JP6691778B2 - 光学用樹脂組成物、および成形体 - Google Patents

光学用樹脂組成物、および成形体 Download PDF

Info

Publication number
JP6691778B2
JP6691778B2 JP2015554849A JP2015554849A JP6691778B2 JP 6691778 B2 JP6691778 B2 JP 6691778B2 JP 2015554849 A JP2015554849 A JP 2015554849A JP 2015554849 A JP2015554849 A JP 2015554849A JP 6691778 B2 JP6691778 B2 JP 6691778B2
Authority
JP
Japan
Prior art keywords
polymer
group
carbon atoms
monomer
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015554849A
Other languages
English (en)
Other versions
JPWO2015098775A1 (ja
Inventor
史延 北山
史延 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2015098775A1 publication Critical patent/JPWO2015098775A1/ja
Application granted granted Critical
Publication of JP6691778B2 publication Critical patent/JP6691778B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polarising Elements (AREA)

Description

本発明は、光学用樹脂組成物、および成形体に関する。
各種の光学関連機器で用いられるフィルム状、板状、レンズ状等の光学部材(例えば、液晶表示装置で用いられるフィルムや基板、プリズムシート、拡散板等;光ディスク装置の信号読み取り用レンズ系中のレンズ、プロジェクションスクリーン用フレネルレンズ、レンチキュラーレンズ等)を構成する材料として、光透過性の樹脂が汎用されており、このような樹脂は一般に「光学樹脂」あるいは「光学ポリマー」と呼ばれている。
光学樹脂で光学部材を構成する場合に考慮しなければならない重要な光学的特性の1つに複屈折性がある。即ち、光学樹脂が大きな複屈折性を持つことは、多くの場合好ましくない。特に、上記の例示した用途(液晶表示装置、光ディスク装置、プロジェクションスクリーン等)においては、複屈折性を持つフィルム、シート、レンズ等が光路中に存在すると、像質や信号読み取り性能に悪影響を及ぼすため、複屈折性をできるだけ小さく抑えた光学樹脂で構成された光学部材の使用が望まれる。また、カメラ用のレンズ、眼鏡レンズ等においても、複屈折性は小さい方が望ましいことも言うまでもないことである。
ところで、当技術分野において良く知られているように、光学ポリマーが示す複屈折には、その主因がポリマーの主鎖の配向にある「配向複屈折」と、応力に起因する「光弾性複屈折」がある。配向複屈折及び光弾性複屈折の符号は、ポリマーの化学構造に由来し、それぞれのポリマーに固有の性質である。
即ち、配向複屈折は、一般に鎖状のポリマーの主鎖(ポリマー鎖)が配向することにより発現する複屈折であり、この主鎖の配向は、例えばポリマーフィルム製造時の押出成形や延伸のプロセス、あるいは、各種形状の光学部材の製造時に多用されている射出成形のプロセスなど、材料の流動を伴うプロセスで生じ、それが光学部材に固定されて残る。ここで、ポリマー鎖の配向方向に対して、平行方向に屈折率が大きくなる場合は「配向複屈折は正」、直交する方向に屈折率が大きくなる場合は「配向複屈折は負」と表現する。
一方、光弾性複屈折は、ポリマーの弾性的な変形(歪み)に伴って引き起こされる複屈折である。ポリマーを用いた光学部材においては、例えばそのポリマーのガラス転移温度付近からそれ以下の温度に冷却された際に生じる体積収縮により、弾性的な変形(歪み)が材料中に生じて残存し、それが光弾性複屈折の原因となる。また、例えば光学部材が通常温度(ガラス転移温度以下)で使用される機器に固定した状態で受ける外力によっても、材料は弾性的に変形し、それが光弾性複屈折を引き起こす。光弾性定数は、以下式のとおり応力差Δσによって複屈折差Δnが生じた場合のΔσの係数γとして定義される。
Δn=γΔσ
ここで、引張応力がかかっている方向に対して、平行方向に屈折率が大きくなる場合は「光弾性複屈折は正」、直行する方向に屈折率が大きくなる場合は「光弾性複屈折は負」と表現する。
上記複屈折を抑制する方法は種々検討されている。
たとえば、特許文献1には、配向複屈折の符号がお互いに逆で、且つ完全に相溶する2種類の高分子樹脂をブレンドすることにより、非複屈折性の光学樹脂材料が開示されている。しかしながら、該特許記載の2種類の高分子樹脂を均一に混合させ、全体的にムラ無く低配向複屈折を示す実用的な高分子樹脂を得ることは困難であり、凝集した高分子樹脂が異物欠陥の原因になりうる。また、それらブレンドされた高分子樹脂が固有に持っている屈折率の違いから、屈折率の不均一性による光散乱が生じ、透明性に優れた光学材料を得ることが出来ない。また、光弾性複屈折についての記載はないが、実施例のポリマー組成では光弾性複屈折がかなり大きくなることが予想される。さらには機械的強度、特には耐衝撃性が必ずしも十分ではなく、割れ等の課題が発生するなど、実用上問題がある。特に、射出成形体など厚みのある成形体に用いた場合の透明性、色調についても記載がなく、透明性、色調が悪いなどの課題が想定される。
特許文献2には、透明な高分子樹脂からなるマトリックスに、前記高分子樹脂材料が有する配向複屈折性を打ち消す傾向の配向複屈折性を示す低分子物質を添加することにより、非複屈折性の光学樹脂材料を得る方法が開示されている。この低分子物質は分子量が5000以下であり、得られた成形体の透明性に関しては良好であるが、光弾性複屈折や耐衝撃性などの機械的強度の改善に関しては記載されていない。また、耐熱性が低下する場合もある。特に、射出成形体など厚みのある成形体に用いた場合の透明性、色調についても記載がなく、透明性、色調が悪いなどの課題が想定される。
特許文献3には、透明な高分子樹脂に、前記高分子樹脂が外力により配向するのに伴ってこの結合鎖の配向方向と同じ方向に配向し、かつ、複屈折性を有する微細な無機物質を配合することにより、低配向複屈折の光学樹脂材料を得る方法が開示されている。この方法においても配向複屈折は抑制できるが、光弾性複屈折や耐衝撃性などの機械的強度の改善に関しては記載されていない。特に、射出成形体など厚みのある成形体に用いた場合の透明性、色調についても記載がなく、透明性、色調が悪いなどの課題が想定される。
特許文献4には、2元系以上の共重合系を含む3成分以上の複合成分系を持つ光学材料について、それら複合成分系の成分の組み合わせ及び成分比(組成比)を、該光学材料が配向複屈折性と光弾性複屈折性の双方が同時に相殺されるように選択することにより、配向複屈折と光弾性複屈折が小さい非複屈折性光学樹脂材料を得る方法が開示されている。この方法では従来実現できなかった配向複屈折、光弾性複屈折の両方を同時に極めて小さくできる。ただし、配向複屈折、光弾性複屈折を同時に相殺できるようにするためには組成がある程度限定されるため、ガラス転移温度が100℃未満と低くなり、また耐衝撃性などの機械的強度も低くなるなどの課題がある。また、薄肉成形、複雑形状などの精密な射出成形などを想定した場合、高温、高せん断などの過酷な成形条件においてポリマーが分解するなどの課題も想定される。特に、熱安定性が低いために、射出成形時にもポリマーの分解が生じて発泡するなどの外観不良の発生、透明性、色調、耐衝撃性などの機械的強度の低下などの課題が想定される。
特許文献5には、ガラス転移温度が120℃以上のアクリル系樹脂と、アクリル系ゴム状重合体に、ビニル基重合性単量体をグラフト重合させて得られたグラフト共重合体(「コア/シェル」型の耐衝撃性改良剤、以下コアシェルポリマーとも記載する)の組み合わせにより、高い耐熱性を有しながら、ポリマーフィルムとしての機械的強度、とりわけ耐折り曲げ性に優れた樹脂組成物、並びに光学フィルムを得る方法が提示されている。ただし、実施例には配向複屈折、光弾性複屈折のデータがなく、複屈折の改良効果は不明である。特に光弾性複屈折の改善に関しては明細書中に記載がない。また、グラフト共重合体は機械的強度改善のために添加されていることは記載されているが、グラフト共重合体の説明に複屈折への影響に関しては全く記載されておらず、また実施例にも配向複屈折、光弾性複屈折に関する記載がないことから、グラフト共重合体に複屈折を調整させる機能も持たせるという技術思想は存在しないことは明らかである。また、射出成形など厚みのある成形体に用いた場合の透明性、色調、耐衝撃性などの機械的強度についても記載がなく、透明性、色調、耐衝撃性が低いなどの課題が想定される。
特許文献6には、アクリル系樹脂(A)、及びアクリル系ゴム(B)を含む樹脂組成物を成形してなる光学フィルムであって、前記アクリル系樹脂(A)が、メタクリレート単量体由来の繰り返し単位、ビニル芳香族単量体由来の繰り返し単位、芳香族基を有するメタクリレート単量体由来の繰り返し単位、環状酸無水物繰り返し単位を含有する耐熱アクリル系樹脂(A−1)であることを特徴とする光学フィルムに関して開示されている。当該文献では、高い耐熱性、及び優れたトリミング性を有し、かつ、延伸時においても光学特性に優れる光学フィルムであることが記載されている。ただし、トリミング性の改善に関しては記載があるが、フィルムの折り曲げ時の耐割れ性や、射出成形体などの厚みのある成形体に関する耐衝撃性など、薄肉フィルムのトリミング性以外の機械的強度に関しては記載がなく、当該文献だけでは機械的強度が実用上問題ないレベルかどうかは不明である。また、100%延伸時(2倍延伸時)の複屈折(配向複屈折)が実施例にて高いままであり、配向複屈折と光弾性係数(光弾性複屈折)の両方がともに小さい実施例はなく、複屈折の改善は十分ではない。さらに、当該文献のアクリル系ゴム(B)は実施例より、いわゆるグラフト共重合体(コアシェルポリマー)であり、ヘイズ等の透明性を維持しながら機械的強度を改善することを目的に添加されていることは記載されているが、複屈折への影響に関しては全く考慮されていない。たとえば、実施例と比較例を比較した場合、アクリル系ゴム(B)を添加することで、アクリル樹脂(A)のみの比較例に対して配向複屈折は逆に大きくなっており、また光弾性係数(光弾性複屈折)はアクリル樹脂(A)のみの比較例と同等である。また、耐熱アクリル系樹脂の光弾性定数は負であり、またアクリル系ゴム(B)も組成から光弾性定数は負と推定されることより、アクリル系ゴム(B)は配向複屈折、光弾性複屈折を悪化はさせても、調整する技術思想は当該文献には記載されていないことは明らかである。また、射出成形など厚みのある成形体に用いた場合の透明性、色調についても記載がなく、透明性、色調が悪いなどの課題が想定される。
米国特許第4373065号明細書 特許第3696649号公報 特許第3648201号公報 特許第4624845号公報 特開2009−203348号公報 特許第5142938号公報
本発明は、射出成形体などの厚みのある成形体においても、配向複屈折と光弾性複屈折の両方ともに非常に小さく、透明性に優れ、Izod強度をはじめとした耐衝撃性などの機械的特性や耐熱性にも優れた光学用樹脂組成物、およびその成形体、特には射出成形体を提供することを目的とする。
