JP6745170B2 - 実装装置、キャリブレーション方法及びキャリブレーションプログラム - Google Patents

実装装置、キャリブレーション方法及びキャリブレーションプログラム Download PDF

Info

Publication number
JP6745170B2
JP6745170B2 JP2016167269A JP2016167269A JP6745170B2 JP 6745170 B2 JP6745170 B2 JP 6745170B2 JP 2016167269 A JP2016167269 A JP 2016167269A JP 2016167269 A JP2016167269 A JP 2016167269A JP 6745170 B2 JP6745170 B2 JP 6745170B2
Authority
JP
Japan
Prior art keywords
nozzle
height
mounting
sensor unit
recognition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016167269A
Other languages
English (en)
Other versions
JP2018037464A (ja
Inventor
智仁 松井
智仁 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2016167269A priority Critical patent/JP6745170B2/ja
Publication of JP2018037464A publication Critical patent/JP2018037464A/ja
Application granted granted Critical
Publication of JP6745170B2 publication Critical patent/JP6745170B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

本発明は、ノズルのキャリブレーションを実施する実装装置、キャリブレーション方法及びキャリブレーションプログラムに関する。
実装装置では、ノズルに持ち上げられた部品がセンサユニット等で形状認識された後に、センサユニットの認識高さから基板上の実装高さまでノズルを降ろすことで、基板に対して部品が実装されている。しかしながら、実装装置のノズルシャフトは加工精度または組立て精度の問題に起因して部品の実装位置にズレが生じている。このため、実装装置ではノズルシャフトの曲げ等に起因したズレを補正するために、基板の実生産が開始される前にキャリブレーションが実施されている(例えば、特許文献1参照)。
特開2015−002230号公報
ところで、通常のキャリブレーションでは、基板上に部品を実際に実装して、基板上の部品を上方から撮像することで部品の装着位置の補正値を割り出している。しかしながら、このキャリブレーションでは、基板上の部品の撮像画像によって二次的に補正値を割り出しており、部品外形のバラツキ等の多くの測定誤差を含んでしまっていた。
本発明はかかる点に鑑みてなされたものであり、ノズルの実装動作のキャリブレーションを精度よく実施することができる実装装置、キャリブレーション方法及びキャリブレーションプログラムを提供することを目的の1つとする。
本発明の一態様の実装装置は、ノズルによってセンサユニットの認識高さに部品を持ち上げて認識し、前記ノズルを実装高さまで降ろして基板に実装する実装装置であって、前記センサユニットは、キャリブレーション時に、前記実装装置に対して前記認識高さから前記実装高さまで昇降可能に設置され、前記キャリブレーション時に、前記センサユニットを前記認識高さから前記実装高さまで、昇降させる昇降機構と、前記センサユニットが前記認識高さにある際の前記認識高さでの前記ノズルの先端形状と、前記センサユニットが前記実装高さにある際の前記実装高さでの前記ノズルの先端形状、前記センサユニットに認識させて前記ノズルの先端位置を測定する測定部と、前記センサユニットが前記認識高さで測定した前記ノズルの先端位置と前記センサユニットが前記実装高さで測定した前記ノズルの先端位置との水平方向のズレから補正値を算出する算出部とを備え、前記補正値に基づいて、前記認識高さから前記実装高さへの移動に伴う前記ノズルの水平方向のズレを補正することを特徴とする。
本発明の一態様のキャリブレーション方法は、ノズルによってセンサユニットの認識高さに部品を持ち上げて認識し、前記ノズルを実装高さまで降ろして基板に実装する実装装置のキャリブレーション方法であって、実装高さ位置にある際、前記センサユニットに、前記認識高さでの前記ノズルの先端形状を認識させて前記ノズルの先端位置を測定するステップと、記センサユニット前記実装高さに降りた際、前記センサユニットに、前記実装高さでの前記ノズルの先端形状を認識させて前記ノズルの先端位置を測定するステップと、前記認識高さでの前記ノズルの先端位置と前記実装高さでの前記ノズルの先端位置との水平方向のズレから補正値を算出するステップとを有し、前記補正値に基づいて、前記認識高さから前記実装高さへの移動に伴う前記ノズルのズレを補正することを特徴とする。
これらの構成によれば、部品認識用のセンサユニットによって認識高さでノズルの先端位置が直に測定されると共に、基板上面に相当する実装高さでノズルの先端位置が直に測定される。このため、認識高さ及び実装高さでのノズルの先端位置の測定誤差が低減され、ノズルが認識高さから実装高さまで下降したときのノズルの水平方向のズレから補正値が精度よく算出される。このように、センサユニットを用いることで、簡易な構成で精度よくキャリブレーションを実施することができる。
上記の実装装置において、前記センサユニットが光を照射する照射部と部品を認識する認識部とを水平方向で対向させて配置されている。この構成によれば、認識基準面と基板上面でのノズルの先端位置を測定することができる。
