JP6765325B2 - 電力変換装置および地絡箇所判定方法 - Google Patents

電力変換装置および地絡箇所判定方法 Download PDF

Info

Publication number
JP6765325B2
JP6765325B2 JP2017042334A JP2017042334A JP6765325B2 JP 6765325 B2 JP6765325 B2 JP 6765325B2 JP 2017042334 A JP2017042334 A JP 2017042334A JP 2017042334 A JP2017042334 A JP 2017042334A JP 6765325 B2 JP6765325 B2 JP 6765325B2
Authority
JP
Japan
Prior art keywords
circuit
short
cable
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017042334A
Other languages
English (en)
Other versions
JP2018148711A (ja
Inventor
景山 寛
景山  寛
内野 禎敬
禎敬 内野
佐々木 康
康 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2017042334A priority Critical patent/JP6765325B2/ja
Priority to PCT/JP2018/007388 priority patent/WO2018163922A1/ja
Priority to EP18764704.5A priority patent/EP3595159B1/en
Priority to CN201880009904.7A priority patent/CN110249519B/zh
Publication of JP2018148711A publication Critical patent/JP2018148711A/ja
Application granted granted Critical
Publication of JP6765325B2 publication Critical patent/JP6765325B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、電力変換装置および、それを用いた地絡箇所判定方法に関する。
図29は、従来の電力変換装置と、モータおよびそれらを接続するケーブルを示している。従来の電力変換装置581は、交流電力を入力してモータに電力を供給するためのコンバータ順変換器回路582、コンデンサ583、逆変換器回路584を備えている。順変換器回路582は6つのダイオードで構成され、入力端子R、S、Tから入力される交流電力を直流電力に変換する。コンデンサ583は変換装置内部の直流電圧配線に接続し、配線間の電圧を平滑化する。逆変換器回路584は、直流電力を、モータを駆動するための交流電力に変換し、出力端子U、V、Wへ出力する。逆変換器回路584は、半導体で形成されたスイッチ585a〜585fを備えており、2つのスイッチが対になってハーフブリッジ回路を構成し、6つのスイッチでU、V、Wの三相ブリッジ回路を構成している。一相分のスイッチング素子は上下同時にONしないように交互にONさせてスイッチングを行う。各相の出力U、V、Wは3本のケーブル586を用いてモータ587と接続されている。従来の電力変換装置581は電流センサ588uと588wあるいは電流センサ588nで観測する電流情報を基に、各スイッチをONする時間を変えるPWM制御によってモータへ供給する電力を制御する。
絶縁被覆の劣化や物理的損傷など、何らかの原因により、モータ587の内部やケーブル586で短絡が起きた場合、電流センサ588n、あるいは、各スイッチのエミッタ−コレクタ間に取り付けられ、コレクタ電圧を監視して過電流を検知する過電流検知回路(不図示)によって過電流を検知する。過電流を検知した場合は、全てのスイッチング素子をOFFにすることで変換動作を停止し、スイッチング素子が大電流により発生する熱エネルギなどで破壊されることを阻止する。
特開平10−23795
短絡によって電力変換装置の動作が停止した場合、その情報を使用者に報知することで短絡が発生したことを知らせることできる。しかしながら、短絡事故発生によって電力変換装置の動作が停止した場合、使用者はケーブル上で短絡事故が発生したのかあるいはモータ内部で短絡事故が発生したのか、短絡が発生した場所を特定することができないという課題があった。特に、ケーブル上の短絡箇所、例えば、電力変換装置から何mの箇所に短絡が発生しているかを知ることによって、建屋内や設備内に配線されて目視できないような配線上での短絡箇所を特定でき、復旧のための時間と手間を削減することができる。
短絡発生個所の情報を知る方法として、特許文献1に、短絡発生後に、2つのスイッチング素子を短時間ONにして、電流の傾きを見ることで異常を推定する方法が紹介されている。この場合、電流の傾きは短絡経路のインダクタンスで決まるため、インダクタンスに基づいた短絡個所の推定は可能である。
しかしながら、ケーブル上の短絡発生箇所が何処になるか判定することはできていなかった。また、ケーブル上で短絡箇所を高い分解能で特定するためには、傾きなどの電流波形の特徴の細かい違いを検出するために、高速な電流計測回路が必要であった。
本発明の電力変換装置は、半導体で形成された複数のスイッチ素子を具備しそれらのオンオフ制御によって3相のケーブルで接続された3相のモータを駆動する電力変換装置であって、電源からの交流電力を直流電力に変換する順変換器回路と、前記モータへ供給する電流を制御する3つのハーフブリッジ回路で構成された逆変換器回路と、前記逆変換器回路に供給される直流電圧を制御するための直流電圧制御回路と、前記ハーフブリッジ回路を構成する前記複数のスイッチ素子を駆動するための複数のドライバ回路と、前記ドライバ回路を制御するための制御回路と、前記逆変換器回路の複数の相の出力電流値を測定する電流計測手段と、装置内部の状況を外部に報知する情報出力手段を具備し、前記ケーブルあるいは前記モータで発生した絡個所を調査する際に、前記直流電圧制御回路は、前記逆変換回路へ供給する直流電圧を、モータ駆動時の直流電圧よりも低い電圧に低減し、前記制御回路は、前記複数のスイッチ素子のうち、異なる相の上アームおよび下アーム1つずつのスイッチ素子をオンさせることで短絡調査のための電流をケーブル上に発生させ、前記異なる相の上アームおとび下アーム1つずつのスイッチ素子の両方をオンしていた時間と前記電流計測手段の電流計測値に基づいてケーブルの往復インダクタンス値を計算し、前記往復インダクタンス値を前記ケーブルの全長の往復インダクタンスと比較して短絡箇所を判定し、前記情報出力手段は短絡箇所の判定結果を外部に報知する。
本発明の電力変換装置は、低速な電流センサを用いて、電力変換装置に接続されたケーブル、モータのいずれかで短絡が発生したかを判別することができる。さらに、低速な電流センサを用いて、ケーブル上の相間短絡箇所を高い分解能で特定することができる。
本発明の電力変換装置の第一の実施例の構成図である。 スイッチ駆動回路の構成図である。 相間短絡発生箇所を調査するために流す短絡電流の経路とスイッチの状態の関係を示した図である。 図3に示した短絡電流を発生させるためのスイッチ駆動回路の動作波形を示した図である。 本発明の第一の実施例における短絡個所判定のフローチャートである。 図5の短絡個所判定フローにおけるスイッチ状態と直流電圧の変化を示した図である。 短絡状況調査のフローチャートである。 短絡電流・短絡時間測定のフローチャートである。 図8の短絡電流・短絡時間測定における短絡電流波形の例である。 短絡電流・短絡時間測定の別方式によるフローチャートである。 図10の短絡電流・短絡時間測定における短絡電流波形の例である。 直流電圧Vdcを変えた場合の短絡電流波形である。 ケーブル情報記憶部123が記憶するケーブル情報を設定するためのフローチャートである。 3相モータケーブルの断面図の例である。 制御回路105内の短絡箇所判定部123で用いられる判定方法を示した図である。 表示器108の構成図である。 LEDセグメント153に表示される表示パターンと、短絡箇所との対応表である。 送信機109の構成図である。 別の保護回路方式によるスイッチ駆動回路の構成図である。 本発明の電力変換装置の第二の実施例の構成図である。 本発明の第二の実施例における短絡個所判定の第一のフローチャートである。 図21の短絡個所判定フローにおける直流電圧の変化を示した図である。 本発明の第二の実施例における短絡個所判定の第二のフローチャートである。 図23の短絡個所判定フローにおける直流電圧の変化を示した図である。 本発明を産業用インバータとして応用した例を示した図である。 本発明を鉄道車両に応用した例を示した図である。 本発明を電動機付き自動車に応用した例を示した図である。 本発明の判定結果を表示するタブレット型端末の例を示した図である。 従来の電力変換装置と、モータおよびそれらを接続するケーブルを示した図である。
以下では図面を用いて実施例について説明するが、以下に説明する各実施例は図示例に限定されるものではない。
図1に本発明の電力変換装置の第一の実施例の構成図を示す。電力変換装置101は、交流電力を入力してモータに電力を供給するための順変換器回路102、コンデンサ103、逆変換器回路104を備えている。また、電力変換装置101は、電力変換装置101を制御するための制御回路105と、制御回路105へ手動で情報入力するための入力器106、外部システムからの情報を受信するための受信機107と、制御回路105からの出力情報を表示するための表示器108、外部のシステムへ情報を送信するための送信機109を備えている。
