JP6812496B2 - バルブ用耐圧検査装置 - Google Patents

バルブ用耐圧検査装置 Download PDF

Info

Publication number
JP6812496B2
JP6812496B2 JP2019096734A JP2019096734A JP6812496B2 JP 6812496 B2 JP6812496 B2 JP 6812496B2 JP 2019096734 A JP2019096734 A JP 2019096734A JP 2019096734 A JP2019096734 A JP 2019096734A JP 6812496 B2 JP6812496 B2 JP 6812496B2
Authority
JP
Japan
Prior art keywords
valve
test
hydrogen
pressure resistance
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019096734A
Other languages
English (en)
Other versions
JP2019158893A (ja
Inventor
植松 健
健 植松
直樹 吉良
直樹 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Original Assignee
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp filed Critical Kitz Corp
Publication of JP2019158893A publication Critical patent/JP2019158893A/ja
Application granted granted Critical
Publication of JP6812496B2 publication Critical patent/JP6812496B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/224Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/003Machine valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/184Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for valves

Description

本発明は、例えば、ボールバルブやグローブバルブ等の各種のバルブの弁箱の耐圧検査装置に関し、特に、簡易な構成で迅速かつ高精度に耐圧検査を実施可能なバルブ用耐圧検査装置に関する。
従来、バルブには高い耐圧性が要求され、その製造時におこなわれる圧力試験として、耐圧部の強度・漏れの有無を確認する弁箱耐圧試験(シェルテスト)、弁座からの漏れの有無を確認する弁座漏れ試験(シートテスト)などがおこなわれ、これらにより、出荷前のバルブが検査される。このうち、弁箱耐圧試験としては、例えば、水没法、スニッファー法、真空チャンバー法などにより耐圧検査がおこなわれる。水没法は、内部を気体で加圧した試験体を水中に浸漬させ、試験体内部からの泡で漏れを検出するものであり、スニッファー法は、試験体内にサーチガスを入れ、試験体の外側に流出するガスにプローブを近接させてこのプローブで漏れを検出するものである。また、真空チャンバー法は、試験体を真空容器内に収納し、試験体内部にサーチガスを入れ、試験体から真空容器へ流出したガスを検出するものである。
一方、特許文献1における容器の漏洩検出装置では、中空の装置本体にガスセンサを多数配置したセンサウォールを設け、ガスセンサで装置本体に収容した供試容器に圧入したガス漏れを監視する技術が開示されている。この技術によると、多数個のガスセンサで検知することで、ガス漏れの発生に加えて供試容器の漏洩個所の検出も可能であるとされている。
実開平5−2045号公報
しかしながら、前述の水没法による弁箱耐圧試験でバルブを検査する場合、試験体のバルブ内部からの気泡を目視で確認するために熟練を要し、作業者によっては発生した泡を見落とす可能性もあるため、検査結果に誤差が生じることがある。さらに、検査後には、バルブに付着した水滴を除去するなどの後処理も必要になることで試験装置の構成が複雑になり自動化も困難になる。スニッファー法の場合には、バルブ内部から漏れが生じている場合にも、その漏れ位置にプローブが直接当たっていない場合には計測が難しくなり、これにより、試験体全体の検査に時間がかかることになり、プローブ操作にも熟練を要するという問題も有している。真空チャンバー法の場合、検査時には、真空状態に至るまでの時間を要するために検査の効率が悪くなり、しかも、漏れが生じているときでも、その漏れ位置を特定することができない。さらに、真空吸引することで空気の流れが生じるため、チャンバー内に温度変化が生じてセンサの感度が低下するおそれもある。
一方、後述の特許文献1の容器の漏洩検出方法の場合、センサウォールと供試容器との隙間が狭くなることから、供試容器から漏れ出たガスが局所的に滞留してセンサまで届かずに、漏れを検知できなくなるおそれがある。センサウォールで供試容器を完全に覆ったときには、供試容器から漏れ出ようとするガスの流れが妨げられることで漏れを検知できなくなる場合もある。
これらのデメリットに加えて、この漏洩検出方法をバルブに適用する場合には、バルブは、その種類や、呼び圧力、呼び径などによって供試品としての形状や大きさが異なるために、これらの違いに対応するために大きめのセンサウォールが必要になる。しかし、センサウォールに比較して試験体が小さくなると、この試験体とセンサとの距離が開き過ぎて漏れを検知できなくなることがある。
本発明は、従来の課題を解決するために開発したものであり、その目的とするところは、大きさや形状の異なるバルブに対しても、簡易な構成で検査結果の誤差を防ぎつつ迅速かつ高精度に耐圧検査を実施して外部漏れの検出並びにその発生位置を特定でき、バルブに後処理を施す必要がなく、自動化により大量処理も可能なバルブ用耐圧検査装置を提供することにある。
上記目的を達成するため、請求項1に係る発明は、供試弁を外気と一部を連通させて非密封状態で収容した筒状のカバーと、供試弁における部品同士の接合部外面又は装着部外面の外部漏れ位置に近接した状態でカバーの内部に配置されたサーチガス用のセンサとを備え、カバー内におけるサーチガスの流れを許容し、かつ供試弁の接合部外面又は装着部外面から漏れ出たサーチガスが検査時間内に拡散状態でセンサに到達するように構成したバルブ用耐圧検査装置である。
請求項2に係る発明は、カバーの下端側で外気に連通するようにしたバルブ用耐圧検査装置である。
請求項3に係る発明は、カバーの下端を、下部側板と非密着状態として当該カバーの下端側で外気に連通させるようにしたバルブ用耐圧検査装置である。
