶解した1%BSAでブロッキングし、次いで、5.0mM Ca++を含有するTBSに溶解したMASP-2 Fab2の段階希釈液を添加した。プレートをRTで1時間インキュベートした。TBS/tween/Ca++で3回洗浄した後、TBS/Ca++で1/10,000に希釈したHRP結合抗ヒトFab(AbD/Serotec)を添加し、プレートを室温でさらに1時間インキュベートした。結合している抗体を、TMBペルオキシダーゼ基質キット(Biorad)を用いて検出した。
結果
Fab2と様々なMASP-2ポリペプチドとの反応性を証明したドットブロット分析の結果を以下の表14に示した。表14に示した数値は、ほぼ最大半量のシグナル強度を得るのに必要とされる、スポットされたタンパク質の量を示す。示したように、(チオレドキシン融合パートナー単独を除く)全てのポリペプチドが、陽性対照Ab(ポリクローナル抗ヒトMASP-2血清、ウサギにおいて産生された)によって認識された。
(表14)ドットブロットにおける様々な組換えラットMASP-2ポリペプチドとの反応性
Figure 0006815355
NR=反応なし。陽性対照抗体は、ウサギにおいて産生されたポリクローナル抗ヒトMASP-2血清である。
全てのFab2がMASP-2AならびにMASP-2Kと反応した(データ示さず)。Fab2の大半はCCPII-SPポリペプチドを認識したが、N末端断片を認識しなかった。2つの例外はFab2#60およびFab2#57である。Fab2#60はMASP-2AおよびCUBI-II断片を認識するが、CUBI/EGF様ポリペプチドもCCPII-SPポリペプチドも認識しない。このことから、Fab2#60は、CUBIIにあるエピトープに、またはCUBIIとEGF様ドメインにまたがるエピトープに結合することが示唆される。Fab2#57がMASP-2Aを認識するが、試験されたいかなるMASP-2断片も認識しないことから、おそらくこのFab2がCCP1にあるエピトープを認識することを示している。Fab2#40および#49は完全なMASP-2Aにしか結合しなかった。ELISA結合アッセイ法において、Fab2#60は、わずかに低い見かけの親和性ではあるがCUBI-IIポリペプチドにも結合した(データ示さず)。
これらの知見から、MASP-2タンパク質の複数の領域に対するユニークな遮断Fab2が同定されたことが証明される。
実施例13
本実施例は、実施例11に記載のように同定された代表的な高親和性抗MASP-2 Fab2抗体の薬力学的分析について述べる。
背景/原理
実施例11に記載のように、ラットレクチン経路を遮断する高親和性抗体を同定するために、ラットMASP-2タンパク質を用いてファージディスプレイライブラリーをパンニングした。このライブラリーは大きな免疫学的多様性を提供するように設計され、完全ヒトイムノグロビン(immunoglobin)遺伝子配列を用いて構築された。実施例11に示したように、ラットMASP-2タンパク質と高親和性で結合する約250個の個々のファージクローンをELISAスクリーニングによって同定した。これらのクローンの配列決定によって、50個のユニークなMASP-2抗体コードファージが同定された。これらのクローンからFab2タンパク質を発現させ、精製し、MASP-2結合親和性およびレクチン補体経路機能阻害について分析した。
実施例11の表13に示したように、この分析の結果として、機能遮断活性を有する17個のMASP-2 Fab2を同定した(遮断抗体については34%のヒット率)。Fab2によるレクチン補体経路の機能阻害は、MASP-2によるC4切断の直接の尺度であるC4沈着のレベルにおいて明らかであった。重要なことに、C3コンバターゼ活性を評価した場合に、阻害は同じように明らかであった。このことから、レクチン補体経路の機能遮断が証明される。実施例11に記載のように同定された17個のMASP-2遮断Fab2は、10nMに等しい、または10nM未満のIC50値でC3コンバターゼ形成を強力に阻害する。同定された17個のFab2のうち8個のIC50はnM以下の範囲である。さらに、実施例11の表13にまとめたように、MASP-2遮断Fab2のうち17個全てがレクチン経路C3コンバターゼアッセイ法においてC3コンバターゼ形成の本質的に完全な阻害を示した。さらに、表13に示した17個の遮断MASP-2 Fab2はそれぞれC3b生成を強力に阻害する(>95%)。従って、レクチン経路C3コンバターゼを対象としたこのアッセイ法の特異性が証明される。
ラットIgG2cおよびマウスIgG2a完全長抗体アイソタイプ変種はFab2#11から得られた。本実施例は、薬力学パラメータについての、これらのアイソタイプのインビボ特徴決定について述べる。
方法
実施例11に記載のように、ラットMASP-2タンパク質を用いてFabファージディスプレイライブラリーをパンニングした。これから、Fab2#11を同定した。ラットIgG2cおよびマウスIgG2a完全長抗体アイソタイプ変種はFab2#11から得られた。ラットIgG2cおよびマウスIgG2a完全長抗体アイソタイプを、以下の通り薬力学パラメータについてインビボで特徴決定した。
マウスにおけるインビボ研究:
インビボでの血漿レクチン経路活性に対するMASP-2抗体投与の効果を調べるために、マウスにおいて薬力学的研究を行った。この研究では、0.3mg/kgまたは1.0mg/kgのマウスMASP-2 MoAb(Fab2#11に由来するマウスIgG2a完全長抗体アイソタイプ)の皮下(sc)投与後および腹腔内(ip)投与後の様々な時点で、C4沈着をレクチン経路アッセイ法においてエクスビボで測定した。
図29Aは、0.3mg/kgまたは1.0mg/kgのマウス抗MASP-2 MoAbの皮下投与後の様々な時点でマウス(n=3マウス/群)から採取された未希釈血清試料においてエクスビボで測定された、ザイモサンコーティングマイクロタイタープレートにおけるレクチン経路特異的C4b沈着を図示する。抗体投与前に収集されたマウスからの血清試料は陰性対照(100%活性)として役立ったのに対して、100nMの同じ遮断MASP-2抗体をインビトロで補充した血清を陽性対照(0%活性)として使用した。
図29Aに示した結果から、1.0mg/kg用量のマウスMASP-2 MoAbの皮下投与後に迅速かつ完全なC4b沈着阻害が証明される。0.3mg/kgのマウスMASP-2 MoAbの用量の皮下投与後にC4b沈着の部分阻害が見られた。
0.6mg/kgのマウスMASP-2 MoAbをマウスに単回ip投与した後、レクチン経路回復の時間経過が3週間続いた。図29Bに示したように、抗体投与後に、レクチン経路活性が急激に低下し、それに続いて、i.p.投与後、約7日続く完全なレクチン経路阻害が生じた。2週目および3週目にわたってレクチン経路活性のゆっくりとした回復が観察された。MASP-2 MoAb投与後17日までにマウスのレクチン経路が完全に回復した。
これらの結果から、Fab2#11に由来するマウス抗MASP-2 Moabは全身送達された場合に、マウスのレクチン経路を用量反応の様式で阻害することが証明される。
実施例14
本実施例は、ファージディスプレイを使用して、MASP-2に結合し、かつレクチン媒介補体活性化(LEA-2)を阻害しながらも免疫系の古典(C1q依存性)経路成分を完全なままにしておく完全ヒトscFv抗体の同定を記載する。
概略
ファージディスプレイライブラリーをスクリーニングすることによって完全ヒト高親和性MASP-2抗体を同定した。scFvフォーマットおよび完全長IgGフォーマットの両方において抗体の可変軽鎖および重鎖断片を単離した。ヒトMASP-2抗体は、レクチン経路媒介第二補体経路活性化に関連する細胞傷害を阻害しながらも免疫系の古典(C1q依存性)経路成分を完全なままにしておく場合に有用である。一部の態様において、対象MASP-2阻害抗体は、以下の特徴を有する:(a)ヒトMASP-2に関する高い親和性(例えば10nMまたはそれ未満のKD)および(b)90%ヒト血清中のMASP-2依存性補体活性化を30nMまたはそれ未満のIC50で阻害すること。
方法
完全長の触媒的に不活性なMASP-2の発現:
リーダー配列(SEQ ID NO:5)を有するヒトMASP-2ポリペプチドをコードするヒトMASP-2の完全長cDNA配列(SEQ ID NO:4)を、CMVエンハンサー/プロモーター領域の制御下で真核性発現を駆動する哺乳動物発現ベクターpCI-Neo(Promega)中にサブクローニングした(Kaufman R. J. et al., Nucleic Acids Research 19:4485-90, 1991; Kaufman, Methods in Enzymology, 185:537-66 (1991)に記載)。
触媒的に不活性なヒトMASP-2Aタンパク質を生成するために、参照により本明細書に組み入れられるUS2007/0172483に記載されているとおりに部位指向性変異誘発を実施した。アガロースゲル電気泳動およびバンド調製ののちPCR産物を精製し、標準的なテーリング手法を使用して単一アデノシン重複を生成した。次いで、アデノシンテールのあるMASP-2AをpGEM-T easyベクターにクローニングし、大腸菌へと形質転換した。ヒトMASP-2Aをさらに哺乳動物発現ベクターpEDまたはpCI-Neoのいずれかにサブクローニングした。
標準的なリン酸カルシウムトランスフェクション法(Maniatis et al., 1989)を使用して、上記MASP-2A発現構築物をDXB1細胞の中にトランスフェクトした。調製物が他の血清タンパク質で汚染されないことを保証するために、MASP-2Aを無血清培地中で産生した。1日おきに培地をコンフルエント細胞から収穫した(計4回)。組換えMASP-2Aレベルは、培地1リットルあたり平均で約1.5mgであった。MASP-2A(上記Ser-Ala変異体)をMBP-Aアガロースカラム上でのアフィニティークロマトグラフィーによって精製した。
パンニング/scFv転換およびフィルタースクリーニングによって同定されたScFv候補クローン上のMASP-2A ELISA
ヒト免疫グロブリン軽鎖および重鎖可変領域配列のファージディスプレイライブラリーを抗原パンニングに供したのち、自動化抗体スクリーニングおよび選択によってヒトMASP-2タンパク質に対する高親和性scFv抗体を同定した。HIS標識またはビオチン標識MASP-2Aに対して3回のscFvファージライブラリーパンニングを実施した。3回目のパンニングは、まずMBLで溶出させ、次いでTEA(アルカリ性)で溶出させた。標的MASP-2Aに対してscFv断片を表示するファージの特異的濃縮をモニターするために、固定化MASP-2Aに対するポリクローナルファージELISAを実施した。3回目のパンニングからのscFv遺伝子をpHOG発現ベクターにクローニングし、小規模フィルタースクリーニングに通して、MASP-2Aに対する特異性クローンを捜した。
3回目のパンニングからのscFv断片をコードするプラスミドを含む細菌コロニーを選択し、ニトロセルロース膜に固定化し、非誘発性培地上で一晩増殖させてマスタープレートを製造した。3回目のパンニングから合計18,000のコロニーを、半分は競合的溶出から、もう半分はその後のTEA溶出から選択し、分析した。MASP-2Aに対するscFvファージミドライブラリーのパンニング、その後のscFv転換およびフィルタースクリーニングが137の陽性クローンを生み出した。108/137クローンが、ELISAアッセイ法においてMASP-2結合に関して陽性であり(データ示さず)、そのうち45のクローンを、正常ヒト血清中のMASP-2活性を遮断する能力に関してさらに分析した。