順変換器回路102は6つのダイオードで構成され、電源配線PLを通して送られ入力端子R、S、Tから入力される交流電力を直流電力に変換し、ノードP,Nで示した直流電源配線に出力する。順変換器回路102のダイオードの整流作用によりノードP側の直流電圧配線に正電圧、ノードN側の直流電圧配線に負電圧とした直流電圧を発生する。コンデンサ103はノードPとNにおいて直流電圧配線に接続し、急激な電流変化が起きても配線間の電圧を一定に保つ(平滑化する)働きをする。逆変換器回路104は、直流電力を、モータを駆動するための交流電力に変換し、出力端子U、V、Wへ出力する。
入力端子R、S、Tと順変換器回路102との間には、電源スイッチSW_PWが設置され、交流電力入力のON/OFF制御を行う。順変換器回路102とノードPの間には抵抗器R1とバイパススイッチSW_BPが並列に接続されて設置されている。抵抗器R1は電源投入時に発生するコンデンサ103への突入電流の電流制限用の抵抗であり、スイッチSW_BPは突入電流制定後にONになることで電流をバイパスさせる。ノードP、Nの間には、平滑用コンデンサ103と並列に、抵抗器R2と放電スイッチSW_DCが直列に接続されて設置されている。スイッチSW_DCをONにすることで、抵抗器R2を通して平滑用コンデンサ103から放電電流が流れるため、ノードP−N間の直流電圧が所望の電圧よりも高かった場合に電圧を抑制することができる。以上のスイッチSW_PW、SW_BP、SW_DCは半導体で形成されたトランジスタや、電磁リレーを用いて構成することができる。
逆変換器回路104はU相、V相、W相の3つのハーフブリッジ回路から構成されている。U相のハーフブリッジ回路はスイッチSWuとダイオードDIuが逆並列に接続された上アームと、スイッチSWxとダイオードDIxが逆並列に接続された下アームで構成されている。同様にして、V相のハーフブリッジ回路は、スイッチSWvとダイオードDIv、スイッチSWyとダイオードDIyで、W相のハーフブリッジ回路は、スイッチSWwとダイオードDIw、スイッチSWzとダイオードDIzで構成されている。図1ではスイッチとしてIGBTを用いているが、MOSFETで構成してもよい。また、半導体デバイスはシリコンを使うのが一般的だが、低損失化のためにワイドギャップ半導体であるSiC(シリコンカーバイト)やGaN(ガリウムナイトライド)を用いてもよい。全てのスイッチSWu、SWv、SWw、SWx、SWy、SWzには、スイッチ駆動回路SDu、SDv、SDw、SDx、SDy、SDzがそれぞれ接続されており、各スイッチ駆動回路は各スイッチのエミッタ、ゲート、コレクタの各電極に接続されている。エミッタ、ゲート、コレクタはIGBTの電極名称であり、MOSFETの場合は、ソース、ゲート、ドレインの電極名称に相当する。全てのスイッチ駆動回路には、スイッチのゲート電圧を制御することでスイッチのONとOFFを切り替えるゲートドライバ回路と、スイッチに過電流が流れたことを検知してスイッチを高速に遮断する(OFFにする)過電流保護回路とを内蔵している。各スイッチ駆動回路は制御回路105との通信手段を持っており、通信手段は、制御回路105からスイッチ駆動回路へスイッチのON/OFF制御信号を伝えるのと、スイッチ駆動回路から制御回路105へ過電流検知信号を伝えるために用いられる。
電力変換装置101は、逆変換器回路104と出力端子U、Wの間に、各相の出力電流値を測定する2つの電流センサ110u、110wと、それらの測定値を計測するための電流計測回路111を備えている。電流センサ110u、110wは出力端子U、Wから出力される電流値を計測し、アナログ電圧または電流として電流計測回路111に伝える。電流計測回路111は、そのアナログ情報をサンプリングし、デジタルデータ化して、計測電流値Iu,Iwとして制御回路105へ送信する。また、電力変換装置101は、直流電圧配線のノードP、N間、つまりコンデンサ103の両電極間の電圧を測定する電圧計測回路112を備えている。電圧計測回路112はノードP、N間の直流電圧を計測し、デジタルデータ化して直流電圧値Vdcとして制御回路105へ送信する。電流計測回路111および電圧計測回路112は一般的なサンプリング回路とA/D変換回路によって構成することができる。
制御回路105は、電力変換装置101の出力側(モータケーブルMCu、MCv、MCwおよびモータMT)の短絡発生箇所の判定のために、短絡電流制御部121、インダクタンス値計算部122、短絡箇所判定部123、ケーブル情報記憶部124、直流電圧制御部125を備えている。短絡電流制御部121は、短絡箇所調査時において、電流計測回路111からの電流値情報、および逆変換器回路104内の全スイッチ駆動回路SDからの過電流検出情報を基に、逆変換器回路104内の各スイッチを制御して短絡電流を制御する。また短絡電流制御部121は電流制御時に得られた電流値情報Icalおよび時間情報Tcalをインダクタンス値計算部122に送信する。インダクタンス値計算部122は、Ical、Tcalおよび直流電圧情報Vdcよりインダクタンス値Lcalを計算し、短絡箇所判定部123に送る。短絡箇所判定部123は、送信されてきたインダクタンス値Lcalとインダクタンス値記憶部124が保持しているケーブル情報を基に短絡箇所を推定し、表示器108および送信機109に判定結果を送信する。直流電圧制御部125は、直流電圧情報Vdcを基にスイッチSW_PW、SW_BP、SW_DCを駆動するとともに、短絡箇所調査開始のトリガを短絡電流制御部121に送信する。なお、制御回路105は、モータのPWM駆動のための一般的な機能を備えているが、本発明の動作とは関わらないので、その説明については省略する。また、ロジック回路のみで構成することが可能な要素については、マイコンやプログラマブルロジックでソフトウェア的に実現することも可能である。
図2に、スイッチ駆動回路SDu、SDv、SDw、SDx、SDy、SDzの構成図を示す。各スイッチ回路の構成は共通であるので、図2では、記号SW、DI、SDに続くu、v、w、x、y、zの文字を省略して記述してある。スイッチ駆動回路SDは、論理回路131、ゲート駆動アンプ132、ゲート抵抗133、コンパレータ134、キャパシタ135、キャパシタ充電用抵抗136、キャパシタ放電用スイッチ137、ダイオード138、定電圧源139、140、ラッチ回路141から構成されている。ゲート駆動アンプ132とゲート抵抗133は接続するスイッチSWのON/OFF制御に用いられる。制御回路105からのゲート信号GTが“H”の場合は、ゲート駆動アンプ132がゲートオン電圧を出力しスイッチSWはONに、ゲート信号GTが“L”の場合は、ゲート駆動アンプ132がゲートオフ電圧を出力しスイッチSWはOFFになる。ゲート抵抗133はスイッチング速度を制御する。一方、コンパレータ134、キャパシタ135、キャパシタ充電用抵抗136、キャパシタ放電用スイッチ137、ダイオード138、定電圧源139、140、ラッチ回路141は過電流検出回路を構成している。この過電流検出回路は非飽和電圧検知(Desaturation Detection)方式の回路である。定電圧源139は過電流しきい値電圧VTの、定電圧源140はVTより高い電圧Vccの電圧源である。過電流しきい値VTは、スイッチを流れる電流が過電流と判断される過電流しきい値Iovになるときのコレクタ−エミッタ間電圧Vceから決定される値である。スイッチSWがOFFの状態においては、キャパシタ放電用スイッチ137がONであるため、コンパレータの出力は“L”である。また、スイッチSWがONの状態において、過電流が発生していない場合は、スイッチSW(IGBT)の電圧Vceが十分に低く、ダイオード138を通してキャパシタ135が放電されるため、コンパレータの出力は“L”である。ところが、スイッチSWがONの状態において、過電流が発生している場合は、スイッチSW(IGBT)のコレクタの電圧がしきい値電圧VTより高くなり、キャパシタ135が放電されない。キャパシタ充填用抵抗136の充電電流によってキャパシタ135が充電されてキャパシタの電位がしきい値電圧VTを超えるとコンパレータ134は“H”を出力する。すると、ラッチ回路の出力Qが“H”になり、論理回路131によってゲート信号GTを無効化し、スイッチを強制的に遮断され、ドライバ回路SDは過電流保護機能が作動した状態となる。また、過電流検知信号DETとして制御回路105に過電流検知が伝えられる。過電流保護機能の解除は、制御回路105からのリセット信号をRESに入力し、ラッチ回路141をリセットされることで行われる。以上のように、図2に示したスイッチ駆動回路は、過電流保護機能付きのゲートドライバ回路として機能し、短絡による過電流検知直後に過電流検知を制御回路105に伝達することができる。なお、キャパシタ充填用抵抗136はノイズによる誤動作防止のために設置されており、過電流検知時間の遅れを発生する。この遅れ時間が無視できない場合は、後述の過電流検出時間計測動作において遅れ時間を差し引くことで補正できる。
図3に本発明において相間短絡発生箇所を調査するために流す短絡電流の経路とスイッチの状態の関係を示している。図3(A)は短絡電流を増加させる時、図3(B)は短絡電流を持続させている時、図3(C)は短絡電流を減少させている時の短絡電流経路とスイッチ状態をそれぞれ示している。図3では、モータケーブルMCuとMCvの間、つまりU−V相間に短絡が発生した例を示している。
図3(A)に示すように短絡電流を増加させる時には、相間短絡が起きている2つの相の上アームと下アームを1つずつONにし、コンデンサ103の両電極に印加された直流電圧Vdcを起電力にして、破線を通して短絡箇所に電流を流す。このときの電流Iは数1で表され、時間tに比例して増加する。