請求項1に係る発明によると、筒状のカバー内に外気と一部を連通させて非密封状態で供試弁を収容したことでカバー内での気体の流れを許容し、この状態で供試弁の部品同士の接合部外面又は装着部外面の外部漏れ位置に近接させてカバー内にサーチガス用センサを配置したことにより漏れ出した気体の検出能力を向上でき、供試弁から漏れ出たサーチガスが拡散されながら、検査時間内でセンサに到達するように構成したことで、供試弁の部品同士の接合部外面や装着部外面から漏れ出たサーチガスを検査時間内で確実に検出でき、バルブの耐圧検査を短時間に、かつ大量の供試弁における耐圧検査を確実に行うことが可能となる。しかも、漏れ出た接合部位等を即座に確認することができ、バルブの耐圧検査装置としてその使用価値が極めて高い。
請求項2又は請求項3に係る発明によると、カバーの下端が下部側板に密着していないため、カバーの内部が外気に連通し、これによりカバー内部に若干の空気の流れが生じてサーチガスの局所的な滞留が防がれるため、センサによる外部漏れの検知が容易かつ確実になる。
本発明のバルブ用耐圧検査装置の斜視図である。 図1の中央縦断面図である。 図2のA−A断面図である。(a)は、センサが接近した状態を示すA−A断面図である。(b)は、センサの待機状態を示すA−A断面図である。 センサとモータの取付け状態を示す斜視図である。 本発明のバルブ用耐圧検査装置を用いた耐圧検査設備の一例を示すブロック図である。 水素ガス検出ユニットのブロック図である。 本発明のバルブ用耐圧検査装置の動作プロセスを示す斜視図である。 グローブ弁の中央断面図である。 グローブ弁へのセンサの配置状態を示す模式図である。
以下に、本発明におけるバルブ用耐圧検査装置とその検査方法並びに水素ガス検出ユニットを実施形態に基づいて詳細に説明する。
図1においては、本発明のバルブ用耐圧検査装置の斜視図、図2は、図1の中央縦断面図を示している。本発明の耐圧検査装置は、被検査物である供試弁に水素を含む気体を封入し、この供試弁からの外部への水素の漏れを検出することで弁箱耐圧試験(耐圧検査)をおこなうために用いられる。
図1、図2に示すように、供試弁1は、例えば、ボールバルブからなり、このボールバルブ1は、ボデー部2とカバー部3とを有し、内部にステム4やボール5等が組み込まれた状態で、これらボデー部2とカバー部3とが一体化されて構成される。ボデー部2とカバー部3との接合部分にはガスケット6が装着され、このガスケット6によりこれらの間がシールされている。ステム4は、積層されたパッキン7を介してグランド部材8によりネック部9内に回動自在に装着され、パッキン7によりボデー部2とステム4、グランド部材8の間がシールされている。バルブ1の両側にはフランジ部10、10が形成され、このフランジ部10を含めてバルブの外面が凹凸形状に形成されている。
耐圧検査時に、上記供試弁1に封入される気体(サーチガス)としては、例えば、水素を含む気体が用いられ、このうち、拡散性を有するトレーサガスとして5%水素、不活性のガスとして95%窒素をそれぞれ含有する混合気体が用いられる。この混合気体は、耐圧試験時に外部漏れがある場合、供試弁1を成す部品である前記ボデー部2とカバー部3との接合部やグランド部材8の装着部付近から漏れ出す性質を有している。5%水素の気体は不燃性の高圧ガスであるため、安全に使用可能になっている。サーチガスは、水素を含む気体の他にも各種の気体を用いることが可能であり、例えば、ヘリウムガスやメタンガスを用いた場合にも、水素含有の混合気体と同様に拡散性が高くなる。
図1、図2において、本発明のバルブ用耐圧検査装置は、カバー20、円弧状板材21、センサ22、回転駆動機器(本実施においてはサーボモータ)23、治具24を有し、供試弁1の弁箱耐圧試験を実施する際に用いられる。
カバー20は、例えば、透明或は半透明のアクリル樹脂等の樹脂材料により円筒状に形成され、この円筒部分の直径は、供試弁1の両側のフランジ部10よりも大きく設けられる。これにより、カバー20内には、フランジ部10が上下位置に配設された状態で、供試弁1が収容可能となる。この場合、供試弁1のボデー部2とカバー部3との接合部分から外部漏れが生じたときに、上方に位置するフランジ部10の背面側が水素の滞留領域Rとなり、この滞留領域R付近に、前記フランジ部10より下方において漏れ出した水素が特に溜まりやすくなっている。このカバー20は、大きさや形状の異なるバルブに対しても共用できるものとしている。
カバー20の上端側には上部側板30が固着され、一方、カバー20の下端側には下部側板31がカバー20に対して接離可能に設けられている。これら側板30、31により、カバー20の内側が被蓋されてチャンバー機能を有し、カバー20内に供試弁1が収容されたときに、この供試弁1が外部から隔離された状態となる。このとき、カバー20下端が下部側板31に密着していないため、カバー20内部が外気に連通し、これにより、カバー20内部に若干の空気の流れが生じて水素の局所的な滞留が防がれる。そのため、後述のセンサ22による外部漏れの検出が容易となる。
このように、本発明における「外部から隔離された状態」とは、カバー20内が密封状態となることを意味せず、外部の風などの影響が供試弁1に及ぶことを防止すると共に、カバー20内において、供試弁1から漏れ出た水素が検査時間内にセンサ22に到達する程度の、気体の流れを許容できる状態をいう。
カバー20には、このカバー20内部に残留する混合気体等の気体を排出する排気ファン32が設けられているとよい。この場合、図において、排気ファン32はカバー20の上部側に取付けられているとよく、このときには、空気よりも軽い水素が排気ファン32により効率的に排気される。
図4に示すように、円弧状板材21は、内周側に供試弁1を装入可能な大きさのC字形の円弧状に形成され、棒状の保持部材33、33により、カバー20の内側の所定高さの二箇所に相互に略平行状態に位置決め固定される。これにより、カバー20の上下動に伴って、円弧状板材21もこのカバー20と一体に上下動する。各円弧状板材21には、センサ22が三箇所に等間隔で備えられている。
センサ22は、供試弁1からのサーチガスである水素の外部漏れを検出可能な水素センサによるガスセンサからなり、この水素センサ22が、水素を含む気体が封入された供試弁1の外面の近接位置まで移動可能に設けられている。これにより、供試弁1内に封入される水素と窒素との混合気体中の水素の外部漏れが検出可能となる。サーチガスとして、ヘリウムガスを用いる場合には、気体熱伝導式センサを用いるようにすればよい。
図4に示すように、水素センサ22は、円弧状板材21に固定されたサーボモータ23に設けられた回転軸23aに取付けられ、この回転軸23aの回転により、図3(a)、図3(b)に示すように、円弧状板材21の内周側に装着された供試弁1の接近又は離反方向に回動可能に設けられて供試弁1に対して角度調整可能になっている。図3(a)においては、図2のA−A断面において、耐圧検査時に水素センサ22の水素測定部位を供試弁1外面の近接位置まで移動(回転)させた状態、図3(b)においては、図2のA−A断面において、水素センサ22の待機状態を示しており、このとき、空間αが水素センサ22を取付けた円弧状板材21と供試弁1との隙間となり、水素センサ22と供試弁1との接触を回避しながら、供試弁1をカバー20に着脱可能になる。
