JP6755010B2 - 細胞培養器の製造方法 - Google Patents

細胞培養器の製造方法 Download PDF

Info

Publication number
JP6755010B2
JP6755010B2 JP2015129249A JP2015129249A JP6755010B2 JP 6755010 B2 JP6755010 B2 JP 6755010B2 JP 2015129249 A JP2015129249 A JP 2015129249A JP 2015129249 A JP2015129249 A JP 2015129249A JP 6755010 B2 JP6755010 B2 JP 6755010B2
Authority
JP
Japan
Prior art keywords
temperature
responsive polymer
polymer
cell
cell incubator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015129249A
Other languages
English (en)
Other versions
JP2017012018A (ja
Inventor
中山 泰秀
泰秀 中山
良輔 岩井
良輔 岩井
根本 泰
泰 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cerebral and Cardiovascular Center
Original Assignee
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cerebral and Cardiovascular Center filed Critical National Cerebral and Cardiovascular Center
Priority to JP2015129249A priority Critical patent/JP6755010B2/ja
Publication of JP2017012018A publication Critical patent/JP2017012018A/ja
Application granted granted Critical
Publication of JP6755010B2 publication Critical patent/JP6755010B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、細胞培養器の製造方法に関する。
温度応答性ポリマーは、所定の温度(下限臨界溶液温度:Lower Critical Solution Temperature、以下、「曇点」ともいう。)未満では水に溶解するが、所定の温度以上では不溶化して沈殿する、という物性を備えるポリマーである。
温度応答性ポリマーが培養面に塗布された細胞培養器は、例えば、37℃などの曇点以上の温度での培養時には、温度応答性ポリマーが被覆された培養面上に細胞が接着して増殖し、曇点未満にすることにより、トリプリン処理等の細胞剥離操作を行うことなく、接着した細胞を剥離、回収することができる、細胞培養操作が容易な細胞培養器である。
このような細胞培養器に用いられる温度応答性ポリマーとしては、2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)の重合体である、ポリ(2−N,N−ジメチルアミノエチルメタクリレート)(PDMAEMA)(曇点:約32℃)が知られている。そしてこれによれば細胞構造体を製造することができる(特許文献1)。
そして、細胞構造体を作ることができる細胞培養器としては、特許文献2のような、2−N,N−ジメチルアミノエチルメタクリレートに由来する構成単位と、メタクリル酸に由来する構成単位とを有するポリマーを含むポリマー水溶液を被覆するものが知られている(特許文献2)。
特開2014−029919号公報 特開2014−162865号公報
特許文献2の細胞培養器では、細胞培養器に塗布する前は、温度応答性ポリマーの水溶液を曇点未満とする温度の管理が必要であった。特に、夏場の実験室内など、32℃を超える環境に、温度応答性ポリマーの水溶液を保管すると、温度応答性ポリマーが保管容器壁面に凝集して接着し、温度応答性ポリマーの濃度が変化して、目的の濃度で培養面に温度応答性ポリマーを塗布できない場合があり、細胞培養器の製造時に温度管理の手間がかかっていた。
一般的に、細胞培養器の培養面は、細胞が接着しやすいように、水への接触角が70°程度に調整されているため、水を弾きやすい。また、プラスチック製の細胞培養器の培養面は、ブロー成形や射出成形などのプラスチック加工時に、本来は平滑であるべき培養面の中央部が少し凸となり、外周縁部が少し低くなる、逆盃状の形状をしている。これはプラスチック成形の当業者に周知の『ヒケ』と呼ばれる現象で、培養面が平滑となるようにプラスチック加工すること困難である。
そのため、特許文献1の細胞培養器を製造する際に、培養面に温度応答性ポリマーの水溶液を滴下すると水滴を形成する場合や、培養面に少量の温度応答性ポリマーの水溶液を添加すると、培養面の外周縁部に水溶液が凝集して温度応答性ポリマーが不均一となる場合(図1、2参照)等があり、培養面に温度応答性ポリマーを均一に分布させるには、特定量以上(例えば、ウェル面積200mm2の24ウェルプレートでは、150μL/ウェル以上(図2A参照))の温度応答性ポリマーの水溶液を添加する必要があった。そこに、細胞と培地を添加すると、培地が希釈されて細胞の性質に影響を与えたりする場合があった。
また、温度応答性ポリマーの水溶液を添加して、培養面に温度応答性ポリマーを均一に分布させた場合には、細胞培養器を使用する前に、温度応答性ポリマーの水溶液を曇点以上(例えば37℃)でインキュベートして、温度応答性ポリマーを培養面に沈殿させる必要があり、細胞培養器を使用する前に手間をかける必要があった。
このように、特許文献1に記載の細胞培養器は細胞培養操作が容易な優れた細胞培養器であるが、培養面に乾燥した温度応答性ポリマーが均一に被覆されており、温度応答性ポリマーの水溶液の温度管理や、使用前に細胞培養器をインキュベートする必要がない、製造、使用時の取扱性に優れた細胞培養器を簡易に製造する方法が求められていた。
従って、本発明の目的は、培養面に乾燥した温度応答性ポリマーを均一に被覆することができ、細胞培養器の製造、使用時における取扱性に優れた、細胞培養器を簡易に製造する方法を提供することにある。
すなわち、本発明の管腔状細胞又は塊状細胞培養器の製造方法は、温度応答性ポリマーを有機溶媒に溶解させて温度応答性ポリマー溶液を調製する溶解工程と、上記温度応答性ポリマー溶液を細胞培養器の培養面に塗布し、乾燥させる塗布乾燥工程と、を含むことを特徴とし、上記有機溶媒が、メタノール又はエタノールであり、上記温度応答性ポリマーが、式(I)で表される繰り返し単位(A)
、及び式(II)で表される繰り返し単位(B)
を含む温度応答性ポリマーである
上記温度応答性ポリマー溶液が、親水性分子を更に含むことが好ましい。
また、本発明の管腔状細胞又は塊状細胞培養器は、上記細胞培養器の製造方法により製造されることを特徴とする。
本発明の細胞培養器の製造方法によれば、培養面に乾燥した温度応答性ポリマーを均一に被覆することができ、細胞培養器の製造、使用時における取扱性に優れた、細胞培養器を簡易に製造する方法を提供することができる。
図1は、50μL/ウェル(右列)、100μL/ウェル(中列)、150μL/ウェル(左列)の水溶液を入れた24ウェルプレートの写真である。 図2Aは、図1の150μL/ウェルの水溶液を入れたウェルの拡大図である。図2Bは、図1の100μL/ウェルの水溶液を入れたウェルの拡大図である。図2Cは、図1の50μL/ウェルの水溶液を入れたウェルの拡大図である。 図3は、細胞構造体の剥離性の評価における、「◎(優れる)」の状態を示す一例である。 図4は、細胞構造体の剥離性の評価における、「○(良好)」の状態を示す一例である。 図5は、細胞構造体の剥離性の評価における、「△(普通)」の状態を示す一例である。
以下、本発明の細胞培養器の製造方法の実施形態について詳細に例示説明する。
(溶解工程)
本実施形態の細胞培養器の製造方法では、温度応答性ポリマー又は温度応答性ポリマー組成物を有機溶媒へ溶解して温度応答性ポリマー溶液(本明細書において、単に「ポリマー溶液」と称する場合がある)を調製する、溶解工程を少なくとも含む。
本実施形態の細胞培養器の製造方法によれば、培養面に乾燥した温度応答性ポリマーが均一に被覆された細胞培養器を簡易に製造することができる。
有機溶媒は、温度応答性ポリマーの溶解性に優れるため、ポリマー溶液を曇点未満に温度管理する手間がかからない。また、有機溶媒は、乾燥が早いため、培養面に均一に温度応答性ポリマーを被覆できる。また、有機溶媒は、水への接触角が高い培養面にも濡れやすく、少量でも培養面に均一に被覆させることができる。
培養面に乾燥した温度応答性ポリマーが均一に被覆された細胞培養器は、温度が低くても高くても温度応答性ポリマーが培養面に固着しているため、細胞培養器を保管する温度を管理する必要がない。さらに、無菌包装して流通させることが可能であり、使用者は無菌包装を開封すれば、使用前のインキュベート等の手間をかけることなく使用できる。そのため、使用者が使用前に細胞培養器を作製する必要がなくなり、安定した品質の細胞培養器を使用することができる。
なお、本明細書において、ポリマーの「曇点」とは、必ずしも厳密な意味で、「所定の温度未満では溶解するが、所定の温度以上では不溶化して沈殿する、その温度」を指すものではなく、「不溶化して沈殿したポリマーを所定の温度未満の条件下で溶解する際に、溶解に要する時間が10分以上である、その温度」をも指す。
以下、実施形態に用いられる温度応答性ポリマー及び温度応答性ポリマー組成物について詳述する。
本実施形態の細胞培養器に用いられる温度応答性ポリマー及び温度応答性ポリマー組成物としては、(A)2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)単位と、アニオン性モノマー単位とを含む温度応答性ポリマー、(B)N−イソプロピルアクリルアミド(NIPAM)単位と、カチオン性モノマー単位と、アニオン性モノマー単位とを含む温度応答性ポリマー、(C)2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)及び/又はその誘導体の重合体と、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール(トリス)と、核酸、ヘパリン、ヒアルロン酸、デキストラン硫酸、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリリン酸、硫酸化多糖類、カードラン及びポリアルギン酸並びにこれらのアルカリ金属塩からなる群から選択される1種以上のアニオン性物質とを含む温度応答性ポリマー組成物等が挙げられる。中でも、(A)が好ましい。
ここで、上記(A)としては、例えば、(A−1)DMAEMAを水存在下で重合する方法により得られる温度応答性ポリマー、(A−2)主としてDMAEMAを含むポリマーブロック(重合鎖α末端)と、主としてDMAEMAとアニオン性モノマー(重合鎖ω末端)とを含む温度応答性ポリマー等が挙げられる。
本実施形態において、これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
以下、上記(A−1)の温度応答性ポリマー及びその製造方法について記載する。
(温度応答性ポリマーの製造方法)
(A−1)の温度応答性ポリマーの製造方法では、まず、2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)を含む混合物を調製する(調製工程)。ここで、混合物は、重合禁止剤及び水を更に含む。