I=Vdc・t/Lsc (数1)
ここで、tはスイッチSWuとSWyの両方をONしてからの時間、Lscは電力変換装置101から短絡箇所までのモータケーブルのインダクタンスである。なお、電力変換装置内の電流経路のインダクタンスは無視している。数1を変形し、Lscについて表すと、
Lsc=Vdc・(I/t) (数2)
となるので、電流Iおよび時間tが計測可能な値に増加するまで図3(A)の状態を継続させてから(I/t)を求めることで、インダクタンスLscを算出できる。電力変換装置101と短絡箇所までのケーブル長Len_scとインダクタンスLscは比例関係にあるので、換算係数を別途調査しておくことで、インダクタンスLscの値から短絡箇所までのケーブル長Len_scを推定することができる。なお、図3(A)ではスイッチSWuとSWyをONにしているが、スイッチSWvとSWxをONにした場合でも、モータケーブルの電流が逆方向になるだけで、上述のインダクタンスLsc計算を行うことが出来る。
図3(A)のように短絡電流を増加させた後に、スイッチSWyをOFFにすると、図3(B)のように電流は破線で示すループ上を継続して流れ続ける。このときの電流は数3で表され、時間に比例して減少する。
I=Ib−Vf・tb/Lsc (数3)
ここで、IbはスイッチSWyをOFFにしたときの電流値、Vfは還流ダイオードDIvの順方向降下電圧、tbはスイッチSWyをOFFにしてからの時間である。一般にVfはVdcより1桁〜3桁程度小さいので、図3(A)の電流の増加速度に比べ、図3(B)での電流減少速度は1桁〜3桁程度遅くなる。したがって、Lscが比較的大きい条件では、電流はほぼ一定とみなすことが出来るので、スイッチSWyをOFFにした瞬間の電流値を、OFFにした後に、比較的計測速度の遅い電流センサで測定することができる。なお、図3(B)ではSWyをOFFにしているが、代わりにスイッチSWuをOFFにした場合でも、同様の電流を継続させることができる。
図3(A)あるいは図3(B)の後に、全てのスイッチをOFFにすると、図3(C)のように電流は破線で示すループ上を流れる。このときの電流は時間に比例して減少し、電流が0になるまで数4に従う。
I=Ic−Vdc・tc/Lsc (数4)
ここで、Iu1は全てのスイッチをOFFしたときの電流値、tcは全てのスイッチをOFFにしてからの時間である。
図4は、図3に示した短絡電流を発生させるためのスイッチ駆動回路SDu、SDyの動作波形を示している。図4(A)、(B)はU−V相間の短絡電流を調査する場合の波形を示している。
図4(A)は短絡箇所までの往復インダクタンスLscが比較的大きい場合の動作波形を示している。制御回路105は、ドライバ回路SDuとSDyのGT信号に、期間Tpだけ両方同時にONになるようなパルスを供給する。それによって、スイッチSWuとSWyがGT信号に従ってONになる。スイッチSWuとSWyの両方のスイッチが同時にONになる期間Aにおいて、図3(A)で示した経路で短絡電流が流れる。その後の片方のスイッチをOFFにした期間Bにおいて、図3(B)で示した経路で短絡電流が流れる。さらにその後の全スイッチをOFFにした期間Cにおいて、図3(C)で示した短絡電流が流れる。上記の一連の短絡電流発生動作のうち、期間Bにおいて、電流値の増減が比較的少なくなるので、期間B開始付近の時間Tsにおいて電流を測定すると、比較的計測速度の遅い電流センサで測定することができる。そして、数式(数1)のtに時間Tpを、Iに電流計測回路111が計測した電流値Imesを代入することで、短絡箇所までの往復インダクタンスLscを求めることができる。
なお、電流値Imesは、U−V相間の短絡の場合は、電流センサ110uの計測値Iu、V−W相間の短絡の場合は、電流センサ110wの計測値Iwを読み取ることで得られ、W−U相間の短絡の場合はIu、Iwどちらかの計測値を読み取ることで得られる。あるいは、電流値Imesは、計測値Iu、Iwの大きい方、Max(Iu、Iw)を選択して読み取っても良い。以下に説明の電流値Imesも同様にして電流センサからの計測値の読み取りを行うのでその説明は省略する。
図4(B)は短絡箇所までの往復インダクタンスLscが比較的小さい場合の動作波形を示している。図4(A)の場合と同様に、制御回路105は、ドライバ回路SDuとSDyのGT信号に、期間Tpだけ両方同時にONになるようなパルスを供給する(図4(A)と図4(B)時間軸のスケールは異なっている)。GT信号によってスイッチを再びOFFにする前に短絡電流が過電流しきい値Iovを超過し、ドライバ回路SDuとSDy内の過電流保護回路が作動し、GT信号に関係なくスイッチSWuとSWyの両方、あるいはいずれかがOFFになる(図4(B)では両方OFFになった場合を示している)。スイッチSWuとSWyの両方のスイッチが同時にONになる期間Aにおいて、図3(A)で示した経路で短絡電流が流れる。その後、全スイッチをOFFにした期間Cにおいて、図3(C)で示した短絡電流が流れる。この場合、数式(数1)のtに、2つのスイッチのGT信号に両方ともONになる信号を供給してから過電流検出するまでの時間tを代入し、Iに過電流しきい値Iovを代入することで、インダクタンスLsを求めることができる。
図4(A)の動作において、期間Tsで安定した電流値Imes計測するためには、期間Bでの電流減少が少ないことが必要であり、そのためには(数3)から分かるように比較的大きなインダクタンスLscの条件が必要である。そこで、図4(A)の動作による計測で必要となるインダクタンスLsc値から、(数1)を用いてスイッチが両方オンである時間Tpを逆算し、その値をモード切り替え時間Tmcとしてあらかじめ設定しておく。このモード切り替え時間Tmcより短い時間で短絡検知が発生する場合は図4(B)の動作、そうでない場合は、図4(A)の動作で計測を行う。
図5に、本発明の第一の実施例における短絡個所判定のフローチャートを示す。図5のフローは、短絡発生に伴う保護回路による過電流検知信号、および、入力器106や受信機107からのトリガによって開始される。開始後、制御回路105はモータ停止措置を実施する(S101)。具体的には、順変換器回路104の全スイッチをOFFにすることで、モータへの電力供給を停止し、電流計測回路111で計測される全ての相の電流値が0になるまで待機する。モータ停止後、制御回路105はスイッチSW_PWとSW_DCを制御して直流電圧Vdcを低減する(S102)。直流電圧が低減された状態で、短絡電流制御部121は短絡状況の調査を実施し、短絡情報の取得に成功した場合には電流値情報Icalおよび時間情報Tcalをインダクタンス値計算部122に提供する(S103)。インダクタンス値計算部122は、Ical、Tcalおよび直流電圧情報Vdcよりインダクタンス値Lcalを計算し、短絡箇所判定部123に送る(S104)。短絡箇所判定部123は、送信されてきたインダクタンス値Lcalとケーブル情報記憶部124が保持しているケーブル情報を基に短絡箇所を推定する(S105)。その結果を表示器108および送信機109に判定結果を送信する(S106)。
図6に、図5の短絡個所判定フローにおけるスイッチ状態と直流電圧(Vdc)の変化を示す。モータ駆動時には、制御回路105はモータへの電力供給のために電源スイッチSW_PWとバイパススイッチSW_BPはONに、放電スイッチSW_DCはOFFにしており、直流電圧は、順変換器回路101によって作られる電圧Vdc0になっている。モータ停止措置後に、制御回路105が、電源スイッチSW_PWをOFF、放電スイッチをONにすると、平滑コンデンサ102の放電が開始され、直流電圧は減少する。電圧計測回路112が計測した直流電圧値Vdcが所定の電圧Vdc1まで下がったことを検知すると、制御回路105は放電スイッチをOFFにする。この状態では、コンデンサ102は直流電圧がVdc1であることを保持している。この後に短絡状況調査(S103)を実施する。なお、図6の動作の間、バイパススイッチSW_BPは常にON状態である。
図7に、短絡状況調査(S103)のフローチャートを示す。図7のフローチャートは大きく3つのフローチャートから構成されており、それらはU−V相間、V−W相間、W−U相間の短絡状況調査のフローチャートである。まずU−V相間の短絡状況調査においては、始めに、制御回路105は、電流消滅待ちを行い、電流計測回路111が計測する電流IuとIwが0になるまで待機する(S111)。次に、制御回路105は、U−V相間の短絡電流を調査するために操作する2つのスイッチをSWuとSWyに設定する(S112)。その後、制御回路105は、短絡電流・短絡時間測定を実施し、短絡を検出の有無の情報を持った短絡検出フラグFscを取得する。さらに短絡を検出した場合は、電流値情報Icalと時間情報Tcalも取得する(S113)。短絡検出フラグFsc=“Y”の場合は、短絡相番号変数Phに、U−V相間短絡を意味する数値“1”を代入して終了する(S114、S115)。短絡検出フラグFsc=“N”の場合は、V相−W相の短絡調査のフローチャートに移行する。同様にして、V−W相の短絡調査を行い、短絡検出が有ればV−W相間短絡を意味する数値“2”を代入して終了する(S121〜S125)。短絡検出が無ければさらに、V相−U相の短絡調査のフローチャートに移行する。同様にして、W−U相の短絡調査を行い、短絡検出が有ればV−W相間短絡を意味する数値“3”を代入して終了する(S131〜S135)。短絡検出が無い場合は、短絡相不明の意味として変数Phに“0”を代入して終了する(S140)。