本発明は、熱可塑性樹脂に特定の構造および組成を有する架橋構造含有重合体を配合することにより、上記課題を解決できることを見出し、本発明を完成させた。
すなわち、本発明は、
[1] 熱可塑性樹脂、および架橋構造含有重合体を含有し、
前記架橋構造含有重合体の光弾性定数が前記熱可塑性樹脂の光弾性定数と異符号であり、且つ、厚みが2mmの成形体のヘイズが6%以下である、光学用樹脂組成物、
[2] 前記架橋構造含有重合体が、硬質重合体からなる部分を有する、前記[1]に記載の光学用樹脂組成物、
[3] 前記架橋構造含有共重合体が、架橋構造に脂環式構造、複素環式構造または芳香族基を有するビニル系単量体を構造単位に含む架橋重合体を有する、前記[1]〜[2]のいずれか一項に記載の光学用樹脂組成物、
[4] 前記架橋構造含有共重合体が、架橋構造に一般式(4)で表させる単量体を構造単位に含む架橋重合体を有する、前記[1]〜[3]のいずれか一項に記載の光学用樹脂組成物、
Figure 0006691778
(式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
[5] 前記架橋構造含有共重合体が、脂環式構造、複素環式構造または芳香族基を有するビニル系単量体を構造単位に含む硬質重合体を有する、前記[1]〜[4]のいずれか一項に記載の光学用樹脂組成物、
[6] 前記架橋構造含有共重合体が、上記一般式(4)で表させる単量体を構造単位に含む硬質重合体を有する、前記[1]〜[5]のいずれか一項に記載の光学用樹脂組成物、
[7] 熱可塑性樹脂の配向複屈折と、架橋構造含有重合体の配向複屈折とが異符号である、前記[1]〜[6]のいずれか一項に記載の光学用樹脂組成物。
[8] 熱可塑性樹脂、並びに、多段重合体を含有し、前記多段重合体が、架橋重合体含有粒子の存在下に、下記一般式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体を含む単量体混合物を重合して得られる多段重合体であり、且つ、厚みが2mmの成形体のヘイズが6%以下である、光学用樹脂組成物、
Figure 0006691778
(式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
[9] 前記架橋重合体含有粒子が、下記一般式(4)で表される単量体および多官能性単量体を含む単量体混合物を重合して形成される架橋重合体を有する、前記[8]に記載の光学用樹脂組成物、
Figure 0006691778
(式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
[10] 熱可塑性樹脂、並びに、多層構造重合体を含有し、前記多層構造重合体が、架橋重合体層、および、下記一般式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体を含む単量体混合物を重合して得られる層を有する多層構造重合体であり、且つ、厚みが2mmの成形体のヘイズが6%以下である、光学用樹脂組成物、
Figure 0006691778
(式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
[11] 前記架橋重合体層が、下記一般式(4)で表される単量体および多官能性単量体を含む単量体混合物を重合して形成される架橋重合体層である、前記[10]に記載の光学用樹脂組成物、
Figure 0006691778
(式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
[12] 前記一般式(4)で表される単量体が、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、及び(メタ)アクリル酸フェノキシエチルからなる群より選択される少なくとも1種である、前記[4]および[8]〜[11]のいずれか一項に記載の光学用樹脂組成物、
[13] 前記熱可塑性樹脂の光弾性定数と、前記多段重合体または前記多層構造重合体の光弾性定数とが異符号である、前記[8]〜[12]のいずれか一項に記載の光学用樹脂組成物。
[14] 前記熱可塑性樹脂の配向複屈折と、前記多段重合体または前記多層構造重合体の配向複屈折とが異符号である、前記[8]〜[13]のいずれか一項に記載の光学用樹脂組成物、
[15] 前記熱可塑性樹脂が、アクリル系熱可塑性樹脂である、前記[1]〜[14]のいずれか一項に記載の光学用樹脂組成物、
[16] 前記熱可塑性樹脂が、マレイミドアクリル系樹脂、グルタルイミドアクリル系樹脂、ラクトン環含有アクリル系重合体、スチレン単量体およびそれと共重合可能な他の単量体を重合して得られるスチレン系重合体の芳香族環を部分水素添加して得られる部分水添スチレン系重合体、環状酸無水物繰り返し単位を含有するアクリル系重合体、並びに、水酸基および/またはカルボキシル基を含有するアクリル系重合体、からなる群より選択される少なくとも1種を含む、前記[1]〜[15]のいずれか一項に記載の光学用樹脂組成物、
[17] 前記熱可塑性樹脂が、下記一般式(5)で表されるマレイミド単位と(メタ)アクリル酸エステル単位とを有するマレイミドアクリル系樹脂を含有する、[1]〜[16]のいずれか一項に記載の光学用樹脂組成物、
Figure 0006691778
(式中、R11およびR12は、それぞれ独立して、水素原子、炭素数1〜12のアルキル基、または炭素数6〜14のアリール基であり、
13は、水素原子、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、炭素数3〜12のシクロアルキル基、炭素数1〜18のアルキル基、又は、下記A群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基もしくは炭素数1〜12のアルキル基である。
A群:ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基。)
[18] 前記マレイミドアクリル系樹脂が、下記一般式(3)で表される単位をさらに有する、前記[17]に記載の光学用樹脂組成物。
Figure 0006691778
(式中、Rは、水素または炭素数1〜8のアルキル基であり、Rは、炭素数6〜10のアリール基である。)
[19] 前記熱可塑性樹脂が、下記式(1)で表される単位と、下記式(2)で表される単位とを有するグルタルイミドアクリル系樹脂を含有する、前記[1]〜[18]のいずれか一項に記載の光学用樹脂組成物、
Figure 0006691778
(式中、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または、芳香環を含む炭素数5〜15の置換基である。)
Figure 0006691778
(式中、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または、芳香環を含む炭素数5〜15の置換基である。)
[20] 前記架橋構造含有重合体が含有する架橋構造、前記多段重合体が含有する架橋重合体含有粒子または前記多層構造重合体が含有する架橋重合体層の含有量が、光学用樹脂組成物100重量部において1〜60重量部である、前記[1]〜[19]のいずれか一項に記載の光学用樹脂組成物、
[21] 前記[1]〜[20]のいずれか一項に記載の光学用樹脂組成物からなる成形体、
[22] 前記[1]〜[20]のいずれか一項に記載の光学用樹脂組成物からなる射出成形体
に関する。
本発明によれば、射出成形体などの厚みのある成形体においても、配向複屈折と光弾性複屈折の両方ともに非常に小さく、透明性に優れ、Izod強度をはじめとした耐衝撃性などの機械的特性にも優れた光学用樹脂組成物、および同組成物からなる成形体、特には射出成形体を与える。
実施例1で得られた平板サンプルのクロスニコル試験結果を示す写真。 実施例2で得られた平板サンプルのクロスニコル試験結果を示す写真。 比較例1で得られた平板サンプルのクロスニコル試験結果を示す写真。 比較例2で得られた平板サンプルのクロスニコル試験結果を示す写真。 比較例3で得られた平板サンプルのクロスニコル試験結果を示す写真。
以下、本発明の実施形態を詳細に説明するが、本発明はこれら実施形態に限定されない。
本発明の光学用樹脂組成物、およびその成形体は、必須成分として、マトリックス樹脂となる熱可塑性樹脂、並びに、ゴム成分となる架橋構造含有重合体を含有する。
(熱可塑性樹脂)
本発明において、熱可塑性樹脂とは、一般に透明性を有している樹脂であれば使用可能である。具体的には、ビスフェノールAポリカーボネートに代表されるポリカーボネート樹脂、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−無水マレイン酸樹脂、スチレン−マレイミド樹脂、スチレン−(メタ)アクリル酸樹脂、スチレン系熱可塑エラストマー等の芳香族ビニル系樹脂及びその水素添加物、非晶性ポリオレフィン、結晶相を微細化した透明なポリオレフィン、エチレン−メタクリル酸メチル樹脂等のポリオレフィン系樹脂、ポリメタクリル酸メチル、スチレン−メタクリル酸メチル樹脂等のアクリル系樹脂、およびそのイミド環化、ラクトン環化、メタクリル酸変性等により改質された耐熱性のアクリル系樹脂、ポリエチレンテレフタレートあるいはシクロヘキサンジメチレン基やイソフタル酸等で部分変性されたポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等の非晶性ポリエステル樹脂あるいは結晶相を微細化した透明なポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルホン樹脂、ポリアミド樹脂、トリアセチルセルロース樹脂等のセルロース系樹脂、ポリフェニレンオキサイド樹脂等の透明性を有する熱可塑性樹脂が幅広く例示される。実使用を考えた場合、得られた成形体の全光線透過率が85%以上、好ましくは90%、より好ましくは92%以上になるように樹脂を選定することが好ましい。
上記樹脂のなかでも、アクリル系樹脂は、優れた光学特性、耐熱性、成形加工性などの面で特に好ましい。アクリル系樹脂は、(メタ)アクリル酸エステルを含むビニル系単量体を重合してなる樹脂であればよいが、メタクリル酸メチル30〜100重量%およびこれと共重合可能なモノマー70〜0重量%を重合して得られるアクリル系樹脂がより好ましい。
メタクリル酸メチルと共重合可能な他のビニル系単量体としては、例えばアルキル残基の炭素数1〜10である(メタ)アクリル酸エステル(ただしメタクリル酸メチルを除く)が好ましい。メタクリル酸メチルと共重合可能な他のビニル系単量体としては、具体的には、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、メタクリル酸エポキシシクロヘキシルメチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸ジシクロペンタニル、2,2,2−トリフルオロエチルメタクリレート、2,2,2−トリクロロエチルメタクリレート、メタクリル酸イソボロニル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸グリシジル、アクリル酸エポキシシクロヘキシルメチル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル等のアクリル酸エステル類;メタクリル酸、アクリル酸などのカルボン酸類およびそのエステル類;アクリロニトニル、メタクリロニトリルなどのビニルシアン類;スチレン、α−メチルスチレン、モノクロロスチレン、ジクロロスチレン等のビニルアレーン類;マレイン酸、フマール酸およびそれらのエステル等;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレンなどのアルケン類:ハロゲン化アルケン類;アリルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、モノエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ジビニルベンゼンなどの多官能性モノマーが挙げられる。これらのビニル系単量体は単独でまたは2種類以上を併用して使用することができる。