2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)としては、市販品を用いることができる。重合禁止剤としては、メチルヒドロキノン(MEHQ)、ヒドロキノン、p−ベンゾキノリン、N,N−ジエチルヒドロキシルアミン、N−nitroso−N−phenylhydroxylamine(Cupferron)、t−ブチルハイドロキノン、等が挙げられる。また、市販のDMAEMAに含まれるMEHQ等をそのまま用いてもよい。水としては、超純水が挙げられる。
重合禁止剤の混合物に対する重量割合は、0.01%〜1.5%であることが好ましく、0.1%〜0.5%であることが更に好ましい。上記範囲とすれば、ラジカル重合反応の暴走を抑制して、制御できない架橋を低減することができ、製造される温度応答性ポリマーの溶媒に対する溶解性を確保することができる。
水の混合物に対する重量割合は、1.0%〜50%であることが好ましく、9.0%〜33%であることが更に好ましい。上記範囲とすれば、側鎖の加水分解反応の反応速度と、重合するポリマー鎖の成長反応の反応速度とを、バランスよく調和させることができる。これにより、側鎖が加水分解されたDMAEMAに対する、側鎖が加水分解されていないDMAEMAの割合(共重合割合)が1.0〜20程度の温度応答性ポリマーを得ることができる。
次いで、(A−1)の温度応答性ポリマーの製造方法では、混合物に紫外線を照射する(照射工程)。ここで、紫外線は、不活性雰囲気下において、照射される。DMAEMAは、紫外線の照射により、ラジカル重合して、ポリマーとなる。
この工程では、例えば、透明な密封バイアルに、上記混合物を加え、不活性ガスをバブリングすることによってバイアル内を不活性雰囲気とした後に、バイアルの外部から紫外線照射装置を用いて紫外線を照射する。
紫外線の波長としては、210nm〜600nmであることが好ましく、360nm〜380nmであることが更に好ましい。上記範囲とすれば、効率よく重合反応を進行させることができ、所期の共重合割合を有する高分子材料を安定的に得ることができる。また、製造したポリマー材料が着色することを防ぐこともできる。
不活性ガスとしては、窒素、アルゴン、ヘリウム、ネオン等が挙げられる。
反応条件に関して、温度条件としては、15℃〜50℃であることが好ましく、20℃〜30℃であることが更に好ましい。上記範囲とすれば、熱による開始反応を抑制し、光照射による開始反応を優先的に進行させることができる。また、加水分解反応の反応速度をポリマー鎖の成長反応の反応速度に対してバランスのよいものにすることができる。
反応時間としては、7時間〜24時間であることが好ましく、17時間〜21時間であることが更に好ましい。上記範囲とすれば、(A−1)の温度応答性ポリマーを高収率で得ることができ、また、光分解反応や不要な架橋反応を抑制しながらラジカル重合を行うことができる。
なお、調製工程において混合物が調製され終えてから、照射工程において紫外線の照射が開始されるまでの時間は、10分〜1時間であることが好ましい。
混合物を加えたバイアルの内部の気体を置換して、バイアル内を不活性雰囲気とする際には、10分程度の時間を要する。そのため、上記時間を10分未満とすると、ラジカル重合に必要となる不活性雰囲気が得られない虞がある。また、混合物中では、DMAEMAの加水分解反応が、紫外線の照射が開始される前に開始される。そのため、上記時間を1時間超とすると、ラジカル重合反応に不活性なメタクリル酸が混合物中に多数生じてしまう。
(A−1)の温度応答性ポリマーの製造方法では、混合物に水が含まれるため、DMAEMAのラジカル重合反応と、ポリ2−N,N−ジメチルアミノエチルメタクリレート(PDMAEMA)の側鎖のエステル結合の加水分解反応とを、拮抗させることができる。
この拮抗により、得られる生成物は、式(I)で表される繰り返し単位(A)
、及び式(II)で表される繰り返し単位(B)
を含むポリマーとなる。
そのため、ポリマーが有するカチオン性官能基、すなわち、ジメチルアミノ基と、ポリマーが有するアニオン性官能基、すなわち、側鎖のエステル結合が加水分解されてできたカルボキシル基の両方を、バランスよく備えることができる。そして、(A−1)の温度応答性ポリマーの製造方法によれば、カチオン性官能基及びアニオン性官能基を有する、ポリ(2−N,N−ジメチルアミノエチルメタクリレート)由来のポリマーを、少ない工程で簡便に製造することができる。
なお、(A−1)の温度応答性ポリマーの製造方法と同一の製造方法ではなくとも、DMAEMA、重合禁止剤、及び水が、紫外線照射時に反応系中に共存していれば、本実施形態の温度応答性ポリマーの製造方法の上記効果と同様の効果を得ることができる。
例えば、DMAEMA及び重合禁止剤を含む混合物と、水とを別々に準備し、次いで、混合物と水とに不活性ガスをバブリングし、その後、混合物と水とを不活性雰囲気下で混合すると同時に紫外線を照射するという、温度応答性ポリマーの製造方法も、(A−1)の温度応答性ポリマーに含めることができる。
(温度応答性ポリマー)
(A−1)の温度応答性ポリマーは、上記(A−1)の製造方法により製造される。
上記温度応答性ポリマー(A−1)は、曇点を細胞培養に適当な温度付近に維持しつつ、イオンバランスを確保する観点から、上記繰り返し単位(A)のホモポリマー領域と、上記繰り返し単位(A)と上記繰り返し単位(B)とのコポリマー領域とを有するポリマーであることが好ましい。
上記繰り返し単位(A)のホモポリマー領域と、上記繰り返し単位(A)と上記繰り返し単位(B)とのコポリマー領域とを有するポリマーの製造方法は、例えば、DMAEMAを光照射してポリマー化し、ポリマーの数平均分子量が一定値を超えた時点(例えば、ポリマーの数平均分子量が5,000Da(より好ましくは20,000Da)を超えた時点)で、アニオン性モノマーである上記繰り返し単位(B)を混合して更に光照射する方法が挙げられる。
(A−1)の温度応答性ポリマーとしては、数平均分子量(Mn)が、10kDa〜500kDaである分子が好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.1〜10.0である分子が好ましい。
(A−1)の温度応答性ポリマーの分子量は、紫外線の照射時間及び照射強度の条件により、適宜調整することができる。
(A−1)の温度応答性ポリマーによれば、曇点を、例えば室温(25℃)以下に、低下させることができる。
上記(A−1)の温度応答性ポリマーでは、曇点以上の温度で形成された温度応答性ポリマーの不溶化物が、室温(約25℃)条件下で再溶解するまでの時間が顕著に遅延する。これは、得られた(A−1)の温度応答性ポリマーは、分子内にカチオン性官能基とアニオン性官能基とが存在するため、高い自己凝集性を有するためであると推定される。
また、この(A−1)の温度応答性ポリマーを用いて、後述するように、培養面にこの温度応答性ポリマーを被覆してなる細胞培養器を調製することができる。
更に、(A−1)の温度応答性ポリマーによれば、後述するように、細胞を適切な培養条件で培養することにより、管腔状(チューブ状)及び塊状(ペレット状)の構造を有する細胞構造体を形成させることができる。
(A−1)の温度応答性ポリマーが有する、カチオン性官能基(2−N,N−ジメチルアミノ基)の官能基数と、アニオン性官能基(カルボキシル基)の官能基数との比(C/A比)は、0.5〜32であることが好ましく、4〜16であることが更に好ましい。
C/A比を上記範囲とすれば、曇点を低減させるという上記効果が得られやすい。上記C/A比を有する温度応答性ポリマーでは、上記温度応答性ポリマー中でカチオン性官能基とアニオン性官能基とが、イオン結合的に分子間及び/又は分子内の凝集に作用して、温度応答性ポリマーの凝集力が強くなった結果であると推測される。
また、C/A比を上記範囲とすれば、上記温度応答性ポリマー中の正電荷と負電荷とのバランスを特に好適にして、正電荷による細胞傷害性を抑制することができ、また、上記温度応答性ポリマーの親水性と疎水性とのバランスを特に好適にして、細胞の遊走や配向を生じやすくすることができるものと推定される。
以下、上記(A−2)の温度応答性ポリマー及びその製造方法について記載する。
(温度応答性ポリマーの製造方法)
(A−2)の温度応答性ポリマーの製造方法では、まず、2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)を含む第一混合物に紫外線を照射する(第一重合工程)。
ここで、第一混合物は、DMAEMA以外に、任意選択的に、例えば、他のモノマー、溶媒等を含んでよい。
また、紫外線は、不活性雰囲気下において、照射されてよい。
DMAEMAとしては、市販品としてよい。
第一混合物に含まれ得る他のモノマーとしては、例えば、N,N−ジメチルアクリルアミド、ポリエチレングリコール側鎖を有するアクリル酸やメタクリル酸のエステル、N−イソプロピルアクリルアミド、3−N,N−ジメチルアミノプロピルアクリルアミド、2−N,N−ジメチルアミノエチルメタクリルアミド等が挙げられ、特に、イオンバランスの調整を安定的に行うことを可能にする観点から、N,N−ジメチルアクリルアミド、ポリエチレングリコール側鎖を有するアクリル酸やメタクリル酸のエステル、N−イソプロピルアクリルアミドが好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。ここで、他のモノマーの使用量のDMAEMAの使用量に対する割合(モル数)は、0.001〜1とすることが好ましく、0.01〜0.5とすることが更に好ましい。
溶媒としては、例えば、トルエン、ベンゼン、クロロホルム、メタノール、エタノール等が挙げられ、特に、DMAEMAのエステル結合に対して不活性であるため、トルエン、ベンゼンが好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
この工程では、例えば、透明な密封バイアルに、上記第一混合物を加え、不活性ガスをバブリングすることによってバイアル内を不活性雰囲気とした後に、バイアルの外部から紫外線照射装置を用いて紫外線を照射する。
紫外線の波長としては、210〜600nmであることが好ましく、360〜380nmであることが更に好ましい。上記範囲とすれば、効率よく重合反応を進行させることができ、所期の共重合割合を有する高分子材料を安定的に得ることができる。また、製造したポリマー材料が着色することを防ぐこともできる。
紫外線の照射強度としては、0.01〜50mW/cm2であることが好ましく、0.1〜5mW/cm2であることが更に好ましい。上記範囲とすれば、無用な化学結合の切断等による分解を抑制しつつ、安定的に、適切な速度(時間)で重合反応を進行させることができる。
不活性ガスとしては、窒素、アルゴン、ヘリウム、ネオン等が挙げられる。
温度条件としては、10〜40℃あることが好ましく、20〜30℃あることが更に好ましい。上記範囲とすれば、通常の実験室の室温において反応を行うことができ、また、光とは別の手段(加熱等)により反応を抑制することが可能となる。
反応時間としては、10分〜48時間であることが好ましく、60分〜24時間であることが更に好ましい。
この工程において、DMAEMAは、紫外線の照射により、ラジカル重合して、ポリマー(ポリ(2−N,N−ジメチルアミノエチルメタクリレート)(PDMAEMA))となり、2−N,N−ジメチルアミノエチルメタクリレートを含むホモポリマーブロックが形成される。他のモノマーも用いた場合には、DMAEMAと他のモノマーとを含むポリマーブロックが形成される。
次いで、(A−2)の温度応答性ポリマーの製造方法では、第一重合工程における重合物(具体的には、ポリマー化した2−N,N−ジメチルアミノエチルメタクリレート)の数平均分子量が所定値以上となった時点で、第一混合物にアニオン性モノマーを添加して第二混合物を調製する(添加工程)。
ここで、第二混合物は、第一重合工程後の第一混合物、及びアニオン性モノマー以外に、例えば、他のモノマー、前述の第一混合物に含まれ得る溶媒(トルエン、ベンゼン、メタノール等)等を含んでよい。
また、アニオン性モノマーは、不活性雰囲気下において、添加されてよい。