レクチン経路C3コンバターゼ形成の阻害を測定するためのアッセイ法
レクチン経路C3コンバターゼ形成の阻害を測定する機能アッセイ法を使用して、MASP-2 scFV候補クローンの「ブロッキング活性」を評価した。レクチン経路C3コンバターゼを構成する2つのタンパク質成分(C4b、C2a)を生成するためには、MASP-2セリンプロテアーゼ活性が必要である。したがって、MASP-2機能活性を阻害するMASP-2 scFv(すなわち、遮断性MASP-2 scFv)はレクチン経路C3コンバターゼの新規形成を阻害する。C3は、異例な高反応性チオエステル基をその構造の一部として含む。このアッセイ法においてC3コンバターゼによってC3が切断されると、C3b上のチオエステル基が、プラスチックウェルの底に固定化された高分子上のヒドロキシルまたはアミノ基とエステルまたはアミド結合による共有結合を形成し、それにより、ELISAアッセイ法におけるC3bの検出を容易にすることができる。
酵母マンナンは既知のレクチン経路アクチベーターである。以下の方法においては、C3コンバターゼの形成を測定するために、マンナンでコーティングされたプラスチックウェルを希釈ヒト血清とともにインキュベートしてレクチン経路を活性化した。次いで、ウェルを洗浄し、ウェル上に固定化されたC3bに関して、標準的なELISA法を使用してアッセイした。このアッセイ法において生成されたC3bの量が、レクチン経路C3コンバターゼの新規形成を直接反映するものである。このアッセイ法においては、選択された濃度におけるMASP-2 scFvクローンを、C3コンバターゼ形成およびその後のC3b生成を阻害するそれらの能力に関して試験した。
方法
上記のように同定した45個の候補クローンを発現させ、精製し、同じ保存濃度まで希釈し、それを、すべてのクローンが同じ量の緩衝液を有することを保証するために、Ca++およびMg++含有GVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)中で再び希釈した。scFvクローンをそれぞれ2μg/mLの濃度において三つ組で試験した。陽性対照はOMS100 Fab2であり、かつ0.4μg/mLで試験した。scFv/IgGクローンの存在および非存在においてC3c形成をモニターした。
マンナンを50mM炭酸緩衝液(15mM Na2CO3+35mM NaHCO3+1.5mM NaN3)中pH9.5で20μg/mL(1μg/ウェル)の濃度まで希釈し、4℃で一晩ELISAプレートにコーティングした。翌日、マンナンコーティングされたプレートをPBS 200μlで3回洗浄した。次いで、1% HSAブロッキング溶液100μlをウェルに加え、室温で1時間インキュベートした。プレートをPBS 200μlで3回洗浄し、試料の添加まで、PBS 200μlとともに氷上に貯蔵した。
正常ヒト血清をCaMgGVB緩衝液中0.5%に希釈し、scFvクローンまたはOMS100 Fab2陽性対照を0.01μg/mL;1μg/mL(OMS100対照のみ)および10μg/mLの三つ組でこの緩衝液に加え、氷上で45分間プレインキュベートしたのち、ブロッキングされたELISAプレートに加えた。37℃で1時間のインキュベートによって反応を開始させ、プレートを氷槽に移すことによって反応を停止させた。ウサギα-マウスC3c抗体、次いでヤギα-ウサギHRPを用いてC3b沈着を検出した。陰性対照は抗体なしの緩衝液であり(抗体なし=最大C3b沈着)、陽性対照はEDTAを含む緩衝液であった(C3b沈着なし)。ウェルがマンナンフリーであったことを除き同じアッセイ法を実施することによってバックグラウンドを測定した。マンナンなしのプレートに対するバックグラウンドシグナルをマンナン含有ウェルにおけるシグナルから差し引いた。カットオフ基準は、無関係のscFvクローン(VZV)および緩衝液のみの活性の半分にセットした。
結果:カットオフ基準に基づき、合計13のクローンがMASP-2の活性を遮断することがわかった。>50%の経路抑制を生じさせた13のクローンすべてを選択し、配列決定して、10のユニークなクローンを得た。10のクローンすべてが、同じ軽鎖サブクラスλ3ならびに3つの異なる重鎖サブクラス:VH2、VH3およびVH6を有することがわかった。機能アッセイ法において、0.5%ヒト血清を使用した場合、10の候補scFvクローンのうち5つが、目標基準25nM未満のIC50nM値を出した。
改善された有効性を有する抗体を同定するために、上記のように同定した3つの母scFvクローンを軽鎖シャッフリングに供した。このプロセスは、6名の健康なドナーに由来するナイーブなヒトラムダ軽鎖(VL)のライブラリーと対合した各母クローンのVHからなるコンビナトリアルライブラリーの生成を含むものであった。次いで、このライブラリーを、改善された結合親和性および/または機能的を有するscFvクローンに関してスクリーニングした。
(表15)リード娘クローンおよびそれらのそれぞれの母クローン(すべてscFvフォーマット)のIC50(nM)における機能有効性の比較
Figure 0006815355
表15に示しかつ以下の表16A〜Fに記載する母クローンおよび娘クローンの重鎖可変領域(VH)配列を以下に提示する。
Kabat CDR(31〜35(H1)、50〜65(H2)および95〜102(H3))は太字で示し、Chothia CDR(26〜32(H1)、52〜56(H2)および95〜101(H3))は下線で示す。
17D20_35VH-21N11VL重鎖可変領域(VH)(SEQ ID NO:15、SEQ ID NO:14によってコードされる)
Figure 0006815355
d17N9重鎖可変領域(VH)(SEQ ID NO:16)
Figure 0006815355
重鎖可変領域
(表16A)重鎖(aa1〜20)
Figure 0006815355
(表16B)重鎖(aa21〜40)
Figure 0006815355
(表16C)重鎖(aa41〜60)
Figure 0006815355
(表16D)重鎖(aa61〜80)
Figure 0006815355
(表16E)重鎖(aa81〜100)
Figure 0006815355
(表16F)重鎖(aa101〜118)
Figure 0006815355
表17A〜Fに記載する母クローンおよび娘クローンの軽鎖可変領域(VL)配列を以下に提示する。
Kabat CDR(24〜34(L1)、50〜56(L2)および89〜97(L3))は太字で示し、Chothia CDR(24〜34(L1)、50〜56(L2)および89〜97(L3)は下線で示す。これらの領域は、Kabat系によって番号付けしてもChothia系によって番号付けしても同じである。
17D20m_d3521N11軽鎖可変領域(VL)(SEQ ID NO:17)
Figure 0006815355
17N16m_d17N9軽鎖可変領域(VL)(SEQ ID NO:19、SEQ ID NO:18によってコードされる)
Figure 0006815355
(表17A)軽鎖(aa1〜20)
Figure 0006815355
(表17B)軽鎖(aa21〜40)
Figure 0006815355
(表17C)軽鎖(aa41〜60)
Figure 0006815355
(表17D)軽鎖(aa61〜80)
Figure 0006815355
(表17E)軽鎖(aa81〜100)
Figure 0006815355
(表17F)軽鎖(aa101〜120)
Figure 0006815355
いずれも高い親和性でヒトMASP-2に結合し、かつ機能的補体活性を遮断する能力を有することが実証されているMASP-2抗体OMS100およびMoAb_d3521N11VLを、エピトープ結合に関してドットブロット分析によって分析した。結果は、d3521N11およびOMS100抗体がMASP-2に関して高い特異性を有し、かつMASP-1/3には結合しないことを示す。いずれの抗体も、MASP-2のCCP1ドメインを含まないMAp19またはMASP-2断片には結合せず、結合部位がCCP1を包含するという結論に至った。
したがって、一態様において、請求項に係わる発明の組成物および方法において使用するためのMASP-2阻害物質は、ヒトMASP-2(SEQ ID NO:3)からなるポリペプチドに結合するヒト抗体を含み、該抗体は、
(I)(a)(i)SEQ ID NO:21の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii)SEQ ID NO:21の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:21の95〜102のアミノ酸配列を含む重鎖CDR3を含む、重鎖可変領域;ならびに
(b)(i)SEQ ID NO:25またはSEQ ID NO:27いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:27いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:27いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3を含む、軽鎖可変領域;または(II)該重鎖可変領域の該CDR領域内の合計6つまでのアミノ酸置換および該軽鎖可変領域の該CDR領域内の合計6つまでのアミノ酸置換を除く、他の点では該可変ドメインと同一であるそれらの変異体を含み、該抗体またはその変異体がMASP-2依存性補体活性化を阻害する。
実施例15
本実施例は、改変されたDT40細胞株DTLacOを使用するインビトロ系を使用する、MASP-1およびMASP-3モノクローナル抗体の生成を記載する。
背景/原理
WO2009029315およびUS2010093033にさらに記載されているように、特定のポリペプチドの可逆性多様化誘発を可能にする改変されたDT40細胞株DTLacOを含むインビトロ系を使用して、ヒトMASP-1およびMASP-3に対する抗体を生成した。DT40は、培養中にその重鎖および軽鎖免疫グロブリン(Ig)遺伝子を構成性突然変異させることが知られているニワトリB細胞株である。他のB細胞と同様に、この構成性突然変異誘発は、Ig遺伝子のV領域への突然変異、ひいては発現した抗体分子のCDRを標的化する。DT40細胞中の構成性突然変異誘発は、各機能的V領域よりも上流に位置する非機能的V遺伝子セグメント(疑似V遺伝子;ΨV)のアレイをドナー配列として使用する遺伝子変換によって起こる。ΨV領域の欠失は、以前、ヒトB細胞において一般に認められる機構である、多様化の機構における遺伝子転換から体細胞超変異への切替えを生じさせることが知られていた。DT40ニワトリB細胞リンパ腫系が、エクスビボでの抗体進化のための有望な出発点であることが示されている(Cumbers, S. J. et al. Nat Biotechnol 20, 1129-1134 (2002); Seo, H. et al. Nat Biotechnol 23, 731-735 (2005))。DT40細胞は培養中、8〜10時間の倍加時間(ヒトB細胞系の場合の20〜24時間に比べて)で強く増殖し、非常に効率的な相同遺伝子標的化を支援する(Buerstedde, J. M. et al. Embo J 9, 921-927 (1990))。DT40細胞は、多様化のための2つの別々の生理学的経路、それぞれ鋳型化突然変異および非鋳型化突然変異を創製する遺伝子転換および体細胞超変異にアクセスすることができることを条件に、非常に大きな潜在的V領域配列多様性を命令する(Maizels, N. Annu Rev Genet. 39, 23-46 (2005))。多様化した重鎖および軽鎖免疫グロブリン(Ig)は細胞表面表示IgMの形態で発現する。表面IgMは、構造的にIgG分子に似る二価形態を有する。特定の抗原への特異性をもってIgMを表示する細胞は、抗原の固定化可溶性バージョンまたは膜表示バージョンに結合させることによって単離することができる。しかし、抗体進化のためのDT40細胞の利用は実際には限られている。理由は、他の形質転換B細胞株と同様、多様化が生理学的速度の1%未満の速度でしか起こらないからである。