メタクリル酸メチル重合体中、メタクリル酸メチルは、好ましくは30〜100重量%、より好ましくは50〜99.9重量%、さらに好ましくは50〜98重量%含有され、メタクリル酸メチルと共重合可能なモノマーは、好ましくは70〜0重量%、より好ましくは50〜0.1重量%、さらに好ましくは50〜2重量%含有される。メタクリル酸メチルの含有量が30重量%未満ではアクリル系樹脂特有の光学特性、外観性、耐候性、耐熱性が低下してしまう傾向がある。また、加工性、外観性の観点から、多官能性モノマーは使用しないことが望ましい。
本発明に用いられる熱可塑性樹脂のガラス転移温度は使用する条件、用途に応じて設定することができる。好ましくはガラス転移温度が100℃以上、より好ましくは110℃以上、さらに好ましくは115℃以上、最も好ましくは120℃以上である。
ガラス転移温度が120℃以上のアクリル系樹脂として、具体的には、マレイミド構造、グルタルイミド構造、無水グルタル酸構造、(メタ)アクリル酸単位、又は、ラクトン環を分子中に含むアクリル系樹脂が挙げられる。例えば、マレイミドアクリル系樹脂、グルタルイミドアクリル系樹脂、無水グルタル酸アクリル系樹脂、ラクトン環含有アクリル系樹脂、水酸基および/またはカルボキシル基を含有するアクリル系樹脂、メタクリル系樹脂等が挙げられる。ガラス転移温度が120℃以上のその他の樹脂としては、スチレン単量体およびそれと共重合可能な他の単量体を重合して得られるスチレン系重合体の芳香族環を部分水素添加して得られる部分水添スチレン系重合体、環状酸無水物繰り返し単位を含有する重合体、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等が使用できる。なかでも、以下に記載するマレイミドアクリル系樹脂、及び/又は、グルタルイミドアクリル系樹脂を用いると、得られるフィルム、シート、射出成形体などの成形体の耐熱性が向上し、且つ、延伸や射出成形などに伴う配向や残留歪の存在下の光学特性にも優れるため特に好ましい。特に、熱可塑性樹脂として、マレイミドアクリル系樹脂とグルタルイミドアクリル系樹脂の併用が好ましい。両樹脂は相溶性が高く、併用して各樹脂の優れた透明性を維持でき、配向複屈折と光弾性複屈折が共に小さく、高い熱安定性、耐溶剤性も維持できる。
(マレイミドアクリル系樹脂)
マレイミドアクリル系樹脂とは、具体的には、下記一般式(5)で表されるマレイミド単位と(メタ)アクリル酸エステル単位とを有する共重合体である。
Figure 0006691778
上記一般式(5)中、R11およびR12は、それぞれ独立して、水素原子、炭素数1〜12のアルキル基、または炭素数6〜14のアリール基であり、R13は、水素原子、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、炭素数3〜12のシクロアルキル基、炭素数1〜18のアルキル基、又は、下記A群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基もしくは炭素数1〜12のアルキル基である。
A群:ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基。)
<R11およびR12
11及びR12における炭素数1〜12のアルキル基としては、炭素数1〜6のアルキル基が好ましく、炭素数1〜4のアルキル基がより好ましい。また、R11及びR12における炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、ノニル基、デカニル基、ラウリル基等が挙げられ、これらのうち、透明性及び耐候性が一層向上する点において、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基が好適であり、メチル基がより好適である。
11及びR12における炭素数6〜14のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられ、これらのうち、耐熱性及び低複屈折性等の光学的特性が一層向上する点において、フェニル基が好適である。
11及びR12は、水素原子、炭素数1〜4のアルキル基又はフェニル基であることが好ましく、水素原子であることがより好ましい。
<R13
13における炭素数7〜14のアリールアルキル基としては、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、3−フェニルプロピル基、6−フェニルヘキシル基、8−フェニルオクチル基が挙げられ、これらのうち、耐熱性及び低複屈折性等の光学的特性が一層向上する点において、ベンジル基が好適である。
また、R13における炭素数6〜14のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられ、これらのうち、耐熱性及び低複屈折性等の光学的特性が一層向上する点において、フェニル基が好適である。
また、R13は置換基を有する炭素数6〜14のアリール基であってもよく、ここで置換基は、ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基からなる群(A群)より選ばれる基である。
置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
置換基としての炭素数1〜12のアルコキシ基としては、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜8のアルコキシ基がより好ましい。また、置換基としての炭素数1〜12のアルコキシ基としては、メトキシ基、エトキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブチルオキシ基、イソブチルオキシ基、t−ブチルオキシ基、2−エチルヘキシルオキシ基、1−デシルオキシ基、1−ドデシルオキシ基等が挙げられる。
置換基としての炭素数1〜12のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、ノニル基、デカニル基、ラウリル基等が挙げられ、これらのうち、透明性及び耐候性が一層向上する点において、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基が好適であり、メチル基がより好適である。
さらに、置換基としての炭素数7〜14のアリールアルキル基としては、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、3−フェニルプロピル基、6−フェニルヘキシル基、8−フェニルオクチル基が挙げられ、これらのうち、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、3−フェニルプロピル基が好適である。
13において、置換基を有する炭素数6〜14のアリール基としては、置換基を有するフェニル基、置換基を有するナフチル基が好ましい。また、置換基を有する炭素数6〜14のアリール基としては、2,4,6−トリブロモフェニル基、2−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、4−ブロモフェニル基、2−メチルフェニル基、4−メチルフェニル基、2−エチルフェニル基、4−エチルフェニル基、2−メトキシフェニル基、4−メトキシフェニル基、2−ニトロフェニル基、4−ニトロフェニル基、2,4,6−トリメチルフェニル基等が挙げられ、これらのうち、難燃性が付与される点において、2,4,6−トリブロモフェニル基が好適である。
13における炭素数3〜12のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、トリシクロデシル基、ビシクロオクチル基、トリシクロドデシル基、イソボルニル基、アダマンチル基、テトラシクロドデシル基等が挙げられ、これらのうち、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が好適であり、耐候性及び透明性等の光学特性が一層向上するとともに、低吸水性を付与できる点からは、シクロヘキシル基がより好適である。
また、R13における炭素数1〜18のアルキル基としては、炭素数1〜10のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましい。また、R13における炭素数1〜18のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−ドデシル基、n−オクタデシル基、2−エチルヘキシル基、1−デシル基、1−ドデシル基等が挙げられ、これらのうち、耐候性及び透明性等の光学特性が一層向上することから、メチル基、エチル基、イソプロピル基が好適である。
また、R13は置換基を有する炭素数1〜12のアルキル基であってもよく、ここで置換基は、ハロゲン原子、ヒドロキシル基、ニトロ基及び炭素数1〜12のアルコキシ基からなる群(A群)より選ばれる基である。
置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
置換基としての炭素数1〜12のアルコキシ基としては、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜8のアルコキシ基がより好ましい。また、置換基としての炭素数1〜12のアルコキシ基としては、メトキシ基、エトキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブチルオキシ基、イソブチルオキシ基、t−ブチルオキシ基、2−エチルヘキシルオキシ基、1−デシルオキシ基、1−ドデシルオキシ基等が挙げられる。
13において、置換基を有する炭素数1〜12のアルキル基としては、ジクロロメチル基、トリクロロメチル基、トリフルオロエチル基、ヒドロキシエチル基等が挙げられ、これらのうち、トリフルオロエチル基が好適である。
一般式(5)で表されるマレイミド単位の具体例としては、無置換のマレイミド単位、N−メチルマレイミド単位、N−フェニルマレイミド単位、N−シクロヘキシルマレイミド単位、N−ベンジルマレイミド単位等が挙げられる。
マレイミド単位としては1種類のみを使用してもよいし、2種以上を併用してもよい。
マレイミドアクリル系樹脂において、マレイミド単位の含有量は特に限定されず、例えば、R13の構造等を考慮して適宜決定することができる。しかしながら、マレイミド単位の含有量は、マレイミドアクリル系樹脂全量のうち1.0重量%以上が好ましく、1重量%〜99重量%がより好ましく、1重量%〜80重量%がさらに好ましい。マレイミド単位の含有量が上記範囲を外れた場合、光学等方性が低下する傾向がある。
マレイミドアクリル系樹脂が有する(メタ)アクリル酸エステル単位としては、グルタルイミドアクリル系樹脂について後述する一般式(2)で表される単位と同様のものを使用することができる。当該(メタ)アクリル酸エステル単位としては1種類のみを使用してもよいし、2種以上を併用してもよい。