上記の実装装置において、部品が高さ寸法毎にカテゴリ分けされており、前記昇降機構が、基板に実装される部品のカテゴリに応じて前記センサユニットの認識高さを可変する。この構成によれば、センサユニットの認識高さを部品の高さ寸法に応じて適切に調節することで、実生産時のノズルのストロークを最小限に抑えて基板の生産効率を向上させることができる。
上記の実装装置において、前記ノズルが実生産用のノズルである。この構成によれば、実生産用のノズルをキャリブレーションに使用することでノズルの交換が発生せず、ノズルの着脱等によるズレを無くすことができる。特に微小チップ部品はノズルの着脱に起因した僅かなズレであっても強く影響を受けるため、実生産用のノズルは微小チップ部品を実装する際のキャリブレーションに有効である。
上記の実装装置において、前記ノズルがキャリブレーション用の治具ノズルである。この構成によれば、キャリブレーション用の治具ノズルを使用することで、複数種類のノズルの先端位置の平均的なズレを算出することができる。よって、ノズル毎にキャリブレーションを実施する必要がなく、作業効率を向上させることができる。
上記の実装装置において、前記算出部が、前記ノズルを実装エリアまで水平移動させた状態で前記ノズルの先端位置の水平方向の動的なズレから補正値を算出しており、前記認識高さから前記実装高さへの移動及び前記実装エリアへの水平移動に伴う前記ノズルの水平方向のズレを補正する。この構成によれば、ノズルを実装動作させたときの慣性力を考慮した動的なズレに基づいて、ノズルの水平方向のズレを精度よく補正することができる。
上記の実装装置において、前記実装エリアで基板上の基準マークを上方から撮像する基板撮像部を備え、前記実装エリアには基板を下方から支えるバックアップピンが設けられ、前記バックアップピンの上端面には基準マークが付されており、前記実装エリアに基板が無い状態で、前記測定部が前記センサユニットに前記バックアップピンのピン形状を認識させて前記バックアップピンの位置を測定させ、前記基板撮像部に前記バックアップピンの基準マークを撮像させることで、前記センサユニットに設定された座標系と前記基準マークに基づいて基板に設定される座標系とが関連付けられる。この構成によれば、センサユニットに設定された座標系と基板に設定された座標系が関連付けられ、センサユニットで測定したノズルの先端位置の水平方向のズレが、基準マークに基づいて基板に設定される座標系のズレに変換される。
上記の実装装置において、生産停止中に自動的にキャリブレーションを実施する。この構成によれば、メンテナンス時等の稼働していない時間に自動的にノズルが補正されるため、作業者によるキャリブレーション作業の負担を軽減することができる。
本発明の一態様のキャリブレーションプログラムは、ノズルによってセンサユニットの認識高さに部品を持ち上げて認識し、前記ノズルを実装高さまで降ろして基板に実装する実装装置のキャリブレーションプログラムであって、記センサユニット前記認識高さにある際、前記センサユニットに、前記認識高さでの前記ノズルの先端形状を認識させて前記ノズルの先端位置を測定するステップと、記センサユニット前記実装高さに降りた際、前記センサユニットに、前記実装高さでの前記ノズルの先端形状を認識させて前記ノズルの先端位置を測定するステップと、前記認識高さでの前記ノズルの先端位置と前記実装高さでの前記ノズルの先端位置との水平方向のズレから補正値を算出するステップとを前記実装装置に実行させ、前記補正値に基づいて、前記認識高さから前記実装高さへの移動に伴う前記ノズルのズレを補正することを特徴とする。この構成によれば、実装装置にプログラムをインストールすることで、簡易かつ精度がよいキャリブレーション機能を実装装置に追加することができる。
本発明によれば、認識高さでのノズルの先端位置と実装高さでのノズルの先端位置がセンサユニットによって直に測定されることで、簡易かつ精度よくノズルの実装動作のキャリブレーションを実施することができる。
本実施の形態の実装装置全体を示す模式図である。 比較例のキャリブレーションの説明図である。 本実施の形態の実装ヘッドの斜視図である。 本実施の形態のヘッド本体を取り外した実装ヘッドの斜視図である。 本実施の形態のセンサユニットの斜視図である。 本実施の形態の実装装置の制御ブロック図である。 本実施の形態の認識高さとノズルとの位置関係を示す図である。 本実施の形態のキャリブレーション方法を示すフローチャートである。 本実施の形態の動的キャリブレーションの説明図である。
以下、添付図面を参照して、本実施の形態の実装装置について説明する。図1は、本実施の形態の実装装置全体を示す模式図である。図2は、比較例のキャリブレーションの説明図である。なお、本実施の形態の実装装置は一例に過ぎず、適宜変更が可能である。
図1に示すように、実装装置1は、フィーダ10によって供給された各種部品を、実装ヘッド40によって基板Wの所定位置に実装するように構成されている。実装装置1の基台20の略中央には、X軸方向に基板Wを搬送する基板搬送部21が配設されている。基板搬送部21は、X軸方向の一端側から部品実装前の基板Wを実装ヘッド40の下方に搬入して位置決めし、部品実装後の基板WをX軸方向の他端側から装置外に搬出している。また、基台20上には、基板搬送部21を挟んだ両側に多数のフィーダ10がX軸方向に横並びに配置されている。
フィーダ10にはテープリール11が着脱自在に装着され、テープリール11には各種部品をパッケージングしたキャリアテープが巻回されている。各フィーダ10は、装置内に設けられたスプロケットホイールの回転によって実装ヘッド40にピックアップされる受け渡し位置に向けて順番に部品を繰り出している。実装ヘッド40の受け渡し位置では、キャリアテープから表面のカバーテープが剥離され、キャリアテープのポケット内の部品が外部に露出される。なお、部品は基板Wに対して実装可能であれば、特に電子部品等に限定されない。