アニオン性モノマーとしては、例えば、アクリル酸、メタクリル酸、側鎖にカルボキシル基、スルホン酸基、リン酸基を有するビニル誘導体等が挙げられ、特に、化学的安定性の観点から、アクリル酸、メタクリル酸が好ましい。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
第二混合物に含まれ得る他のモノマーとしては、例えば、N,N−ジメチルアクリルアミド、ポリエチレングリコール側鎖を有するアクリル酸やメタクリル酸のエステル、N−イソプロピルアクリルアミド、3−N,N−ジメチルアミノプロピルアクリルアミド、2−N,N−ジメチルアミノエチルメタクリルアミド等が挙げられ、特に、電気的に中性であり、且つ親水性である、N,N−ジメチルアクリルアミドが好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。ここで、他のモノマーの使用量のDMAEMAの使用量に対する割合(モル)は、0.01〜10とすることが好ましく、0.1〜5とすることが更に好ましい。
この工程では、例えば、バイアルに不活性ガスをフローさせることによってバイアル内を不活性雰囲気に保ちながら、上記第二混合物を添加する。
数平均分子量の所定値は、曇点低減の効果を十分に得る観点から、好適には5,000であり、更に好適には20,000であり、特に好適には100,000である。
なお、第一重合工程後の第一混合物中におけるポリマー化したPDMAEMAの数平均分子量は、所定の時点で重合系から少量の反応混合物を採取して、ゲル浸透クロマトグラフィー(GPC)や光散乱法(SLS)等の当業者に周知の方法により、測定することができる。
この工程において、重合中のDMAEMAを含むホモポリマーに加えて、アニオン性モノマーも重合系に含められることとなり、バイアル内の重合系が、DMAEMAの単独重合系から、DMAEMAとアニオン性モノマーとの共重合系に、変わることとなる。
そして、(A−2)の温度応答性ポリマーの製造方法では、第二混合物に紫外線を照射する(第二重合工程)。
ここで、紫外線は、不活性雰囲気下において、照射されてよい。
この工程では、例えば、第二混合物を添加した後のバイアルの外部から紫外線照射装置を用いて紫外線を照射する。
第二重合工程における、紫外線の波長、紫外線の照射強度、用いる不活性ガス、反応温度、反応時間等の諸条件は、第一重合工程における条件と同様としてよい。
この工程において、DMAEMAとアニオン性モノマーとが、紫外線の照射により、ラジカル重合して、第一重合工程において形成したDMAEMAを含むホモポリマーブロックの重合鎖α末端に連続する形態で、DMAEMAとアニオン性モノマーとを含むコポリマーブロックが形成される。他のモノマーも用いた場合には、DMAEMAとアニオン性モノマーと他のモノマーとを含むコポリマーブロックが形成される。
上記の通り、DMAEMAを含むホモポリマーブロックと、DMAEMAとアニオン性モノマーとのコポリマーブロックとを含む温度応答性ポリマーが得られる。
なお、(A−2)の製造方法では、当業者に理解される通り、種々の分子量及び分子構造を有するポリマーの混合物が生成するところ、DMAEMAを含むホモポリマーブロックと、DMAEMAとアニオン性モノマーとのコポリマーブロックとを含む温度応答性ポリマーを主成分として得る観点から、第一重合工程、添加工程、及び第二重合工程に亘って、同一の条件下で重合を行うことが好ましい。
(温度応答性ポリマー)
(A−2)の温度応答性ポリマーは、上記(A−2)の製造方法により製造される。
(A−2)の温度応答性ポリマーは、主として2−N,N−ジメチルアミノエチルメタクリレートを含み、任意選択的にジメチルアクリルアミド、ポリエチレングリコール側鎖を有するアクリル酸やメタクリル酸等の親水性モノマー等の他のモノマー単位を含むポリマーブロック(重合鎖α末端)と、主として2−N,N−ジメチルアミノエチルメタクリレートとアニオン性モノマー(重合鎖ω末端)とを含み、任意選択的に他のモノマー単位を含むコポリマーブロックとを含む。
好適には、(A−2)の温度応答性ポリマーは、DMAEMAのホモポリマーブロックと、DMAEMAとアニオン性モノマーとのコポリマーブロックとを含み、更に好適には、これらブロックからなる。
ここで、(A−2)の温度応答性ポリマーとしては、重合鎖α末端のポリマーブロック(例えば、DMAEMAのホモポリマーブロック)の数平均分子量が5000Da以上であることが好ましく、20000Da以上であることが更に好ましい。
(A−2)の温度応答性ポリマーとしては、数平均分子量(Mn)が、10〜500kDaである分子が好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.1〜10.0である分子が好ましい。
温度応答性ポリマーの分子量は、紫外線の照射時間及び照射強度の条件により、適宜調整することができる。
(A−2)の温度応答性ポリマーによれば、曇点を、例えば室温(25℃)以下に、低下させることができる。
上記(A−2)の温度応答性ポリマーでは、曇点以上の温度で形成された温度応答性ポリマーの不溶化物が、室温(約25℃)条件下で再溶解するまでの時間が顕著に遅延する。これは、得られた温度応答性ポリマーは、分子内にカチオン性官能基とアニオン性官能基とが存在するため、高い自己凝集性を有するためであると推定される。
特に、(A−2)の温度応答性ポリマーは、重合鎖α末端に、高分子量(例えば、5000Da以上)を有するDMAEMAのホモポリマーブロックを備えるため、DMAEMAの側鎖の温度依存的なグロビュール転移が生じやすく、曇点を効果的に低減することが可能となると考えられる。
また、この温度応答性ポリマーを用いて、後述するように、培養面にこの温度応答性ポリマーを被覆してなる細胞培養器を調製することができる。
更に、(A−2)の温度応答性ポリマーによれば、後述するように、細胞を適切な培養条件で培養することにより、塊状(ペレット状)の構造を有する細胞構造体を形成させることができる。
(A−2)の温度応答性ポリマーが有する、カチオン性官能基(2−N,N−ジメチルアミノ基)の官能基数と、アニオン性官能基(カルボキシル基)の官能基数との比(C/A比)は、0.5〜32であることが好ましく、4〜16であることが更に好ましい。
C/A比を上記範囲とすれば、曇点を低減させるという上記効果が得られやすい。上記C/A比を有する温度応答性ポリマーでは、上記温度応答性ポリマー中でカチオン性官能基とアニオン性官能基とが、イオン結合的に分子間及び/又は分子内の凝集に作用して、温度応答性ポリマーの凝集力が強くなった結果であると推測される。
また、C/A比を上記範囲とすれば、上記温度応答性ポリマー中の正電荷と負電荷とのバランスを特に好適にして、正電荷による細胞傷害性を抑制することができ、また、上記温度応答性ポリマーの親水性と疎水性とのバランスを特に好適にして、細胞の遊走や配向を生じやすくすることができるものと推定される。
以下、上記(B)の温度応答性ポリマー及びその製造方法について記載する。
(温度応答性ポリマーの製造方法)
(B)の温度応答性ポリマーの製造方法は、N−イソプロピルアクリルアミド(NIPAM)(以下、「モノマー(A)」ともいう。)と、カチオン性モノマー(以下、「モノマー(B)」ともいう。)と、アニオン性モノマー(以下、「モノマー(C)」ともいう。)とを重合させるものである。任意選択的に、上記3種類のモノマーにこれら以外の他のモノマーを加えて重合させてよい。
N−イソプロピルアクリルアミド(NIPAM)としては、市販品としてよい。
カチオン性モノマーとしては、カチオン性官能基を有するモノマーが挙げられ、カチオン性官能基としては、第1級〜第4級アミノ基等のアミノ基、グアニジン基等が挙げられ、特に、化学的安定性、低細胞傷害性、滅菌安定性、強陽電荷性の観点から、第3級アミノ基が好ましい。
より具体的には、カチオン性モノマーとしては、生理活性物質を担持したりアルカリ性条件下においたりしても安定性が高いものが好ましく、例えば、3−(N,N−ジメチルアミノプロピル)−メタ(ア)クリルアミド、3−(N,N−ジメチルアミノプロピル)−メタ(ア)クリレート、アミノスチレン、2−(N,N−ジメチルアミノエチル)−メタ(ア)クリルアミド、2−(N,N−ジメチルアミノエチル)−メタ(ア)クリレート等が挙げられる。
これらの中で、特に、3−(N,N−ジメチルアミノプロピル)アクリルアミドは、陽電荷強度が高く、アニオン性物質の担持を容易にするため、好ましい。また、アミノスチレンは、陽電荷強度が高く、アニオン性物質の担持を容易にすると共に、分子内の芳香環が水溶液中において他の物質の疎水性構造と相互作用することから、担持可能なアニオン性物質のバリエーションを広げるため、が好ましい。更に、2−(N,N−ジメチルアミノエチル)−メタクリルアミドは、中性域のpHで微弱な陽電荷を持ち、かつ、水への溶解性が温度に影響されないことから一度担持したアニオン性物質の放出を容易するこるため、好ましい。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
アニオン性モノマーとしては、アニオン性官能基を有するモノマーが挙げられ、アニオン性官能基としては、カルボン酸基、スルホン酸基、硫酸基、リン酸基、ボロン酸基等が挙げられ、特に、化学的安定性、細胞親和性、高い精製度の観点から、カルボン酸基、スルホン酸基、リン酸基が好ましい。
より具体的には、アクリル酸、メタクリル酸、ビニル安息香酸、等が挙げられ、特に、化学的安定性、細胞親和性の観点から、メタクリル酸、ビニル安息香酸が好ましい。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
他のモノマーとしては、例えば、ジメチルアクリルアミド、ポリエチレングリコール側鎖を有するアクリル酸やメタクリル酸等の中性の親水性モノマー等が挙げられる。
これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
他のモノマーは、電荷以外の親水性・疎水性のバランスの調整に使用可能であり、バリエーションを広げることが可能となる。
ここで、(B)の温度応答性ポリマーの製造方法におけるNIPAMの使用量、カチオン性モノマーの使用量、他のモノマーの使用量それぞれの、モノマー(A)〜(C)の合計の使用量に対する割合(モル)は、モノマーの重合反応における反応性を考慮して、所望のモノマー成分の割合を得られるよう、当業者が適宜調整することができる。
ここで、重合方法としては、ラジカル重合、イオン重合等が挙げられる。
ラジカル重合としては、リビングラジカル重合が好ましく、リビングラジカル重合としては、可逆的付加開裂連鎖移動(RAFT)重合、原子移動ラジカル重合(ATRP)、イニファーター重合等が挙げられ、イニファーター重合が好ましい。
イオン重合としては、リビングアニオン重合が好ましい。
(B)の温度応答性ポリマーの製造方法の一例は、ラジカル重合を用いる方法である。
この製造方法の一例では、まず、N−イソプロピルアクリルアミド(NIPAM)を含む第一混合物に紫外線を照射する(第一重合工程)。
ここで、第一混合物は、DMAEMA以外に、任意選択的に、例えば、他のモノマー、溶媒、連鎖移動剤、安定剤、界面活性剤等を含んでよい。
また、紫外線は、不活性雰囲気下において、照射されてよい。
この工程では、例えば、透明な密封バイアルに、上記第一混合物を加え、不活性ガスをバブリングすることによってバイアル内を不活性雰囲気とした後に、バイアルの外部から紫外線照射装置を用いて紫外線を照射する。
溶媒としては、例えば、ベンゼン、トルエン、クロロホルム、メタノール、水、等が挙げられ、特に、溶解力の点、及び重合に不活性である点から、ベンゼン、トルエンが好ましい。これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
この工程では、例えば、透明な密封バイアルに、上記第一混合物を加え、不活性ガスをバブリングすることによってバイアル内を不活性雰囲気とした後に、バイアルの外部から紫外線照射装置を用いて紫外線を照射する。
紫外線の波長としては、210〜600nmであることが好ましく、360〜380nmであることが更に好ましい。上記範囲とすれば、効率よく重合反応を進行させることができ、所期の共重合割合を有する高分子材料を安定的に得ることができる。また、製造したポリマー材料が着色することを防ぐこともできる。