この実施例において使用される系においては、WO2009029315およびUS2010093033に記載されているように、DT40細胞を操作して、さらなる遺伝子改変の能力または突然変異誘発に寄与するための遺伝子転換および体細胞超変異の潜在能力を犠牲にすることなく、Ig遺伝子多様化の速度を加速させた。多様化の速度を増加させ、その結果、本発明者らの細胞ライブラリー中の結合特異性の複雑さを増大させるために、DT40に対して2つの主要な改変を実施した。第一に、Ig遺伝子多様化を強力な大腸菌ラクトースオペレーター/レプレッサー制御ネットワーク下に置いた。強力な大腸菌ラクトースオペレーターの約100の重合リピートからなる多量体(PolyLacO)を、相同遺伝子標的化により、再構成され、発現したIgλおよびIgH遺伝子よりも上流に挿入した。次いで、ラクトースレプレッサータンパク質(LacI)に融合した制御因子をLacO制御要素につなぐと、オペレーターDNAのためのラクトースレプレッサーの高い親和性(kD=10-14M)を利用しながら多様化を制御することができる。PolyLacOがIgλだけで組み込まれたDT40 PolyLacO-λR細胞は、任意の操作の前の親DT40細胞に対して5倍増のIg遺伝子多様化速度を示した(Cummings, W. J. et al. PLoS Biol 5, e246 (2007))。多様化はさらに、IgλおよびIgHの両遺伝子に標的化されたPolyLacOを有するように操作された細胞(「DTLacO」)において増大した。DTLacO細胞は、親DT40 PolyLacO-λR LacI-HP1株に特徴的な2.8%に対して2.5〜9.2倍増の多様化速度を有することが実証された。したがって、PolyLacO要素を重鎖および軽鎖の両遺伝子に標的化することが多様化をDT40親細胞株に対して21.7倍に加速させた。制御因子をIg位置につなぐことは、突然変異誘発の頻度を変化させるだけでなく、突然変異誘発の経路を変更して、ユニークな配列変化のより大きな集合を創製することができる(Cummings et al. 2007; Cummings et al. 2008)。第二に、つながれた因子で加速されるIg遺伝子多様化のための配列出発点の多様な集合を生成した。2月齢ニワトリから単離した再構成Ig重鎖可変領域を重鎖位置に標的化することにより、これらの多様な配列出発点をDTLacOに加えた。これらの重鎖可変領域の追加が抗体多様化のための107の新たな出発点のレパートリーを創製した。これら新たな出発点をDTLacO細胞株に組み込むと、特定の標的に結合するクローンの同定および、その後、つながれた因子による迅速な親和性成熟が可能になる。親和性成熟ののち、成熟し、再構成された重鎖および軽鎖可変配列(VHおよびVλ;ニワトリフレームワーク領域および相補性決定領域またはCDRからなる)を、ヒトIgG1およびラムダ定常領域を含む発現ベクターにクローニングすることにより、完全長組換えキメラIgGを作製する。これらの組換えmAbは、インビトロおよびインビボ用途に適し、ヒト化の出発点として働く。
方法
MASP-1およびMASP-3抗原結合についての選択
遺伝子標的化によって多様化させたDTLacO集団を、ヒトMASP-1(SEQ ID NO:10)およびMASP-3抗原(SEQ ID NO:8)と複合化したビーズに結合することによって最初の選択を実施し、その後、FACSにより、蛍光標識可溶性抗原を使用して選択した(Cumbers, S. J. et al. Nat Biotechnol 20, 1129-1134 (2002); Seo, H. et al. Nat Biotechnol 23, 731-735 (2005)。MASP-1とMASP-3との間で共有されるアルファ鎖中の保存されたアミノ酸配列(図5に示す)および別々のベータ鎖配列(図6に示す)のせいで、MASP-1およびMASP-3へのバインダのための別々の平行スクリーニングを実施して、MASP-1特異性mAb、MASP-3特異性mAbならびにMASP-1およびMASP-3の両方に結合することができる(二重特異性)mAbを同定した。2つの形態の抗原を使用して、バインダを選択し、スクリーニングした。まず、Fcドメインに融合した、完全長または断片のいずれかの組換えMASP-1またはMASP-3をDynal磁性プロテインGビーズに結合させるか、または、PECy5標識抗ヒトIgG(Fc)二次抗体を使用してFACSベースの選択に使用した。あるいはまた、MASP-1またはMASP-3タンパク質の組換えバージョンをDylight fluorで直接標識し、選択およびスクリーニングに使用した。
結合および親和性
PCR増幅V領域を293F細胞中のヒトIgG1の発現を支持するベクターにクローニングすることによって組換え抗体を生成した(Yabuki et al., PLoS ONE, 7(4):e36032 (2012))。MASP-1またはMASP-3を様々な濃度の蛍光標識可溶性抗原と結合させる抗体を発現するDTLacO細胞を染色することによって飽和結合反応速度を測定した。MASP-3依存性C3b沈着およびMASP-3依存性D因子切断を含むMASP-3特異性活性に関する機能アッセイ法を、それぞれ実施例17および18に記載するように実施した。MASP-1特異性活性、すなわちMASP-1依存性C3b沈着の阻害に関する機能アッセイ法を以下に記載するように実施した。
結果
上記方法を使用して、数多くのMASP-1およびMASP-3結合抗体を生成した。FACS分析によって実証された結合を、MASP-3バインダのスクリーニングにおいて単離された代表的なクローンM3J5およびM3M1に関して記載する。
図30Aは、DTLacOクローンM3J5に関するMASP-3抗原/抗体結合のFACSヒストグラムである。図30Bは、DTLacOクローンM3M1に関するMASP-3抗原/抗体結合のFACSヒストグラムである。図30Aおよび30Bにおいて、グレーに塗りつぶした曲線はIgG1染色した陰性対照であり、濃い黒の曲線はMASP-3染色である。
図31は、MASP-3抗原に関するクローンM3J5(クローン5)の飽和結合曲線をグラフで示す。図31に示すように、MASP-3に関するM3J5抗体の見かけ結合親和性は約31nMである。
標準的方法を使用して、同定されたクローンの配列分析を実施した。すべてのクローンを共通の(DT40)VHおよびVL配列ならびに互いと比較した。2つの前述のクローンM3J5およびM3M1の配列は、MASP-1およびMASP-3のCCP1-CCP2-SP断片のスクリーニングにおいてそれぞれ同定された2つのさらなる代表的クローンD14および1E10とでアライメントされた状態で提供されている。D14および1E10は、MASP-1およびMASP-3の両方に共通の領域に結合する。
図32Aは、ニワトリのDT40 VH配列への、M3J5、M3M1、D14および1E10のVH領域のアミノ酸配列アライメントである。
図32Bは、ニワトリのDT40 VL配列への、M3J5、M3M1、D14および1E10のVL領域のアミノ酸配列アライメントである。
各クローンのVHおよびVLアミノ酸配列を以下に提供する。
重鎖可変領域(VH)配列
図32Aは、親DTLacO(SEQ ID NO:24)、MASP-3結合クローンM3J5(SEQ ID NO:25)およびM3M1(SEQ ID NO:26)ならびにMASP-1/MASP-3二重結合クローンD14(SEQ ID NO:30)および1E10に関する重鎖可変領域(VH)配列のアミノ酸アライメントを示す。
以下のVH配列中のKabat CDRは、以下のアミノ酸位置:H1:aa31〜35;H2:aa50〜62;およびH3:aa95〜102に位置する。
以下のVH配列中のChothia CDRは、以下のアミノ酸位置:H1:aa26〜32;H2:aa52〜56;およびH3:aa95〜101に位置する。
親DTLacO VH(SEQ ID NO:24)
Figure 0006815355
クローンM3J5 VH:(SEQ ID NO:25)
Figure 0006815355
クローンM3M1 VH:(SEQ ID NO:26)
Figure 0006815355
クローンD14 VH:(SEQ ID NO:30)
Figure 0006815355
クローン1E10 VH:(SEQ ID NO:32)
Figure 0006815355
軽鎖可変領域(VL)配列
図32Bは、親DTLacO(SEQ ID NO:27)ならびにMASP-3結合クローンM3J5(SEQ ID NO:28)およびM3M1(SEQ ID NO:29)ならびにMASP-1/MASP-3二重結合クローンD14(SEQ ID NO:31)および1E10(SEQ ID NO:33)に関する軽鎖可変領域(VL)配列のアミノ酸アライメントを示す。
親DTLacO VL(SEQ ID NO:27)
Figure 0006815355
クローンM3J5 VL(SEQ ID NO:28)
Figure 0006815355
クローンM3M1 VL(SEQ ID NO:29)
Figure 0006815355
クローンD14 VL:(SEQ ID NO:31)
Figure 0006815355
クローン1E10 VL:(SEQ ID NO:33)
Figure 0006815355
LEA-2(MASP-2依存性)機能アッセイ法
MASP-1は、MASP-2を活性化するその能力を介してLEA-2に寄与する(図1を参照されたい)。Wieslab(登録商標)補体システムスクリーニングMBLアッセイ法(Euro Diagnostica, Malmo, Sweden)は、LEA-2依存活性化(すなわち、従来のレクチン経路活性化)を単離する条件下、C5b-C9沈着を測定する。製造者の取り扱い指示に従って、代表的なクローン1E10を400nMの最終濃度で試験してアッセイ法を実施した。
図33は、mAb 1E10の阻害活性を、アッセイキットとともに提供される陽性血清およびアイソタイプ対照抗体と比較して示す棒グラフである。図33に示すように、mAb 1E10は、LEA-2依存性活性化の部分的阻害(MASP-2のMASP-1依存性活性の阻害による)を実証するが、一方、アイソタイプ対照抗体はそれを実証しない。DTLacO中のつながれた因子を使用するMASP-1結合に関するこの抗体の継続的な親和性成熟によってより強い阻害が達成されるはずである。