基台20上には、実装ヘッド40をX軸方向及びY軸方向に水平移動させる水平移動機構30が設けられている。水平移動機構30は、Y軸方向に延びる一対のY軸駆動部31と、X軸方向に延びるX軸駆動部32とを有している。一対のY軸駆動部31は基台20の四隅に立設した支持部(不図示)に支持されており、X軸駆動部32は一対のY軸駆動部31にY軸方向に移動可能に設置されている。また、X軸駆動部32上には実装ヘッド40がX軸方向に移動可能に設置されており、X軸駆動部32とY軸駆動部31とによって、実装ヘッド40がフィーダ10と基板Wとの間を往復移動される。
実装ヘッド40には、横並びのフィーダ10から複数の部品を同時吸着する複数のノズル41が設けられている。実装ヘッド40には、基板Wからの高さを検出する高さセンサ42と、ノズル41による部品の吸着状態を認識するセンサユニット43(図3参照)とが設けられている。高さセンサ42では、基板Wからノズル41までの高さが検出されてノズル41の上下方向の移動量が制御される。センサユニット43では、部品に対して水平方向から照射された光(LED光、レーザー光)によって部品の吸着状態が認識されて、ノズル41の吸着位置や吸着向きが補正される。
また、実装ヘッド40には、基板W上の基準マークとしてのBOCマークを真上から撮像する基板撮像部44と、ノズル41による部品の搭載動作を斜め上方から撮像するノズル撮像部45とが設けられている。基板撮像部44では、BOCマークの撮像画像に基づいて基板Wに座標系が設定されると共に、基板Wの位置や反り等が認識される。ノズル撮像部45では、フィーダ10に対する部品の吸着前後が撮像される他、基板Wの載置面に対する部品の実装前後が撮像されて、ノズル41による部品の吸着有無、基板Wにおける部品の実装有無が検査される。
実装装置1の基台20上には、部品の種類毎にノズル41を用意した自動交換機(ATC: Automatic Tool Changer)13が設けられている。自動交換機13には、実生産で使用されるノズル41の他、キャリブレーションで使用可能な治具ノズル(不図示)が用意されている。治具ノズルは、リジッドな先端を有しており、実生産用のノズル41と比較して高精度に形成されている。実装ヘッド40が自動交換機13まで移動することで、装着中のノズル41を取り外して別のノズル41に着け替えることが可能になっている。なお、実装ヘッド40及びキャリブレーションの詳細については後述する。
また、実装装置1には、装置各部を統括制御する制御部80が設けられている。制御部80は、各種処理を実行するプロセッサやメモリ等によって構成されている。メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)等の一つ又は複数の記憶媒体で構成されている。また、メモリには、実装装置1全体の制御プログラムの他、後述するキャリブレーション方法を実装装置1に実行させるキャリブレーションプログラムが記憶されている。このように構成された実装装置1では、基板Wに対して部品を実装する実生産前に、ノズルの実装動作のキャリブレーションが実施される。
ところで、図2Aの比較例に示すように、ノズルシャフトには加工精度に起因した曲げが生じているため、ノズル90が上下に移動する間に部品Pの実装位置にズレが生じている。この場合、部品Pの実装高さにおける実装位置(XY座標)を検出するために、検査用の基板(不図示)に部品Pを実際に実装して、上方から部品Pの実装位置を撮像することでキャリブレーションが実施される。しかしながら、このキャリブレーションでは、検査用の基板と部品Pを用意して実装動作を実施しなければならず、キャリブレーション後の基板や部品Pが無駄になっていた。
一方、図2Bの他の比較例に示すように、基板Wから外れた位置でノズル90に吸着された部品Pを実装高さに位置付けて、部品Pを下方から撮像することでキャリブレーションを実施する方法も考えられる。しかしながら、ノズル90によって実装高さに位置付けられた部品Pを下方から撮像するためには、撮像装置91を低い位置に配置して十分な焦点距離を確保しなければならない。このように、撮像装置91によって実装高さで部品Pの実装位置を検出することができるものの、撮像装置91の配置高さの制約によって実装装置の装置構成が複雑になるという問題があった。
そこで、本実施の形態の実装装置1では、センサユニット43を用いてキャリブレーションを実施している。この場合、センサユニット43を昇降可能にして認識高さ及び実装高さに位置付けられたノズル41の先端位置を直に測定し、ノズル41の先端を認識高さから実装高に降ろされたときの水平方向のズレを検出している。これにより、キャリブレーション時に検査用の基板や部品Pを用意する必要がなく、さらに焦点距離の制約によって装置構成が複雑になることがない。
以下、図3から図5を参照して、本実施の形態の実装ヘッドの構成について説明する。図3は、本実施の形態の実装ヘッドの斜視図である。図4は、本実施の形態のヘッド本体を取り外した実装ヘッドの斜視図である。図5は、本実施の形態のセンサユニットの斜視図である。
図3及び図4に示すように、実装ヘッド40は、ベース51を介してレール状のX軸駆動部32にスライド可能に設置され、ベース51の前面にヘッド本体52とセンサユニット43を取り付けて構成されている。ヘッド本体52には、複数のノズル41(図1参照)が横一列に並んで設けられている。各ノズル41にはZ軸モータ53及びθモータ(不図示)が連結されており、Z軸モータ53によってノズル41が上下に昇降されると共に、θモータによってノズル41が軸回りに回転される。また、ヘッド本体52には、各ノズル41を吸引源に連ねる管路や継手が形成されている。