水素は拡散性の気体として知られているが、比較例として、図1、図2におけるカバー20内部上方のみに水素センサ22を配置し、5%水素・95%窒素の混合気体を用いてグランド部材8付近から意図的に外部漏れを発生させてみたところ、所定の検査時間内では、水素センサ22により検知することができなかった。これに対し、水素センサ22を供試弁1に徐々に近接させたところ、上記の混合ガスは外部漏れの発生部分で滞留していることが判明したため、上述のように、検査時に水素センサ22を供試弁1の外面の近接位置まで移動することとしたものである。
そして、前述のように、図1、図2に示す供試弁1において、上方に位置するフランジ部10の背面側が、いわゆる傘の機能を呈し、漏れ出た水素が溜まりやすくなるので、この滞留領域R付近の供試弁1の外周に、サーボモータ23で水素センサ22を回転調節の上、近接させるのが好適である。
本実施形態においては、この滞留領域Rにおいて、3個の水素センサ22を略120°間隔で配置すると共に、下方に位置するフランジ部10の上方で且つグランド部材8に近接した高さで、更に3個の水素センサ22を略120°間隔で配置し、計6個の水素センサ22を用いている。
ここで、上記の水素センサ22について詳述する。本実施形態における水素センサ22は、所定の電圧印加により、外部漏れした水素の濃度に応じた電圧を出力するモジュールからなっている。耐圧検査前には、抵抗調整用のボリュームにより出力電圧を変えて、水素センサ22の暖機状態や大気中の水素濃度の変化に応じて感度調整を精細におこなう必要があるが、この感度調整を手動で実施する場合、調整が面倒であり自動化する場合にも妨げとなる。
また、微小な漏れを検知するためには、1個の水素センサ22であると検出に時間を要することになる。
これらの要因から、前述したように6個の水素センサ22をそれぞれサーボモータ23で制御するようにし、このとき、マイコン制御により6個の水素センサ22の抵抗調整をほぼ同時におこなうようにした。回転駆動機器としては、サーボモータの他、図示しないステッピングモータなどの他の機器を用いてもよい。
図6においては、水素ガス検出ユニット(以下、ユニット本体40という)のブロック図を示している。ユニット本体40は、水素センサ22、定電圧電源41、デジタル・ポテンショメータ42、マイコン43、デジタル表示部44を有している。図に示すように、具体的には、6個の水素センサ22を制御する基板上のデジタル・ポテンショメータ42に配線し、マイコン43で出力電圧を読み込みながら、各チャンネルの抵抗値をスライドさせて基準となる電圧に調整する。
使用する水素センサ22としては、アナログ信号(0−5V)を出力可能な、市販の半導体式センサが用いられ、例えば、熱線型半導体式水素センサが用いられる。この水素センサ22は、酸化第二スズ(SnO2)などの金属酸化物半導体表面での水素ガスの吸着による電気伝導度の変化を利用するセンサである。この場合、出力電圧が、ガス濃度に対して対数的になって、低濃度でも高感度の出力が可能になることから、耐圧検査装置に適している。各水素センサ22は、市販のデジタル・ポテンショメータ42にチャンネル毎に接続される。本実施形態におけるデジタル・ポテンショメータ42は、6チャンネルに設けられている。
デジタル・ポテンショメータ42の各チャンネルは、ワイパー接点を有する固定抵抗器を備えており(図示せず)、一方側のA端子とワイパー、及びB端子とワイパーとの抵抗値を、マイコン43で出力電圧を読み込みながら調整し、各水素センサ22の基準電圧を調整するようになっている。
本実施形態のように、複数の水素センサ22を用いる場合には、その基準電圧を、マイコン43を介して一定値に揃える調整機能を有していることが好ましい。これにより、各水素センサ22の感度を均一化して漏れ出した水素ガスを高精度に検出できる。
基準電圧を一定に揃える手段としては、上記のユニット本体40によれば、デジタル・ポテンショメータ42を用いて、抵抗値の調整を、256ポジションなど細部且つ自動的に行うことができ、アナログの可変抵抗器を用いる場合に比して、正確且つ早期に水素漏れを検知することができる。
なお、本実施形態におけるA−B端子間の固定抵抗値は、0〜50kΩの範囲で任意に設定すると共に、基準電圧を2Vに設定している。
この場合、デジタル・ポテンショメータ42の分解能の性能により、6個の水素センサ22の基準電圧を2Vに揃えることが難しくなり、各水素センサ22の基準電圧に差が生じる可能性がある。これに対して、ユニット本体40のマイコン43は、各水素センサ22の基準電圧が異なる場合に、これら異なる基準電圧を調整して判定用電圧とし、この判定用電圧に対して水素を検出する電圧を設定する機能を有している。
具体的には、マイコン43により各水素センサ22の基準電圧を所定割合で増加させたものを判定用の電圧として用いるようにし、本例では、各水素センサ22の基準電圧を、例えば5%増加した電圧値(基準電圧の105%の電圧値)を判定用電圧とした。このように、それぞれの水素センサ22の判定用電圧を設定した場合、水素を検知したときには、各水素センサ22により基準電圧からの電圧増加分を一定量の電圧値の増加分として検知できるため、確実に水素漏れの有無を判定できる。これにより、例えば、特定の水素センサ22の基準電圧が2Vよりも低くなり、判定用電圧も他の水素センサ22よりも低くなる場合でも、所定割合で増加した電圧を検知することで誤検知を防止できる。
本例では、各水素センサ22で基準電圧を一定割合(例えば5%)増加させたものを各水素センサ22の判定用電圧としてアジャストしたが、全ての水素センサ22に共通の判定用電圧を定めるようにアジャストすることも可能である。この場合、前述した水素センサ22ごとの基準電圧のバラツキを考慮し、判定用電圧を厳密に設定して誤検知を確実に防止する必要がある。
また、マイコン43は、供試弁1においてデジタル・ポテンショメータ42により測定した抵抗値を記憶し、この抵抗値を基に次の検査用供試弁1に対して抵抗値の調整を開始することにより、各水素センサ22の基準電圧の設定にかかる時間を短縮する機能を有している。
このように、前の供試弁1の抵抗値を利用して次の供試弁1の抵抗値を調整することで、測定した抵抗値を一旦リセットした後に次の抵抗値を測定する場合に比較して、抵抗値付近に達するまでの工程を省略して水素センサ22の基準電圧の設定にかかる時間を短縮できる。そのため、自動化したときの検査の能率を高めることができる。