代表的なmAbの場合のLEA-1(MASP-3依存性)機能アッセイ法を以下、実施例17および18に記載する。
結果の要約
上記結果は、DTLacOプラットフォームが、LEA-1(以下、図17および18に示す)およびLEA-2(この実施例に示す)に対する阻害性を有するMASP-1およびMASP-3モノクローナル抗体の迅速なエクスビボ発見を可能にすることを示した。
実施例16
本実施例はMASP-1およびMASP-2のポリペプチド阻害因子の生成を記載する。
原理
それぞれSGMI-1およびSGMI-2と呼ばれる、MASP-1およびMASP-2の特異性阻害因子の生成が、いずれも参照により本明細書に組み入れられるHeja et al., J Biol Chem 287:20290(2012)およびHeja et al., PNAS 109:10498 (2012)に記載されている。SGMI-1およびSGMI-2は、いずれも、プロテアーゼ結合ループの8つの位置のうち6つが完全にランダム化されたサバクトビバッタ(Schistocerca gregaria)プロテアーゼ阻害因子2の変異体のファージライブラリーから選択された36アミノ酸ペプチドである。その後のインビトロ進化が、一桁nMのKI値の一特異性阻害因子を生じさせた(Heja et al., J. Biol. Chem. 287:20290, 2012)。構造的研究が、最適化されたプロテアーゼ結合ループが、2つの阻害因子の特異性を決定する一次結合部位を形成することを明らかにした。延長した二次および内部結合領域のアミノ酸配列は2つの阻害因子に共通であり、接触界面に寄与する(Heja et al., 2012. J. Biol. Chem. 287:20290)。機械的に、SGMI-1およびSGMI-2はいずれも、古典経路または第二経路に影響することなく補体活性化のレクチン経路を遮断する(Heja et al., 2012. Proc. Natl. Acad. Sci. 109:10498)。
SGMI-1およびSGMI-2阻害因子のアミノ酸配列を以下に記載する。
Figure 0006815355
SGMI-1およびSGMI-2は、それぞれMASP-1およびMASP-2の高度に特異性の阻害因子である。しかし、ペプチドとして、生物学的研究における使用のためには限られた潜在能力しか有しない。これらの制限に対処するため、本発明者らは、これらの生体活性ペプチドアミノ酸配列をヒトIgG1 Fc領域のアミノ末端に移植してFc融合タンパク質を創製した。
方法
SGMI-IgG1 Fc融合タンパク質を発現させるために、SGMI-1(SEQ ID NO:34)およびSGMI-2(SEQ ID NO:35)ペプチドをコードするポリヌクレオチドを合成し(DNA 2.0)、発現ベクターpFUSE-hIgG1-Fc2(InvivoGen)中、IL-2シグナル配列およびヒトIgG1Fc領域(SEQ ID NO:36)をコードするヌクレオチド配列の間に挿入した。フレキシブルなポリペプチドリンカー(例えば、SEQ ID NO:37またはSEQ ID NO:38)をSGMIペプチドとIgG1 Fc領域との間に含めた。
フレキシブルなポリペプチドリンカー配列
Figure 0006815355
得られた構築物を以下に記載する。
ヒトIL-2シグナル配列、SGMI-1、リンカーおよびヒトIgG1-Fcを含むポリペプチド融合物(pFUSE-SGMI-1Fc)をコードするポリヌクレオチドがSEQ ID NO:39と表記され、これが、SEQ ID NO:40と表記される、SGMI-1(下線)、リンカー領域(イタリック体)およびヒトIgG1-Fcを含む成熟ポリペプチド融合物(合わせて「SGMI-1Fc」と呼ばれる)をコードする。
Figure 0006815355
ヒトIL-2シグナル配列、SGMI-2、リンカーおよびヒトIgG1-Fcを含むポリペプチド融合物(pFUSE-SGMI-2Fc)をコードするポリヌクレオチドがSEQ ID NO:41と表記され、これが、SEQ ID NO:42と表記される、SGMI-2(下線)、リンカー領域(イタリック体)およびヒトIgG1-Fcを含む成熟ポリペプチド融合物(合わせて「SGMI-2Fc」と呼ばれる)をコードする。
Figure 0006815355
組換えタンパク質の産生:
Freestyle 293-FまたはExpi293F細胞(Invitrogen)を、供給者のプロトコールに従って、2つの発現プラスミド(pFUSE-SGMI-1Fc(SEQ ID NO:39)およびpFUSE-SGMI-2Fc(SEQ ID NO:41)の1つと過渡的にトランスフェクトした。37℃で4日間のインキュベーションののち、培地を収穫した。プロテインAアフィニティークロマトグラフィーによってFc融合タンパク質を精製した。
レクチン経路の活性化を測定するアッセイ法
レクチン経路活性化の尺度である、1%血清からマンナンコーティングされた96ウェルプレートへのC3bの沈着を阻害する能力に関してSGMI-1FcおよびSGMI-2Fc融合タンパク質を試験した。SGMI-1FcおよびSGMI-2Fcを1%正常ヒト血清とともに氷上で1時間プレインキュベートしたのち、マンナンでコーティングされたウェルに加えた(2μg/ウェル)。Schwaeble et al. PNAS 108:7523, 2011に記載されているようにELISAによってC3b沈着を測定した。
図34は、0.15〜1000nMの濃度範囲にわたり、1%正常ヒト血清+アイソタイプ対照、SGMI-1Fc、またはSGMI-2Fcに関するC3b沈着のレベルをグラフで示す。図34に示すように、SGMI-1FcおよびSGMI-2Fcはいずれも、マンナンコーティングされたELISAウェル中で正常血清からのC3b沈着を阻害し、IC50値はそれぞれ約27nMおよび300nMであった。
これらの結果は、SGMIペプチドのMASP-1およびMASP-2阻害機能がSGMI-1FcおよびSGMI-2Fc融合タンパク質中で保持されることを実証する。
実施例17
黄色ブドウ球菌を有する3MC血清中の補体経路の分析
背景/原理
MASP-3は、正常ヒト血清の存在または非存在において非固定化流体相マンナン、ザイモサンAまたはN-アセチルシステインへの曝露を経ても活性化されないことがわかった。しかし、組換えおよび天然のMASP-3は正常ヒト血清(NHS)または熱不活化ヒト血清(HIS)の存在および非存在において熱不活化黄色ブドウ球菌の表面で活性化されることがわかった(データ示さず)。また、正常ヒト血清の存在において黄色ブドウ球菌の表面でC3b沈着が起こり、フローサイトメーターを使用してその沈着をモニターすることができることがわかった。したがって、LEA-1に対するMASP-3の寄与を評価する手段として、この実施例に記載するように、黄色ブドウ球菌に対する第二経路(AP)応答を測定した。
方法
組換えMASP-3:完全長組換えヒトMASP-3をコードするポリヌクレオチド配列、MASP-3の切断型セリンプロテアーゼ(SP)活性バージョン(CCP1-CCP2-SP)およびSP不活化形態のMASP-3(S679A)をpTriEx7哺乳動物発現ベクター(Invivogen)にクローニングした。得られた発現構築物は完全長MASP-3またはCCP1-CCP2-SP断片をアミノ末端Streptagおよびカルボキシ末端His6タグによってコードする。発現構築物を製造者によって提供されるプロトコールに従ってFreestyle 293-FまたはExpi293F細胞(Invitrogen)中にトランスフェクトした。5% CO2中37℃で3〜4日間の培養ののち、Streptactinアフィニティークロマトグラフィーを使用して組換えタンパク質を精製した。
組換えMASP-1:安定化R504Q(Dobo et al., J. Immunol. 183:1207, 2009)またはSP不活化(S646A)突然変異を有し、または有さず、アミノ末端Steptagおよびカルボキシ末端His6タグを有する完全長または切断型CCP1-CCP2-SP形態の組換えMASP-1を、上記組換えMASP-3に関して記載したように生成した。
1. 3MC(ヒト)血清中の黄色ブドウ球菌におけるC3b沈着およびB因子切断
最初の実験は、フローサイトメトリーアッセイ法がAP駆動型C3b沈着(AP-C3b)の存在または非存在を検出することができることを実証するために、以下のように実施した。以下の血清:正常ヒト血清、B因子(B因子)枯渇ヒト血清、D因子枯渇ヒト血清およびプロパージン枯渇ヒト血清(Complement Technology, Tyler, Texas., USAから入手)の5%を、Mg++/EGTA緩衝液またはEDTA中、試験抗体と4℃で一晩混合した。加熱殺菌黄色ブドウ球菌(108個/反応)を100μLの全量まで各混合物に加え、37℃で40分間回転流動させた。細菌を洗浄緩衝液中で洗浄し、細菌ペレットを洗浄緩衝液中に再懸濁させ、細菌表面のC3b沈着に関して各サンプルの80μLアリコートを分析し、それを、フローサイトメトリーを使用して、抗ヒトC3c(DAko, UK)で検出した。
C3bのフローサイトメトリー検出の結果を図35Aに示す。図35Aのパネル1に示すように、APを不活化することが知られているEDTAの存在における正常ヒト血清において、C3b沈着は認められなかった(陰性対照)。Mg++/EGTAで処理された正常ヒト血清においては、レクチン非依存性補体経路だけが機能することができる。パネル2においては、Mg++/EGTA緩衝液が使用され、したがって、APは活性であり、AP駆動型C3b沈着が認められる(陽性対照)。パネル3、4および5に示すように、それぞれB因子枯渇血清、D因子枯渇血清およびプロパージン枯渇血清においては、予想どおり第二経路駆動型C3b沈着は認められない。これらの結果は、アッセイ法がAP依存性C3b沈着を検出することができることを実証する。
MASP-3を欠損しているヒト3MC血清中でAP(LEA-1)を再構成する組換えMASP-3の能力を評価するために、上記のように黄色ブドウ球菌におけるC3b沈着アッセイ法を実施した(Rooryck C, et al., Nat. Genet. 43(3):197-203 (2011))。以下の試薬の組み合わせを試験した。
1. 5%正常ヒト血清+EDTA
2. 5%正常ヒト血清+Mg/EGTA
3. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTA
4. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて活性完全長rMASP-3
5. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて切断型活性rMASP-3(CCP1/CCP2/SP)
6. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて不活性rMASP-3(S679A)
7. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて活性完全長rMASP-1