センサユニット43は、ベース51の前面に昇降機構70を介して昇降可能に取り付けられており、昇降機構70に連結された支持部材56の下部で照射部57と認識部58とを支持している。照射部57及び認識部58は水平方向で対向しており、照射部57から光(LED光、レーザー光等)が照射される。照射部57は水平一方向(X方向)に沿ってLEDが配置されている。また、認識部58にはカメラが配置されており撮像を行い、その画像を解析して、測定対象としての部品の形状や、ノズル41の形状等を認識する。昇降機構70によってセンサユニット43が昇降されることで、センサユニット43の認識高さが可変される。実生産時にはノズル41に持ち上げられた部品がセンサユニット43に認識され、キャリブレーション時にはノズル41の先端形状がセンサユニット43に認識される。
図4及び図5に示すように、支持部材56は、ベース51の前方側で照射部57を支持する前方板61と、ベース51の後方側で認識部58を支持する後方板62とが左右両端の側板63で連結されている。前方板61と後方板62の下面には光の反射を抑えるディフューザー64が取り付けられている。前方板61と後方板62の間にはノズル41が入り込む開口65が形成されており、開口65から露出したディフューザー64にはノズル41が挿通される円形穴66が形成されている。後方板62の上面には一対の柱部を介して連結台67が設けられており、センサユニット43が連結台67を介してベース51の前面の昇降機構70に連結されている。
連結台67の中央には、昇降機構70のボールネジ73に螺合されるナット部68が形成されている。連結台67の左右両側は一対の復帰バネ75を介してベース51の前面に接続されており、復帰バネ75のバネ力によって連結台67を介してセンサユニット43が支持されている。左右一対の側板63には上方に延びるレール69が設けられており、各レール69はベース51の前面に固定された一対のガイド76に挟み込まれている。各レール69が一対のガイド76に挟み込まれた状態で摺動することで、一対のガイド76によってセンサユニット43の昇降がガイドされる。
昇降機構70の駆動モータ71(サーボモータ)にはカップリング72を介してボールネジ73が接続されており、ボールネジ73がナット部68に螺合されることで昇降機構70がセンサユニット43に接続されている。この昇降機構70では、駆動モータ71によってボールネジ73が回転されることで、復帰バネ75のバネ力に抗してセンサユニット43が一対のガイド76に沿って降ろされる。また、昇降機構70では、駆動モータ71によってボールネジ73が逆回転されることで、センサユニット43が一対のガイド76に沿って持ち上げられる。センサユニット43の昇降時には、復帰バネ75によってセンサユニット43の移動時の微振動が抑えられている。
駆動モータ71を駆動させる際には復帰バネ75のバネ力に抗してセンサユニット43を降ろさなければならないため、駆動モータ71の駆動時の消費電力が大きくなる。しかしながら、センサユニット43はキャリブレーション時に一時的に動かされるだけであり、通常はセンサユニット43が一定の高さで停止されている。センサユニット43を落ちないように停止させ続けるためには駆動モータ71に電力を供給する必要があるが、一対の復帰バネ75でセンサユニット43が支えられているため消費電力が低減される。よって、全体として駆動モータ71の消費電力が低減されている。
また、実装ヘッド40は、通常モードではソフト制御によって移動範囲が制限されて、トレイ等の突起物がある箇所には移動されない。しかしながら、非常停止時には実装ヘッド40(図3参照)を手動で動かすことができるため、低い位置に降ろされた実装ヘッド40を水平に動かすと、センサユニット43が障害物に衝突する恐れがある。このため、昇降機構70は、実装ヘッド40の非常停止時にセンサユニット43を上昇させて障害物との干渉を抑えるようにしている。この場合、駆動モータ71の駆動が停止されて、駆動モータ71のパワーが無くなることで、復帰バネ75のバネ力によってセンサユニット43が引き上げられる。
図6及び図7を参照して、実装装置の制御構成について説明する。図6は、本実施の形態の実装装置の制御ブロック図である。図7は、本実施の形態の認識高さとノズルとの位置関係を示す図である。なお、図6に示す実装装置の制御ブロック図は、本発明を説明するために簡略化したものであり、実装装置が通常備える構成については備えているものとする。
図6A及び図6Bに示すように、実装装置1は、ノズル41によって部品をセンサユニット43の認識高さH1に持ち上げて認識し、ノズル41を実装高さH2まで降ろすことで基板Wに部品を実装するように構成されている。この実装装置1は、基板Wに対して部品を実装する実生産前に、基板Wが存在しない位置、すなわち実装高さまで下降可能な位置で昇降機構70によってセンサユニット43を昇降させ、認識高さH1と実装高さH2でセンサユニット43にノズル41の先端位置を測定させてキャリブレーションを実施している。実装装置1の制御部80には、キャリブレーションを実現する構成として、測定部81と、算出部82と、補正部83とが設けられている。
測定部81は、センサユニット43に認識高さH1及び実装高さH2でノズル41の先端形状を認識させてノズル41の先端位置を測定している。この場合、昇降機構70によってセンサユニット43の照射部57の光(可視光(LED光)、レーザ光)が認識高さH1及び実装高さH2に位置付けられ、照射された光によって認識高さH1に認識基準面、実装高さH2に基板上面がそれぞれ仮想的に形成される。そして、仮想的な認識基準面及び基板上面に対してノズル41の先端を降ろすことで、認識高さH1及び実装高さH2でのノズル41の先端形状が認識される。
測定部81は、認識高さH1でのノズル41の先端形状に基づいてノズル41の先端位置を測定し、実装高さH2でのノズル41の先端形状に基づいてノズル41の先端位置を測定する。なお、本実施の形態では、ノズル41の先端位置として回転中心(XY座標)が測定されるが、ノズル41の先端位置は水平面内でノズル41の先端を特定できる位置であればノズル41の回転中心に限定されない。このように、基板Wが存在しない位置で、照射された光によって仮想的に基板上面を作り出すことで、実装高さH2でのノズル41の先端位置を直に測定することが可能になっている。