供試弁1から水素漏れが生じた場合には、マイコン43などの制御部における信号処理部(図示せず)を介して、水素ガス濃度に応じた電圧としてデジタル表示部44に出力される。デジタル表示部44は、LCD(液晶ディスプレイ)を有し、このLCDに各水素センサ22の出力電圧がインジケータ表示される。出力電圧が判定用電圧を上回ったときにも、漏れの検知としてデジタル表示部44に表示される。図6においては、No.1〜No.3、No.5、No.6の水素センサ22は、出力電圧が判定用電圧を下回っている状態を示し、No.4の水素センサ22の出力電圧が判定用電圧を上回った状態を示し、このNo.4の水素センサ22が配置された位置で供試弁1からの水素漏れ発生したことを検出した状態を示している。
このように、6個の水素センサ22を制御しつつ外部漏れを検出することにより、検出能力が向上し、検出時間の短縮や自動化にもつながる。
なお、デジタル表示部44は任意部品であり、ユニット本体40に各水素センサ22の出力値を取り出したり、表示したりする機能を直接または間接的に設ければよい。
一方において、図1、図2に示す治具24は、供試弁1のカバー20内への固定用として設けられ、この治具24は、供試弁1のフランジ部10がシール状態でクランプ可能なクランプ部材50とプレート部材51とを有している。
プレート部材51は、供試弁1のフランジ部10を載置可能な円板状に形成され、下部側板31に一体に固着され、このプレート部材51に供試弁1の一方のフランジ部10が載置可能に設けられる。プレート部材51と下部側板31には、カバー20内部に装着された供試弁1に連通可能な図5に示す貫通孔52が設けられる。
図1、図2において、クランプ部材50は、円板状のプレート板53、棒状の操作杆54を有している。プレート板53は、供試弁1のフランジ部10に載置可能な円板状に形成され、このプレート板53と上部側板30には、カバー20内部に装着された供試弁1に連通可能な図5に示す連通孔55が設けられる。図1、図2に示すように、操作杆54は、プレート板53に一体に取付けられ、上部側板30に対して上下に摺動可能に設けられる。操作杆54を上下動させたときにはプレート板53も一体に動作し、操作杆54を下降させた際に、上部のフランジ部10が上方から押さえつけられて、プレート部材51との間に供試弁1が固定保持される。操作杆54は、図1に示すように2本であればよいが、図7に示すように3本設けられていてもよい。この場合、プレート板53を三点支持することで、このプレート板の水平状態を維持しながら略均等な力により上部のフランジ部を押さえつけることが可能になる。
クランプ部材50、プレート部材51は、フランジ部10の端面に対して平行に当接可能に設けられているとよく、さらには、クランプ部材50、プレート部材51のフランジ部10との各当接側には、図示しない環状のシール部材が装着されていることが好ましい。この場合、治具24による供試弁1のクランプ時に、隙間からの漏れを防いで耐圧検査時の誤差をごくわずかに抑えられる。
治具24による上下のフランジ部10、10のクランプ状態においても、カバー20がクランプ方向に往復動可能になっており、このカバー20を往復動させることで、クランプ状態の供試弁1が外部から隔離或は露出可能に設けられている。すなわち、カバー20を上昇させたときには供試弁1が外部に露出され、この状態で操作杆54を介してプレート板53を上昇させて供試弁1を取外し可能になる。一方、カバー20を下降させたときには供試弁1が外部から隔離され、耐圧検査の実施が可能となる。
上述した耐圧検査装置において、カバー20内に供試弁1を隔離した状態で収容すると共に、供試弁1を成す部品であるボデー部2とカバー部3との接合部外面の近接位置まで水素センサ22を移動させ、5%水素・95%窒素の混合気体を供試弁1内に封入したときに、水素センサ22で供試弁1からの水素漏れを検出して耐圧検査可能になる。
図5においては、上述したバルブ用耐圧検査装置を用いた耐圧検査設備の一例をブロック図にて示したものである。この耐圧検査設備60において、耐圧検査装置の連通孔55側には検査側流路61、貫通孔52側には換気側流路62がそれぞれ接続されて、供試弁1の耐圧検査が実施される。
検査側流路61は、加圧流路63と排気流路64とに分岐される。加圧流路63には、耐圧検査用の水素ガス圧力源65、圧力調整用のレギュレータ66、流路開閉用の加圧弁67、圧力センサ68が設けられ、排気流路64には、流路開閉用の排気弁69が設けられる。一方、換気側流路62には、弁内換気用のエアー圧力源70、圧力調整用のレギュレータ66、流路開閉用の換気弁71が設けられている。
また、カバー20には、前述した排気ファン32が取付けられている。
続いて、上記の耐圧検査設備60を用いた耐圧検査装置により耐圧検査する場合の手順を、図7を用いて説明する。図7においては、図の簡略化のため、連通孔55、貫通孔52と、これらに接続する配管の図示を省略している。
図7(a)においては、耐圧検査装置の初期状態であり、カバー20が下部側板31から上昇した状態を示している。この状態で、図に示すように、プレート部材51の所定位置に一方のフランジ部10を載置しながら供試弁1をセットする。
図7(b)に示すように、下部側板31を上昇させてクランプ部材50に上部のフランジ部10を当接させることにより、供試弁1を治具24でクランプする。この場合、図5において、排気弁69のみが開状態であり、加圧弁67、換気弁71は閉状態になっている。
図7(c)において、カバー(チャンバー)20を下降させてその下端を下部側板31の上面に当接させ、供試弁1を検査装置内に収容して外部から隔離した状態にする。このとき、カバー20内部は、外気の影響を受けにくい状態で外気と一部連通していることで、完全に密封されていない状態になっている。チャンバー20の下降後には、図5の排気弁69を閉状態にし、排気ファン32を動作させることで、残留するおそれのある混合気体等のガスをチャンバー20内から排出するようにする。その後、排気ファン32を止め、前述したように6個の水素センサ22のゼロアジャストを、図6のユニット本体40で実施して感度を均一化しておく。
次いで、図7(c)における状態で、図3のサーボモータ23を動作させて水素センサ22を図1、図2に示した供試弁1の外面に近接させ、この状態で、図5の排気弁69の閉状態を維持しながら加圧弁67を開状態にし、検査側流路61を通じて連通孔55から混合気体を供試弁1の内部に封入させて加圧し、所定の検査時間内において、水素センサ22により水素の外部漏れを検出する。このとき、供試弁1の形状や大きさに応じてサーボモータ23の回転角度を調整し、供試弁1の外部漏れの発生するおそれの高い部分に水素センサ22を近接させる。例えば、図示しないが、小サイズの供試弁であるときには、サーボモータ23の回転角度をより大きくして、水素センサ22を供試弁1に近接させる。この場合、検出する対象範囲が狭くなることで、上段側の円弧状部材21に取付けられた3個の水素センサ22を使用する必要がなくなり検査手順が省略される。
この状態で、各水素センサ22の出力電圧を、図6に示したユニット本体40で読み取って、供試弁1からの水素の外部漏れの有無を判定し、耐圧検査を完了するようにする。耐圧検査完了後には、排気ファン32を動作させると共に、サーボモータ23を逆回転させて水素センサ22を供試弁1の離反方向である耐圧検査前の元の位置まで退避させる。さらに、図5の加圧弁67を閉状態、排気弁69を開状態に操作し、供試弁1の内部から混合気体を連通孔55から排気流路64を介して排気する。