紫外線の照射強度としては、0.01〜50mW/cm2であることが好ましく、0.1〜5mW/cm2であることが更に好ましい。
不活性ガスとしては、窒素、アルゴン、ヘリウム、ネオン等が挙げられる。
温度条件としては、10〜40℃あることが好ましく、20〜30℃あることが更に好ましい。上記範囲とすれば、通常の実験室の室温において重合反応を行うことを可能とすることができ、また、光照射という手段とは別の加熱という手段での反応制御を可能とすることもできる。
反応時間としては、反応時間としては、10分〜48時間であることが好ましく、60分〜24時間であることが更に好ましい。
この工程において、NIPAMは、紫外線の照射により、ラジカル重合して、ポリマー(ポリ(N−イソプロピルアクリルアミド)(PNIPAM))となり、N−イソプロピルアクリルアミドを含むホモポリマーブロックが形成される。他のモノマーも用いた場合には、NIPAMと他のモノマーとを含むポリマーブロックが形成される。
次いで、(B)の温度応答性ポリマーの製造方法では、第一重合工程後の第一混合物にカチオン性モノマーとアニオン性モノマーとを添加して第二混合物を調製する(添加工程)。
ここで、第二混合物は、第一重合工程後の第一混合物、カチオン性モノマー、及びアニオン性モノマー以外に、例えば、他のモノマー、溶媒、連鎖移動剤、安定剤、界面活性剤等を含んでよい。
また、カチオン性モノマーとアニオン性モノマーとは、不活性雰囲気下において、添加されてよい。
この工程では、例えば、バイアルに不活性ガスをフローさせることによってバイアル内を不活性雰囲気に保ちながら、上記カチオン性モノマーとアニオン性モノマーとを添加する。
この工程において、重合中のNIPAMを含むホモポリマーに加えて、カチオン性モノマー及びアニオン性モノマーも重合系に含められることとなり、バイアル内の重合系が、NIPAMの単独重合系から、NIPAMとカチオン性モノマーとアニオン性モノマーとの共重合系に、変わることとなる。
そして、(B)の温度応答性ポリマーの製造方法では、第二混合物に紫外線を照射する(第二重合工程)。
ここで、紫外線は、不活性雰囲気下において、照射されてよい。
この工程では、例えば、カチオン性モノマーとアニオン性モノマーとを添加した後のバイアルの外部から紫外線照射装置を用いて紫外線を照射する。
紫外線の波長としては、210〜600nmであることが好ましく、360〜380nmであることが更に好ましい。上記範囲とすれば、効率よく重合反応を進行させることができ、所期の共重合割合を有する高分子材料を安定的に得ることができる。また、製造したポリマー材料が着色することを防ぐこともできる。
紫外線の照射強度としては、0.01〜50mW/cm2であることが好ましく、0.1〜5mW/cm2であることが更に好ましい。
不活性ガスとしては、窒素、アルゴン、ヘリウム、ネオン等が挙げられる。
温度条件としては、10〜40℃あることが好ましく、20〜30℃あることが更に好ましい。上記範囲とすれば、通常の実験室の室温において重合反応を行うことを可能とすることができ、また、光照射という手段とは別の加熱という手段での反応制御を可能とすることもできる。
反応時間としては、反応時間としては、10分〜48時間であることが好ましく、60分〜24時間であることが更に好ましい。
この工程において、NIPAMとカチオン性モノマーとアニオン性モノマーとが、紫外線の照射により、ラジカル重合して、第一重合工程において形成したNIPAMを含むホモポリマーブロックの重合鎖α末端に連続する形態で、NIPAMとカチオン性モノマーとアニオン性モノマーとを含むコポリマーブロックが形成される。他のモノマーも用いた場合には、NIPAMと他のモノマーとを含むポリマーブロック、及び/又は、NIPAMとカチオン性モノマーとアニオン性モノマーと他のモノマーとを含むコポリマーブロックが形成される。
上記の通り、NIPAMを含むホモポリマーブロックと、NIPAMとカチオン性モノマーとアニオン性モノマーとのコポリマーブロックとを含む温度応答性ポリマーが得られる。
なお、この一例の製造方法では、効率的な反応を実現する観点から、第一重合工程、添加工程、及び第二重合工程に亘って紫外線を照射することが好ましい。
(B)の温度応答性ポリマーの製造方法の別の例は、ラジカル重合を用いる方法であり、N−イソプロピルアクリルアミド(NIPAM)と、カチオン性モノマーと、アニオン性モノマーと、任意選択的に他のモノマーを含む混合物に紫外線を照射する。
ここで、上記混合物は、例えば、溶媒、連鎖移動剤、安定剤、界面活性剤等を含んでよい。
また、紫外線は、不活性雰囲気下において、照射されてよい。
他の条件については、前述の一例の製造方法と同様としてよい。
更には、イニファーター重合を用いる場合、イニファーターとして、ベンジル−(N,N−ジエチル)ジチオカルバメートを、溶媒として、トルエン等を用いてよく、近紫外線の照射によりリビング重合を行ってよい。ここで、1番目のモノマーによる重合後、単離操作を経て、2番目のモノマーによる重合を行うことによって、ブロック共重合体を得ることができる。
更には、イオン重合を用いる場合、触媒として、NaOH粉末を、溶媒として、精製に用いられる再沈殿用溶媒と共に非プロトン系溶媒を用いてよい。1番目のモノマーによる重合後、再沈殿操作(この操作後もω末端にイオン種が残る)を経て、2番目のモノマーによる重合を行うことによって、ブロック共重合体を得ることができる。
(温度応答性ポリマー)
(B)の温度応答性ポリマーは、上記(B)の製造方法により製造される。
(B)の温度応答性ポリマーは、N−イソプロピルアクリルアミド(NIPAM)単位と、カチオン性モノマー単位と、アニオン性モノマー単位とを含み、任意選択的に、他のモノマー単位を含む。本ポリマーは、前述の一例、別の例の製造方法により製造することができる。
好適には、(B)の温度応答性ポリマーは、主としてN−イソプロピルアクリルアミド(NIPAM)単位を含み、任意選択的に他のモノマー単位を含むポリマーブロック(重合鎖α末端)と、主としてカチオン性モノマー単位と、アニオン性モノマー単位とを含み、任意選択的に他のモノマー単位を含むコポリマーブロックとを含む。更に好適には、(B)の温度応答性ポリマーは、NIPAMのホモポリマーブロックと、NIPAMとカチオン性モノマーとアニオン性モノマーとのコポリマーブロックとを含み、特に好適には、これらブロックからなる。本ポリマーは、前述の一例の製造方法により製造することができる。
例えば、特許文献1に記載の温度応答性ポリマーでは、ポリマーに温度応答性を与えるDMAEMAが、同時に、(アニオン性モノマーと共に)細胞構造体の形成に必要となるカチオン性モノマーであり、また、温度応答性に関わるDMAEMAはポリマーブロックとして重合鎖α末端に含まれている。
かかる温度応答性ポリマーでは、重合鎖α末端に必ずカチオン性モノマーが存在することから、重合鎖中におけるカチオン性サイトの位置の調整の自由度が高くはなく、また、カチオン性モノマーが主としてDMAEMAに限られることから、カチオン性サイトの陽電荷強度の調整や、温度応答性ポリマー水溶液のpHの調整も必ずしも容易とは言えなかった。
例えば、温度応答性ポリマーを薬物送達(DDS)に用いた場合、担持可能な薬剤の種類や量が限られる可能性があった。DDSの手法としては、例えば、細胞培養器に薬剤を担持させた温度応答性ポリマーを塗布して、塗布後の細胞培養器で細胞や組織を培養することによって、被覆物から細胞・組織に対して薬剤を徐放するといった手法等が挙げられる。ここで、上記特許文献1の温度応答性ポリマーでは、陽電荷強度が小さいDMAEMAを含むため、アニオン性物質の薬剤の担持は必ずしも容易とは言えず、担持可能な薬剤の種類や量が限られる可能性があった。
一方、(B)の温度応答性ポリマーでは、ポリマーに温度応答性を与えるNIPAMは中性のモノマーであり、(アニオン性モノマーと共に)細胞構造体の形成に必要となるカチオン性モノマーはNIPAMとは異なるモノマーである。
(B)の温度応答性ポリマーでは、重合鎖α末端に必ずしもカチオン性モノマーが存在する必要はなく、重合鎖中におけるカチオン性サイトの位置を自由に調整することが可能であり、また、広範なカチオン性モノマーを用いることができるため、カチオン性サイトの陽電荷強度や温度応答性ポリマー水溶液のpHを容易に調整することが可能である。
(B)の温度応答性ポリマーによれば、例えば、温度応答性ポリマーを薬物送達(DDS)に用いた場合、担持可能な薬剤の種類を拡大しつつ、その量を増加させることが可能となり、ひいては、温度応答性ポリマーの応用範囲を拡大することができる。
(B)の温度応答性ポリマーでは、NIPAM単位の、NIPAM単位、カチオン性モノマー単位、アニオン性モノマー単位の合計に対する割合(モル)が、0.6〜0.9であることが好ましく、0.7〜0.9であることが更に好ましく、0.9であることが特に好ましい。
他のモノマーも用いた場合には、他のモノマー単位の、NIPAM単位、カチオン性モノマー単位、アニオン性モノマー単位の合計に対する割合(モル)が、0.001〜0.2であることが好ましく、0.01〜0.1であることが更に好ましい。
(B)の温度応答性ポリマーとしては、重合鎖α末端のポリマーブロック(例えば、NIPAMのホモポリマーブロック)の数平均分子量が5000Da以上であることが好ましく、20000Da以上であることが更に好ましい。
(B)の温度応答性ポリマーとしては、数平均分子量(Mn)が、10〜500kDaである分子が好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.1〜10.0である分子が好ましい。
温度応答性ポリマーの分子量は、重合条件により、適宜調整することができる。
(B)の温度応答性ポリマーによれば、曇点を、例えば室温(25℃)以下に、低下させることができる。
上記温度応答性ポリマーでは、曇点以上の温度で形成された温度応答性ポリマーの不溶化物が、室温(約25℃)条件下で再溶解するまでの時間が顕著に遅延する。これは、得られた温度応答性ポリマーは、分子内にカチオン性官能基とアニオン性官能基とが存在するため、高い自己凝集性を有するためであると推定される。
特に、前述の(B)の温度応答性ポリマーは、重合鎖α末端に、高分子量を有するNIPAMのホモポリマーブロックを備えるため、NIPAMの側鎖の温度依存的なグロビュール転移が生じやすく、曇点を効果的に低減することが可能となると考えられる。
また、この温度応答性ポリマーを用いて、後述するように、培養面にこの温度応答性ポリマーを被覆してなる細胞培養器を調製することができる。
更に、(B)の温度応答性ポリマーによれば、後述するように、細胞を適切な培養条件で培養することにより、塊状(ペレット状)の構造を有する細胞構造体を形成させることができる。
(B)の温度応答性ポリマーが有する、カチオン性官能基の官能基数と、アニオン性官能基の官能基数との比(C/A比)は、0.5〜32であることが好ましく、4〜16であることが更に好ましい。
C/A比を上記範囲とすれば、曇点を低減させるという上記効果が得られやすい。上記C/A比を有する温度応答性ポリマーでは、上記温度応答性ポリマー中でカチオン性官能基とアニオン性官能基とが、イオン結合的に分子間及び/又は分子内の凝集に作用して、温度応答性ポリマーの凝集力が強くなった結果であると推測される。
また、C/A比を上記範囲とすれば、上記温度応答性ポリマー中の正電荷と負電荷とのバランスを特に好適にして、正電荷による細胞傷害性を抑制することができ、また、上記温度応答性ポリマーの親水性と疎水性とのバランスを特に好適にして、細胞の遊走や配向を生じやすくすることができるものと推定される。
以下、上記(C)の温度応答性ポリマー及びその製造方法について記載する。
(温度応答性ポリマー組成物の製造方法)