また、マレイミドアクリル系樹脂は、光学特性を調整するため、下記一般式(3)で表される単位をさらに有することが好ましい。
Figure 0006691778
(式中、Rは、水素または炭素数1〜8のアルキル基であり、Rは、炭素数6〜10のアリール基である。)
上記一般式(3)で表される芳香族ビニル単位としては特に限定されないが、スチレン単位、α−メチルスチレン単位が挙げられ、スチレン単位が好ましい。
マレイミドアクリル系樹脂は、上記一般式(3)で表される単位として、単一の種類のみを含んでいてもよいし、RおよびRのいずれか又は双方が異なる複数の単位を含んでいてもよい。
マレイミドアクリル系樹脂において、一般式(3)で表される単位の含有量は特に限定されないが、マレイミドアクリル系樹脂全量のうち0〜40重量%が好ましく、0〜20重量%がより好ましく、0〜15重量%が特に好ましい。
マレイミドアクリル系樹脂には、必要に応じ、以上で説明した単位以外のその他の単位がさらに含まれていてもよい。
マレイミドアクリル系樹脂の重量平均分子量は特に限定されないが、1×10〜5×10の範囲にあることが好ましい。上記範囲内であれば、成形加工性が低下したり、成形体の機械的強度が不足したりすることがない。一方、重量平均分子量が上記範囲よりも小さいと、成形体の機械的強度が不足する傾向がある。また、上記範囲よりも大きいと、溶融押出や射出成形時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する傾向がある。
マレイミドアクリル系樹脂は、例えば下記重合工程により得ることができる。また、下記脱揮工程により精製することができる。
(重合工程)
マレイミドアクリル系樹脂は、上記各構成単位の単量体から選ばれた単量体群を重合することにより得ることができる。
本実施形態に係るマレイミドアクリル系樹脂の重合反応においては、互いに反応性が近しい単量体、及び/又は共重合性が高い単量体を組み合わせることが、得られるマレイミドアクリル系樹脂の樹脂組成比を、反応液に仕込む原料組成比に基づいて容易に制御することが可能であることから望ましい。一方、反応性が著しく異なる単量体を組み合わせる場合、a)反応性が低い単量体が十分に反応せず未反応単量体として残存する、b)結果として得られるマレイミドアクリル系樹脂の樹脂組成比が予測し難い等の問題が生じ得る。特に、未反応単量体が残存すると、マレイミドアクリル系樹脂の特性、例えば、透明性、耐光性、が低下する等の問題もある。
マレイミドアクリル系樹脂の重合方法として、例えば、キャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、リビングラジカル重合、アニオン重合等の一般に行われている重合方法を用いることができる。マレイミドアクリル系樹脂を光学材料用途として用いるには微小な異物の混入は出来るだけ避けるのが好ましく、この観点からキャスト重合、溶液重合、懸濁重合、さらには懸濁剤や乳化剤を用いないキャスト重合や溶液重合を用いることが望ましい。
また、重合形式として、例えば、バッチ重合法、連続重合法のいずれも用いることができる。重合操作が簡単という観点からは、バッチ重合法が望ましく、より均一組成の重合物を得るという観点では、連続重合法を用いることが望ましい。
重合反応時の温度や重合時間は、使用する単量体の種類や割合等に応じて適宜調整できるが、例えば、重合温度が0〜150℃、重合時間が0.5〜24時間であり、好ましくは、重合温度が40〜150℃、重合時間が1〜15時間である。
ラジカル重合反応時には、必要に応じて、重合開始剤を添加してもよい。重合開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキサノエート、ラウロイルパーオキサイド等の有機過酸化物;2,2’−アゾビス(イソブチロニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2’−アゾビスイソブチレート等のアゾ化合物;等を挙げることができる。これらの重合開始剤は、単独で用いても2種以上を併用して用いてもよい。
重合開始剤の使用量は、単量体の組合せや反応条件等に応じて適宜設定すればよく、特に限定されるものではないが、好ましくは0.005〜5質量%の範囲で用いられる。
重合反応に必要に応じて用いられる分子量調節剤は、一般的なラジカル重合において用いる任意のものが使用され、例えばブチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、チオグリコール酸2−エチルヘキシル等のメルカプタン化合物が特に好ましいものとして挙げられる。これらの分子量調節剤は、分子量が先述の範囲内に制御されるような濃度範囲で添加される。
重合反応時に溶剤を使用する場合、重合溶剤としては、例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;テトラヒドロフラン等のエーテル系溶剤;等が挙げられる。これらの溶剤は、単独で用いても2種以上を併用して用いてもよい。使用する溶剤の沸点が高すぎると、最終的に得られるマレイミドアクリル系樹脂の残存揮発分が多くなることから、沸点が50〜200℃である溶剤が好ましい。
重合反応時には、必要に応じて、有機リン系化合物や有機酸を添加してもよい。これらの化合物が共存することで、副反応が抑制される、及び/又は未反応N−置換マレイミド量が低減される等して、得られるマレイミドアクリル系樹脂の成形加工時の着色が低減される場合がある。
有機リン系化合物としては、例えば、アルキル(アリール)亜ホスホン酸及びこれらのジエステル又はモノエステル;ジアルキル(アリール)ホスフィン酸及びこれらのエステル;アルキル(アリール)ホスホン酸及びこれらのジエステル又はモノエステル;アルキル亜ホスフィン酸及びこれらのエステル;亜リン酸ジエステル、亜リン酸モノエステル、亜リン酸トリエステル;リン酸ジエステル、リン酸モノエステル、リン酸トリエステル等が挙げられる。これらの有機リン系化合物は、単独で用いても2種以上を併用してもよい。有機リン系化合物の使用量は、単量体の総量に対して好ましくは0.001〜5.0質量%である。
有機酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、シクロヘキサンカルボン酸、フタル酸、イソフタル酸、テレフタル酸等及びこれらの酸無水物等が挙げられる。これらの有機酸は、単独で用いても2種以上を併用してもよい。有機酸の使用量は、単量体の総量に対して好ましくは0.001〜1.0質量%である。
重合反応を行う際には、重合体濃度としては重合中の除熱の観点から、反応液の粘度を適切にするために、10〜95質量%で実施することが好ましく、75質量%以下がより好ましく、60質量%以下がさらに好ましい。10質量%以上であれば、分子量と分子量分布の調整が容易である。95質量%以下であれば、高分子量の重合体を得ることができる。
得られた重合反応液の粘度を適切に保つという観点から、重合溶剤を適宜添加することができる。反応液の粘度を適切に保つことで、除熱を制御し、反応液中のミクロゲル発生を抑制することができる。特に、粘度が上昇する重合反応後半においては重合溶剤を適宜添加して50質量%以下となるように制御することが更に好ましい。
重合溶剤を重合反応液に適宜添加する形態としては、特に限定されるものではなく、例えば、連続的に重合溶剤を添加してもよいし、間欠的に重合溶剤を添加してもよい。このように重合反応液中に生成したマレイミドアクリル系樹脂の濃度を制御することによって、反応器内部の温度均一性を向上させ、反応液のゲル化をより十分に抑制することができる。添加する重合溶剤としては、例えば、重合反応の初期仕込み時に使用した溶剤と同じ種類の溶剤であってもよいし、異なる種類の溶剤であってもよいが、重合反応の初期仕込み時に使用した溶剤と同じ種類の溶剤を用いることが好ましい。また、添加する重合溶剤は、1種のみの単一溶剤であっても2種以上の混合溶剤であってもよい。
マレイミドアクリル系樹脂を懸濁重合法で重合する場合には、水性媒体中で行い、懸濁剤及び必要に応じて懸濁助剤を添加して行う。懸濁剤としては、ポリビニルアルコール、メチルセルロース、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体、ポリエチレンオキサイド、ポリアクリルアミド等の水溶性高分子、リン酸カルシウム、ピロリン酸マグネシウム等の無機物質等がある。水溶性高分子は、単量体の総量に対して0.01〜2質量%使用するのが好ましく、無機物質は、単量体の総量に対して0.01〜2質量%使用するのが好ましい。懸濁助剤としては、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム等の陰イオン界面活性剤等の低分子界面活性剤、ホウ酸、炭酸ナトリウム、リン酸水素2ナトリウム、リン酸2水素ナトリウム、硫酸ナトリウム等の水溶性の無機塩などである。懸濁助剤としては、リン酸水素2ナトリウム、ドデシルベンゼンスルホン酸ナトリウムが好ましい。また、懸濁剤として無機物質を使用する場合には、懸濁助剤を使用するのが好ましい。懸濁助剤は、単量体100質量%に対して0.001〜2質量%使用するのが好ましい。
(脱揮工程)
脱揮工程とは、重合溶剤、残存単量体、水分等の揮発分を、必要に応じて減圧加熱条件下で、除去処理する工程を意味する。この除去処理が不充分であると、得られたマレイミドアクリル系樹脂の残存揮発分が多くなり、成形時の変質等により着色することや、泡やシルバーストリーク等の成形不良が起こることがある。残存揮発分量は、マレイミドアクリル系樹脂100質量%に対して1質量%以下、好ましくは0.5質量%以下、より好ましくは0.4質量%以下、更により好ましくは0.3質量%以下である。残存揮発分量とは、前述した重合反応時に反応しなかった残存単量体、重合溶媒、副反応生成物の合計量に相当する。
脱揮工程に用いる装置としては、例えば、熱交換器と脱揮槽からなる脱揮装置;ベント付き押出機;脱揮装置と押出機を直列に配置したもの等が挙げられる。ベント付き押出機を用いる場合、ベントは1個でも複数個でもいずれでもよいが、複数個のベントを有する方が好ましい。
脱揮工程の温度は、好ましくは150〜350℃、より好ましくは170〜330℃、更に好ましくは200〜300℃である。この温度が150℃未満であると、残存揮発分が多くなることがある。逆に、この温度が350℃を超えると、得られたマレイミドアクリル系樹脂の着色や分解が起こることがある。
脱揮工程における圧力は、好ましくは931〜1.33hPa(700〜1mmHg)、より好ましくは800〜13.3hPa(600〜10mmHg)、更に好ましくは667〜20.0hPa(500〜15mmHg)である。この圧力が931hPa(700mmHg)を超えると、揮発分が残存しやすいことがある。逆に、圧力が1.33hPa(1mmHg)未満であると、工業的な実施が困難になることがある。
処理時間は、残存揮発分の量により適宜選択されるが、得られたマレイミドアクリル系樹脂の着色や分解を抑えるためには短いほど好ましい。
重合反応時の単量体反応転化率が低い場合、重合液には未反応単量体が多量に残存している。その場合、得られるマレイミドアクリル系樹脂の残存揮発分量を減らすには高い処理温度で、長時間処理することになるが、そうすると着色や分解が生じ易いという問題がある。多量に未反応単量体を含む重合反応液を処理する場合には、問題となる単量体は、例えば、芳香族炭化水素系溶剤、炭化水素系溶剤、又はアルコール系溶剤等を重合溶液に添加した後、ホモジナイザー(乳化分散)処理を行い、未反応単量体について液−液抽出、固−液抽出する等の前処理を施すことで重合反応液から分離できる。前処理による単量体分離後の重合反応液を前述した脱揮工程に供すると、得られる熱可塑性樹脂100質量%中に残存する単量体の合計を1質量%以下に抑えることができる。