これに続けて、図5において、換気弁71を開状態にし、弁内換気用のエアー圧力源70から換気側流路62を介して貫通孔52からエアーを吹き込み、供試弁1の内部に残存する混合気体を除去する。これにより、図7において、供試弁1からクランプ部材50を外したときに、供試弁1の内部に残った気体がチャンバー20内に充満することを防止している。
これらのように、検査後において、チャンバー20内に残留する混合気体を排気ファン32、供試弁1内に残存する混合気体を排気流路64によりそれぞれ強制的に排気する。このようにすれば、本実施形態のように水素ガスを含有する混合気体をサーチガスとしたときにも、この拡散性の高い水素ガスを迅速に供試弁1内及びチャンバー20内から排出できる。そのため、異なる供試弁1内に連続して混合気体を連続して供給・排出することで耐圧検査の自動化が可能になり、正確な耐圧検査結果も得られる。
供試弁1内部の換気後には、図5の排気弁69の開状態を維持しつつ換気弁71を閉状態に操作し、耐圧検査設備60の流路内を大気圧状態にした後に、図7(b)に示すようにチャンバー20を上昇させる。
最後に、図7(a)において、クランプ部材50を上昇させて上部のフランジ部10への当接を解除することで、供試弁1を取り外し可能になる。供試弁1の取り外し後には、耐圧検査装置が初期状態になることで、別の供試弁1を上記と同様に続けて耐圧検査可能になる。ここで排気ファン32を止めてもよく、別の供試弁1の検査まで連続して排気ファン32を動作し続けても良い。
本実施形態におけるバルブの耐圧検査は、例えば、JIS B 2003(バルブの検査通則)に規定される弁箱耐圧検査の空気圧試験に準じ、呼び圧力10K、呼び径50A以下の鋳鉄製の供試弁1では、前述の混合気体を0.6MPaの試験圧力で弁開状態の供試弁1に封入し、この試験圧力を試験時間である15秒持続して、供試弁1からの外部漏れの有無を水素センサ22で検知することによりおこなう。
次に、本発明のバルブ用耐圧検査装置の上記実施形態における作用を述べる。
本発明のバルブ用耐圧検査装置は、供試弁1を隔離状態で収容するカバー20と、このカバー20の内側に供試弁1外面の近接位置に移動可能な水素センサ22とを有し、この水素センサ22により供試弁1からの水素の外部漏れを検出しているため、耐圧検査時に、供試弁1をなすバルブの種類や、呼び圧力、呼び径などが異なって形状や大きさが変わる場合であっても、外部漏れの生じやすい部分に水素センサ22を確実に近接させて、漏れの発生やその発生位置を迅速に検出できる。この場合、サーボモータ23を角度調整して水素センサ22を供試弁1の外面に極限まで近接させることで、検出精度が向上すると共に検出時間も短縮する。水素センサ22を含む機械的な自動検出により外部漏れを確認しているため、熟練を要することなく耐圧検査装置を用いた耐圧検査設備60による簡易な構成で誤差を抑えつつ耐圧検査できる。後処理を要することもなく、耐圧検査の自動化により効率化を図って大量処理することが可能になって検査精度も向上する。
しかも、混合気体として、5%水素・95%窒素の混合気体を用いていることから、この混合気体が外部漏れしたときに、上下位置に配設したフランジ部10、10付近のボデー部2とカバー部3との接合部分やグランド部材8の装着部分付近の滞留領域Rに滞留しやすくなる。この滞留領域Rを取り囲むように、円弧状板材21にそれぞれ3個の水素センサ22を設けているため、これら計6個の水素センサ22を制御しながら検査を実施して漏れ出した水素の検出能力を向上させ、検出時間を短縮することも可能となる。
耐圧検査を自動化する場合には、例えば、上部側板30を取付けたカバー(チャンバー)20、クランプ部材50の上下移動を制御しつつ、これらチャンバー20、クランプ部材50が設けられる耐圧検査の実施位置に、供試弁1を載置したプレート部材51(下部側板31)を図示しないコンベア等で連続供給することにより、耐圧検査設備を簡略化しながら短時間で大量に耐圧検査を実施できる。
図8、図9においては、本発明のバルブ用耐圧検査装置の別の供試弁であるグローブ弁80を示している。図において、グローブ弁80は、ボデー部81とボンネット部82とを有し、このボンネット部82は、ジスク83を有するステム84が螺合されつつ、ボデー部81に螺子込みにより装着されている。ボンネット部82の上部には、キャップ部85が螺着され、このキャップ部85によりボンネット部82の内部が封止されている。
上記のグローブ弁80の場合、ボデー部81とボンネット部82、ボンネット部82とキャップ部85の各螺合部付近から水素漏れが生じるおそれが高い。そのため、グローブ弁80が供試弁である場合、図8に示すように、ステム84が上向きの状態になるようにしながら図1のプレート部材51に載置し、図9(a)、図9(b)に示すように、螺合部分である、ボデー部81とボンネット部82の周囲の4箇所、ボンネット部82とキャップ部85の上部側の1箇所にそれぞれ水素センサ22を設け、これら各水素センサ22をサーボモータ23の回転により供試弁80の外面の検査位置に近接させるようにすればよい。
この場合、キャップ部85の螺合部分付近を上部から環状部材86で覆うようにし、この環状部材86の底面側近傍に滞留領域Rを形成している。環状部材86の内周側をキャップ部85の外径と略同径に設けていることで、滞留領域Rに主にグローブ弁80のボデー部81とボンネット部82との螺合部から漏れ出した水素を溜めやすくし、この水素を環状部材86の底面側の4箇所の水素センサ22で検知する。さらに、キャップ部85よりも上部側の1箇所の水素センサ22により、主にボンネット部82とキャップ部85との螺合部から漏れ出した水素を検知するようになっている。
これにより、前述したボールバルブ1の場合と同様にして、図1のカバー20内に供試弁80を収容した状態で耐圧検査可能となる。本実施形態においては、水素センサ22は環状部材86に固定されたサーボモータ23に取付けられている。なお、ステム84は、ナットランナ(図示せず)などにより、環状板材86の中央孔を介して、弁開閉操作が可能になっている。
このように、水素センサ22の数や、取付け位置、高さを対象となる供試弁に応じて適宜変更することもでき、これによって、異なる仕様の供試弁に応じて適切に耐圧検査を実施できる。
以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。例えば、本発明は、ボールバルブやグローブバルブ、ゲートバルブ、チャッキバルブ等の各種のバルブの弁箱の耐圧検査に適用できるほか、ストレーナなどの配管機器や、各種の圧力容器の耐圧検査に適用してもよい。
1 ボールバルブ(供試弁)
10 フランジ部
20 カバー
22 水素センサ
23 サーボモータ
24 治具
32 排気ファン
40 ユニット本体
42 デジタル・ポテンショメータ
43 マイコン
R 滞留領域