(C)の温度応答性ポリマー組成物の製造方法は、まず、混合型温度応答性ポリマー組成物を調製する(混合物調製工程)。具体的には、(1)2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)及び/又はその誘導体の重合体と、(2)2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール(トリス)と、(3)核酸、ヘパリン、ヒアルロン酸、デキストラン硫酸、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリリン酸、硫酸化多糖類、カードラン及びポリアルギン酸並びにこれらのアルカリ金属塩からなる群から選択される一種以上のアニオン性物質とを混合する((2)トリスは任意選択的に含む。)。
(1)のDMAEMA及び/又はその誘導体の重合体は、温度応答性ポリマーであり、その曇点は32℃である。(2)のトリスは、曇点の若干の低下、及び/又は曇点よりも高温で形成されたポリマーが、曇点以下に冷却された際に再溶解する速度を低減させる役割を果たし、また、疎水化されたポリマー層中でも親水性を維持しながら、アミノ基に由来する陽電荷により細胞に刺激を与える役割を果たすと推定される。(3)のアニオン性物質は、培養する細胞の遊走や配向を可能にする役割や細胞傷害性を抑制する役割を果たすと推定される。
この混合型温度応答性ポリマー組成物によれば、曇点を室温(25℃)以下に低減させることができる。
上記組成物では、DMAEMA及び/又はその誘導体の重合体の側鎖とトリスとが、互いに相互作用(例えば、架橋する作用)して、上記重合体が凝集しやすくなっていると推定される。
ここで、上記(1)について、DMAEMA及び/又はその誘導体の重合体としては、数平均分子量(Mn)が、10kDa〜500kDaである分子が好ましい。また、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.1〜6.0である分子が好ましい。
また、(1)のDMAEMAの誘導体としては、例えば、メタクリレートのメチル基の水素原子をハロゲン置換した誘導体、メタクリレートのメチル基を低級アルキル基で置換した誘導体、ジメチルアミノ基のメチル基の水素原子をハロゲン置換した誘導体、ジメチルアミノ基のメチル基を低級アルキル基で置換した誘導体が挙げられる。
上記(2)について、トリスは、純度99.9%以上の純物質であるか、又は、トリス水溶液を、アルカリ性物質の添加などにより、使用時に中性又は塩基性とすることが好ましい。トリスは、塩酸塩の状態で市販されているところ、これを用いた場合には、トリス水溶液のpHが下がるため、組成物の曇点が70℃程度にまで上昇してしまう。そのため、トリス塩酸塩は好ましくない。
上記(3)に列挙したアニオン性物質のうち、核酸は、DNA、RNA、その他1本鎖、2本鎖、オリゴ体、ヘアピンなどの人工核酸などが挙げられる。
また、上記(3)に列挙したアニオン性物質は、ある程度の大きさ、例えば1kDa〜5,000kDaの分子量(M)を有していることが好ましい。
分子量を上記範囲とすれば、アニオン性物質は、カチオン性物質とイオン結合して、カチオン性物質を、長時間捕捉する役割を果たすことができ、安定したイオン複合体微粒子を形成させることがでる。また、一般的にカチオン性物質が有する、細胞の細胞膜表面に対する静電的相互作用に起因する細胞傷害性を緩和することもできる。
(3)に列挙したアニオン性物質の他にも、例えば、カチオン性ポリマーであるポリ(4−アミノスチレン)の4−位のアミノ基に対してシュウ酸などのジカルボン酸を脱水縮合させることによって、アニオン性官能基を導入した、実質的にアニオン性物質として機能するポリマー誘導体も、用いることができる。
なお、上記(3)に列挙したアニオン性物質は、二種以上含まれていてもよい。
ここで、(1)2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)及び/又はその誘導体の重合体に対する、(2)2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール(トリス)の割合((2)/(1))が、1.0以下とした混合型温度応答性ポリマー組成物を用いることが好ましい。
なお、割合((2)/(1))は、重量割合であるものとする。
上記割合の混合型温度応答性ポリマー組成物を用いた場合、後述の培養工程で、細胞構造体を形成しやすくすることができる。
この組成物によれば、上記組成物の親水性と疎水性とのバランスを更に好適にすることができる。そして、この好適なバランスが、培養面への細胞の接着性を好適に調整し、細胞の遊走や配向を活性化していると推定される。
また、上記割合((2)/(1))は、0.1以上あることが好ましい。
上記割合を0.1以上とすることにより、曇点を低減させるという上記効果が得られやすい。また、細胞構造体を形成しやすくするという上記効果が得られやすい。
上記と同様の理由により、上記割合((2)/(1))は、0.1〜0.5であることが更に好ましい。
ここで、混合型温度応答性ポリマー組成物中のC/A比(正電荷/負電荷)が、0.5〜16であることが好ましい。
なお、本願明細書では、C/A比とは、組成物中に含まれる物質が有する正電荷の、組成物中に含まれる物質が有する負電荷に対する割合を指す。具体的には、C/A比は、(1)DMAEMA及び/又はその誘導体の重合体のモル数をN1、(3)アニオン性物質のモル数をN3としたときに、{(重合体1分子当たりの正電荷)×N1}/{(アニオン性物質1分子当たりの負電荷)×N3}という式で表される。
またなお、本願明細書では、アニオン性物質をDNAとした場合、アニオン性物質1分子当たりの負電荷数は、DNAの塩基対の数(bp数)×2で計算し、分子量(Da)は、bp数×660(ATペア及びCGペアの平均分子量)で計算するものとする。
C/A比を0.5〜16とすることにより、管状細胞構造体を形成させやすくするという上記効果が得られやすくなる。
上記組成物中の正電荷と負電荷とのバランスを好適にして、正電荷による細胞傷害性を抑制することができると推定される。また、上記組成物の親水性と疎水性とのバランスを更に好適にして、細胞の遊走や配向を生じやすくすることができると推定される。
上記と同様の理由により、上記C/A比は、2〜10とすることが更に好ましく、特にC/A比は8付近であることが最も好ましい。
上記温度応答性ポリマー又は温度応答性ポリマー組成物は、加熱乾燥、凍結乾燥、減圧蒸留などにより、有機溶媒に溶解する前に、水分を除去することが好ましい。
上記温度応答性ポリマー又は温度応答性ポリマー組成物を溶解する有機溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、1−ブタノール、イソブチルアルコール、2−ブタノール、t−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、2−メチル−2−ブタノール、3−メチル−2−ブタノール、2,2−ジメチル−1−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、2−メチル−2−ブタノール、3−メチル−2−ブタノール、2,2−ジメチル−1−プロパノール、1−ヘキサノール、2−メチル−2−ペンタノール、アリルアルコール、ベンジルアルコール、サリチルアルコール、等のアルコール;アセトン、エチルメチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルビニルケトン、シクロヘキサノン、2−メチルシクロペンタノン、アセトフェノン、ベンゾフェノン、イソホロン等のケトン;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸ビニル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、上記アルコールとリン酸のエステル、上記アルコールと炭酸のエステルなどのエステル;クロロホルム;ベンゼン;トルエン;ジエチルエーテル;ジクロロメタン;等が挙げられる。
中でも、表面張力が低く、水への接触角が高い培養面に対して濡れやすいため、培養面に温度応答性ポリマーをより均一に被覆しやすく、また、温度応答性ポリマーの溶解性に一層優れるという観点から、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、2−ブタノール、t−ブチルアルコール、アリルアルコール等のアルコール;アセトン、エチルメチルケトン、ジエチルケトン、メチルビニルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸tert−ブチル、酢酸ビニルなどのエステル;クロロホルム;ベンゼン;トルエン;ジエチルエーテル;ジクロロメタン;が好ましい。また、ポリスチレン製の細胞培養器に塗布でき、温度応答性ポリマーの溶解性により一層優れるという観点から、アルコール、ケトン及びエステルからなる群から選ばれる少なくとも1種がより好ましく、短時間で乾燥させることができ、培養面に一層均一に塗布しやすいという観点から、沸点が低い有機溶媒(例えば、炭素数1〜4の低級アルコール、炭素数3〜5の低級ケトン、及び炭素数1〜4のアルキル基を有する酢酸アルキルエステルからなる群より選ばれる少なくとも1種、特に、水より沸点が低い、炭素数1〜4の低級アルコール、炭素数3〜5の低級ケトン、及び炭素数1〜4のアルキル基を有する酢酸アルキルエステルからなる群より選ばれる少なくとも1種)がさらに好ましく、コスト、操作性の観点から、メタノールとエタノールが特に好ましい。上記有機溶媒は、1種単独で使用してもよいし、2種以上を併用してもよい。
上記有機溶媒は、温度応答性ポリマーの溶解性に優れるため、ポリマー溶液を曇点以上の温度(例えば、室温や37℃など)にしても、温度応答性ポリマーが不溶化して沈殿することなく、溶解している。そのため、温度応答性ポリマーを塗布する際に、ポリマー溶液の温度管理をする手間が省け、簡易に細胞培養器を製造することができる。
上記温度応答性ポリマー溶液には、培養器表面から培養後の細胞構造体が自己凝集的に剥離する際に、細胞構造体の一部または全部が培養面に接着したまま残ってしまうことなしに、細胞構造体の塊状を剥離しやすくする観点から、親水性分子が含まれることが好ましい。上記親水性分子としては、温度応答性ポリマーのC/A比に影響しない非イオン性でかつ親水性であるもの、例えば、ポリエチレングリコール(PEG)、ジメチルアクリルアミド(DMAA)、グリセリン、TritonX、ポリプロピレングリコール等が挙げられる。
上記温度応答性ポリマー溶液中の温度応答性ポリマーの含有量は、温度応答性ポリマーが培養面全面により均一に被覆されやすくなるという観点から、ポリマー溶液(100重量%)に対して、0.00075〜0.015重量%であることが好ましく、0.001〜0.01重量%であることがより好ましい。
上記温度応答性ポリマー溶液中の親水性分子の含有量は、細胞の剥離現象が均質で安定となる観点から、温度応答性ポリマー(100重量%)に対して、0.00001〜0.00015重量%であることが好ましく、0.00003〜0.0001重量%であることがより好ましい。
水と混和しない有機溶媒を使用する場合は、温度応答性ポリマーが培養面に均一に被覆されやすくなるという観点から、上記温度応答性ポリマー溶液には、水が含まれないことが好ましく、上記温度応答性ポリマー溶液(100重量%)中の水の重量割合が0.5重量%以下であることがより好ましく、0.1重量%以下であることがさらに好ましい。また、水と混和する有機溶媒を使用する場合は、温度応答性ポリマー溶液が乾燥しやすいという観点から、温度応答性ポリマー(100重量%)に対する水の重量割合は、20重量%以下であることが好ましく、より好ましくは1重量%以下である。
なお、水の重量割合は、ガスクロマトグラフィー、カールフィッシャー法など当業者に周知の方法により測定可能である。
(塗布乾燥工程)
本実施形態の細胞培養器の製造方法は、上記溶解工程後に、上記温度応答性ポリマー溶液を細胞培養器の培養面に塗布し、乾燥させる塗布乾燥工程を含む。
上記温度応答性ポリマー溶液を培養面に塗布した後、細胞培養器の培養面を傾ける、スパチュラを用いてポリマーを延ばすなどにより、ポリマー溶液を流延させてもよい。