図8に、短絡電流・短絡時間測定(S113、S123、S133)のフローチャートを示す。始めに、制御回路105は事前に設定された2つのスイッチをONにする指令を、対応するスイッチ駆動回路SDに出力する(S201)。それと同時にタイマ変数Tsを0にリセットする(S202)。タイマ変数Tsは時間経過とともに値が増加する変数であって、例えば制御回路105内に内部クロックによってカウントアップするカウンタによって構成することができる。タイマ変数Tsがモード切り替え時間Tmcより小さい間は、短絡電流経路の往復インダクタンスLscが小さい場合の短時間の電流増加に対応するため、全スイッチ駆動回路SDからの過電流検知信号DETを監視する(S203〜S205)。その間にいずれかのスイッチ駆動回路SDより信号DETを受信した場合、分岐(A)に処理が移行する。タイマ変数Tsがモード切り替え時間Tmcの値より大きくなってからは、電流計測回路111による電流計測を、タイマ変数Tsが計測終了時間Tfinの値に到達するまで繰り返し行う(S206〜S208)。その間に電流計測回路111が計測した電流値Imesが計測好適値Iprefを超えた場合、分岐(B)に処理が移行する。タイマ変数Tsが計測終了時間Tfinを超えた後は、最後に計測した電流値Imesと短絡電流検出下限値ILlimと比較する(S209)。Imes≧ILlimであれば分岐(C)に処理が移行し、そうでなければ分岐(D)に処理が移行する。
分岐(A)に処理が移行した場合、Icalに過電流しきい値Iovを、Tcalにタイマ変数の時間Tsを代入する(S210)。
ここで、計測好適値Iprefは電流センサ110u、110wの計測に好適な電流値を意味し、十分な分解能が得られてなおかつ測定上限に余裕が有る電流値である。
分岐(B)および(C)に処理が移行した場合、ONしているスイッチの上アームか下アームかいずれか片方をOFFにし、同時にそのタイミングでのタイマ変数Tsの値をTcalに代入する(S211、S212)。その後、電流計測回路111による電流計測を行い、Icalにその計測値Imesを代入する(S213、S214)。
分岐(A)、(B)および(C)に処理が移行した場合は、短絡検出フラグFscに“Y”を代入する(S215)。一方、分岐(D)に処理が移行した場合は、短絡検出フラグFscに“N”を代入する(S216)。いずれに分岐した場合も、処理の最後にはスイッチをOFFにする指令を全SD駆動回路に出力して終了する(S217)。
図9に、図8の短絡電流・短絡時間測定における短絡電流波形の例を示す。短絡電流経路の往復インダクタンスLscが最も小さかった場合、図8のフローチャートにおいて分岐(A)を経由する処理が行われる。この場合の電流波形は波形(A)となる。短絡電流は急速に増加し、過電流しきい値Iovに到達した時点でスイッチ駆動回路SDの過電流保護機能によって電流遮断され、短絡電流は急激に減少する。この場合、時間taとIovの値を(数2)のtとIに代入することでインダクタンスLsを求めることができる。次にインダクタンスLscがより大きい場合は、図8のフローチャートにおいて分岐(B)を経由する処理が行われる。この場合の電流波形は、波形(B)となる。電流値が計測好適値IPrefを超えてから時刻tbでスイッチの1つがOFFにされることで電流がほぼ一定値となり、時刻tb後のタイミング(例えば期間Tpb)で電流計測した電流値Imesと時刻tbの値を(数2)のIとtに代入することで短絡電流経路の往復インダクタンスLscを求めることができる。さらに往復インダクタンスLscがより大きい場合は、図8のフローチャートにおいて分岐(C)を経由する処理が行われる。この場合の電流波形は、波形(C)となる。計測終了時刻tfinより後の時刻tcでスイッチの1つがOFFにされることで電流がほぼ一定値となり、時刻tc後のタイミング(例えば期間Tc)で電流計測した電流値Imesと時刻tcの値を(数2)のIとtに代入することで短絡経路のインダクタンスLsを求めることができる。さらに往復インダクタンスLscがより大きい場合は、図8のフローチャートにおいて分岐(D)を経由する処理が行われる。この場合の電流波形は、波形(D)となる。計測終了時間tfinにおいて、ILlimを超えていないため、モータMC経由のインダクタンス(Lm)が観測されていると判断し、調査している相間において短絡は発生していないと判定する。
以上に説明した図7と図8フローチャートに従った動作により、図9の短絡電流とそれに関係する時間を計測することで短絡経路の往復インダクタンスLscを求めることができる。
図10に、短絡電流・短絡時間測定(S113、S123、S133)の別方式によるフローチャートを示す。始めに、制御回路105は事前に設定された2つのスイッチのうち、上アームのスイッチのみをONにする指令を、対応するスイッチ駆動回路SDに出力する(S231)。また、電圧指令パルス幅を決める変数Tpに初期値としての最小のパルス幅Ta1の値を設定する(S232)。次に、下アームのスイッチをONするパルス幅を拡幅しながら、どのパルス幅の時に過電流検出されるかを調査する(S233〜S238)。制御回路105は、電流消滅待ちを行い、電流計測回路111が計測した電流IuとIwが0になるまで待機する(S233)。電流が0になった後、制御回路105は変数Tpの値の時間幅だけ下アームをONにする指令を対応するスイッチ駆動回路SDに出力する(S234)。その後、スイッチ回路SDから過電流検知信号DETを入力し、過電流検知していた場合は分岐(A)に処理が移行する(S235、S236)。そうでない場合は、変数Tpがモード切り替え時間Tmcを超えるまで、変数TpをΔTp1だけ増加してS233〜S236の処理を繰り返す(S237、S238)。
変数Tpがモード切り替え時間Tmcを超えた後は、下アームのスイッチをONするパルス幅を拡幅しながら、どのパルス幅の時に電流値Imesが計測好適値Iprefを超えるかを調査する(S239〜S244)。制御回路105は、電流消滅待ちを行い、電流計測回路111が計測した電流IuとIwが0になるまで待機する(S239)。電流が0になった後、制御回路105は変数Tpの値の時間幅だけ下アームをONにする指令を対応するスイッチ駆動回路SDに出力する(S240)。その後、電流計測回路111に電流計測を行わせ(S241)、計測した電流値Imesが電流好適値Iprefより大きかった場合には、分岐(B)に処理が移行する(S241、S242)。そうでない場合は、変数Tpが計測終了時間Tfinの値を超えるまで、変数TpをΔTp2だけ増加してS239〜S242の処理を繰り返す(S243、S244)。
変数Tpが計測終了時間Tfinを超えた後は、最後に計測した電流値Imesと短絡電流検出下限値ILlimと比較する。Imes≧ILlimであれば分岐(C)に処理が移行し、そうでなければ分岐(D)に処理が移行する(S245)。
分岐(A)に処理が移行した場合、Icalに過電流しきい値Iovを、Tcalにパルス幅変数Tpの値を代入する(S246)。
分岐(B)および(C)に処理が移行した場合、Icalに最後に計測した電流値Imesを、Tcalにパルス幅変数Tpの値を代入する(S247)
分岐(A)、(B)および(C)に処理が移行した場合は、短絡検出フラグFscに“Y”を代入する(S248)。一方、分岐(D)に処理が移行した場合は、短絡検出フラグFscに“N”を代入する(S249)。いずれに分岐した場合も、処理の最後には上アームのスイッチをOFFにする指令を対応するSD駆動回路に出力して終了する(S250)。
図11に、図10の短絡電流・短絡時間測定における短絡電流波形の例を示す。図11(A)は、図10のフローチャートの過電流検出調査(S233〜S238)ループにおける、下アームのGT信号と短絡電流波形の例を示している。制御回路105は、1回のループ毎にGT信号にパルスを1つ出力し、そのパルス幅をTpa1、Tpa2、Tpa3と徐々に広くしていく。あるパルス幅(図の例ではTpa3)において、短絡電流が過電流しきい値を超えた場合、この時点で短絡電流の調査を終了する。短絡検知したときのパルス幅TpとIovの値を(数2)のtとIに代入することで短絡電流経路の往復インダクタンスLscを求めることができる。厳密にはパルス幅増加量ΔTp1の誤差が生じる可能性が有るが、ΔTp1を小さくすることでそれを無視できる。
図11(B)は、図10のフローチャートの過電流検出調査(S239〜S244)ループにおける、下アームのGT信号と短絡電流波形の例を示している。制御回路105は、1回のループ毎にGT信号にパルスを1つ出力し、そのパルス幅はTpb1、Tpb2、Tpb3と徐々に広くしていく。また、各パルス後の期間Tpm1、Tpm2、Tpm3で電流計測回路111からの電流計測値Imesを毎回取得する。あるパルス幅(図の例ではTpb3)において、電流計測値Imesが計測好適値Iprefを超えた場合、この時点で短絡電流の調査を終了する。最後に計測した電流値Imesとそのときのパルス幅Tpの値を(数2)のIとtに代入することで短絡経路の往復インダクタンスLsを求めることができる。
パルス幅が計測終了時間tfinを超えた場合には、電流値Imesが計測好適値IPrefに達していなくとも、調査を終了し、上記と同様に(数2)より往復インダクタンスLscを求めることができる。ただし、ImesがILlimを超えていない場合は、モータMC経由のインダクタンス(Lm)が観測されていると判断し、調査している相間において短絡は発生していないと判定する。
以上に説明した図7と図10フローチャートに従った動作により、図11の短絡電流とそれに関係する時間を計測することで短絡経路の往復インダクタンスLscを求めることができる。