Claims (3)

  1. 供試弁を外気と一部を連通させて非密封状態で収容した筒状のカバーと、前記供試弁における部品同士の接合部外面又は装着部外面の外部漏れ位置に近接した状態で前記カバーの内部に配置されたサーチガス用のセンサとを備え、前記カバー内におけるサーチガスの流れを許容し、かつ前記供試弁の接合部外面又は装着部外面から漏れ出たサーチガスが検査時間内に拡散状態で前記センサに到達するように構成したことを特徴とするバルブ用耐圧検査装置。
  2. 前記カバーの下端側で外気に連通するようにした請求項1に記載のバルブ用耐圧検査装置。
  3. 前記カバーの下端を、下部側板と非密着状態として当該カバーの下端側で外気に連通させるようにした請求項1又は2に記載のバルブ用耐圧検査装置。
JP2019096734A 2016-06-30 2019-05-23 バルブ用耐圧検査装置 Active JP6812496B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016129882 2016-06-30
JP2016129882 2016-06-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018525296A Division JP6533341B2 (ja) 2016-06-30 2017-06-30 バルブ用耐圧検査装置とその検査方法並びに水素ガス検出ユニット

Publications (2)

Publication Number Publication Date
JP2019158893A JP2019158893A (ja) 2019-09-19
JP6812496B2 true JP6812496B2 (ja) 2021-01-13

Family

ID=60787345

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018525296A Active JP6533341B2 (ja) 2016-06-30 2017-06-30 バルブ用耐圧検査装置とその検査方法並びに水素ガス検出ユニット
JP2019096734A Active JP6812496B2 (ja) 2016-06-30 2019-05-23 バルブ用耐圧検査装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018525296A Active JP6533341B2 (ja) 2016-06-30 2017-06-30 バルブ用耐圧検査装置とその検査方法並びに水素ガス検出ユニット

Country Status (4)

Country Link
US (1) US11162914B2 (ja)
JP (2) JP6533341B2 (ja)
CN (2) CN109313100B (ja)
WO (1) WO2018003977A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832296B (zh) * 2017-06-30 2022-03-29 株式会社开滋 阀用阀座检查及耐压检查装置以及阀
DE112018006825T5 (de) * 2018-01-11 2020-09-17 Yamaha Fine Technologies Co., Ltd. Gasleckerkennungsvorrichtung, Werkstückprüfvorrichtung und Leckprüfverfahren
JP7209992B2 (ja) * 2018-03-19 2023-01-23 伸和コントロールズ株式会社 三方弁装置のリークの有無を検査する検査装置及び検査方法
WO2020138425A1 (ja) * 2018-12-27 2020-07-02 株式会社キッツ サーチガスの混合方法
WO2020246592A1 (ja) * 2019-06-07 2020-12-10 株式会社キッツ バルブの耐圧検査装置
KR102278737B1 (ko) * 2019-09-17 2021-07-20 (주)보성 안전밸브 시험 장치
CN111272415B (zh) * 2020-03-30 2021-11-16 四川省犍为峨山阀门有限责任公司 一种用于阀门的测试装置
KR102147729B1 (ko) * 2020-07-01 2020-08-25 주식회사 휴텍엔지니어링 온도제어 밸브의 다기능 테스트 방법
US11313771B1 (en) * 2020-10-16 2022-04-26 The Government of the United States of America, as renresenten by the Secretary of Homeland Securitv Sample collection apparatus for scent detection
CN112924100A (zh) * 2021-02-06 2021-06-08 河南永祥特检科技有限公司 一种天然气用球阀密封性检测装置
CN113155375A (zh) * 2021-03-11 2021-07-23 深圳市优标检测技术有限公司 一种阀门本体检测装置
CN115265935A (zh) * 2021-04-30 2022-11-01 宁德时代新能源科技股份有限公司 箱体的检漏方法及检漏系统
CN113984289B (zh) * 2021-10-26 2022-05-20 浙江大明机电有限公司 一种水泵连接口漏水检测系统
JP7300221B1 (ja) * 2022-10-24 2023-06-29 株式会社ティーエス 中空容器の気密性検査方法
CN116735084B (zh) * 2023-05-08 2024-03-19 华南理工大学 一种高压氢气环境下密封圈动态和静态密封性能测试装置
CN116296148B (zh) * 2023-05-23 2023-08-29 杭州富阳富恒仪表阀门有限公司 一种阀门密封性自动化检测设备