細胞培養器としては、市販の細胞培養用のプレート、ディッシュ、フラスコ等が挙げられる。細胞培養器の材質としては、ポリスチレン、ポリエチレンテレフタレート(PET)、ポリプロピレン、ポリブテン、ポリエチレン、ガラス等が挙げられる。
塗布した温度応答性ポリマー溶液を乾燥する条件としては、培養面に上記温度応答性ポリマーを一層均一に被覆する観点から、大気圧下で、温度10〜70℃、時間1〜3,000分が好ましい。塗布した温度応答性ポリマー溶液を、素早く乾燥させることにより、培養面上に温度応答性ポリマーが偏ることなく、均一に被覆しやすくなる。
塗布した温度応答性ポリマー溶液は、例えば、細胞培養器を37℃のインキュベーター中で静置することによって乾燥させてもよい。
本実施形態の細胞培養器の製造方法によれば、温度応答性ポリマーを細胞培養器の表面に被覆するための特別な処理、例えば、放射線グラフト重合などを施すことを要しない。すなわち、本実施形態の細胞培養器の製造は、該培養器を用いる研究者自身により、簡便な方法で(特殊な装置を要することなく)、低コストで行うことができる。また、温度応答性ポリマー溶液を管理する手間や、使用前に準備する手間がかからず、培養面に乾燥した温度応答性ポリマーが均一に被覆された細胞培養器を簡易に製造することができる。
(細胞培養器)
本実施形態の細胞培養器は、上記の本実施形態の細胞培養器の製造方法により製造される。
この細胞培養器によれば、一般的な37℃のインキュベーター中で細胞を培養して、成熟させるだけで、細胞間の結合力だけで自己凝集させて細胞塊を形成させることができる。そして、この細胞塊を、トリプシン処理等の細胞剥離操作を行うことなしに、回収することができる。
そのため、この細胞培養器を用いて細胞を培養すれば、室温程度の条件下での細胞培養の操作が可能となる。
更に、本発明の一例の細胞培養器によれば、細胞を適切な培養条件で培養することにより、管腔状(チューブ状)やペレット状(塊状)の構造を有する細胞構造体を簡便に形成させることができる。
これは、上記温度応答性ポリマーが側鎖に有する疎水性基及びカチオン性基が、何らかの相互作用をしながら、細胞に刺激を与えていると推定される。また、カチオン性基とアニオン性基とを有する温度応答性ポリマーは、正電荷と負電荷とのバランスを好適にして、細胞傷害性を抑制し(哺乳類細胞の細胞膜の表面は負電荷を帯びているため、カチオン性物質は細胞傷害性を有することが多い)、且つ、上記温度応答性ポリマーの親水性と疎水性とのバランスを好適にして、細胞の遊走や配向を可能にしているものと推定される。
また、この細胞培養器によれば、細胞を適切な培養条件で培養することにより、管腔状(チューブ状)の構造を有する細胞構造体を形成させることができる。
本実施形態の細胞培養器では、該細胞培養器の培養面が、単位面積当たりに有する、温度応答性ポリマーの量が、5.0〜50ng/mm2であることが好ましく、15〜40ng/mm2であることが更に好ましい。上記範囲とすれば、細胞構造体を形成させやすくするという効果が得られやすい。
(細胞培養方法)
以下に、本実施形態の製造方法により製造された細胞培養器を用いた細胞培養方法について記載する。
上記細胞培養方法は、上記細胞培養器に細胞を播種する播種工程と、播種された細胞を培養する培養工程とを含む。播種条件及び培養条件は、細胞種や実験目的に基づいて、当業者は適切に定めることができる。そして、この細胞培養方法は、細胞種に限定されることなく、血管細胞、脂肪幹細胞、肝細胞、軟骨細胞、線維芽細胞、心筋細胞、腎細胞、神経細胞、平滑筋細胞、軟骨細胞等の様々な細胞に適用することができる。
一例の細胞培養方法では、播種される細胞の密度が1,500個/mm2以下(培養面の面積が200mm2である24ウェル細胞培養プレートに1.0mLの細胞浮遊液を加えることにより播種する場合、3.0×105個/mL以下)であることが好ましい。なお、播種される細胞は、生きた細胞とする。
上記細胞密度とすれば、ペレット状(塊状)の構造を有する細胞構造体を形成させることができる。
上記一例の細胞培養方法は、血管内皮細胞、脂肪細胞、脂肪幹細胞、線維芽細胞など間葉系の細胞に対して、特に好適に適用することができる。初代培養細胞の場合は、使用する細胞の生体内環境の基底膜由来の細胞外マトリックスを使用すれば良く、当業者によって適宜選択可能である。
以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
下記の試験において、市販の試薬は、特に断りのない限り更に精製することなく用いた。
(ポリマー1の製造)
容量50mLの軟質ガラス製の透明なバイアル瓶に、2−N,N−ジメチルアミノエチルメタクリレート(DMAEMA)10.0g、及び水5mLを加えて、磁気撹拌器を用いて撹拌した。そして、この混合物(液体)に対してG1グレードの高純度(純度:99.99995%)の窒素ガスを10分間パージ(流速:2.0L/分)することにより、この混合物を脱酸素した。なお、用いたDMAEMAには、重合禁止剤であるメチルヒドロキノン(MEHQ)が0.5重量%含まれていた。
その後、この反応物に対して、丸型ブラック蛍光灯(NEC社製、型番:FCL20BL、18W)を用いて、22時間紫外線照射することにより、上記反応物を重合させた。反応物は、5時間後に粘性を帯び15時間後に固化して、重合体が反応生成物として得られた。この反応生成物を2−プロパノールに溶解させ、溶液を透析チューブに移した。そして、透析を72時間行い、反応生成物を精製した。
反応生成物を含む溶液を、セルロース混合エステル製の0.2μmフィルター(東洋濾紙社製、型番:25AS020)で濾過し、得られた濾液を凍結乾燥させることにより、温度応答性(ホモ)ポリマーが得られた(収量:6.8g、転化率:68%)。このポリマーの数平均分子量(Mn)を、GPC(島津社製、型番:LC−10vpシリーズ)を用いて、ポリエチレングリコール(Shodex社製、TSKシリーズ)を標準物質として測定し、Mn=160,000(Mw/Mn=3.0)と決定した(ポリマー1)。
ポリマー1の核磁気共鳴スペクトル(NMR)を、核磁気共鳴装置(Varian社製、型番:Gemini300)を用いて、重水(D2O)を標準物質として測定した。下記には、ポリマー1に共通する代表的なピークを示す。
1H-NMR (in D2O) δ 0.8-1.2 (br, -CH2-C(CH3)-), 1.6-2.0 (br, -CH2-C(CH3)-), 2.2-2.4 (br, -N(CH3)2), 2.5-2.7 (br, -CH2-N(CH3)2), 4.0-4.2 (br, -O-CH2-).
ここで、主鎖のメチル基(δ 0.8-1.2)のプロトン数(DMAEMAのホモポリマーの場合はモノマー1分子につき3個)Aと、側鎖のジメチルアミノ基(δ 2.2-2.4)のメチルプロトン数(DMAEMAのホモポリマーの場合はモノマー1分子につき6個で)Bとから、側鎖が有するアミノ基の官能基数と、重合反応と同時に進行する側鎖のエステル結合の加水分解反応により生じた側鎖のカルボキシル基の官能基数との比を算出した。
その結果、ポリマー1の場合は94:6となった。これは、カチオン性ポリマーとアニオン性ポリマーとを含む2成分混合系におけるイオン複合体で言うC/A比に換算すると、C/A比は、15.6となる。
ポリマー1の曇点を以下の方法で測定した。
ポリマー1の3%水溶液を調製し、この水溶液の660nmにおける吸光度を、20℃〜40℃の間で測定した。
その結果、20℃〜30℃では、水溶液は透明であり、吸光度がほぼ0であったが、31℃付近から水溶液中に白濁が見られるようになり、32℃で吸光度が急激に上昇した。これにより、ポリマー1は、約32℃の曇点を有することを確認した。
なお、ポリマー1を37℃まで昇温させると、ポリマー水溶液は、良好な応答性で、懸濁し、その後、水溶液全体が固化した。この固化物を室温(25℃)で維持したところ、数十時間の間、固化した状態のままであった。その後、固化物が徐々に溶解して、均質な水溶液に変化した。固化したポリマーは4℃まで冷却すると、速やかに溶解した。そして、上記昇温及び降温の操作を繰り返し行なっても、応答性に変化は生じなかったことから、ポリマーが可逆的に相転移を生じさせることが確認された。
(実施例1)
ポリマー1を、メタノールに溶解して、温度応答性ポリマー溶液(終濃度15μg/mL)を調製した。この溶液を、ポリスチレン製の24ウェル細胞培養プレート(イワキ社製、マイクロプレート、型番:3815−024、1ウェル当たりの底面積:200mm2)の各ウェルに、200μLずつ、室温下で加えて、クリーンベンチ(三洋電機社製、MHE−131AJ)内の吸気穴付近へ静置して24時間乾燥させてメタノールを完全に揮発させ、培養面に乾燥したポリマー1を被覆してなる24ウェル細胞培養プレート(細胞培養器)を得た。
(実施例2)
ポリマー1および親水性分子(ポリエチレングリコール、PEG300、和光純薬工業社製)を、メタノールに溶解(終濃度は、それぞれ15μg/mLおよび0.75μg/mL)した以外は、実施例1と同様にして、培養面に乾燥したポリマー1を被覆してなる24ウェル細胞培養プレート(細胞培養器)を得た。
(比較例1)
ポリマー1を、水に溶解して、温度応答性ポリマー水溶液(終濃度15μg/mL)を調製した。この水溶液を、曇点以上とならないよう温度管理し、ポリスチレン製の24ウェル細胞培養プレート(イワキ社製、マイクロプレート、型番:3815−024、1ウェル当たりの底面積:200mm2)の各ウェルに、200μLずつ、室温下で加えて、24ウェル細胞培養プレートを傾けて素早く培養面の全面に流延させた。その後、37℃インキュベーター(三洋電機社製、MCO−5AC)中で96時間かけて温度応答性ポリマー水溶液を乾燥させ、培養面に乾燥したポリマー1を被覆してなる24ウェル細胞培養プレート(細胞培養器)を得た。
[評価]
(細胞培養器の製造・使用における取扱性)
以下の基準で、細胞培養器の製造・使用における取扱性を評価した。
○(良好):温度応答性ポリマーを含む溶液の溶媒は短時間で揮発した。
×(不良):温度応答性ポリマーを含む溶液の溶媒を揮発させるのに時間を要した。
(培養面のポリマー被覆の均一性)
実施例及び比較例で得られた24ウェル細胞培養プレートの各ウェルを、走査型電子顕微鏡(日立製作所製、商品名「S4300」)により観察し、温度応答性ポリマーが均一に被覆しているか、を観察した。そして、以下の基準で、培養面のポリマー被覆の均一性を評価した。
○(良好):ポリマーが培養面に均一に被覆していた。
△(普通):ポリマーは、培養面の外周縁部に凝集して被覆しており、中央部にはほとんど被覆していなかった。
×(不良):ポリマーが培養面に被覆していなかった。
(細胞構造体の剥離性)
実施例及び比較例で得られた24ウェル細胞培養プレートの各ウェルに、室温条件下において、ラット皮下脂肪由来の間葉系幹細胞を、完全培地(ダルベッコ改変イーグル培地(DMEM)+10%ウシ胎児血清(FCS)溶液、DMEM:ギブコ社製、型番11965、FCS:BI社製、ロット番号715929)中に浮遊させ、細胞密度を3.0×105個/mLに調整した細胞浮遊液を1mLずつ加えた(1,500個/mm2)。
この細胞を37℃の細胞培養インキュベーター中で24時間培養した。播種から3時間後、細胞は培養面全面に接着した(100%コンフルエント)。培養10時間後から、各ウェルの外周部から全ての細胞が一度剥離して、シートが丸まりながら収縮していくような動作で、細胞が互いに一箇所に凝集し、培養21時間後に中央部に凝集して塊状となり、その後、培養面から細胞構造体が剥離した。そして、以下の基準で、細胞構造体の剥離性を評価した。
◎(優れる):培養面に残った細胞はなく、細胞構造体が一つの塊状となって剥離した(図3参照)。
○(良好):培養面のごく一部に細胞が剥離せずに接着していた(図4参照。図4中、オタマジャクシ状の尾の部分が細胞が剥離せずに接着している部分である。)。
△(普通):培養面の外周縁部は細胞が剥離するが、中央部の細胞がほとんど剥離しなかった(図5参照。図5中、白部分が丸まりながら剥離した部分であり、白部分に囲まれた部分は細胞が剥離していない部分である)。
×(不良):細胞構造体が全く剥離しなかった。