(グルタルイミドアクリル系樹脂)
グルタルイミドアクリル系樹脂は、ガラス転移温度が120℃以上であり、下記一般式(1)で表される単位と、下記一般式(2)で表される単位とを含むものである。
Figure 0006691778
上記一般式(1)中、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または、芳香環を含む炭素数5〜15の置換基である。上記一般式(1)で表される単位を、以下、「グルタルイミド単位」ともいう。
上記一般式(1)において、好ましくは、RおよびRはそれぞれ独立して水素またはメチル基であり、Rは、水素、メチル基、ブチル基、シクロヘキシル基であり、より好ましくは、Rはメチル基であり、Rは水素であり、Rはメチル基である。
グルタルイミドアクリル系樹脂は、グルタルイミド単位として、単一の種類のみを含んでいてもよいし、上記一般式(1)におけるR、R、およびRのいずれか又は全てが異なる複数の種類を含んでいてもよい。
グルタルイミド単位は、下記一般式(2)で表される(メタ)アクリル酸エステル単位をイミド化することにより形成することができる。また、無水マレイン酸等の酸無水物、当該酸無水物と炭素数1〜20の直鎖または分岐のアルコールとのハーフエステル、または、α,β−エチレン性不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、クロトン酸、フマル酸、シトラコン酸)をイミド化することによっても、上記グルタルイミド単位を形成することができる。
グルタルイミドアクリル系樹脂において、グルタルイミド単位の含有量は特に限定されず、例えば、Rの構造等を考慮して適宜決定することができる。しかしながら、グルタルイミド単位の含有量は、グルタルイミドアクリル系樹脂全量のうち1.0重量%以上が好ましく、3.0重量%〜90重量%がより好ましく、5.0重量%〜60重量%がさらに好ましい。グルタルイミド単位の含有量が上記範囲より少ないと、得られるグルタルイミドアクリル系樹脂の耐熱性が不足したり、透明性が損なわれたりする傾向がある。逆に上記範囲よりも多いと、不必要に耐熱性および溶融粘度が高くなり、成形加工性が悪くなったり、成形体の機械的強度が極端に低くなったり、透明性が損なわれたりする傾向がある。
グルタルイミド単位の含有量は以下の方法により算出される。
H−NMR BRUKER AvanceIII(400MHz)を用いて、樹脂のH−NMR測定を行い、樹脂中のグルタルイミド単位またはエステル単位などの各モノマー単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各モノマー単位の分子量を使用して含有量(重量%)に換算する。
例えば、上記一般式(1)においてRがメチル基であるグルタルイミド単位とメチルメタクリレート単位からなる樹脂の場合、3.5から3.8ppm付近に現れるメタクリル酸メチルのO−CHプロトン由来のピークの面積aと、3.0から3.3ppm付近に現れるグルタルイミドのN−CHプロトン由来のピークの面積bから、以下の計算式によりグルタルイミド単位の含有量(重量%)を求めることができる。
[メチルメタクリレート単位の含有量A(mol%)]=100×a/(a+b)
[グルタルイミド単位の含有量B(mol%)]=100×b/(a+b)
[グルタルイミド単位の含有量(重量%)]=100×(b×(グルタルイミド単位の分子量))/(a×(メチルメタクリレート単位の分子量)+b×(グルタルイミド単位の分子量))
なお、モノマー単位として上記以外の単位を含む場合においても、樹脂中の各モノマー単位の含有量(mol%)と分子量から、同様にグルタルイミド単位の含有量(重量%)を求めることができる。
本発明の光学用樹脂組成物を例えばレンズ等の光学部材に使用する場合、グルタルイミド単位の含有量は、複屈折を抑制しやすいため20重量%以下が好ましく、15重量%以下がより好ましく、10重量%以下がさらに好ましい。
Figure 0006691778
上記一般式(2)中、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または芳香環を含む炭素数5〜15の置換基である。上記一般式(2)で表される単位を、以下、「(メタ)アクリル酸エステル単位」ともいう。なお、本願において「(メタ)アクリル」とは、「メタクリルまたはアクリル」を指すものとする。
上記一般式(2)において、好ましくは、RおよびRはそれぞれ独立して水素またはメチル基であり、Rは水素またはメチル基であり、より好ましくは、Rは水素であり、Rはメチル基であり、Rはメチル基である。
グルタルイミドアクリル系樹脂は、(メタ)アクリル酸エステル単位として、単一の種類のみを含んでいてもよいし、上記一般式(2)におけるR、RおよびRのいずれか又は全てが異なる複数の種類を含んでいてもよい。
グルタルイミドアクリル系樹脂は、必要に応じて、下記一般式(3)で表される単位(以下、「芳香族ビニル単位」ともいう)をさらに含んでいてもよい。
Figure 0006691778
上記一般式(3)中、Rは、水素または炭素数1〜8のアルキル基であり、Rは、炭素数6〜10のアリール基である。
上記一般式(3)で表される芳香族ビニル単位としては特に限定されないが、スチレン単位、α−メチルスチレン単位が挙げられ、スチレン単位が好ましい。
グルタルイミドアクリル系樹脂は、芳香族ビニル単位として、単一の種類のみを含んでいてもよいし、RおよびRのいずれか又は双方が異なる複数の単位を含んでいてもよい。
グルタルイミドアクリル系樹脂において、芳香族ビニル単位の含有量は特に限定されないが、グルタルイミドアクリル系樹脂全量のうち0〜50重量%が好ましく、0〜20重量%がより好ましく、0〜15重量%が特に好ましい。芳香族ビニル単位の含有量が上記範囲より多いと、グルタルイミドアクリル系樹脂の十分な耐熱性を得ることができない。
しかし本発明では、耐折り曲げ性および透明性の向上、フィッシュアイの低減、さらに耐溶剤性または耐候性の向上といった観点から、グルタルイミドアクリル系樹脂は芳香族ビニル単位を含まないことが好ましい。
グルタルイミドアクリル系樹脂には、必要に応じ、グルタルイミド単位、(メタ)アクリル酸エステル単位、および芳香族ビニル単位以外のその他の単位がさらに含まれていてもよい。
その他の単位としては、例えば、アクリルアミド、メタクリルアミド等のアミド系単位、グルタル無水物単位、アクリロニトリル、メタクリロニトリル等のニトリル系単位、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単位等が挙げられる。
これらのその他の単位は、グルタルイミドアクリル系樹脂中に、ランダム共重合により含まれていてもよいし、グラフト共重合により含まれていてもよい。
これらのその他の単位は、その単位を構成する単量体を、グルタルイミドアクリル系樹脂を製造する際の原料となる樹脂に対し共重合することで導入したものでもよい。また、前記のイミド化反応を行う際に、これらその他の単位が副生してグルタルイミドアクリル系樹脂に含まれることとなったものでもよい。
グルタルイミドアクリル系樹脂の重量平均分子量は特に限定されないが、1×10〜5×10の範囲にあることが好ましい。上記範囲内であれば、成形加工性が低下したり、成形体の機械的強度が不足したりすることがない。一方、重量平均分子量が上記範囲よりも小さいと、成形体の機械的強度が不足する傾向がある。また、上記範囲よりも大きいと、溶融押出時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する傾向がある。
グルタルイミドアクリル系樹脂のガラス転移温度は、成形体が良好な耐熱性を発揮するよう、120℃以上であることが好ましい。より好ましくは125℃以上である。ガラス転移温度が上記範囲よりも低いと、成形体が十分な耐熱性を発揮することができない。
次に、グルタルイミドアクリル系樹脂の製造方法の一例を説明する。
まず、(メタ)アクリル酸エステルを重合することにより、(メタ)アクリル酸エステル重合体を製造する。グルタルイミドアクリル系樹脂が芳香族ビニル単位を含む場合には、(メタ)アクリル酸エステルと芳香族ビニルとを共重合させ、(メタ)アクリル酸エステル−芳香族ビニル共重合体を製造する。
この工程において、上記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシルを用いることが好ましく、メタクリル酸メチルを用いることがより好ましい。
(メタ)アクリル酸エステルは、単独で用いてもよいし、複数種を組み合わせて用いてもよい。複数種の(メタ)アクリル酸エステルを用いることにより、最終的に得られるグルタルイミドアクリル系樹脂に複数種の(メタ)アクリル酸エステル単位を含ませることができる。
上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル−芳香族ビニル共重合体の構造は、続くイミド化反応が可能なものであれば、特に限定されない。具体的には、線状ポリマー、ブロックポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマー等が挙げられる。
ブロックポリマーの場合、A−B型、A−B−C型、A−B−A型、およびこれら以外のタイプのブロックポリマーのいずれであってもよい。
次に、上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル−芳香族ビニル共重合体に、イミド化剤を反応させることで、イミド化反応を行う。これにより、グルタルイミドアクリル系樹脂を製造することができる。
上記イミド化剤は特に限定されず、上記一般式(1)で表されるグルタルイミド単位を生成できるものであればよい。具体的には、アンモニア又は一級アミンを用いることができる。上記一級アミンとしては、例えば、メチルアミン、エチルアミン、n−プロピルアミン、i−プロピルアミン、n−ブチルアミン、i−ブチルアミン、tert−ブチルアミン、n−ヘキシルアミン等の脂肪族炭化水素基含有一級アミン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリン等の芳香族炭化水素基含有一級アミン、シクロヘキシルアミン等の脂環式炭化水素基含有一級アミンが挙げられる。
上記イミド化剤としては、尿素、1,3−ジメチル尿素、1,3−ジエチル尿素、1,3−ジプロピル尿素等の、加熱によりアンモニア又は一級アミンを発生する尿素系化合物
を用いることもできる。
上記イミド化剤のうち、コスト、物性の面から、アンモニア、メチルアミン、シクロヘキシルアミンを用いることが好ましく、メチルアミンを用いることが特に好ましい。
このイミド化の工程においては、上記イミド化剤に加えて、必要に応じて、閉環促進剤を添加してもよい。
このイミド化の工程では、上記イミド化剤の添加割合を調整することにより、得られるグルタルイミドアクリル系樹脂におけるグルタルイミド単位の含有量を調整することができる。
上記イミド化反応を実施するための方法は特に限定されず、従来公知の方法を用いることができる。例えば、押出機、又は、バッチ式反応槽(圧力容器)を用いることでイミド化反応を進行させることができる。
上記押出機としては特に限定されず、各種押出機を使用できるが、例えば、単軸押出機、二軸押出機または多軸押出機等を用いることができる。