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1373824A (en) * 1920-03-02 1921-04-05 William H Mckenzie Valve-testing machine
US1571958A (en) * 1921-11-03 1926-02-09 Adolph Mueller Air-operated testing device
US2426406A (en) * 1944-10-10 1947-08-26 Cornelius W Meyers Hydraulic valve tester
US2934942A (en) * 1956-04-30 1960-05-03 Crane Co Valve testing apparatus
US2934943A (en) * 1956-05-24 1960-05-03 Crane Co Valve pressure testing apparatus
US3088312A (en) * 1957-03-01 1963-05-07 Rockwell Mfg Co Method and apparatus for use in valve tests and assembly
US3490269A (en) * 1968-06-28 1970-01-20 Ajem Lab Inc Leak tester for brake housings
US3826281A (en) * 1969-10-29 1974-07-30 Us Navy Throttling ball valve
US3633406A (en) * 1970-06-22 1972-01-11 Idex Corp Apparatus for testing articles
US3765225A (en) * 1972-10-30 1973-10-16 American Air Filter Co Carbon filter leak detector
US3885437A (en) * 1974-02-26 1975-05-27 Us Energy Device for sampling exhaust stack effluent
US4020864A (en) * 1975-07-16 1977-05-03 Church Jr Edgar H Ball valve
US4443791A (en) * 1978-01-05 1984-04-17 Risgin Ojars Self-compensating gas detection apparatus
US4317796A (en) * 1979-07-16 1982-03-02 Barr Thomas A Explosive gas detector
US4282743A (en) * 1979-09-18 1981-08-11 The United States Of America As Represented By The United States Department Of Energy Leak test fitting
US4432227A (en) * 1980-05-02 1984-02-21 Dunn Emmett L Valve testing apparatus
US4520655A (en) * 1981-12-18 1985-06-04 Gordon E. Eldridge Valve testing apparatus
JPS5910831A (ja) * 1982-07-10 1984-01-20 Nitta Kk クリ−ンル−ム用高性能フィルタの自動リ−ク・テスト方法およびその装置
US4494403A (en) * 1982-07-14 1985-01-22 Flanders Filters, Inc. Filter testing apparatus and method
JPS6082829A (ja) * 1983-10-13 1985-05-11 Mitsubishi Electric Corp 超音波式遠隔漏洩監視装置
US4583394A (en) * 1984-08-07 1986-04-22 Japan Atomic Energy Research Institute Device and method for leak location
US4587836A (en) * 1984-10-02 1986-05-13 Crosby Valve & Engineering Company Limited Test stand for a valve
US4667506A (en) * 1985-12-02 1987-05-26 Crown Cork & Seal Canada Inc. High pressure container tester
US4663964A (en) * 1985-12-20 1987-05-12 Warner-Lambert Company Electronic airtightness tester
US4813268A (en) * 1987-03-23 1989-03-21 Superior Industries International, Inc. Leakage detection apparatus for drum wheels and method therefore
JPH02243934A (ja) * 1989-03-17 1990-09-28 Hitachi Ltd 真空リークテスタ
US4972867A (en) * 1989-11-03 1990-11-27 Ruesch J O Valve stem seal leak protection and detection apparatus
US5010761A (en) * 1990-03-01 1991-04-30 Superior Industries International, Inc. Automated leak detection apparatus and method therefor
JPH052045A (ja) 1991-06-25 1993-01-08 Onkyo Sokki Kk 車載用検査装置
JP3201667B2 (ja) * 1993-02-10 2001-08-27 清原 まさ子 逆止弁用試験装置及び逆止弁の試験方法
US5610324A (en) * 1993-11-08 1997-03-11 Fugitive Emissions Detection Devices, Inc. Fugitive emissions indicating device
JPH07270270A (ja) * 1994-03-30 1995-10-20 Nippon Zeon Co Ltd バルブの洩れ検査装置
US5515599A (en) * 1994-05-03 1996-05-14 Best; Norman D. Apparatus for processing small parts utilizing a robot and an array of tools mounted on the outer robot arm
JPH0815203A (ja) * 1994-06-29 1996-01-19 Fuji Electric Co Ltd 接触燃焼式ガスセンサ
US5563335A (en) * 1995-02-28 1996-10-08 Gas Research Institute High flow rate sampler for measuring emissions at process components
WO1997021086A1 (en) * 1995-12-08 1997-06-12 Hayes Wheels International, Inc. Apparatus and method for leak testing vehicle wheels
FI970665A0 (fi) * 1996-04-15 1997-02-17 Espoon Paineilma Oy Foerfarande foer identifiering av laeckage i en foerpackning isynnerhet livsmedels- och laekemedelsfoerpackning samt foerbaettrande av haollbarheten hos vaetskeformiga livsmedel vilka aer foerpackade i aseptiska kartongfoerpackningar
JP3999831B2 (ja) * 1996-07-29 2007-10-31 エフアイエス株式会社 ガス検出方法及びその装置
US6065736A (en) * 1996-10-15 2000-05-23 Hunt; Kevin F. Ball valve having a non-integral upstream seat and at least one integral downstream seat
US5751610A (en) * 1996-10-31 1998-05-12 Combustion Engineering, Inc. On-line robot work-cell calibration
US5889199A (en) * 1997-05-13 1999-03-30 Jaesent Inc. Portable leak detector
US6176248B1 (en) * 1998-09-01 2001-01-23 Phillips Petroleum Company Submerged hydraulic value actuator with leak protection
US6289723B1 (en) * 1999-03-04 2001-09-18 Robert L. Leon Detecting seal leaks in installed valves
DE10006753A1 (de) * 2000-02-15 2001-08-16 Zeiss Carl Dreh-Schwenkeinrichtung für den Tastkopf eines Koordinatenmeßgerätes
US6526114B2 (en) * 2000-12-27 2003-02-25 General Electric Company Remote automated nuclear reactor jet pump diffuser inspection tool
GB0126232D0 (en) * 2001-11-01 2002-01-02 Renishaw Plc Calibration of an analogue probe
US6907799B2 (en) * 2001-11-13 2005-06-21 Bae Systems Advanced Technologies, Inc. Apparatus and method for non-destructive inspection of large structures
JP3698108B2 (ja) * 2002-02-20 2005-09-21 株式会社デンソー 気密漏れ検査方法及び装置
US6718818B2 (en) * 2002-07-19 2004-04-13 The Goodyear Tire & Rubber Company Method of sensing air leaks in tires and tire testing machines
US6972677B2 (en) * 2002-08-27 2005-12-06 Coulthard John J Monitoring system
DE10308420A1 (de) * 2003-02-27 2004-09-09 Leybold Vakuum Gmbh Testgaslecksuchgerät
US7271894B2 (en) * 2003-10-01 2007-09-18 General Electric Company Imaging system for robotically inspecting gas turbine combustion components
JP4578990B2 (ja) * 2004-03-30 2010-11-10 シチズンホールディングス株式会社 ガスセンサ用外装構成体
DE102004045803A1 (de) * 2004-09-22 2006-04-06 Inficon Gmbh Leckprüfverfahren und Leckprüfvorrichtung
DE102005022157A1 (de) * 2005-05-13 2006-11-16 Inficon Gmbh Schnüffellecksuchgerät
DE102005043494A1 (de) * 2005-09-13 2007-03-15 Inficon Gmbh Lecksuchgerät mit Schnüffelsonde
SG131861A1 (en) * 2005-10-11 2007-05-28 Millipore Corp Methods and systems for integrity testing of porous materials
GB0605796D0 (en) * 2006-03-23 2006-05-03 Renishaw Plc Apparatus and method of measuring workpieces
US7752892B2 (en) * 2006-09-07 2010-07-13 Matheson Tri-Gas Leak characterization apparatuses and methods for fluid storage containers
DE102006047856A1 (de) * 2006-10-10 2008-04-17 Inficon Gmbh Schnüffellecksucher
JP2008224359A (ja) * 2007-03-12 2008-09-25 Toyota Motor Corp シール部材の濃度検量線設定方法及び製品ワークのシール部の接着幅評価方法
US7788967B2 (en) * 2007-05-02 2010-09-07 Praxair Technology, Inc. Method and apparatus for leak detection
GB0713639D0 (en) * 2007-07-13 2007-08-22 Renishaw Plc Error correction
JP2011501138A (ja) * 2007-10-17 2011-01-06 コサン クリスプラント エー/エス ガス漏れ検知器及びガス漏れ検知のための方法
US20090210175A1 (en) * 2007-12-11 2009-08-20 Bilpuch Greg J Ultrasonic Leak Test System and Method
US20100107569A1 (en) * 2008-11-06 2010-05-06 Havemann Gregory L Plastic tube sealing and test system
US8492165B2 (en) * 2009-09-01 2013-07-23 Corsolutions, Llc Microfluidic interface
JP5292261B2 (ja) 2009-11-19 2013-09-18 株式会社アルバック リークディテクタ
JP2011179975A (ja) * 2010-03-01 2011-09-15 Ts:Kk 漏れ検査装置及び漏れ検査方法
DE102010035432A1 (de) * 2010-08-26 2012-03-01 Inficon Gmbh Verfahren zur Dichtheitsprüfung
US8887586B2 (en) * 2010-10-29 2014-11-18 Agilent Technologies, Inc. Head space sampling device and method for detecting leaks in same
FR2969287B1 (fr) * 2010-12-17 2013-10-25 Alcatel Lucent Dispositif de detection de fuite utilisant l'hydrogene comme gaz traceur
WO2012117887A1 (ja) * 2011-03-01 2012-09-07 株式会社oneA 気密性検査装置
WO2012142402A1 (en) * 2011-04-14 2012-10-18 Cincinnati Test Systems, Inc. Leak testing device and method
CN102323013B (zh) * 2011-05-27 2015-02-04 长沙理工大学 一种阀门泄漏检测装置
EP2920567B1 (en) * 2012-11-16 2020-08-19 SiO2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
WO2014180469A1 (de) * 2013-05-07 2014-11-13 Lüdolph Management GmbH Dichtheitsprüfanordnung und dichtheitsprüfverfahren
US20140354426A1 (en) * 2013-05-30 2014-12-04 Andrey LUYBYANITSKY Device for container leakage detection and method for the same
FR3012216B1 (fr) * 2013-10-18 2017-04-21 Snecma Procede et dispositif de mesure de polluants contenus dans l'echappement d'un moteur
JP2016536623A (ja) * 2013-11-12 2016-11-24 ユン、ジュン ホYUN, Jung Ho ガス漏洩検知装置
CN103630698A (zh) * 2013-12-03 2014-03-12 杭州协正信息技术有限公司 一种模仿动物嗅觉器官结构的立体电子鼻
CN103868657B (zh) * 2014-03-25 2016-02-03 中信戴卡股份有限公司 一种旋转式车轮气密检测机
DE102014212499A1 (de) * 2014-06-27 2015-12-31 Institut Dr. Foerster Gmbh & Co. Kg Verfahren und Vorrichtung zur Streuflussprüfung
JP6335684B2 (ja) * 2014-06-30 2018-05-30 日本特殊陶業株式会社 ガス検出器およびプログラム
JP6031074B2 (ja) * 2014-09-22 2016-11-24 富士重工業株式会社 超音波探傷装置および超音波探傷方法
US20160116364A1 (en) * 2014-10-24 2016-04-28 Air Products And Chemicals, Inc. Leak Test Apparatus and Method
KR101956090B1 (ko) * 2014-10-28 2019-03-08 가부시키가이샤 기츠 트러니언형 볼 밸브
CN204439303U (zh) * 2014-12-04 2015-07-01 Tcl通力电子(惠州)有限公司 检漏设备
US9952044B2 (en) * 2015-02-02 2018-04-24 Rolls-Royce North American Technologies, Inc. Multi-axis calibration block
CN104614134B (zh) * 2015-02-03 2018-12-21 中信戴卡股份有限公司 一种检测铝合金轮毂气密性的方法
CN204679222U (zh) * 2015-02-12 2015-09-30 广州市和晋自动化控制技术有限公司 一种气体浓度探测装置
JP6626271B2 (ja) * 2015-05-22 2019-12-25 川崎重工業株式会社 リークチェックシステム及びそれを用いたリークチェック方法
US11268875B2 (en) * 2016-11-22 2022-03-08 Redline Detection, Llc Method and apparatus for fluid leak detection
US10613020B2 (en) * 2017-08-10 2020-04-07 The Boeing Company Burr detection systems and methods