上に示すような5%血清と組換えタンパク質(各5μg)との様々な混合物を、指定された緩衝液条件(Mg++/EGTA緩衝液またはEDTAのいずれか)で4℃において一晩インキュベートした。一晩インキュベーションしたのち、108個の加熱殺菌黄色ブドウ球菌を100μLの全量まで各混合物に加え、37℃で40分間回転流動させた。細菌を洗浄し、洗浄緩衝液中に再懸濁させ、C3b沈着に関して各サンプルの80μLアリコートをFACSによって分析した。各サンプルの残り20μLアリコートを使用して、B因子切断を、以下に記載する抗B因子抗体を使用するウェスタンブロットによって測定した。
C3bのフローサイトメトリー検出の結果を図35Bに示す。パネル番号は、上述した各試薬組み合わせに指定した番号に対応する。陰性対照(パネル1)および陽性対照(パネル2)は、予想どおり、C3b沈着の非存在および存在を示す。パネル3は、AP駆動型C3b沈着が3MC血清中では起こらないことを示す。パネル4および5は、活性完全長rMASP-3(パネル4)および活性rMASP-3(CCP1-CCP2-SP)(パネル5)がいずれも3MC血清中でAP駆動型C3b沈着を回復させることを示す。パネル6は、不活性rMASP-3(S679A)が3MC血清中でAP駆動型C3b沈着を回復させないことを示す。パネル7は、rMASP-1が3MC血清中でAP駆動型C3b沈着を回復させないことを示す。
合わせて考えると、これらの結果は、ヒト血清中の黄色ブドウ球菌におけるAP駆動型C3b沈着のためにはMASP-3が必要であることを実証する。
2. B因子のMASP-3依存性活性化
B因子のMASP-3依存性活性化を分析するために、5%血清(正常ヒト血清または3MC患者血清のいずれか)と組換えタンパク質との様々な混合物を上記のようにアッセイした。各反応混合物から20μLを取り出し、タンパク質試料添加緩衝液に加えた。試料を70℃で10分間加熱し、SDS-PAGEゲルに添加した。B因子ポリクローナル抗体(R&D Systems)を使用してウェスタンブロット分析を実施した。B因子の活性化は、高めの分子量のプロB因子タンパク質に由来する低めの分子量の2つの切断産物(BbおよびBa)の形成によって明らかであった。
図36は、rMASP-3の存在または非存在における3MC血清中の黄色ブドウ球菌に応答したB因子切断を判定するためのウェスタンブロット分析の結果を示す。レーン1に示すように、EDTAの存在における正常ヒト血清(陰性対照)は、レーン2(陽性対照)に示されるMg++/EGTAの存在における正常ヒト血清に対して非常にわずかなB因子切断しか実証しない。レーン3に示すように、3MC血清はMg++/EGTAの存在において非常にわずかなB因子切断しか実証しない。しかし、レーン4に示すように、B因子切断は、3MC血清への完全長組換えMASP-3タンパク質(5μg)の添加およびプレインキュベーションによって回復する。
3. B因子/C3(H2O)切断におけるプロD因子に対するrMASP-3の影響を判定するためのアッセイ法
MASP-3依存性B因子活性化/切断のための最小要件を決定するために以下のアッセイ法を実施した。
C3(H2O)(200ng)、精製血漿B因子(20μg)、組換えプロD因子(200ng)および組換えヒトMASP-3(200ng)を、BBS/Ca++/Mg++中、様々な組み合わせ(図37に示すような)で100μLの全量に混合し、30℃で30分間インキュベートした。5% 2-メルカプトエタノールを含有するSDS添加色素25uLを加えることによって反応を停止させた。振とうしながら(300rpm)95℃で10分間煮沸したのち、混合物を1400rpmで5分間スピンダウンし、上清20uLを10% SDSゲルに添加し、分離させた。ゲルをクマシーブリリアントブルーで染色した。
結果
図37は、B因子切断が分析されるクマシー染色SDS-PAGEゲルを示す。レーン1に示すように、B因子切断はC3、MASP-3およびプロD因子の存在において最適である。レーン2に示すように、C3は絶対に必要であるが、レーン4および5に示すように、C3が存在する限り、MASP-3またはプロD因子はいずれもB因子切断を媒介することができる。
4. MASP-3依存性AP駆動型C3b沈着を阻害するためのMASP-3 mAbの能力の分析
この実施例に記載されるように、ヒト血清中の黄色ブドウ球菌におけるAP駆動型C3b沈着にはMASP-3が必要であることが実証された。したがって、実施例15に記載されるように同定された代表的なMASP-3 mAbがMASP-3の活性を阻害することができるかどうかを判定するために以下のアッセイ法を実施した。活性組換えMASP-3(CCP1-CCP2-SP)断片タンパク質(250ng)を3つの異なる濃度(0.5、2および4μM)のアイソタイプ対照mAb、mAb1A5(MASP-3またはMASP-1に結合しないDTLacOプラットフォームから得られた対照)またはmAbD14(MASP-3に結合する)とともに氷上で1時間プレインキュベートした。酵素-mAb混合物を50μLの最終反応量で5% 3MC血清(MASP-3欠損)および5×107個の加熱殺菌黄色ブドウ球菌に曝露した。反応物を37℃で30分間インキュベートしたのち、C3b沈着の検出のために染色した。染色された細菌細胞をフローサイトメーターによって分析した。
図38は、rMASP-3の存在における3MC血清中のmAb濃度の関数としてプロットされた、3つの抗体から得られたC3b染色の平均蛍光強さ(MFI)をグラフで示す。図38に示すように、mAbD14は濃度依存的なC3b沈着の阻害を実証する。対照的に、対照mAbはいずれもC3b沈着を阻害しなかった。これらの結果は、mAbD14がMASP-3依存性C3b沈着を阻害することができることを実証する。DTLacO系中のつながれた因子を使用するMASP-3結合に関するこの抗体の継続的な親和性成熟ののち、mAbD14に関する改善された阻害活性が予想される。
結果の要約
要約すると、この実施例の結果は、MASP-3を欠損している血清中のAPの明らかな欠陥を実証する。したがって、B因子活性化およびC3b沈着を機能的終点として使用して、MASP-3がAPに対して非常に重要な寄与を成すことが実証された。さらに、MASP-3の触媒的に活性なC末端部分を含む機能的な組換えMASP-3の添加が、3MC患者からの血清中のB因子活性化およびC3b沈着における欠陥を補正する。逆に、この実施例においてさらに実証されるように、rMASP-3を有する3MC血清中のMASP-3抗体(例えばmAbD14)の添加はAP駆動型C3b沈着を阻害する。B因子活性化、ひいてはAPにおけるMASP-3の直接的な役割が、組換えMASP-3がC3とともに組換えB因子を活性化するのに十分であるという観察によって実証される。
実施例18
本実施例は、MASP-1およびMASP-3がD因子を活性化することを実証する。
方法
プロD因子の2つの異なる組換えバージョンを切断する能力に関して、組換えMASP-1およびMASP-3を試験した。第一のバージョン(プロD因子His)はN末端タグを欠くが、C末端Hisタグを有する。したがって、プロD因子のこのバージョンは、活性化中に切断によって除去される5アミノ酸プロペプチドを含む。第二のバージョン(STプロD因子His)はN末端上にStrep-TagII配列を有し、したがって、切断されるN末端断片を15アミノ酸に増加させる。STプロD因子はまた、His6タグをC末端に含む。STプロD因子Hisのプロペプチドの長さの増大が、プロD因子HIS形態で可能である分解に比較して、SDS-PAGEによる切断形態と非切断形態との分解を改善する。
組換えMASP-1またはMASP-3タンパク質(2μg)をプロD因子-HisまたはST-プロD因子-His基質(100ng)のいずれかに加え、37℃で1時間インキュベートした。反応物を12%Bis-Trisゲル上で電気泳動させてプロD因子と活性D因子切断産物とを分解した。分解したタンパク質をPVDF膜に移し、ウェスタンブロットによってビオチン化D因子抗体(R&D Systems)を用いる検出によって分析した。
結果
図39はプロD因子基質切断のウェスタンブロット分析を示す。図39に示すように、完全長MASP-3(レーン2)およびMASP-1 CCP1-CCP2-SP)断片(レーン5)だけがST-プロD因子His6を切断した。触媒的に不活性な完全長MASP-3(S679A、レーン3)およびMASP-1(S646A、レーン3)はいずれの基質も切断できなかった。プロD因子His6ポリペプチドを用いても同一の結果が得られた(図示せず)。MASP-3に対して過剰モルのMASP-1(CCP1-CCP2-SP)の比較は、少なくとも本明細書に記載される条件下、MASP-3がMASP-1よりも有効なプロD因子切断の触媒であることを示唆する。
結論:MASP-1およびMASP-3はいずれもD因子を切断し、活性化することができる。この活性はLEA-1とAPの活性化と直接関連させる。より具体的には、MASP-1またはMASP-3によるD因子の活性化がB因子活性化、C3b沈着ならびにおそらくはオプソニン化および/または溶解を生じさせる。
1. MASP-3抗体によるプロD因子のMASP-3依存性切断の阻害に関するアッセイ法
実施例15に記載されたように同定された代表的なMASP-3およびMASP-1 mAbの、MASP-3依存性D因子切断に対する阻害効果を判定するために、以下のようにアッセイ法を実施した。活性組換えMASP-3タンパク質(80ng)を代表的なmAb D14、M3M1および対照抗体(MASP-1に特異的に結合するが、MASP-3には結合しない)1μgとともに室温で15分間プレインキュベートした。N末端Strepタグを有するプロD因子(ST-プロD因子-His、70ng)を加え、混合物を37℃で75分間インキュベートした。上記のように反応物を電気泳動させ、ブロッティングし、抗D因子で染色した。
図40は、MASP-3およびST-プロD因子-Hisのみを含む対照反応物(mAbなし、レーン1)およびMASP-1には結合するが、MASP-3には結合しない、DTLacOライブラリーから得られたmAbを含む対照反応物(レーン4)に比較した、mAb D14およびM3M1の部分的阻害活性を示すウェスタンブロットである。図40に示すように、阻害性抗体の非存在において、MASP-3はプロD因子の約50%をD因子へと切断する(レーン1)。対照MASP-1特異性抗体(レーン4)はプロD因子とD因子との比率を変化させない。対照的に、レーン2および3に示すように、mAb D14およびmAb M3M1はプロD因子からD因子へのMASP-3依存性切断を阻害して、生成されるD因子を減少させる。
結論:これらの結果は、MASP-3 mAb D14およびM3M1がMASP-3依存性D因子切断を阻害することができることを実証する。DTLacO系中のつながれた因子を使用するMASP-3結合のためのこれらの抗体の継続的な親和性成熟ののち、mAb D14およびmAb M3M1に関する改善された阻害活性が予想される。
実施例19
本実施例は、MASP-3欠損がマンナンコーティングされたWTウサギ赤血球の補体媒介性溶解を防ぐことを実証する。
背景/原理
本明細書の実施例5および6に記載されるように、PNHのマウスモデルから採取された血液試料からの赤血球の溶解に対するMASP-2およびMASP-3欠損血清の効果が、PNHに罹患している対象を治療するためのMASP-2阻害および/またはMASP-3阻害の有効性を実証し、また、エクリズマブのようなC5阻害因子による治療を受けているPNH対象においてC3断片媒介血管外溶血の効果を緩和するためのMASP-2の阻害因子および/またはMASP-3の阻害因子(二重または二重特異性MASP-2/MASP-3阻害因子を含む)の使用を裏付ける。