中でも、二軸押出機を用いることが好ましい。二軸押出機によれば、原料ポリマーとイミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)との混合を促進することができる。
二軸押出機としては、例えば、非噛合い型同方向回転式、噛合い型同方向回転式、非噛合い型異方向回転式、および噛合い型異方向回転式等が挙げられる。中でも、噛合い型同方向回転式が好ましい。噛合い型同方向回転式の二軸押出機は、高速回転可能であるため、原料ポリマーとイミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)との混合を、より一層促進することができる。
上記例示した押出機は単独で用いてもよいし、複数を直列に連結して用いてもよい。
グルタルイミドアクリル系樹脂を製造するにあたっては、上記イミド化工程に加えて、エステル化剤で処理するエステル化工程を含むことができる。このエステル化工程によって、イミド化工程にて副生した、樹脂中に含まれるカルボキシル基を、エステル基に変換することができる。これにより、グルタルイミドアクリル系樹脂の酸価を所望の範囲内に調整することができる。
グルタルイミドアクリル系樹脂の酸価は特に限定されないが、0.50mmol/g以下であることが好ましく、0.45mmol/g以下であることがより好ましい。下限は特に制限されないが、0mmol/g以上が好ましく、0.05mmol/g以上が好ましく、0.10mmol/g以上が特に好ましい。酸価が上記範囲内であれば、耐熱性、機械物性、および成形加工性のバランスに優れたグルタルイミドアクリル系樹脂を得ることができる。一方、酸価が上記範囲より大きいと、ペレットや成形体の成形のための溶融押出や射出成形の時に樹脂の発泡が起こりやすくなり、成形加工性が低下し、成形品の生産性が低下する傾向がある。なお、酸価は、例えば特開2005−23272号公報に記載の滴定法などにより算出することが可能である。
上記エステル化剤としては特に限定されず、例えば、ジメチルカーボネート、2,2−ジメトキシプロパン、ジメチルスルホキシド、トリエチルオルトホルメート、トリメチルオルトアセテート、トリメチルオルトホルメート、ジフェニルカーボネート、ジメチルサルフェート、メチルトルエンスルホネート、メチルトリフルオロメチルスルホネート、メチルアセテート、メタノール、エタノール、メチルイソシアネート、p−クロロフェニルイソシアネート、ジメチルカルボジイミド、ジメチル−t−ブチルシリルクロライド、イソプロペニルアセテート、ジメチルウレア、テトラメチルアンモニウムハイドロオキサイド、ジメチルジエトキシシラン、テトラ−N−ブトキシシラン、ジメチル(トリメチルシラン)フォスファイト、トリメチルフォスファイト、トリメチルフォスフェート、トリクレジルフォスフェート、ジアゾメタン、エチレンオキサイド、プロピレンオキサイド、シクロヘキセンオキサイド、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ベンジルグリシジルエーテルなどが挙げられる。これらの中でも、コスト、反応性などの観点から、ジメチルカーボネート、およびトリメチルオルトアセテートが好ましく、コストの観点から、ジメチルカーボネートが特に好ましい。
上記エステル化剤の使用量は特に限定されないが、上記(メタ)アクリル酸エステル重合体または上記(メタ)アクリル酸エステル−芳香族ビニル共重合体100重量部に対して0〜12重量部であることが好ましく、0〜8重量部であることがより好ましい。エステル化剤の使用量が上記範囲内であれば、グルタルイミドアクリル系樹脂の酸価を適切な範囲に調整できる。一方、上記範囲を外れると、未反応のエステル化剤が樹脂中に残存する可能性があり、当該樹脂を使って成形を行った際に、発泡または臭気発生の原因となることがある。
上記エステル化剤に加え、触媒を併用することもできる。触媒の種類は特に限定されないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン等の脂肪族3級アミンが挙げられる。これらの中でもコスト、反応性などの観点からトリエチルアミンが好ましい。
エステル化工程は、上記イミド化工程と同様、例えば、押出機、又は、バッチ式反応槽を用いることで進行させることができる。
このエステル化工程は、エステル化剤を使用せずに、加熱処理のみによって実施することもできる。当該加熱処理は、押出機内で溶融樹脂を混練および分散することで達成することができる。エステル化工程として加熱処理のみを行なう場合、イミド化工程にて副生した樹脂中のカルボキシル基同士の脱水反応、および/または、樹脂中のカルボキシル基と樹脂中のアルキルエステル基との脱アルコール反応等により、前記カルボキシル基の一部または全部を酸無水物基とすることができる。この時、閉環促進剤(触媒)を使用することも可能である。
エステル化剤を用いたエステル化工程においても、並行して、加熱処理による酸無水物基化を進行させることが可能である。
イミド化工程およびエステル化工程ともに、使用する押出機には、大気圧以下に減圧可能なベント口を装着することが好ましい。このような機械によれば、未反応のイミド化剤、エステル化剤、メタノール等の副生物、または、モノマー類を除去することができる。
グルタルイミドアクリル系樹脂の製造には、押出機に代えて、例えば住友重機械(株)製のバイボラックのような横型二軸反応装置や、スーパーブレンドのような竪型二軸撹拌槽などの、高粘度対応の反応装置も好適に用いることができる。
グルタルイミドアクリル系樹脂をバッチ式反応槽(圧力容器)を用いて製造する場合、そのバッチ式反応槽(圧力容器)の構造は特に限定されない。具体的には、原料ポリマーを加熱により溶融させ、撹拌することができ、イミド化剤(閉環促進剤を用いる場合は、イミド化剤および閉環促進剤)を添加することができる構造を有していればよいが、撹拌効率が良好な構造を有するものであることが好ましい。このようなバッチ式反応槽によれば、反応の進行によりポリマー粘度が上昇し、撹拌が不十分となることを防止することができる。このような構造を有するバッチ式反応槽としては、例えば、住友重機械(株)製の撹拌槽マックスブレンド等が挙げられる。
以上により、グルタルイミド単位の含有量が特定の数値に制御されたグルタルイミドアクリル系樹脂を容易に製造することができる。
マレイミドアクリル系樹脂とグルタルイミドアクリル系樹脂を併用する場合、マレイミドアクリル系樹脂の含有量は、光学用樹脂組成物の所望の物性に応じて、適宜決定することができ、例えば、マレイミドアクリル系樹脂とグルタルイミドアクリル系樹脂の合計100重量部に対して1〜99重量部であることが好ましい。より好ましくは1〜80重量部であり、さらに好ましくは5〜70重量部である。
(架橋構造含有重合体)
本発明に用いられる架橋構造含有重合体は、マトリックス樹脂である熱可塑性樹脂に添加することで、配向複屈折および光弾性定数をともに小さくでき、光学的等方性の高い光学用樹脂組成物とするために必須な成分である。さらには、射出成形体のように厚みのある成形体においても、優れた透明性、色調を有し、耐衝撃性などの機械的強度を向上させる。
架橋構造含有重合体は、好ましい形態として、多段重合体、および多層構造重合体を含む。多段重合体は、架橋重合体含有粒子の存在下に、硬質の単量体混合物を重合して得られる重合体であり、多層構造重合体は、架橋重合体層と、硬質重合体層とを有する重合体である。両者は基本的に同一の重合体を指すが、前者は主に製法によって重合体を特定したもの、後者は主に層構造で重合体を特定したものである。以下の説明は、主に後者について行っているが、前者についても同様に適用される。
光学用樹脂組成物を光学的に等方にするためには、配向複屈折と光弾性複屈折をいかに小さくするかというのが重要である。そのため、ここではまず本発明の熱可塑性樹脂、架橋構造含有重合体、光学用樹脂組成物、射出成形体の「配向複屈折」「光弾性複屈折」の考え方について説明する。
(配向複屈折に関する考え方)
薄肉成形、複雑形状、低温成形など、射出成形体中でポリマーが配向するような成形以外の、通常の射出成形体を作成した場合、成形体中のポリマーの配向はそれほど大きくない。ただし、このような通常の射出成形体であっても、特にゲート部付近ではポリマー鎖が配向しやすいことが知られている。このようにポリマー鎖が配向しやすい箇所では、PMMAで代表されるアクリル系樹脂においても複屈折が発生する。この場合の複屈折は、ポリマーが配向することによって発生する複屈折であるため、一般に配向複屈折と呼ばれる。以上、本発明の光学用樹脂組成物をどのように成形するか、成形条件、厚み、形状、ゲート形状、位置、ゲート数等によって、本発明の光学用樹脂組成物から得られる成形体の配向複屈折は左右される。このような成形体中の配向複屈折を小さくするため、架橋構造含有重合体の配向複屈折と熱可塑性樹脂の配向複屈折を設定することが重要となる。ただし先述のとおり、射出成形体中でポリマーがほとんど配向せず、複屈折が十分に小さい場合には、架橋構造含有重合体の配向複屈折に関してはそれほど考慮する必要が無く、この場合は樹脂設計上、特に制限を受けないことになる。
ここで、本発明のいうところの「配向複屈折」の測定は以下のように実施した。
<光学用樹脂組成物の配向複屈折>
光学用樹脂組成物の配向複屈折は、射出成形体を作成し、評価を実施した。
1.射出成形体の中央部の配向複屈折
射出成形により得られた平板(厚み2mm、15cm×10cm)の中央部から15mm×90mm(長辺方向に90mmがくるように切り出す)の試験片を切り出し、複屈折測定装置にて複屈折を測定する。この部位は比較的ポリマーが一方向に配向しにくい部位である。
2.射出成形体のゲート部の配向複屈折
上述と同じ平板のゲート付近の複屈折を評価する。この部位は非常にポリマー鎖が一方向に配向しやすく、サンプル間の複屈折の差を一番見やすい。評価方法として、上述の平板を、2枚の直交する偏光板の間に置き、透過光(光漏れの有無)が観測されるかを確認するクロスニコル試験を実施する。配向複屈折が大きい樹脂の場合は、配向複屈折に起因した光漏れが生じ易い。
<架橋構造含有重合体の配向複屈折>
架橋構造重合体は、その組成、構造によっては単独では射出成形することが困難である。よって、プレス成形シートを作成して「配向複屈折」を測定することにする。
架橋構造含有重合体を190℃でプレスし、膜厚500μmのプレス成形シートを作製する。得られたプレス成形シートの中央部から、25mm×90mmの試験片を切り出し、両短辺を保持してガラス転移温度+30℃にて2分保ち、2倍(100%に延伸とも言う)に長さ方向へ200mm/分の速度で一軸に延伸する(この際、両長辺は固定なし)。その後、得られた成形体を23℃に冷却し、サンプル中央部分をサンプリングし、複屈折を測定し、配向複屈折の符号を得る。
上記の「配向複屈折」は、ポリマーの配向度に依存するため、延伸条件を含め、種々のサンプル作成条件により影響を受けるため、上記のように評価条件を明示した。たとえば延伸温度はガラス転移温度に対して−30℃〜+30℃、+0℃〜+30℃がより好ましく、+5℃〜+30℃の温度範囲にするなど、適宜設定すればよい。ただし、各サンプル間での複屈折性の符号、相対的な大小関係を定量的に得るためには、延伸条件等の測定条件がほぼ同じところでの測定値、符号を用いることが重要である。
(光弾性複屈折(光弾性定数)に関する考え方)
先に説明したとおり、光弾性複屈折は成形体に応力が加わった場合に成形体中のポリマーの弾性的な変形(歪)に伴って引き起こされる複屈折である。実際には、そのポリマーに固有の「光弾性定数」を求めることで、その材料の光弾性複屈折の度合いを評価することができる。まずポリマー材料に応力を印加し、弾性的な歪みが生じた際の複屈折を測定する。得られた複屈折と応力との比例定数が光弾性定数である。この光弾性定数を比較することにより、ポリマーの応力印加時の複屈折性を評価することができる。