Also Published As

Publication number Publication date
JPWO2018003977A1 (ja) 2018-11-15
JP2019158893A (ja) 2019-09-19
CN114018497A (zh) 2022-02-08
US20190302045A1 (en) 2019-10-03
CN114018497B (zh) 2024-03-26
CN109313100A (zh) 2019-02-05
US11162914B2 (en) 2021-11-02
CN109313100B (zh) 2021-12-21
WO2018003977A1 (ja) 2018-01-04
JP6533341B2 (ja) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6812496B2 (ja) バルブ用耐圧検査装置
JP6638117B2 (ja) バルブ用弁座検査及び耐圧検査装置並びにこれらの検査方法
US8448498B1 (en) Hermetic seal leak detection apparatus
WO2019131536A1 (ja) バルブなどの圧力機器の耐圧検査方法とその耐圧検査装置並びに圧力機器
CN210863071U (zh) 一种阀门密封性检测装置
CN104502033A (zh) 一种易拉盖密封性检测装置
CN204479250U (zh) 一种燃气表输气状态下密封性检测装置
US20220276115A1 (en) Tire inspection device with gas sensor leak detection and tire inspection method with gas sensor leak detection
WO2020246592A1 (ja) バルブの耐圧検査装置
DK201570808A1 (en) Leak detector
CN205940891U (zh) 一种橡胶气密性检测装置
JP2009019977A (ja) リークテスターおよびリークテスト法
JPH04279850A (ja) 液体容器のピンホール検出装置
JPH03231132A (ja) ブレーキキャリパのリークテスタ
JP7011287B2 (ja) ガス漏れ検査装置及びガス漏れ検査システム
JP7011286B2 (ja) ガス漏れ検査システム及びガス漏れ検査方法
JPH01253628A (ja) パッケージのリーク測定方法及びその測定装置
JP7381194B2 (ja) 検査装置用可変治具を用いた圧力機器の耐圧検査装置と検査装置用可変治具を用いた圧力機器の耐圧検査方法並びに組立装置用可変治具と加工装置用可変治具
JP2019027902A (ja) タイヤ検査装置及びタイヤ検査方法
JP2004340721A (ja) 液晶パネルの封止検査方法
Kelley Hermetic Seal Leak Detection Apparatus
JPH0543046U (ja) 密封要素の密封性能検査装置
RU2007136423A (ru) Способ испытания на герметичность проходных термоэлементов в сосудах и устройство для его осуществления

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350