算出部82は、認識高さH1でのノズル41の先端位置と実装高さH2でのノズル41の先端位置との水平方向のズレから補正値を算出する。この場合、実装高さH2でのノズル41の先端位置のXY座標から認識高さH1でのノズル41の先端位置のXY座標を差し引くことで、認識高さH1から実装高さH2にノズル41を降ろしたときのノズル41のズレが補正値として求められる。補正部83は、このXY座標のズレ分だけ認識高さH1でのノズル41の水平位置を動かすことで、認識高さH1から実装高さH2への移動に伴うノズル41の水平方向のズレを補正する。
なお、キャリブレーションは、キャリブレーション用の治具ノズル(不図示)を使用して実施されてもよいし、実生産用のノズル41を使用して実施されてもよい。治具ノズルを使用してキャリブレーションすることで、複数種類のノズル41の先端位置の平均的なズレを算出して、ノズル41の水平方向のズレを補正することができる。よって、複数種類のノズル41毎にキャリブレーションを実施する必要がなく、作業効率を向上させることができる。ただし、治具ノズルを使用する場合にはノズル41の交換作業が発生するため、ノズル41の着脱に起因したズレが生じる可能性がある。
この点、実生産用のノズル41を使用してキャリブレーションすることで、ノズル41の交換作業が発生せず、ノズル41の着脱等によるズレを無くすことができる。特に微小チップ部品はノズル41の着脱に起因した僅かなズレであっても強く影響を受けるため、実生産用のノズル41は微小チップ部品を実装する際のキャリブレーションに有効である。また、生産停止中に自動的にキャリブレーションが実施されてもよい。これにより、メンテナンス時等の稼働していない時間に自動的にノズル41が補正されるため、作業者によるキャリブレーション作業の負担を軽減することができる。
また、キャリブレーション時にはセンサユニット43が実装高さH2まで降りるため、センサユニット43の下降位置に気を付けなければ、基板Wやその他の装置部分にセンサユニット43が衝突する恐れがある。このため、キャリブレーションに実行権限が設定され、実行権限が付与された作業者のみがキャリブレーションを実施するようにしてもよい。この場合、通常時はストッパ(不図示)によってセンサユニット43の下降が規制され、実行権限が持った作業者がキャリブレーションを実施する場合のみセンサユニット43の規制が解除されるようにする。
また、図7に示すように、部品Pは高さ寸法毎にカテゴリ分けされており、昇降機構70(図5参照)によってセンサユニット43が昇降されることで部品Pのカテゴリに応じた認識高さH1に可変されている。例えば、高さ寸法が小さな部品Pa−Pcと高さ寸法が大きな部品Pd−Pfにカテゴリ分けされており、部品Pa−Pcと部品Pd−Pfとでセンサユニット43の認識高さH1が可変されている。このように、部品Pのカテゴリ毎にセンサユニット43の認識高さH1が可変されることで、センサユニット43が部品P等に干渉しない高さで基板Wに近づけられている。
部品Pa−Pcの実装時には、部品Pd−Pfの高さ寸法よりも低く、部品Pa−Pcに干渉しないようにセンサユニット43の認識高さH1が調節される。部品Pd−Pfの実装時には、部品Pd−Pfに干渉しないようにセンサユニット43の認識高さH1が高く調節される。高さ寸法が大きな部品Pd−Pfに合わせて、高さ寸法が小さな部品Pa−Pcの認識高さH1を基板Wから遠ざける必要がない。このため、高さ寸法が小さな部品Pの実装時のノズル41のストロークを短くすることができ、実装動作に要するタクトタイムが短縮される。
図8を参照して、実装装置によるキャリブレーション方法について説明する。図8は、本実施の形態のキャリブレーション方法を示すフローチャートである。なお、以下に示すキャリブレーション方法は一例を示すものであり、適宜変更が可能である。また、実装装置には基板が搬入されていないものとする。また、ここでは説明の便宜上、図6の符号を適宜使用しながら説明する。
図8に示すように、キャリブレーションが実施されると、実装ヘッド40(図1参照)が基板搬送部21の一対のレール間の真上に移動される(ステップS01)。基板搬送部21の一対のレール間には基板Wが搬送されておらず、センサユニット43が実装高さH2まで降ろされても基板Wに衝突することはない。次に、実生産で基板Wに実装される部品に応じて、センサユニット43の認識高さH1が設定される(ステップS02)。この場合、事前に用意された複数(例えば、4つ)の認識高さから、部品の高さ寸法のカテゴリに対応した認識高さH1が選択される。
次に、センサユニット43の認識高さH1にノズル41の先端が位置付けられることで、センサユニット43によってノズル41の先端形状が認識される(ステップS03)。この場合、センサユニット43の照明部57からの光がノズル41の先端に遮られ、認識高さH1でノズル41が軸回りに1回転することでノズル41の先端形状が認識される。次に、ノズル41の先端形状の認識結果に基づいて、認識高さH1でのノズル41の先端位置としてノズル41の回転中心が測定される(ステップS04)。
次に、昇降機構70によってセンサユニット43が実装高さH2に降ろされて、ノズル41の先端が実装高さH2に位置付けられることで、センサユニット43によってノズル41の先端形状が認識される(ステップS05)。この場合、センサユニット43の投光部57からの光がノズル41の先端に遮られ、実装高さH2でノズル41が軸回りに1回転することでノズル41の先端形状が認識される。次に、ノズル41の先端形状の認識結果に基づいて、実装高さH2でのノズル41の先端位置としてノズル41の回転中心が測定される(ステップS06)。