Claims (3)

  1. 温度応答性ポリマーを有機溶媒に溶解させて温度応答性ポリマー溶液を調製する溶解工程と、
    前記温度応答性ポリマー溶液を細胞培養器の培養面に塗布し、乾燥させる塗布乾燥工程と、
    を含むことを特徴とする、管腔状細胞又は塊状細胞培養器の製造方法であって、
    前記有機溶媒が、メタノール又はエタノールであり、
    前記温度応答性ポリマーが、式(I)で表される繰り返し単位(A)
    、及び式(II)で表される繰り返し単位(B)
    を含む温度応答性ポリマーである
    細胞培養器の製造方法。
  2. 前記温度応答性ポリマー溶液が、親水性分子を更に含む、請求項1に記載の細胞培養器の製造方法。
  3. 請求項1又は2に記載の細胞培養器の製造方法により製造されたことを特徴とする、管腔状細胞又は塊状細胞培養器。
JP2015129249A 2015-06-26 2015-06-26 細胞培養器の製造方法 Active JP6755010B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129249A JP6755010B2 (ja) 2015-06-26 2015-06-26 細胞培養器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129249A JP6755010B2 (ja) 2015-06-26 2015-06-26 細胞培養器の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020102695A Division JP2020137527A (ja) 2020-06-12 2020-06-12 細胞培養器の製造方法