図12、直流電圧Vdcを変えた場合の短絡電流波形を示す。図12に示した2つの波形A、波形Bは、図4の期間Aで示した2つのスイッチをONして発生する短絡電流を表しており、波形Aは直流電圧Vdc=Vdc0、波形Bは直流電圧Vdc=Vdc1の条件であって、直流電圧Vdc条件が異なっている(Vdc1<Vdc0)。これらの電流波形は(数1)従うので、電流値が0から所定の電流値I0までに増加するのに要する時間はVdcに反比例して長くなる(図の波形でVdc0:Vdc1=t1:t0の関係)。したがって、直流電圧Vdcを低減させることで、短絡電流・短絡時間測定の動作において以下ようなのメリットを得ることができる。
(メリット)
図8および図9に示した短絡電流・短絡時間測定の動作において、時間計測精度を向上させずとも、時間分解能を向上させることができ、結果、短絡経路の往復インダクタンスLscの精度が向上する。
また、図10および図11に示した短絡電流・短絡時間測定の動作において、パルス幅制御の精度を向上させずとも、時間分解能を向上させることができ、結果、短絡経路の往復インダクタンスLscの精度が向上する。
図13に、ケーブル情報記憶部124が記憶するケーブル情報を設定するためのフローチャートを示す。本フローチャートは短絡箇所判定動作を行う前に少なくとも1回実行される。始めに、ケーブルのインダクタンス値(L値)情報を取得する方法をユーザに選択させる。選択肢には(1)直接入力、(2)ケーブル径より計算、(3)測定より取得の3つがある。(1)直接入力を選択した場合、ケーブル全長の往復インダクタンスを、入力器106、受信機107を介して直接入力する(S302)。ケーブル全長の往復インダクタンス値は、例えばモータケーブル敷設前にLCRメータで別途、取得する方法が考えられる。(2)ケーブル径より計算を選択した場合、モータケーブルの導線直径φC、ケーブルのひふく直径φHを、入力器106、受信機107を介して入力する(S303、S304)。制御回路105は、導線直径φC、ひふく直径φHよりケーブル全長の往復インダクタンスL_cableを計算する(S305)。(3)測定より取得を選択した場合、図*のフローチャートと同様の動作によって、ケーブル全長の往復インダクタンスL_cableを測定する。この場合、短絡発生よりも前に測定が必要であり、なおかつ、モータケーブルの電力変換装置との反対側を試験的に短絡させる必要がある。この測定において、制御回路105は、U相−V相間の短絡電流を調査するために操作する2つのスイッチをSWuとSWyに設定し(S311)、その後、制御回路105は、短絡電流・短絡時間測定を実施する(S312)。この短絡電流・時間測定は、図8あるいは図10のフローチャートを利用することができる。
ケーブル全長の往復インダクタンスを取得後、モータケーブル長Len_cableを、入力器106、受信機107を介して入力する(S306)。ケーブルのインダクタンスと長さを変換するための変換係数K_cableをK_cable=L_cable/Len_cableより計算する(S307)。以上の入力値、計算値を、ケーブル情報記憶部124は保存して終了する(S308)
図14に3相モータケーブルの断面図の例を示す。図に示したケーブルは、直径φCの導線と350u、350v、350wに、直径φHのひふく径を持った3本のケーブル351u、351v、351wで構成されている。
一方、並行した2本のケーブルの往復インダクタンスは数5に示す数式で計算できることが知られている。
K=0.05+0.46052・log(D/r)[mH/km] (数5)
ここで、Kは単位長さ当たりのインダクタンス、のDはケーブル間の距離、rは導線の半径である。したがって、ケーブル3本が密に束ねられている場合、ケーブル間の距離D=2・φH、導線の半径r=φC/2より求めることができるので、ケーブルの導線直径φCとひふく直径φHから、変換係数K_cable(=K)を計算することができる。
図15に、制御回路105内の短絡箇所判定部123で用いられる判定方法を示す。短絡箇所判定部123は、インダクタンス値計算部122から送信されるインダクタンス値Lcalと、ケーブル情報記憶部124から送信されるインダクタンス値L_cable、変換係数K_cableに基づいて、図に示す切り分け判定とサイド判定を行う。切り分け判定では、L_cal≦L_cableの場合、短絡箇所がケーブル上、L_cal>L_cableの場合、短絡箇所がモータ上と判定する。また、L_cal≦L_cableの場合、サイド判定では、Lcalが0に近い場合はケーブル上の短絡箇所が電力変換装置付近と判定し、LcalがL_cableに近い場合はケーブル上の短絡箇所がモータ付近と判定する。さらにケーブル上の短絡箇所Len_scを、Len_sc=K_cable・L_calより判定する。
図16に表示器108の構成図を示す。表示器108はデコーダ151、LEDドライバ152、2ケタ表示のLEDセグメント153で構成される。制御回路105から送られてきた短絡箇所判定結果と、短絡相番号Phは、デコーダ151でLEDセグメントの数字および文字の表示パターンにデコードされる。LED152ドライバは電流信号によって、デコードされた表示パターンをLEDセグメント153に表示させる。
図17にLEDセグメント153に表示される表示パターンと、短絡箇所との対応表を示す。(B)の表示パターンは(A)のコードを7セグメントLEDで表現したものである。コードA1〜A3は、短絡箇所がモータケーブルの電力変換装置付近、コードb1〜b3は、短絡箇所がモータケーブルのモータ付近、コードC1〜C3は、短絡箇所がモータ内部であることを意味している。また、コードが00〜99の数値である場合は、モータケーブル上短絡箇所の電力変換装置からの距離を意味している。図17の対応表を電力変換装置のマニュアルや電力変換装置の側面に掲示することで、使用者はコードと短絡箇所情報の対応を容易に把握することができる。
図18に送信機109の構成図を示す。送信機109は変調器161、増幅器162、アンテナ163で構成され、制御回路105から送られてきた短絡箇所判定結果と短絡相番号は変調器161で変調され、増幅器162で電力増幅され、アンテナ163より外部へ無線送信される。図示していないが、別の機器やシステムは、無線送信された信号を受信し、復調することで、短絡箇所判定結果と短絡相番号の情報を得ることが可能である。また、タブレット型端末を利用し、タブレット型端末に図17の対応表を内蔵したアプリケーションソフトをインストールすることで、短絡箇所情報をタブレット型端末の画面に表示することができる。
図19に、別の保護回路方式によるスイッチ駆動回路SDu、SDv、SDw、SDx、SDy、SDzの構成図を示す。各スイッチ回路の構成は共通であるので、図2では、記号SW、DI、SDに続くu、v、w、x、y、zの文字を省略して記述してある。スイッチ駆動回路SDは、論理回路181、ゲート駆動アンプ182、ゲート抵抗183、コンパレータ184、キャパシタ185、フィルタ抵抗186、定電圧源187、ラッチ回路188から構成されている。また、スイッチSWのエミッタ電極側の配線にシャント抵抗Rshが挿入して設置されている。ゲート駆動アンプ182とゲート抵抗183は接続するスイッチSWのON/OFF制御に用いられる。制御回路105からのゲート信号GTが“H”の場合は、ゲート駆動アンプ182がゲートオン電圧を出力しスイッチSWはONに、ゲート信号GTが“L”の場合は、ゲート駆動アンプ182がゲートオフ電圧を出力しスイッチSWはOFFになる。ゲート抵抗183はスイッチング速度を制御する。一方、コンパレータ184、キャパシタ185、フィルタ抵抗186、定電圧源187、ラッチ回路188は過電流検出回路を構成している。この過電流検出回路はシャント抵抗による電流検知方式の回路である。定電圧源187はしきい値電圧VTiの電圧源であり、しきい値電圧VTiはスイッチを流れる電流が過電流と判断されるときのシャント抵抗Rshの電圧降下と同じ電圧値に設定されている。過電流が発生すると、シャント抵抗Rshの電圧降下がしきい値電圧VTを超え、コンパレータ184は“H”を出力する。すると、ラッチ回路188の出力Qが“H”になり、論理回路181によってゲート信号GTを無効化し、スイッチを強制的に遮断され、ドライバ回路SDは過電流保護機能が作動した状態となる。また、過電流検知信号DETとして制御回路105に過電流検知が伝えられる。過電流保護機能の解除は、制御回路105からのリセット信号をRESに入力し、ラッチ回路188をリセットされることで行われる。以上のように、図19に示したスイッチ駆動回路は、過電流保護機能付きのゲートドライバ回路として機能し、短絡による過電流検知直後に過電流検知を制御回路105に伝達することができる。なお、キャパシタ185とフィルタ抵抗186はノイズによる誤動作防止のために設置されており、過電流検知時間の遅れを発生する。この遅れ時間が無視できない場合は、過電流検出時間計測動作において遅れ時間を差し引くことで補正できる。
図20に本発明の電力変換装置の第二の実施例の構成図を示す。電力変換装置201は、交流電力を入力してモータに電力を供給するための順変換器回路102、コンデンサ103、逆変換器回路104を備えている。また、電力変換装置201は、電力変換装置201を制御するための制御回路205と、制御回路205へ手動で情報入力するための入力器106、外部システムからの情報を受信するための受信機107と、制御回路205からの出力情報を表示するための表示器108、外部のシステムへ情報を送信するための送信機109を備えている。
順変換器回路102は6つのダイオードで構成され、電源配線PL、遮断機CB、電源ケーブルPCを通して送られ入力端子R、S、Tから入力される交流電力を直流電力に変換し、ノードP,Nで示した直流電源配線に出力する。順変換器回路102のダイオードの整流作用によりノードP側の直流電圧配線に正電圧、ノードN側の直流電圧配線に負電圧とした直流電圧を発生する。コンデンサ103はノードPとNにおいて直流電圧配線に接続し、急激な電流変化が起きても配線間の電圧を一定に保つ(平滑化する)働きをする。逆変換器回路104は、直流電力を、モータを駆動するための交流電力に変換し、出力端子U、V、Wへ出力する。