上述の「配向複屈折」と同様に、熱可塑性樹脂、架橋構造含有重合体および光学用樹脂組成物はなんらかの成形体にして、その光弾性複屈折を測定する必要があり、本発明では当該成形体を射出成形体またはプレス成形シートとする。
<光学用樹脂組成物の光弾性定数>
上述の配向複屈折の測定方法と同様に、射出成形により得られた平板(厚み2mm、15cm×10cm)の中央部から15mm×90mm(長辺方向に90mmがくるように切り出す)の試験片を切り出す。次に、23℃において、試験片の長辺の一方を固定し、他方は無荷重から4kgfまで0.5kgfずつ荷重をかけた状態で、各々の印加時の複屈折を測定し、得られた結果から、単位応力による複屈折の変化量を算出し、光弾性定数を算出する。
<架橋構造含有重合体の光弾性定数>
架橋構造含有重合体については、上記の「配向複屈折」の項と同様にプレス成形シートを作製し、この複屈折を測定することにより、光弾性定数を求める 架橋構造含有重合体を190℃でプレスし、膜厚500μmのプレス成形シートを作製し、得られたプレス成形シートの中央部から25mm×90mmの試験片を切り出す。測定条件および算出法は、上述の射出成形体の場合と同じとする。
光弾性複屈折は、そのポリマー構造に固有の特性であることから、熱可塑性樹脂の光弾性定数が大きい場合、架橋構造含有重合体の光弾性定数は熱可塑性樹脂の光弾性定数に対して異符号である必要がある。また、架橋構造含有重合体の配合量に関して言えば、熱可塑性樹脂の光弾性複屈折を打ち消すことができるだけの量の架橋構造含有重合体を添加する必要がある。得られるポリマー(共重合体)の光弾性定数と、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの光弾性定数との間には、加成性が成り立つことが知られている。このことから、架橋構造含有重合体が熱可塑性樹脂に対して光弾性定数が異符号であり、且つ大きければ、熱可塑性樹脂と架橋構造含有重合体からなる光学用樹脂組成物、およびその成形体の光弾性複屈折を小さくするための架橋構造含有重合体の必要量は少なくて済む。さらには、光弾性複屈折が異符号の2種類の熱可塑性樹脂を使用することにより、その熱可塑性樹脂アロイの光弾性定数を小さくすることができるため、光弾性複屈折を小さくするための架橋構造含有重合体の必要量はさらに少なくて済む。
配向複屈折に関しては、先述のように、本発明の光学用樹脂組成物からなる成形体、特には射出成形体において、成形体中でポリマーの配向度がそれほど大きくなく、その成形体の配向複屈折が実用上問題無い場合には、架橋構造含有重合体の設計において配向複屈折の考慮をする必要は特にない。ただし、得られた成形体中の配向複屈折が実用上問題となる場合には、架橋構造含有重合体の配向複屈折を、熱可塑性樹脂の配向複屈折に対して異符号にする必要がある。
以上が、本発明で提供する光学用樹脂組成物、および成形体において、低複屈折化を実現するための重要な技術思想である。
ここで、本発明の架橋構造含有重合体は重量平均分子量が5000を超える重合体であればよく、好ましくは10000以上、より好ましくは20000以上であることが好ましい。重量平均分子量が5000以下の場合、成形体の機械的特性、耐熱性、硬度などの物性低下や、高温成形加工時に成形体表面にブリードアウトし、成形体の外観を損なうおそれがある。
架橋構造含有重合体は、架橋重合体層を有する多層構造重合体であるため、光学用樹脂組成物の機械的強度、特に耐衝撃性を向上させることができる。架橋構造含有重合体は、耐熱性の観点から、硬質重合体層を有することが好ましい。このような多層構造重合体のことを、一般に、グラフト共重合体、コアシェルポリマーとも表現されるが、本発明の架橋構造含有重合体はこれらも含むものである。
米国特許第4373065号公報では、2種類のポリマーの構造がかなり異なり、基本的には完全相溶しにくい。実際に、非架橋の2種類のポリマーをブレンドした場合、片方のポリマーが凝集してミクロンオーダーのドメイン、もしくは明らかに目で見えるほど大きな塊、さらには表面ムラとなり、透明性を悪化させたり、フィッシュアイなどの異物の原因となる。このため、2種類のポリマーが完全相溶しやすくするためには、複屈折制御と相溶性制御の2つの要因を考慮してポリマー設計をする必要があるため、ポリマーの設計自由度がかなり低くなる。ここで本発明の架橋構造含有重合体の特徴が発揮されることになる。本発明において、架橋構造含有重合体は架橋重合体層と硬質重合体層とを有し、架橋構造含有重合体1つあたりの大きさがサブミクロンサイズの微細粒子となるように設計されている場合、熱可塑性樹脂に架橋構造含有重合体をブレンドすると、マトリックスである熱可塑性樹脂中に、架橋構造含有重合体がサブミクロンサイズに分散する海島構造をとるため、数mm、数cmなど際限なく架橋構造含有重合体が凝集して、透明性を悪化させたり、フィッシュアイなどの異物の原因になりにくい。このように架橋構造含有重合体があらかじめサブミクロンサイズに設計することでマトリックス中での分散性を制御できることから、完全に相溶性をあわさなくても架橋構造含有重合体がマトリックス中に分散できるため、複屈折制御に重きを置いたポリマー設計にするなど、マトリックスである熱可塑性樹脂および架橋構造含有重合体ともにポリマーの設計自由度を高めることができる。これが2つ目の重要な技術思想となる。
次に本発明の3つ目の重要な技術思想について説明する。本発明の光学用樹脂組成物からなる成形体、特には射出成形体おいて、高い耐熱性、および耐衝撃性などの機械的強度が必要とされるケースがある。特に、光学用レンズ等の光学部材に使用される場合には、実使用時はもちろん、コーティング工程等の製造工程で高温にさらされたりするため、高い耐熱性が必要となる。また、実使用に耐えうる機械的強度、特にはIzod強度で代表される耐衝撃性が重要となる。このような場合には、架橋構造含有重合体の架橋重合体層を「軟質」にすることで、この架橋構造含有重合体をマトリックス成分である熱可塑性樹脂に添加することにより、機械的強度を飛躍的に向上させると同時に、高い耐熱性も同時に実現可能であるというところにある。その効果を発現するために、架橋構造含有重合体は、軟質の架橋重合体層、および硬質重合体層を有する多層構造重合体(グラフト共重合体、コアシェルポリマー)であることが好ましい。通常、機械的強度を向上させるために軟質のポリマーを添加することも方法として挙げられるが、この場合、マトリックス樹脂(ここでは熱可塑性樹脂)と軟質ポリマーが均質に混ざってしまい、得られる成形体の耐熱性を下げてしまうという欠点がある。一方、軟質の架橋重合体層と硬質重合体層を有する多層構造重合体(グラフト共重合体、コアシェルポリマー)の場合、成形体中において、軟質の架橋重合体層が「島」、熱可塑性樹脂と硬質重合体層が「海」となる、不連続な海島構造をとるため、機械的強度を向上させ、かつ耐熱性をほとんど下げないという、優れた効果を出すことが可能である。また、通常、軟質の架橋重合体は、マトリックス(熱可塑性樹脂)とは別組成となるため、マトリックスに均一に分散することは困難であり、透明性などの光学特性の低下や、フィッシュアイ等の欠陥の原因、さらには機械的強度を下げる要因となる。しかしながら、軟質の架橋重合体層と硬質重合体層を併せ持つ多層構造重合体であれば、前述のようにマトリックス中に軟質の架橋重合体を均一に分散させることが可能となる。
ここでいう「軟質」とは、重合体のガラス転移温度が20℃未満であることを意味する。軟質層の衝撃吸収能力を高め、耐割れ性などの耐衝撃性改良効果を高める観点から、重合体のガラス転移温度が0℃未満であることが好ましく、−20℃未満であることがより好ましい。
また、ここでいう「硬質」とは、重合体のガラス転移温度が20℃以上であることを意味する。重合体のガラス転移温度が20℃未満の場合、架橋構造含有重合体を配合した光学用樹脂組成物、および成形体の耐熱性が低下したり、また架橋構造含有重合体を製造する際に架橋構造含有重合体の粗大化や塊状化が起こり易くなるなどの問題が発生する。
本願において、「軟質」および「硬質」の重合体のガラス転移温度は、ポリマーハンドブック[Polymer Hand Book(J.Brandrup,Interscience 1989)]に記載されている値を使用してFoxの式を用いて算出した値を用いることとする(例えば、ポリメチルメタクリレートは105℃であり、ポリブチルアクリレートは−54℃である)。
ここで、本発明の光学用樹脂組成物からなる成形体に対して、高い機械的強度がそれほど必要とされない場合には、前記架橋重合体層は「軟質」でも、「硬質」でもよく、この定義は前記のとおりである。
本願では、架橋構造含有重合体に関して、架橋重合体層に対して、硬質重合体層がどの程度共有結合しているかを表すために、グラフト率というパラメーターを使う。
架橋構造含有重合体のグラフト率とは、架橋重合体層の重量を100とした場合の、架橋重合体層に対して、グラフトされた硬質重合体層の重量比率を表す指標である。このグラフト率は10〜250%が好ましく、より好ましくは40〜230%、最も好ましくは60〜220%である。グラフト率が10%未満では、成形体中で架橋構造含有重合体が凝集しやすく、透明性が低下したり、異物原因、および機械的強度が低下する恐れがある。 なお、硬質重合体層の一部には架橋重合体層と結合していない(グラフトしていない)ポリマー(フリーポリマーとも言う)も存在する場合があるが、このフリーポリマーも架橋構造含有重合体に含むものとする。
(架橋重合体層の説明)
ここでは、架橋構造含有重合体がグラフト共重合体である場合の架橋重合体層について説明する。
1.「軟質」の架橋重合体層の説明
まず、「軟質」の架橋重合体層について説明する。
「軟質」の架橋重合体層の役割として、(1)熱可塑性樹脂中に均一に分散することにより、耐衝撃性等の機械的強度を向上させること、および、(2)熱可塑性樹脂が有している複屈折を打ち消して、本発明の光学用樹脂組成物、および成形体の光学的等方性を高める役割がある。
(1)に関しては、ガラス転移温度を20℃未満にするように、適宜モノマーを選択し、重合することで達成することができる。前述のとおり、アクリルモノマーからなるゴム、すなわちアクリル系ゴムであることが好ましい。
(2)に関して、配向複屈折について説明する。本発明の光学用樹脂組成物を射出成形する場合、射出条件、金型形状、ゲート形状等により、マトリックス成分となる熱可塑性樹脂のみならず、前記「軟質」の架橋重合体についても配向し、配向複屈折を生じることを今回発見した。架橋重合体が配向複屈折を発現する度合いについては、それを構成するポリマー組成にもよるが、架橋度にも左右される。架橋度が高い場合には樹脂が配向しやすい成形条件においても架橋重合体層は変形しにくく(配向しにくく)、配向複屈折は発生しにくい。一方で、架橋度が低い場合には、成形条件によって架橋重合体も配向しやすくなり、配向複屈折を生じる。いずれの場合においても成形体中の配向複屈折を小さくするためには、架橋重合体を構成するポリマー組成の配向複屈折を考慮する必要がある。具体的な対策としては、熱可塑性樹脂に対して、配向複屈折を異符号となるように、架橋重合体のポリマー組成を設計しておくことが重要である。
次に架橋重合体層に使用される好適なモノマーについて説明する。
マトリックスとなる熱可塑性樹脂がアクリル系樹脂である場合、アクリル系樹脂の配向複屈折が負であるため、架橋重合体の配向複屈折は異符号の正にする必要がある。