次に、認識高さH1でのノズル41の先端位置と実装高さH2でのノズル41の先端位置との水平方向のズレから補正値が算出される(ステップS07)。これにより、ノズル41が認識高さH1から実装高さH2まで降ろされたときの水平方向の補正値が求められる。そして、実生産時に補正値に基づいてノズル41の認識高さH1から実装高さH2への移動が補正される(ステップS08)。このように、基板Wが存在しない位置で、光によって仮想的に基板上面を作り出すことで、ノズル41の実装動作のキャリブレーションを精度よく実施することが可能になっている。
ところで、上記した静的なキャリブレーションでは、実装ヘッド(ノズル)の実装動作時に作用する慣性力が考慮されていない。実装ヘッドは重量物であるため、実装ヘッドが水平方向に高速移動することでノズルやノズルシャフトが傾いてしまう。そこで、本実施の形態では、ノズルに作用する慣性力を考慮した動的なキャリブレーションが実施されてもよい。図9は、本実施の形態の動的キャリブレーションの説明図である。
図9Aに示すように、動的なキャリブレーションでは、実装ヘッド40を実装エリアまで水平移動させた状態で、認識高さH1のノズル41の先端位置と実装高さH2のノズル41の先端位置のズレが求められる。すなわち、実際の実装動作と同様にノズル41を認識エリアから実装エリアまで移動させ、ノズル41を認識高さH1から実装高さH2まで降ろしたときのノズル41の先端の水平方向の動的なズレから補正値が算出される。そして、この慣性力を考慮した補正値に基づいて、認識高さH1から実装高さH2への移動及び実装エリアへの水平移動に伴うノズル41の水平方向のズレが補正される。
図9Bに示すように、ノズル41の水平方向のズレは、センサユニット43で設定された座標系で求められており、実際の基板W上ではノズル41の水平方向のズレを特定することができない。このため、実装エリアで基板Wを下方から支えるバックアップピン15の上端面にBOCマークと同様な基準マークMを付すことで、バックアップピン15を介してセンサユニット43で設定された座標系と基板Wに設定された座標系とを関連付けている。この場合、実装エリアに基板Wが存在しない状態でセンサユニット43にバックアップピン15の形状を認識させると共に、上記の基板撮像部44(図1参照)にバックアップピン15の基準マークMを撮像させる。
そして、バックアップピン15のピン形状からバックアップピン15の位置を測定し、基準マークMの撮像画像からバックアップピン15の位置を測定することで、センサユニットユニット43に設定された座標系と基板Wに設定された座標系が関連付けられる。このようにして、センサユニット43で測定したノズル41の先端位置の水平方向のズレが、基準マークMに基づいて基板Wに設定される座標系のズレに変換される。そして、基板Wに設定される座標系でノズル41の動的なズレを補正することで、より高精度なキャリブレーションを実施することが可能になっている。
以上のように、本実施の形態の実装装置1では、部品認識用のセンサユニット43によって、認識高さH1でノズル41の先端位置が直に測定されると共に、基板上面に相当する実装高さH2でノズル41の先端位置が直に測定される。このため、認識高さH1及び実装高さH2でのノズル41の先端位置の測定誤差が低減され、ノズル41が認識高さH1から実装高さH2まで下降したときのノズル41の水平方向のズレから補正値が精度よく算出される。このように、センサユニット43を用いることで、簡易な構成で精度よくキャリブレーションを実施することができる。また、キャリブレーション用の基板や部品Pを用意する必要がなく、さらに撮像装置等の焦点距離の制約によって装置構成が複雑になることがない。
なお、本実施の形態において、昇降機構70がボールねじ式の移動機構で構成されたが、この構成に限定されない。昇降機構は、センサユニットを認識高さと実装高さに位置付けることが可能であればよく、例えば、リニアモータ式の移動機構やラックアンドピニオン式の移動機構で構成されてもよい。
また、本実施の形態において、ノズル41が部品を吸着していない状態で、センサユニット43によってノズル41の先端位置が測定される構成にしたが、この構成に限定されない。ノズル41に部品が吸着された状態でノズル41の先端位置が測定されてもよい。
また、本実施の形態において、センサユニット43の認識高さH1が可変される構成にしたが、この構成に限定されない。センサユニット43の認識高さH1は固定されていてもよい。
また、本実施の形態において、基板Wは、各種部品が搭載可能なものであればよく、プリント基板に限定されず、治具基板上に載せられたフレキシブル基板であってもよい。
また、本実施の形態において、実装装置1に基板Wが搬入される前にキャリブレーションが実施される構成にしたが、この構成に限定されない。実装装置1に基板Wが搬入された状態で、基板Wを避けた位置でキャリブレーションが実施されてもよい。
また、本実施の形態において、キャリブレーションプログラムは記憶媒体に記憶されてもよい。記録媒体は、特に限定されないが、光ディスク、光磁気ディスク、フラッシュメモリの非一過性の記録媒体であってもよい。
また、本発明の実施の形態及び変形例を説明したが、本発明の他の実施の形態として、上記実施の形態及び変形例を全体的又は部分的に組み合わせたものでもよい。
また、本発明の実施の形態は上記の実施の形態及び変形例に限定されるものではなく、本発明の技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、本発明の技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、本発明の技術的思想の範囲内に含まれ得る全ての実施態様をカバーしている。
また、本実施の形態では、本発明を実装装置に適用した構成について説明したが、ノズルのキャリブレーションを実施する装置に適用することが可能である。
また、本実施の形態での実装高さまで下降可能な位置とは、基板搬送部21で基板が存在しない位置を含み、実装装置上でノズル41が実装高さまで衝突することなく、下降可能な位置である。