この実施例に記載されるように、さらなる3MC患者からのMASP-3欠損血清中、C3b沈着実験および溶解実験を実施して、実施例5および6で得られた結果を確認した。加えて、3MC血清へのrMASP-3の添加がC3b沈着および溶血活性を再構成することができることを実証する実験を実施した。
方法
以下のように、3名の異なる3MC患者からMASP-3欠損血清を採取した。
3MC患者1は、MASP-3セリンプロテアーゼドメインをコードするエキソンを機能不全にする突然変異を有するアレルを含み、この3MC患者の母親および父親からも提供してもらった(両親とも、MASP-3セリンプロテアーゼドメインをコードするエキソンを機能不全にする突然変異を有するアレルに関してヘテロ接合性)。
3MC患者2は、MASP-1のエキソン12、すなわち、MASP-3のセリンプロテアーゼドメインをコードするエキソンにC1489T(H497Y)突然変異を有して、非機能的MASP-3を生じさせ、機能的MASP-1タンパク質を生じさせる。
3MC患者3は、MASP-1遺伝子中に確認された欠陥を有し、非機能的MASP-3を生じさせ、機能的MASP-1タンパク質を生じさせる。
実験#1:C3b沈着アッセイ法
Bitter-Suermann et al., Eur. J. Immunol. 11:291-295 (1981))に記載されているような従来のAP特異的条件下(BBS/Mg++/EGTA、Ca++なし、ここで、BBS=スクロースを含有するバルビタール緩衝食塩水)、ザイモサンコーティングされたマイクロタイタープレート上、0.5〜25%の範囲の血清濃度でAPアッセイ法を実施し、時間とともにC3b沈着を測定した。
結果
図41は、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、MASP-3欠損対象(3MC)、C4欠損対象およびMBL欠損対象から採取された血清試料中の血清濃度の関数としてグラフで示す。図41に示し、以下の表18にまとめているように、患者2および患者3からのMASP-3欠損患者血清が、高い濃度(25%、12.5%、6.25%血清濃度)での残留AP活性を有し、かつ有意に高いAP50(すなわち、最大C3沈着の50%を達成するために必要な血清の8.2%および12.3%)を有する。
図42は、「従来の」AP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損ヒト対象から採取された10%ヒト血清試料中の時間の関数としてグラフで示す。
以下の表18は、図41に示すAP50結果および図42に示すC3b沈着の半減期をまとめたものである。
(表18)図41および42に示す結果のまとめ
Figure 0006815355
注記:BBS/Mg++/EGTA緩衝液中、この緩衝液中のCa++の非存在のせいでレクチン経路媒介効果は見られない。
実験#2:ヒト正常または3MC血清の存在における(Ca ++ の非存在における)溶解に関してマンナンコーティングされたウサギ赤血球を試験する溶血アッセイ法
方法
Ca++の非存在における(すなわちEGTAを使用することによる)ウサギRBCの調製
ウサギ全血(2mL)を、2つの1.5mLエッペンドルフ管に分割し、4℃の冷却エッペンドルフ遠心分離機中、8000rpm(約5.9rcf)で3分間遠心処理した。氷冷BBS/Mg++/Ca++(4.4mMバルビツール酸、1.8mMナトリウムバルビトン、145mM NaCl、pH7.4、5mM Mg++、5mM Ca++)中に再懸濁させたのち、RBCペレットを3回洗浄した。3回目の洗浄後、ペレットをBBS/Mg++/Ca++4mL中に再懸濁させた。上記のように赤血球をペレット化し、RBCをBBS/0.1%ゼラチン/Mg++/Ca++で洗浄した。RBC懸濁液をBBS/0.1%ゼラチン/Mg++/Ca++中、4℃で貯蔵した。次いで、懸濁させたRBC100μlを水1.4mLで希釈し、8000rpm(約5.9rcf)で3分間スピンダウンし、上清のODを541nmで0.7に調節した(541nmで0.7のODは赤血球約109個/mlに相当)。その後、赤血球108個/mlの濃度を達成するために、OD 0.7で再懸濁させたRBC1mLをBBS/Mg++/EGTA 9mlに加えた。試験血清または血漿の希釈物を氷冷BBS、Mg++、EGTA中に調製し、各血清または血漿希釈物100μLを丸底プレートの対応するウェルにピペットで移した。適切に希釈したRBC 100μL(赤血球108個/ml)を各ウェルに加えた。ナノ水を使用して陽性対照(100%溶解)を製造し、血清または血漿なしのBBS/Mg++/EGTAによる希釈物を陰性対照として使用した。次いで、プレートを37℃で1時間インキュベートした。丸底プレートを3750rpmで5分間遠心処理した。次いで、各ウェルからの上清100μLを平底プレートの対応するウェルに移し、415〜490nmでODを読み取った。
結果
図43は、Ca++の非存在下で測定した、正常な対象および2名の3MC患者(患者2および患者3)からの血清中、一定範囲の血清濃度にわたり、マンナンコーティングされたウサギ赤血球の溶血率(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図43に示すように、MASP-3欠損が、正常ヒト血清に比べて、マンナンコーティングされた赤血球の補体媒介性溶解の割合を低下させることが実証される。正常ヒト血清からの2つの曲線と3MC患者からの2つの曲線との間の差は有意である(p=0.013、フリードマン試験)。
以下の表19が、図43に示すAP50結果をまとめている。
(表19)図43に示す結果のまとめ
Figure 0006815355
表19に示す血清試料をプールすると、正常ヒト血清のAP50値=7.9であり、3MC血清のAP50値=12.8であることが注目される(p=0.031、Wilcox符号順位和検定)。
実験#3:組換えMASP-3によるヒト3MC血清の再構成はザイモサンコーティングされたプレート上のAP駆動型C3b沈着を回復する
方法
Bitter-Suermann et al., Eur. J. Immunol. 11:291-295 (1981))に記載されているような従来のAP特異的条件下(BBS/Mg++/EGTA、Ca++なし、ここで、BBS=スクロースを含有するバルビタール緩衝食塩水)、ザイモサンコーティングされたマイクロタイタープレート上、以下の血清試料中で、APアッセイ法を実施した:(1)完全長活性rMASP-3が0〜20μg/mlの範囲で加えられた3MC患者#2からの5%ヒト血清;(2)完全長活性rMASP-3が0〜20μg/mlの範囲で加えられた3MC患者#2からの10%ヒト血清;および(3)不活性rMASP-3A(S679A)が0〜20μg/mlの範囲で加えられた3MC患者#2からの5%ヒト血清。
結果
図44は、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、ヒト3MC患者#2(MASP-3欠損)から採取された血清試料に加えられるrMASP-3タンパク質の濃度の関数としてグラフで示す。図44に示すように、活性組換えMASP-3タンパク質は、ザイモサンコーティングされたプレート上にAP駆動型C3b沈着を濃度依存的に再構成する。図44にさらに示すように、不活性rMASP-3(S679A)を含有する3MC血清中ではC3b沈着は認められなかった。
実験#4:組換えMASP-3によるヒト3MC血清の再構成は3MC患者血清中の溶血活性を回復させる
方法
ウサギRBCを使用して、実験#2で上述された方法を使用して、以下の試験血清を、0〜12%の範囲で用いて溶血アッセイ法を実施した:(1)正常ヒト血清;(2)3MC患者血清;(3)3MC患者血清+活性完全長rMASP-3(20μg/ml);および(4)熱不活化ヒト血清。
結果
図45は、Ca++の非存在において測定された、(1)正常ヒト血清;(2)3MC患者血清;(3)3MC患者血清+活性完全長rMASP-3(20μg/ml);および(4)熱不活化ヒト血清中、一定範囲の血清濃度にわたり、マンナンコーティングされたウサギ赤血球の溶血率(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図45に示すように、rMASP-3を含む3MC血清中のウサギRBCの溶解率は、rMASP-3を含まない3MC血清中の溶解率に比べて有意に増大する(p=0.0006)。
図46は、活性rMASP-3をBBS/Mg++/EGTA中0〜110μg/mlの濃度範囲で含有する3MC患者2および3MC患者3からの7%ヒト血清中のウサギ赤血球溶解率をグラフで示す。図46に示すように、ウサギRBC溶解率はrMASP-3の量とともに濃度依存的に100%活性まで回復する。
実験#5:MASP-3欠損(CMC)患者の血清はMBLが存在する場合に機能的MASP-2を有する
方法
3MC血清がLEA-2を欠損しているかどうかを調べるために、マンナンコーティングされたELISAプレートを使用してC3b沈着アッセイ法を実施した。クエン酸添加血漿を、BBS緩衝液中、連続希釈度(1:80から出発して1:160、1:320、1:640、1:1280、1:2560)に希釈し、マンナンコーティングされたプレート上に固定した。ニワトリ抗ヒトC3bアッセイ法を使用して、沈着したC3bを検出した。マンナンコーティングされたELISAプレート上のLEA-2駆動型C3b沈着(APおよびLEA-1が働くには血漿希釈度が高すぎる)を、正常ヒト対象(NHS)、2名の3MC患者(患者2および患者3)、患者3の両親およびMBL欠損対象からの血清中のヒト血清濃度の関数として評価した。
結果
図47は、正常ヒト対象(NHS)、2名の3MC患者(患者2および患者3)、患者3の両親およびMBL欠損対象からの血清に関して、マンナンコーティングされたELISAプレート上のLEA-2駆動型(すなわち、MASP-2駆動型)C3b沈着のレベルを、BBS緩衝液中に希釈されたヒト血清の濃度の関数としてグラフで示す。これらのデータは患者2がMBL充分であることを示す。しかし、患者3および患者3の母親はMBL欠損であり、したがって、この人たちの血清はLEA-2を介してC3bをマンナン上に沈着させない。これらの血清中のMBLの置換は、患者3(MASP-3欠損を生じさせるSNPに関してホモ接合性である)およびその母親(突然変異MASP-3アレルに関してヘテロ接合性である)の血清中のLEA-2媒介性C3b沈着を回復させる(データ示さず)。この発見は、3MC血清がLEA-2を欠損しているのではなく、むしろ、機能的MASP-2および機能的MASP-1を有すると考えられることを実証する。
総括および結論
これらの結果は、ザイモサンコーティングされたウェル上のC3b沈着の減少およびウサギ赤血球溶解の減少によって証明されるように、ヒト血清中のMASP-3欠損がAP活性の損失を生じさせることを実証する。機能的組換えヒトMASP-3で血清を補充することにより、両アッセイ法においてAPを回復させることができる。
本発明の好ましい態様が例示および説明されたが、本発明の精神および範囲から逸脱することなく様々な変更が可能なことが理解されると考えられる。
排他的な所有権または特権を主張する本発明の態様は添付の特許請求の範囲で規定される。