順変換器回路102とノードPの間には抵抗器R1とバイパススイッチSW_BPが並列に接続されて設置されている。抵抗器R1は電源投入時に発生するコンデンサ103への突入電流の電流制限用の抵抗であり、スイッチSW_BPは突入電流制定後にONになることで電流をバイパスさせる。SW_BPは半導体で形成されたトランジスタや、電磁リレーを用いて構成することができる。ノードP、Nの間には、放電抵抗器R3が接続され、遮断機CBが電源を遮断している時にコンデンサ102を放電する。
逆変換器回路104はU相、V相、W相の3つのハーフブリッジ回路から構成されている。U相のハーフブリッジ回路はスイッチSWuとダイオードDIuが逆並列に接続された上アームと、スイッチSWxとダイオードDIxが逆並列に接続された下アームで構成されている。同様にして、V相のハーフブリッジ回路は、スイッチSWvとダイオードDIv、スイッチSWyとダイオードDIyで、W相のハーフブリッジ回路は、スイッチSWwとダイオードDIw、スイッチSWzとダイオードDIzで構成されている。図1ではスイッチとしてIGBTを用いているが、MOSFETで構成してもよい。また、半導体デバイスはシリコンを使うのが一般的だが、低損失化のためにワイドギャップ半導体であるSiC(シリコンカーバイト)やGaN(ガリウムナイトライド)を用いてもよい。全てのスイッチSWu、SWv、SWw、SWx、SWy、SWzには、スイッチ駆動回路SDu、SDv、SDw、SDx、SDy、SDzがそれぞれ接続されており、各スイッチ駆動回路は各スイッチのエミッタ、ゲート、コレクタの各電極に接続されている。エミッタ、ゲート、コレクタはIGBTの電極名称であり、MOSFETの場合は、ソース、ゲート、ドレインの電極名称に相当する。全てのスイッチ駆動回路には、スイッチのゲート電圧を制御することでスイッチのONとOFFを切り替えるゲートドライバ回路と、スイッチに過電流が流れたことを検知してスイッチを高速に遮断する(OFFにする)過電流保護回路とを内蔵している。各スイッチ駆動回路は制御回路205との通信手段を持っており、通信手段は、制御回路205からスイッチ駆動回路へスイッチのON/OFF制御信号を伝えるのと、スイッチ駆動回路から制御回路205へ過電流検知信号を伝えるために用いられる。
電力変換装置101は、逆変換器回路104と出力端子U、Wの間に、各相の出力電流値を測定する2つの電流センサ110u、110wと、それらの測定値を計測するための電流計測回路111を備えている。電流センサ110u、110wは出力端子U、Wから出力される電流値を計測し、アナログ電圧または電流として電流計測回路111に伝える。電流計測回路111は、そのアナログ情報をサンプリングし、デジタルデータ化して、計測電流値Iu,Iwとして制御回路205へ送信する。また、電力変換装置101は、直流電圧配線のノードP、N間、つまりコンデンサ103の両電極間の電圧を測定する電圧計測回路112を備えている。電圧計測回路112はノードP、N間の直流電圧を計測し、デジタルデータ化して直流電圧値Vdcとして制御回路205へ送信する。電流計測回路111および電圧計測回路112は一般的なサンプリング回路とA/D変換回路によって構成することができる。
制御回路205は、電力変換装置101の出力側(モータケーブルMCu、MCv、MCwおよびモータMT)の短絡発生箇所の判定のために、短絡電流制御部121、インダクタンス値計算部122、短絡箇所判定部123、ケーブル情報記憶部124、直流電圧計測部225を備えている。短絡電流制御部121は、短絡箇所調査時において、電流計測回路111からの電流値情報、および逆変換器回路104内の全スイッチ駆動回路SDからの過電流検出情報を基に、逆変換器回路104内の各スイッチを制御して短絡電流を制御する。また短絡電流制御部121は電流制御時に得られた電流値情報Icalおよび時間情報Tcalをインダクタンス値計算部122に送信する。インダクタンス値計算部122は、Ical、Tcalおよび直流電圧情報Vdcよりインダクタンス値Lcalを計算し、短絡箇所判定部123に送る。短絡箇所判定部123は、送信されてきたインダクタンス値Lcalとインダクタンス値記憶部124が保持しているケーブル情報を基に短絡箇所を推定し、表示器108および送信機109に判定結果を送信する。直流電圧計測部225は、直流電圧情報Vdcを基に、短絡箇所調査開始のトリガを短絡電流制御部121に送信する。なお、制御回路205は、モータのPWM駆動のための一般的な機能を備えているが、本発明の動作とは関わらないので、その説明については省略する。また、ロジック回路のみで構成することが可能な要素については、マイコンやプログラマブルロジックでソフトウェア的に実現することも可能である。
図21に、本発明の第二の実施例における短絡個所判定の第一のフローチャートを示す。図21のフローは、短絡発生に伴う保護回路による過電流検知信号、および、入力器106や受信機107からのトリガによって開始される。開始後、制御回路105はモータ停止措置を実施する(S401)。具体的には、順変換器回路104の全スイッチをOFFにすることで、モータへの電力供給を停止し、電流計測回路111で計測される全ての相の電流値が0になるまで待機する。モータ停止後、直流電圧を監視しながらの待機状態となり、入力端子R、S、Tから供給される外部電源が遮断されるのを待機する(S402〜403)。遮断機CBの遮断などにより外部電源が遮断されると、放電抵抗器R3によりキャパシタ103の直流電圧が低下する。電圧計測回路112が計測する直流電圧Vdcが所定の電圧Vdc1を下回ったときに、短絡電流制御部121は短絡状況の調査を実施する。短絡情報の取得に成功した場合には電流値情報Icalおよび時間情報Tcalをインダクタンス値計算部122に提供する(S404)。インダクタンス値計算部122は、Ical、Tcalおよび直流電圧情報Vdcよりインダクタンス値Lcalを計算し、短絡箇所判定部123に送る(S405)。短絡箇所判定部123は、送信されてきたインダクタンス値Lcalとケーブル情報記憶部124が保持しているケーブル情報を基に短絡箇所を推定する(S406)。その結果を表示器108および送信機109に判定結果を送信する(S407)。
図22に、図21の短絡個所判定フローにおける直流電圧(Vdc)の変化を示す。モータ駆動時には、制御回路105はモータへの電力供給のため遮断機CBはONになっており、外部電源供給と順変換器回路102の整流作用によって直流電圧VdcはVdc0に保たれている。遮断機CBの遮断などにより外部電源が遮断されると、放電抵抗器R3により直流電圧Vdcが低下する。Vdc1を下回ったタイミングで、直流電圧計測部225がトリガをかけて短絡電流制御部121は短絡状況の調査を実施する。短絡状況調査を実施中も放電抵抗器R3の放電によって直流電圧は低下するが、コンデンサ103と放電抵抗器R3で決まるCR時定数を、短絡調査時間より十分大きくすることで、直流電圧VdcがVdc1の値に固定されているとみなすことができる。
図23に、本発明の第二の実施例における短絡個所判定の第二のフローチャートを示す。図23のフローは、遮断機CBの投入などによる外部電源供給開始、あるいは外部電源供給開始前の入力器106や受信機107からのトリガによって開始される。スイッチSW_BPはOFFになっており外部電源からのキャパシタ103への充電は抵抗器R1を流れる充電電流によって行われる(S410)。開始後、直流電圧を監視しながらの待機状態となり(S411〜S412)、電圧計測回路112が計測する直流電圧Vdcが所定の電圧Vdc1を上回ったときに、短絡電流制御部121は短絡状況の調査を実施する。短絡情報の取得に成功した場合には電流値情報Icalおよび時間情報Tcalをインダクタンス値計算部122に提供する(S413)。インダクタンス値計算部122は、Ical、Tcalおよび直流電圧情報Vdcよりインダクタンス値Lcalを計算し、短絡箇所判定部123に送る(S414)。短絡箇所判定部123は、送信されてきたインダクタンス値Lcalとケーブル情報記憶部124が保持しているケーブル情報を基に短絡箇所を推定する(S415)。その結果を表示器108および送信機109に判定結果を送信する(S416)。
図24に、図23の短絡個所判定フローにおける直流電圧(Vdc)の変化を示す。が遮断機CBの投入などにより外部電源供給が開始されると順変換器回路102で整流された直流電流が抵抗器R1を通して流れてキャパシタ103を充電する。充電の進行によって直流電圧Vdcは上昇し、Vdc1を上回ったタイミングで、直流電圧計測部225がトリガをかけて短絡電流制御部121は短絡状況の調査を実施する。短絡状況調査を実施中も抵抗器R1を通した充電電流によって直流電圧は上昇するが、コンデンサ103と抵抗器R1で決まるCR時定数を、短絡調査時間より十分大きくすることで、直流電圧VdcがVdc1の値に固定されているとみなすことができる。
[本発明の応用例]
図25に本発明を産業用インバータとして応用した例を示す。本発明の電力変換装置501と駆動用モータ502の間をモータケーブル503で接続されている。電力変換装置501は、交流電源ケーブル504を通して外部から電力を供給されている。モータ502は空調機、圧縮機、コンベア、エレベータなど様々な産業用機器を駆動することに使用される。モータ502内部やケーブル503上で相間短絡が発生した場合、電力変換装置501が備えている表示器505に短絡個所の情報が表示されるとともに、無線送信によって外部のシステムへ短絡個所が報知される。