さらに、上記実施形態では、ノズル41によって部品Pをセンサユニット43の認識高さH1に持ち上げて認識し、ノズル41を実装高さH2まで降ろして基板Wに実装する実装装置1であって、キャリブレーション時に基板Wが存在しない位置でセンサユニット43を昇降させる昇降機構70と、センサユニット43に認識高さH1及び実装高さH2でノズル41の先端形状を認識させてノズル41の先端位置を測定する測定部81と、認識高さH1でのノズル41の先端位置と実装高さH2でのノズル41の先端位置との水平方向のズレから補正値を算出する算出部82とを備え、認識高さH1から実装高さH2への移動に伴うノズル41の水平方向のズレを補正することを特徴とする。この構成によれば、認識高さH1でのノズルの先端位置と実装高さH2でのノズル41の先端位置がセンサユニット43によって直に測定されることで、簡易かつ精度よくノズル41の実装動作のキャリブレーションを実施することができる。
以上説明したように、本発明は、ノズルの実装動作のキャリブレーションを精度よく実施することができるという効果を有し、特に、基板に多数の電子部品を実装する実装装置、キャリブレーション方法及びキャリブレーションプログラムに有用である。
1 実装装置
15 バックアップピン
40 実装ヘッド
41 ノズル
43 センサユニット
44 基板撮像部
57 照射部
58 認識部
70 昇降機構
81 測定部
82 算出部
83 補正部
M 基準マーク
P 部品
W 基板

Claims (10)

  1. ノズルによってセンサユニットの認識高さに部品を持ち上げて認識し、前記ノズルを実装高さまで降ろして基板に実装する実装装置であって、
    前記センサユニットは、キャリブレーション時に、前記実装装置に対して前記認識高さから前記実装高さまで昇降可能に設置され、
    前記キャリブレーション時に、前記センサユニットを前記認識高さから前記実装高さまで、昇降させる昇降機構と、
    前記センサユニットが前記認識高さにある際の前記認識高さでの前記ノズルの先端形状と、前記センサユニットが前記実装高さにある際の前記実装高さでの前記ノズルの先端形状、前記センサユニットに認識させて、前記ノズルの先端位置を測定する測定部と、
    前記センサユニットが前記認識高さで測定した前記ノズルの先端位置と、前記センサユニットが前記実装高さで測定した前記ノズルの先端位置との水平方向のズレから補正値を算出する算出部とを備え、
    前記補正値に基づいて、前記認識高さから前記実装高さへの昇降に伴う前記ノズルの水平方向のズレを補正することを特徴とする実装装置。
  2. 前記センサユニットが光を照射する照射部と部品を認識する認識部とを水平方向で対向させており、
    照射される光が前記認識高さ及び前記実装高さに位置付けられることを特徴とする請求項1に記載の実装装置。
  3. 部品が高さ寸法毎にカテゴリ分けされており、
    前記昇降機構が、基板に実装される部品のカテゴリに応じて前記センサユニットの認識高さを可変することを特徴とする請求項1又は請求項2に記載の実装装置。
  4. 前記ノズルが実生産用のノズルであることを特徴とする請求項1から請求項3のいずれかに記載の実装装置。
  5. 前記ノズルがキャリブレーション用の治具ノズルであることを特徴とする請求項1から請求項3のいずれかに記載の実装装置。
  6. 前記算出部が、前記ノズルを実装エリアまで水平移動させた状態で前記ノズルの先端位置の水平方向の動的なズレから補正値を算出しており、
    前記認識高さから前記実装高さへの移動及び前記実装エリアへの水平移動に伴う前記ノズルの水平方向のズレを補正することを特徴とする請求項1から請求項5のいずれかに記載の実装装置。
  7. 前記実装エリアで基板上の基準マークを上方から撮像する基板撮像部を備え、
    前記実装エリアには基板を下方から支えるバックアップピンが設けられ、
    前記バックアップピンの上端面には基準マークが付されており、
    前記実装エリアに基板が無い状態で、前記測定部が前記センサユニットに前記バックアップピンのピン形状を認識させて前記バックアップピンの位置を測定させ、前記基板撮像部に前記バックアップピンの基準マークを撮像させることで、前記センサユニットに設定された座標系と前記基準マークに基づいて基板に設定される座標系とが関連付けられることを特徴とする請求項6に記載の実装装置。
  8. 生産停止中に自動的にキャリブレーションを実施することを特徴とする請求項1から請求項7のいずれかに記載の実装装置。
  9. ノズルによってセンサユニットの認識高さに部品を持ち上げて認識し、前記ノズルを実装高さまで降ろして基板に実装する実装装置のキャリブレーション方法であって、
    記センサユニット前記認識高さにある際、前記センサユニットに、前記認識高さでの前記ノズルの先端形状を認識させて、前記ノズルの先端位置を測定するステップと、
    記センサユニット前記実装高さに降りた際、前記センサユニットに、前記実装高さでの前記ノズルの先端形状を認識させて前記ノズルの先端位置を測定するステップと、
    前記認識高さでの前記ノズルの先端位置と前記実装高さでの前記ノズルの先端位置との水平方向のズレから補正値を算出するステップとを有し、
    前記補正値に基づいて、前記認識高さから前記実装高さへの移動に伴う前記ノズルのズレを補正することを特徴とするキャリブレーション方法。
  10. ノズルによってセンサユニットの認識高さに部品を持ち上げて認識し、前記ノズルを実装高さまで降ろして基板に実装する実装装置のキャリブレーションプログラムであって、
    記センサユニット前記認識高さにある際、前記センサユニットに、前記認識高さでの前記ノズルの先端形状を認識させて、前記ノズルの先端位置を測定するステップと、
    記センサユニット前記実装高さに降りた際、前記センサユニットに、前記実装高さでの前記ノズルの先端形状を認識させて前記ノズルの先端位置を測定するステップと、