Publications (2)

Publication Number Publication Date
JP2017012018A JP2017012018A (ja) 2017-01-19
JP6755010B2 true JP6755010B2 (ja) 2020-09-16

Family

ID=57827315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129249A Active JP6755010B2 (ja) 2015-06-26 2015-06-26 細胞培養器の製造方法

Country Status (1)

Country Link
JP (1) JP6755010B2 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923876A (ja) * 1995-07-11 1997-01-28 Kao Corp 細胞培養支持体の製造法
JP2004162865A (ja) * 2002-11-15 2004-06-10 Tlv Co Ltd オリフィス式スチームトラップ
JP4524399B2 (ja) * 2004-05-26 2010-08-18 独立行政法人産業技術総合研究所 温度・光応答性組成物及びこれから製造された細胞培養基材
JP4483994B1 (ja) * 2009-02-26 2010-06-16 株式会社豊田中央研究所 細胞培養担体及びその利用
EP2612902B1 (en) * 2010-08-31 2016-10-26 Tokyo Women's Medical University Temperature-responsive substrate for cell culture and method for producing same
JP6062733B2 (ja) * 2012-04-24 2017-01-18 国立研究開発法人国立循環器病研究センター 細胞培養用組成物及び細胞培養器
JP5746240B2 (ja) * 2013-02-26 2015-07-08 国立研究開発法人国立循環器病研究センター 温度応答性ポリマーの製造方法、温度応答性ポリマー、細胞培養器の製造方法、及び細胞培養器
JP6060790B2 (ja) * 2013-04-17 2017-01-18 大日本印刷株式会社 細胞培養用基材の製造方法
JP6314458B2 (ja) * 2013-12-06 2018-04-25 大日本印刷株式会社 温度応答性を有する細胞培養基材およびその製造方法
JP6497677B2 (ja) * 2015-03-31 2019-04-10 東ソー株式会社 ブロック共重合体、表面処理剤、その膜、およびそれを被覆した細胞培養基材
JP2016192957A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 細胞培養基材、その製造方法、およびそれを用いた細胞培養方法
JP2016194054A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 ブロック共重合体

Also Published As

Publication number Publication date
JP2017012018A (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6796332B2 (ja) 細胞培養器、細胞構造体の製造方法
JP5746240B2 (ja) 温度応答性ポリマーの製造方法、温度応答性ポリマー、細胞培養器の製造方法、及び細胞培養器
JP6375358B2 (ja) 細胞培養用組成物及び細胞培養器
JP6704197B2 (ja) 細胞構造体の製造方法
JP4430123B1 (ja) 細胞培養基材及びその製造方法
US9976000B2 (en) Aqueous gel
JP6800436B2 (ja) 細胞構造体の製造方法、細胞構造体、細胞培養器
JP6755010B2 (ja) 細胞培養器の製造方法
JP2020137527A (ja) 細胞培養器の製造方法
JP2017079714A (ja) 細胞培養器及び細胞培養器の製造方法
JP2017014324A (ja) 温度応答性ポリマーの製造方法、温度応答性ポリマー、細胞培養器の製造方法、細胞培養器
JP2017038568A (ja) 単球培養用足場、単球培養方法、単球培養容器およびゲル材料
JP6780816B2 (ja) 上皮系細胞の培養方法、細胞構造体の製造方法、及び上皮系細胞用細胞培養器
JP2014027918A (ja) 細胞構造体の製造方法、及び該方法により製造された細胞構造体
JP2017012019A (ja) 細胞構造体の製造方法、細胞構造体
Kumarasamy et al. Polymer-based responsive hydrogel for drug delivery
JP2017055744A (ja) カプセル化細胞構造体の製造方法、及びカプセル化細胞構造体
JP2017163912A (ja) 細胞構造体の製造方法
JP2017131198A (ja) 軟骨細胞塊及び移植材料の製造方法、軟骨細胞塊及び移植材料並びに複合材
JP2017104089A (ja) 細胞構造体の製造方法
JP2017055743A (ja) 管状細胞構造体の製造方法、及び該方法により製造される管状細胞構造体
JP2017163911A (ja) 細胞構造体の製造方法
JP2012044986A (ja) 遺伝子導入材料及び培養容器
JP2017014323A (ja) 温度応答性ポリマーの製造方法、温度応答性ポリマー、細胞培養器の製造方法、細胞培養器
ES2526469B1 (es) Hidrogeles multicomponentes basados en vinilpirrolidona y su aplicación en ingeniería de tejidos y/o medicina regenerativa

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200813

R150 Certificate of patent or registration of utility model

Ref document number: 6755010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250