図26に本発明を鉄道車両に応用した例を示す。鉄道車両511の床下に本発明の電力変換装置512、513が設置されている。鉄道車両511の台車514、515には駆動用のモータ516、517が備え付けられている。モータと電力変換装置はモータケーブル518、519で接続されている。モータ516、517の内部やモータケーブル518、519上で相間短絡が発生した場合、電力変換装置512、513が備えている表示器に短絡個所の情報が表示されるとともに、無線送信によって外部のシステムへ個所が報知される。
図27に本発明を電動機付き自動車に応用した例を示す。自動車521の内部に本発明の電力変換装置522、523が設置されている。また、車輪524、525を駆動するためのモータ526、527が設置されており、電力変換装置とモータケーブル528、529で接続されている。モータ526、527の内部やモータケーブル528、529上で相間段落が発生した場合、電力変換装置522、523が備えている表示器に短絡個所の情報が表示されるとともに、無線送信によって外部のシステムへ短絡個所が報知される。
図28に本発明の判定結果を表示するタブレット型端末の例を示す。タブレット型端末551には液晶表示画面552があり、インストールされたアプリケーションによって、受信したコードに応じて短絡発生箇所情報が液晶表示画面552に表示される。
SW、SWu、SWv、SWw、SWx、SWy、SWz…スイッチ、DI、DIu、DIv、DIw、DIx、DIy、DIz…ダイオード、SD、SDu、SDv、SDw、SDx、SDy、SDz…スイッチ制御回路、MC、MCu、MCv、MCw…モータケーブル、MT…モータ、PC…電源ケーブル、PL…電源配線、CB…遮断機、SW_PW…電源スイッチ、SW_DC…放電スイッチ、SW_BP…バイパススイッチ、R1、R2、R3…抵抗器、Rsh…シャント抵抗、101…電力変換装置、102…順変換器回路、103…コンデンサ、104…逆変換器回路、105…制御回路、106…入力器、107…受信機、108…表示器、109…送信機、110u、110w…電流センサ、111…電流計測回路、112…電圧計測回路、121…短絡電流制御部、122…インダクタンス値計算部、123…短絡箇所判定部、124…ケーブル情報記憶部、125…直流電圧制御部、131…論理回路、132…ゲート駆動アンプ、133…ゲート抵抗、134…コンパレータ、135…キャパシタ、136…キャパシタ充電用抵抗、137…キャパシタ放電用スイッチ、138…ダイオード、139、140…定電圧源、141…ラッチ回路、151…デコーダ、152…LEDドライバ、153…LEDセグメント、161…変調器、162…増幅器、163…アンテナ、181…論理回路、182…ゲート駆動アンプ、183…ゲート抵抗、184…コンパレータ、185…キャパシタ、186…フィルタ抵抗、187…定電圧源、188…ラッチ回路、201…電力変換装置、205…制御回路、225…直流電圧計測部

Claims (13)

  1. 半導体で形成された複数のスイッチ素子を具備しそれらのオンオフ制御によって3相のケーブルで接続された3相のモータを駆動する電力変換装置であって、
    電源からの交流電力を直流電力に変換する順変換器回路と、
    前記モータへ供給する電流を制御する3つのハーフブリッジ回路で構成された逆変換器回路と、
    前記逆変換器回路に供給される直流電圧を制御するための直流電圧制御回路と、
    前記ハーフブリッジ回路を構成する前記複数のスイッチ素子を駆動するための複数のドライバ回路と、
    前記ドライバ回路を制御するための制御回路と、
    前記逆変換器回路の複数の相の出力電流値を測定する電流計測手段と、
    装置内部の状況を外部に報知する情報出力手段を具備し、
    前記ケーブルあるいは前記モータで発生した絡個所を調査する際に、前記直流電圧制御回路は、前記逆変換回路へ供給する直流電圧を、モータ駆動時の直流電圧よりも低い電圧に低減し、
    前記制御回路は、前記複数のスイッチ素子のうち、上アームのスイッチ素子と前記上アームと異なる相の下アームのスイッチ素子をオンさせることで短絡調査のための電流をケーブル上に発生させ、前記上アームのスイッチ素子と前記下アームのスイッチ素子の両方をオンしていた時間と前記電流計測手段の電流計測値に基づいて前記ケーブルの往復インダクタンス値を計算し、前記往復インダクタンス値を前記ケーブルの全長の往復インダクタンスと比較して短絡箇所を判定し、
    前記情報出力手段は短絡箇所の判定結果を外部に報知することを特徴とする電力変換装置。
  2. 請求項1において、
    前記逆変換器回路に供給される直流電圧を計測するための電圧センサを備え、
    前記ケーブルあるいは前記モータで発生した絡個所を調査する際は、前記逆変換器回路に直流電圧が供給開始あるいは遮断される際であって、前記電圧センサが計測する電圧値がモータ駆動時の直流電圧値よりも低い所定の値である電力変換装置。
  3. 請求項1または2において、
    前記制御回路はケーブル情報記憶部を備え、
    前記ケーブル情報記憶部が事前に記憶していたケーブルの単位長さあたりのインダクタンスの値を係数として、前記往復インダクタンス値を、本電力変換装置からの短絡箇所までのケーブル上の距離に変換し、前記距離を前記情報出力手段から外部に報知することを特徴とする電力変換装置。
  4. 請求項3において、
    情報入力手段を具備し、前記情報入力手段よりケーブル径情報を入力し、前記ケーブル径情報から前記ケーブルの単位長さあたりのインダクタンスの値を計算することを特徴とする電力変換装置。
  5. 請求項1または2において、
    前記制御回路はケーブル情報記憶部を備え、前記ケーブル情報記憶部が事前に記憶していた前記ケーブル全長の往復インダクタンスの値を基準にして、計算された往復インダクタンス値のほうが小さい場合はケーブル上、大きい場合はモータ上に短絡箇所があると判定し、前記判定を前記情報出力手段から外部に報知することを特徴とする電力変換装置。
  6. 請求項3において、
    情報入力手段を具備し、前記情報入力手段よりケーブル径情報とケーブル長さ情報を入力し、前記ケーブル径情報と前記ケーブル長さ情報から前記ケーブル全長の往復インダクタンスの値を計算することを特徴とする電力変換装置。
  7. 請求項1またはにおいて、
    前記制御回路は、前記上アームのスイッチ素子と前記下アームのスイッチ素子の両方をオンにした後に、いずれか片方のスイッチ素子をオフにした状態で電流センサから電流計測値を取得することを特徴とする電力変換装置。
  8. 請求項1または2において、
    前記ドライバ回路は、コンパレータ回路を用いて所定の過電流しきい値を超えることで過電流を検知し、過電流を検知したときに前記上アームのスイッチ素子と前記下アームのスイッチ素子の少なくとも一方をオフにする過電流保護機能を備える過電流保護回路を具備することを特徴とする電力変換装置。
  9. 請求項8において、
    前記過電流保護機能が作動した場合には、前記制御回路は、前記上アームのスイッチ素子と前記下アームのスイッチ素子の両方のオンを開始してから前記過電流保護回路が過電流検知するまでの時間を計測し、前記過電流検知するまでの時間と前記過電流しきい値に基づいてケーブルの往復インダクタンス値を計算することを特徴とする電力変換装置。
  10. 請求項8において、
    前記制御回路は前記上アームのスイッチ素子と前記下アームのスイッチ素子の両方をオンにする状態を繰り返し発生させ、かつ、オンにする時間幅を徐々に長くし、前記過電流保護機能が動作したときの前記時間幅と、前記過電流しきい値に基づいてケーブルの往復インダクタンス値を計算することを特徴とする電力変換装置。
  11. 請求項8において、
    前記過電流保護回路が具備するコンパレータ回路は前記複数のスイッチ素子での電圧降下を計測し、前記電圧降下を基準電圧源と比較して過電流を検出することを特徴とする電力変換装置。
  12. 請求項8において、
    前記複数のスイッチ素子と直列接続され抵抗器を具備し、前記過電流保護回路が具備するコンパレータ回路は前記抵抗器での電圧降下を計測し、前記電圧降下を基準電圧源と比較して過電流を検出することを特徴とする電力変換装置。
  13. 電源からの交流電力を直流電力に変換する順変換器回路と、
    モータへ供給する電流を制御する3つのハーフブリッジ回路で構成された逆変換器回路と、
    前記逆変換器回路に供給される直流電圧を制御するための直流電圧制御回路と、
    前記ハーフブリッジ回路を構成する複数のスイッチ素子を駆動するための複数のドライバ回路と、
    前記ドライバ回路を制御するための制御回路と、
    前記逆変換器回路の複数の相の出力電流値を測定する電流計測手段を具備し、
    3相のモータを駆動する電力変換装置に接続された、ケーブルあるいはモータの絡箇所判定方法であって、
    前記ケーブルあるいは前記モータで発生した絡個所を調査する際に、
    前記直流電圧制御回路は、前記逆変換回路へ供給する直流電圧を、モータ駆動時の直流電圧よりも低い電圧に低減するステップを備え
    前記制御回路は、前記複数のスイッチ素子のうち、上アームのスイッチ素子と前記上アームと異なる相の下アームのスイッチ素子をオンさせることで短絡調査のための電流をケーブル上に発生させるステップと、
    前記上アームのスイッチ素子と前記下アームのスイッチ素子の両方をオンしていた時間と前記電流計測手段の電流計測に基づいてケーブルの往復インダクタンス値を計算し、前記往復インダクタンス値から短絡箇所を判定するステップと、を備える
    絡箇所判定方法。