    前記認識高さでの前記ノズルの先端位置と前記実装高さでの前記ノズルの先端位置との水平方向のズレから補正値を算出するステップとを前記実装装置に実行させ、前記補正値に基づいて、前記認識高さから前記実装高さへの移動に伴う前記ノズルのズレを補正することを特徴とするキャリブレーションプログラム。
JP2016167269A 2016-08-29 2016-08-29 実装装置、キャリブレーション方法及びキャリブレーションプログラム Active JP6745170B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167269A JP6745170B2 (ja) 2016-08-29 2016-08-29 実装装置、キャリブレーション方法及びキャリブレーションプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167269A JP6745170B2 (ja) 2016-08-29 2016-08-29 実装装置、キャリブレーション方法及びキャリブレーションプログラム

Publications (2)

Publication Number Publication Date
JP2018037464A JP2018037464A (ja) 2018-03-08
JP6745170B2 true JP6745170B2 (ja) 2020-08-26

Family

ID=61566004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167269A Active JP6745170B2 (ja) 2016-08-29 2016-08-29 実装装置、キャリブレーション方法及びキャリブレーションプログラム

Country Status (1)

Country Link
JP (1) JP6745170B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109238309B (zh) * 2018-10-31 2023-12-26 中航航空服务保障(天津)有限公司 一种捷联航姿安装板校准装置及其校准方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215100A (ja) * 1988-02-24 1989-08-29 Hitachi Ltd 電子部品装着ヘッドの位置較正方法
JPH06196898A (ja) * 1992-12-25 1994-07-15 Matsushita Electric Ind Co Ltd 認識付電子部品装着機
JP3907786B2 (ja) * 1997-06-16 2007-04-18 松下電器産業株式会社 電子部品実装方法及び装置
JP2008205424A (ja) * 2007-01-26 2008-09-04 Juki Corp 部品実装方法及び装置
JP4824739B2 (ja) * 2008-12-04 2011-11-30 ヤマハ発動機株式会社 部品実装装置および部品実装方法
JP2011035067A (ja) * 2009-07-30 2011-02-17 Juki Corp 電子部品実装装置に利用可能な部品搭載機構の制御方法

Also Published As

Publication number Publication date
JP2018037464A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2013005480A1 (ja) レーザー高さ測定装置および部品実装機
JP7106632B2 (ja) 部品実装システム
US20160192552A1 (en) Electronic component mounting machine and transfer confirmation method
JP6154915B2 (ja) 部品実装装置
JP6280925B2 (ja) 部品実装装置
JP4331054B2 (ja) 吸着状態検査装置、表面実装機、及び、部品試験装置
JP6745170B2 (ja) 実装装置、キャリブレーション方法及びキャリブレーションプログラム
JP2017098287A (ja) 部品実装機、および部品実装機のウエハ部品吸着高さ調整方法
JP4921346B2 (ja) 部品実装装置における吸着位置補正方法
JP2013247314A (ja) 突き上げ高さ計測システム
JP7093255B2 (ja) 実装装置及び実装方法
JP6348832B2 (ja) 部品実装装置、表面実装機、及び部品厚み検出方法
JP5787397B2 (ja) 電子部品実装装置および電子部品実装方法
JP2008153458A (ja) 電子部品の移載装置及び表面実装機
US20160174425A1 (en) Electronic component mounting device and mounting method
JP6212536B2 (ja) 電子部品装着機
JP2022170080A (ja) 部品実装装置
JP4832112B2 (ja) 電子部品装着装置及び電子部品装着方法
JP7418142B2 (ja) 対基板作業機、および異物検出方法
US11924976B2 (en) Work machine
JP2008109001A (ja) 電子部品装着装置及び電子部品装着方法
WO2017006461A1 (ja) 部品実装機、および部品実装ライン
JP2023177968A (ja) 部品実装装置および部品実装装置の位置補正方法
JP2024008490A (ja) 到達判定装置および到達判定方法
KR20230159508A (ko) 부품 이송 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6745170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150