Claims (4)

  1. ヒトMASP-2に結合しかつレクチン経路補体活性化を阻害するMASP-2阻害モノクローナル抗体またはその断片と、ヒトMASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)に特異的に結合し、D因子成熟を阻害し、それによって第二経路補体活性化を阻害するMASP-3阻害モノクローナル抗体またはその断片と、薬学的に許容される担体とを含む薬学的組成物であって、ヒト血清において補体のレクチン経路および第二経路の両方を阻害する、前記薬学的組成物。
  2. 前記抗体またはその断片が、組換え抗体、低下したエフェクター機能を有する抗体、キメラ抗体、およびヒト化抗体またはヒト抗体からなる群より選択される、請求項1に記載の薬学的組成物。
  3. 全身送達のために製剤化されている、請求項1に記載の薬学的組成物。
  4. 皮下への、筋肉内への、静脈内への、動脈内への、または吸入剤としての送達のために製剤化されている、請求項3に記載の薬学的組成物。
JP2018126460A 2012-04-06 2018-07-03 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法 Active JP6815355B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261621461P 2012-04-06 2012-04-06
US61/621,461 2012-04-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015504751A Division JP6366571B2 (ja) 2012-04-06 2013-04-05 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020156216A Division JP2021001199A (ja) 2012-04-06 2020-09-17 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法