JP2017042334A 2017-03-07 2017-03-07 電力変換装置および地絡箇所判定方法 Active JP6765325B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017042334A JP6765325B2 (ja) 2017-03-07 2017-03-07 電力変換装置および地絡箇所判定方法
PCT/JP2018/007388 WO2018163922A1 (ja) 2017-03-07 2018-02-28 電力変換装置および地絡箇所判定方法
EP18764704.5A EP3595159B1 (en) 2017-03-07 2018-02-28 Power conversion device and ground fault location determination method
CN201880009904.7A CN110249519B (zh) 2017-03-07 2018-02-28 电力转换装置和短路位置判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042334A JP6765325B2 (ja) 2017-03-07 2017-03-07 電力変換装置および地絡箇所判定方法

Publications (2)

Publication Number Publication Date
JP2018148711A JP2018148711A (ja) 2018-09-20
JP6765325B2 true JP6765325B2 (ja) 2020-10-07

Family

ID=63448558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042334A Active JP6765325B2 (ja) 2017-03-07 2017-03-07 電力変換装置および地絡箇所判定方法

Country Status (4)

Country Link
EP (1) EP3595159B1 (ja)
JP (1) JP6765325B2 (ja)
CN (1) CN110249519B (ja)
WO (1) WO2018163922A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230014487A (ko) * 2021-07-21 2023-01-30 비테스코 테크놀로지스 게엠베하 모터의 과전류 보호 장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148925A (zh) * 2019-04-17 2019-08-20 浙江正泰电器股份有限公司 用于变频器中电机接地故障的保护方法及变频器
DE102019125296B4 (de) * 2019-09-19 2021-06-10 Sma Solar Technology Ag Verfahren zum detektieren eines kurzschlusses einer dc-last und gleichrichter mit einem derartigen verfahren
JP7202273B2 (ja) * 2019-09-24 2023-01-11 株式会社日立産機システム 電力変換装置
CN113051725B (zh) * 2021-03-12 2022-09-09 哈尔滨工程大学 基于通用型辅助变量法的det与relap5耦合的动态特性分析方法
CN113794415B (zh) * 2021-09-13 2024-01-30 重庆美的制冷设备有限公司 风机驱动方法、装置、存储介质及空调系统
DE102022208640A1 (de) 2022-08-19 2024-02-22 Lenze Se Frequenzumrichter
WO2024052975A1 (ja) * 2022-09-06 2024-03-14 ファナック株式会社 モータ駆動装置、及び診断システム
CN115986691B (zh) * 2023-03-21 2023-06-09 无锡市晶源微电子股份有限公司 一种高压上桥输出级的过流保护装置
CN116565980B (zh) * 2023-07-11 2023-09-19 麦田能源股份有限公司 具有无功支撑的逆变系统及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3108964B2 (ja) * 1991-11-26 2000-11-13 株式会社日立製作所 モータ制御装置
JPH06233450A (ja) * 1993-02-04 1994-08-19 Nippondenso Co Ltd モータ駆動回路の故障検出装置
JP3704400B2 (ja) 1996-07-03 2005-10-12 ファナック株式会社 モータのインバータ駆動制御装置における異常診断方法
JP2008271696A (ja) * 2007-04-19 2008-11-06 Toshiba Elevator Co Ltd 電力変換装置
JP2009201194A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 回転電機の異常検出装置および異常検出方法
JP5495867B2 (ja) * 2010-03-09 2014-05-21 三菱電機株式会社 モータ駆動装置
JP2012239247A (ja) * 2011-05-10 2012-12-06 Hitachi Automotive Systems Ltd モータ制御装置
JP2014236533A (ja) * 2013-05-31 2014-12-15 株式会社日立産機システム 電力変換装置および制御方法
JP2015056918A (ja) * 2013-09-10 2015-03-23 トヨタ自動車株式会社 車両の駆動ユニット
JP6233450B2 (ja) * 2015-06-02 2017-11-22 トヨタ自動車株式会社 排気浄化システムの制御装置
JP6553414B2 (ja) * 2015-06-04 2019-07-31 株式会社日立産機システム 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230014487A (ko) * 2021-07-21 2023-01-30 비테스코 테크놀로지스 게엠베하 모터의 과전류 보호 장치
KR102602800B1 (ko) * 2021-07-21 2023-11-15 비테스코 테크놀로지스 게엠베하 모터의 과전류 보호 장치

Also Published As

Publication number Publication date
EP3595159B1 (en) 2021-08-18
WO2018163922A1 (ja) 2018-09-13
EP3595159A4 (en) 2020-12-16
CN110249519B (zh) 2021-02-05
JP2018148711A (ja) 2018-09-20
EP3595159A1 (en) 2020-01-15
CN110249519A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
JP6765325B2 (ja) 電力変換装置および地絡箇所判定方法
JP6985994B2 (ja) 電力変換装置及び地絡箇所診断方法
CN107615644B (zh) 电力转换装置
JP6714448B2 (ja) 電力変換装置および地絡箇所判定方法
EP2683071A1 (en) Electric power converter
JP5689497B2 (ja) Dcリンク部異常検出機能を備えたモータ駆動装置
CN103329423A (zh) 无传感器无刷直流电机的初始位置检测
JP2015208143A (ja) 電動機駆動装置
CN102095918B (zh) Ac电机驱动电流测量系统和方法
US9941815B2 (en) Power conversion apparatus with overcurrent simulating circuit
KR101948976B1 (ko) 인버터 제어 회로
KR101666734B1 (ko) 트랜지스터 온 저항값 추정에 의한 인버터의 고장검출장치 및 그 방법
CN104734577A (zh) 马达驱动装置
JP6334367B2 (ja) インバータ制御装置
JP6089967B2 (ja) インバータ装置
US20160109868A1 (en) Load driver circuit including load model parameter estimation
JP5482694B2 (ja) 電力変換装置
JP6673124B2 (ja) モータ駆動装置、コンピュータプログラム及びモータ駆動装置の動作方法
US10615682B2 (en) Electrically driven vehicle inverter device
JP2003219551A (ja) 漏電検出装置
US20150214868A1 (en) Apparatus and method for detecting overcurrent in inverter
US20230143105A1 (en) Motor drive device that calculates insulation resistance value of motor
KR100960258B1 (ko) 컨버터와 인버터 일체형 전력 변환장치
JP2021052477A (ja) 電力変換装置
KR20240057349A (ko) 전기 차량 dc 링크 커패시터를 위한 적응형 프리-차지 제어

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150