Publications (2)

Publication Number Publication Date
JP2018162307A JP2018162307A (ja) 2018-10-18
JP6815355B2 true JP6815355B2 (ja) 2021-01-20

Family

ID=49325295

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015504751A Active JP6366571B2 (ja) 2012-04-06 2013-04-05 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法
JP2018126460A Active JP6815355B2 (ja) 2012-04-06 2018-07-03 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法
JP2020156216A Pending JP2021001199A (ja) 2012-04-06 2020-09-17 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015504751A Active JP6366571B2 (ja) 2012-04-06 2013-04-05 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020156216A Pending JP2021001199A (ja) 2012-04-06 2020-09-17 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法

Country Status (29)

Country Link
US (3) US20130273053A1 (ja)
EP (2) EP2833907B1 (ja)
JP (3) JP6366571B2 (ja)
KR (2) KR102142508B1 (ja)
CN (1) CN104661676A (ja)
AU (3) AU2013267909B2 (ja)
BR (1) BR112014024793A2 (ja)
CA (2) CA3087933A1 (ja)
CL (1) CL2014002694A1 (ja)
CY (1) CY1120736T1 (ja)
DK (2) DK3366307T3 (ja)
ES (2) ES2670668T3 (ja)
HK (1) HK1206996A1 (ja)
HR (1) HRP20180671T1 (ja)
HU (1) HUE036930T2 (ja)
IL (2) IL234991B (ja)
IN (1) IN2014KN02324A (ja)
LT (1) LT2833907T (ja)
MX (2) MX357540B (ja)
NO (1) NO2881536T3 (ja)
NZ (2) NZ781091A (ja)
PL (2) PL3366307T3 (ja)
PT (1) PT2833907T (ja)
RS (1) RS57266B1 (ja)
RU (2) RU2655299C2 (ja)
SI (1) SI2833907T1 (ja)
TR (1) TR201806939T4 (ja)
WO (1) WO2013180834A2 (ja)
ZA (1) ZA201408100B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE049154T2 (hu) * 2011-05-04 2020-09-28 Omeros Corp Készítmények a MASP-2-függõ komplement-aktiválás gátlására
RU2709351C2 (ru) * 2012-06-18 2019-12-17 Омерос Корпорейшн Композиции и способы ингибирования masp-1, и/или masp-2, и/или masp-3 для лечения различных заболеваний и нарушений
US20140363433A1 (en) 2013-03-15 2014-12-11 Omeros Corporation Methods of Generating Bioactive Peptide-bearing Antibodies and Compositions Comprising the Same
WO2014144542A2 (en) * 2013-03-15 2014-09-18 Omeros Corporation Methods of generating bioactive peptide-bearing antibodies and compositions comprising the same
JOP20170154B1 (ar) * 2016-08-01 2023-03-28 Omeros Corp تركيبات وطرق لتثبيط masp-3 لعلاج أمراض واضطرابات مختلفة
CN110177875B (zh) * 2016-11-28 2023-11-28 中外制药株式会社 包含抗原结合结构域和运送部分的多肽
WO2018186322A1 (en) * 2017-04-03 2018-10-11 Chugai Seiyaku Kabushiki Kaisha Anti-masp-1 antibodies and methods of use
KR20210016545A (ko) * 2018-05-29 2021-02-16 오메로스 코포레이션 Masp-2 억제제 및 사용 방법
MX2022001268A (es) * 2019-07-31 2022-02-22 Biocryst Pharm Inc Regimenes de dosificacion para inhibidores orales del factor d del complemento.
AU2020398241A1 (en) 2019-12-04 2022-06-30 Omeros Corporation MASP-2 inhibitors and methods of use
CN114295594B (zh) * 2021-12-06 2023-09-19 贵州理工学院 一种基于分子信标筛选三螺旋DNA嵌入剂的“turn on”型荧光传感器

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331647A (en) 1980-03-03 1982-05-25 Goldenberg Milton David Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5211657A (en) 1988-11-07 1993-05-18 The United States Government As Represented By The Secretary Of The Department Of Health And Human Services Laminin a chain deduced amino acid sequence, expression vectors and active synthetic peptides
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5549910A (en) 1989-03-31 1996-08-27 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
DE69030172T2 (de) 1990-01-26 1997-06-19 Immunomedics Inc Impfstoffe gegen Krebs und Infektionskrankheiten
JP3218637B2 (ja) 1990-07-26 2001-10-15 大正製薬株式会社 安定なリポソーム水懸濁液
JP2958076B2 (ja) 1990-08-27 1999-10-06 株式会社ビタミン研究所 遺伝子導入用多重膜リポソーム及び遺伝子捕捉多重膜リポソーム製剤並びにその製法
ATE199392T1 (de) 1992-12-04 2001-03-15 Medical Res Council Multivalente und multispezifische bindungsproteine, deren herstellung und verwendung
US5856121A (en) 1994-02-24 1999-01-05 Case Western Reserve University Growth arrest homebox gene
US6074642A (en) 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US5741516A (en) 1994-06-20 1998-04-21 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5795587A (en) 1995-01-23 1998-08-18 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5738868A (en) 1995-07-18 1998-04-14 Lipogenics Ltd. Liposome compositions and kits therefor
JP2003515338A (ja) * 1999-12-02 2003-05-07 クリスチャン イェンセニウス,イェンス 補体結合酵素、masp−3、及びその使用
SG98393A1 (en) 2000-05-19 2003-09-19 Inst Materials Research & Eng Injectable drug delivery systems with cyclodextrin-polymer based hydrogels
US7043719B2 (en) * 2001-07-23 2006-05-09 Intel Corporation Method and system for automatically prioritizing and analyzing performance data for one or more, system configurations
CA2490007C (en) 2002-07-19 2011-05-24 Omeros Corporation Biodegradable triblock copolymers, synthesis methods therefor, and hydrogels and biomaterials made there from
US7666627B2 (en) * 2002-08-08 2010-02-23 Targetex Kft. Folded recombinant catalytic fragments of multidomain serine proteases, preparation and uses thereof
US20060140939A1 (en) * 2003-02-21 2006-06-29 Fung Sek C M Methods for preventing and treating tissue damage associated with ischemia-reperfusion injury
US20070253949A1 (en) * 2004-02-03 2007-11-01 Stefan Golz Diagnostics and Therapeutics for Diseases Associated with Plasma Kallikrein (KLKB1)
US20050169921A1 (en) * 2004-02-03 2005-08-04 Leonard Bell Method of treating hemolytic disease
US7803931B2 (en) * 2004-02-12 2010-09-28 Archemix Corp. Aptamer therapeutics useful in the treatment of complement-related disorders
US8840893B2 (en) * 2004-06-10 2014-09-23 Omeros Corporation Methods for treating conditions associated with MASP-2 dependent complement activation
US7919094B2 (en) * 2004-06-10 2011-04-05 Omeros Corporation Methods for treating conditions associated with MASP-2 dependent complement activation
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
SG2014010029A (en) 2005-08-19 2014-08-28 Abbott Lab Dual variable domain immunoglobin and uses thereof
ATE419671T1 (de) * 2006-07-31 2009-01-15 Fiat Ricerche Durch eine fluidströmung betätigbarer elektrischer generator
ES2628973T3 (es) 2007-05-31 2017-08-04 University Of Washington Mutagénesis inducible de genes diana
PE20110926A1 (es) * 2008-09-26 2011-12-29 Roche Glycart Ag Anticuerpos biespecificos anti-egfr/anti-igf-1r
JP2013516389A (ja) * 2009-01-06 2013-05-13 ダイアックス コーポレーション カリクレイン阻害剤による粘膜炎治療
US20120022543A1 (en) * 2009-03-05 2012-01-26 Smith & Nephew, Inc. System, method, and apparatus for locating a femoral neck guide wire
KR101870378B1 (ko) * 2009-07-17 2018-06-25 릭스하스피탈렛 보체 활성화의 억제제로서의 masp 이소형
WO2011057158A1 (en) 2009-11-05 2011-05-12 Taligen Therapeutics, Inc. Treatment of paroxysmal nocturnal hemoglobinuria, hemolytic anemias and disease states involving intravascular and extravascular hemolysis
ES2683307T3 (es) 2011-04-08 2018-09-26 University Of Leicester Métodos para tratar afecciones asociadas con la activación de complemento dependiente de MASP-2

Also Published As

Publication number Publication date
EP3366307B1 (en) 2021-07-28
NO2881536T3 (ja) 2018-06-30
CL2014002694A1 (es) 2015-08-28
ES2670668T3 (es) 2018-05-31
JP2021001199A (ja) 2021-01-07
ES2894944T3 (es) 2022-02-16
RU2014144621A (ru) 2016-05-27
RU2018114903A3 (ja) 2021-08-12
AU2013267909A1 (en) 2014-11-27
WO2013180834A2 (en) 2013-12-05
LT2833907T (lt) 2018-06-11
RU2018114903A (ru) 2019-03-04
HK1206996A1 (en) 2016-01-22
IL234991B (en) 2020-06-30
US20190382505A1 (en) 2019-12-19
US20220242972A1 (en) 2022-08-04
PT2833907T (pt) 2018-05-29
NZ727063A (en) 2021-10-29
PL2833907T3 (pl) 2018-08-31
AU2018200721A1 (en) 2018-02-22
IL234991A0 (en) 2014-12-31
WO2013180834A3 (en) 2014-04-03
US20130273053A1 (en) 2013-10-17
MX2014012045A (es) 2015-05-15
TR201806939T4 (tr) 2018-06-21
CA2869326C (en) 2021-09-21
IL274721A (en) 2020-07-30
DK2833907T3 (en) 2018-05-28
AU2018200721B2 (en) 2020-03-26
MX357540B (es) 2018-07-13
KR102142508B1 (ko) 2020-08-10
PL3366307T3 (pl) 2022-03-07
EP2833907A4 (en) 2016-03-16
KR102318623B1 (ko) 2021-11-02
MX2018008658A (es) 2021-10-19
HUE036930T2 (hu) 2018-08-28
CN104661676A (zh) 2015-05-27
BR112014024793A2 (pt) 2019-08-27
KR20150003785A (ko) 2015-01-09
JP2018162307A (ja) 2018-10-18
CA3087933A1 (en) 2013-12-05
EP2833907A2 (en) 2015-02-11
HRP20180671T1 (hr) 2018-07-13
DK3366307T3 (da) 2021-11-01
AU2013267909B2 (en) 2018-03-01
EP2833907B1 (en) 2018-02-28
KR20200097808A (ko) 2020-08-19
CY1120736T1 (el) 2019-12-11
ZA201408100B (en) 2022-05-25
RU2655299C2 (ru) 2018-05-24
AU2020204163A1 (en) 2020-07-09
EP3366307A1 (en) 2018-08-29
NZ781091A (en) 2022-04-29
JP6366571B2 (ja) 2018-08-01
JP2015514117A (ja) 2015-05-18
IN2014KN02324A (ja) 2015-05-01
IL274721B (en) 2022-04-01
SI2833907T1 (en) 2018-07-31
CA2869326A1 (en) 2013-12-05
RS57266B1 (sr) 2018-08-31
NZ629675A (en) 2017-02-24

Similar Documents

Publication Publication Date Title
JP6815355B2 (ja) 発作性夜間血色素尿症の治療のためにmasp−1、masp−2および/またはmasp−3を阻害する組成物および方法
JP6771531B2 (ja) 様々な疾患および障害の治療のためにmasp−1および/またはmasp−2および/またはmasp−3を阻害する組成物および方法
JP6971306B2 (ja) 様々な疾患および障害の治療のためのmasp−3を阻害する組成物および方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190605

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200917

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6815355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250