一方、光弾性複屈折に関する架橋重合体についての影響についても述べる。一定応力下で発現する光弾性複屈折は、架橋重合体が変形しにくく、したがって光弾性複屈折への寄与は小さくなる。架橋度が低ければ寄与しやすい傾向ではあるが、配向複屈折への影響と比べれば、それほど配慮する必要はない。
以上の観点から、本発明の架橋重合体層は、下記一般式(4)で表される単量体および多官能性単量体を含む単量体混合物を重合して形成されることが好ましい。
Figure 0006691778
は、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。RおよびR10が有していてもよい置換基としては、例えば、ハロゲン、水酸基、カルボキシル基、アルコキシ基、カルボニル基(ケトン構造)、アミノ基、アミド基、エポキシ基、炭素−炭素間の二重結合、エステル基(カルボキシル基の誘導体)、メルカプト基、スルホニル基、スルホン基、及びニトロ基からなる群より選択される少なくとも1種が挙げられる。なかでも、ハロゲン、水酸基、カルボキシル基、アルコキシ基、及びニトロ基からなる群より選択される少なくとも1種が好ましい。lは1〜4の整数を示し、好ましくは1または2である。mは0〜1の整数である。nは0〜10の整数を示し、好ましくは0〜2の整数を示し、より好ましくは0または1である。
式(4)で表される単量体は、式(4)において、Rは、置換もしくは無置換の炭素数1のアルキル基である、(メタ)アクリル系単量体であることが好ましい。式(4)において、R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造を有する、(メタ)アクリル系単量体であることがより好ましい。
式(4)において、lは1〜2の整数である、nは0〜2の整数である、(メタ)アクリル系単量体であることがより好ましい。
具体的には、脂環式基を有する単量体としては(メタ)アクリル酸ジシクロペンタニル、ジシクロペンテニルオキシエチル(メタ)アクリレート、などが挙げられる。また、芳香族基を有する単量体としては、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル等を挙げることができる。複素環式構造を有する単量体としては、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等を挙げることができる。
式(4)で表される(メタ)アクリル系単量体の中でも、配向複屈折、透明性の点から(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルが好ましい。前記式(4)で表される単量体のなかでも、(メタ)アクリル酸ベンジルが光学的等方性、熱可塑性樹脂の配向複屈折を打ち消して小さくすること、および透明性の観点から最も好ましい。なかでも、耐熱性を高くしたい場合にはメタクリル酸ベンジルのほうが、ガラス転移温度が高く、好ましい。一方で、強度発現性を求める場合には、アクリル酸ベンジルのほうがガラス転移温度が低く、好ましい。たとえば、熱可塑性樹脂がアクリル系樹脂の場合、配向複屈折が負であるため、比較的大きな正の光弾性定数を有するメタクリル酸ベンジルを用いることで、メタクリル酸ベンジルの使用量が少なくて済み、また架橋構造含有重合体の使用量も少なくて済むなど、光学用樹脂組成物の設計自由度が増えるなどのメリットがある。また、架橋重合体の架橋度が低く、光弾性複屈折を発現する場合においては、アクリル系樹脂が配向複屈折/光弾性複屈折ともに負であるのに対して、メタクリル酸ベンジルは配向複屈折/光弾性複屈折ともに正であるため、光学用樹脂組成物、および成形体の配向複屈折を小さくしながら、同時に光弾性複屈折も小さくすることが可能である。
優れた光学的等方性を維持しながら、機械的強度を発現させる観点から、前記式(4)で表される単量体を構成単位に有する架橋重合体層は、前記式(4)で表される単量体1〜100重量%、これと共重合可能な他の単官能性単量体99〜0重量%および多官能性単量体0.05〜10重量部(前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体の総量100重量部に対して)を重合してなるものが好ましい。前記式(4)で表される単量体の使用量は、前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体の総量100重量%において1〜100重量%が好ましく、5〜70重量%がより好ましく、5〜50重量%が最も好ましい。多官能性単量体の添加量が0.05重量部未満では、架橋体を形成しにくい傾向があり、10重量部を超えても、成形体の耐衝撃性が低下する傾向がある。好ましくは0.1〜5重量部である。架橋重合体層は単量体を全部混合して一段で重合してなるものであってもよく、また単量体組成を変化させて2段以上で重合してなるものであってもよい。
本発明においては、前記式(4)で表される単量体として、メタクリル酸ベンジル、アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルのいずれでも好適に使用することができ、いずれか1種、もしくは併用して使用することができる。より高い耐熱性を求める用途に対しては、ガラス転移温度の観点からメタクリル酸ベンジルを使用したほうが好ましい。
前記式(4)で表される単量体と共重合可能な他の単官能性単量体としては、メタクリル酸エステルが挙げられ、重合性やコストの点よりメタクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数1〜12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、アクリル酸オクチル、メタクリル酸β−ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等が挙げられる。また、アクリル酸エステルも好適に用いることができ、重合反応性やコストの点からアクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数が1〜12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸−2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸β−ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル等があげられる。また、共重合可能な他の単官能性単量体としては、無水マレイン酸、無水シトラコン酸、ジメチル無水マレイン酸、ジクロロ無水マレイン酸、ブロモ無水マレイン酸、ジブロモ無水マレイン酸、フェニル無水マレイン酸、ジフェニル無水マレイン酸等の無置換及び/又は置換無水マレイン酸類、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド等の(メタ)アクリルアミド類、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α−メチルスチレン等の芳香族ビニルおよびその誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、メタクリル酸、メタクリル酸ナトリウム、メタクリル酸カルシウム等のメタクリル酸およびその塩、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸ノルマルブチル、2−(ヒドロキシメチル)アクリル酸ターシャリーブチル等の(ヒドロキシアルキル)アクリル酸エステル等があげられる。これらの単量体は単独、もしくは2種以上が併用されてもよい。なかでも、メタクリル酸エステル、アクリル酸エステルが好ましく、さらにはガラス転移温度が低く、機械的強度に優れることから、アクリル酸エステルが好ましく、中でも、アクリル酸n−ブチル、アクリル酸−2−エチルヘキシルが好ましく、アクリル酸n−ブチルが最も好ましい。本発明の架橋構造含有重合体は、上述の架橋重合体層の他に、異なる架橋重合体層を1層以上有していてもよい。
(硬質重合体層の説明)
先述のとおり、硬質重合体層を形成する「硬質」の重合体に必要な特性として、(1)架橋構造含有重合体をマトリックス(熱可塑性樹脂)中に均一に分散させること、および、(2)熱可塑性樹脂が有している複屈折を打ち消して、本発明の光学用樹脂組成物、および成形体の光学的等方性を高める役割がある。
(1)に関しては、マトリックス成分と相溶しやすいポリマーになるように、適宜モノマーを選択し、重合することで達成することができる。
(2)に関しては、薄肉成形、複雑形状、低温成形条件化での射出成形ではない場合、およびゲート部近傍にて配向複屈折があまり大きくなく、課題とならない場合には、成形体の光弾性定数が極めて小さくなるように、硬質の重合体の光弾性定数をマトリックス(熱可塑性樹脂)に対して異符号にすることで達成することができる。一方、射出成形体中の配向複屈折が比較的大きく、課題となる場合には、成形体の光弾性定数だけでなく、配向複屈折の両方とも極めて小さくなるように、硬質の重合体の光弾性定数、配向複屈折の両方をマトリックス(熱可塑性樹脂)に対して異符号にすることで達成することができる。
(2)に関してさらに重要なことは、マトリックスである熱可塑性樹脂の複屈折を打ち消すことができる効果は、「硬質」の重合体層のほうが大きく、架橋構造を有する重合体層は効果が小さいという点である。架橋構造含有重合体の架橋重合体層、硬質重合体層のいずれか、もしくは両方など、特に層を限定せずに、熱可塑性樹脂の複屈折を打ち消す機能を持たせてもよいが、「硬質」重合体層が最も好適である。その理由としては、マトリックス(熱可塑性樹脂)が成形時にポリマーが配向する、もしくは応力がかかることでポリマーが配向する場合、マトリックスのポリマー鎖が外力により配向する方向に、架橋構造含有重合体のポリマー鎖も配向することで、複屈折を打ち消すことができると考えている。この場合、架橋構造を有する重合体層は外力に対して変形しにくいために、ポリマー鎖が配向しにくく、マトリックスの複屈折を打ち消す効果は小さくなる。もちろん、架橋密度が低ければ外力により変形しやすいので、架橋構造を有する重合体層であってもマトリックスの複屈折を打ち消す効果はある程度期待できるため、架橋重合体層含め、グラフト共重合体のいずれの重合体層に、マトリックスの複屈折を打ち消す機能を持たせても良い。好ましくは、架橋重合体層以外の重合体層が挙げられ、外力により配向しうる重合体層が好ましく、具体的には「硬質」の重合体層で挙げられる。より好ましくは架橋構造を有していない「硬質」の重合体層であり、なおさら好ましくは、架橋構造含有重合体の外層であり、マトリックスと直接接触しやすい部位にある、架橋構造を有していない「硬質」の重合体層である。
熱可塑性樹脂が有している複屈折を打ち消して、本発明の光学用樹脂組成物、および成形体の光学的等方性を高める効果が高い架橋構造含有重合体の外層に位置する「硬質」の重合体層を例として、以下に説明することにする。
架橋構造含有重合体の硬質重合体層に使用され、熱可塑性樹脂の光弾性複屈折を打ち消すのに適したモノマー種に関しては、熱可塑性樹脂と架橋構造含有重合体の各々の光弾性定数が異符号となるように選択すればよい。
ポリマーの光弾性定数を設定する上で、参考になる具体的なモノマーの例を以下に記すが、これらに限定されるわけではない。([ ]内は対応するホモポリマーの光弾性定数)
正の光弾性複屈折を示すモノマー:
ベンジルメタクリレート [48.4×10-12Pa-1
ジシクロペンタニルメタクリレート [6.7×10-12Pa-1
スチレン [10.1×10-12Pa-1
パラクロロスチレン [29.0×10-12Pa-1
負の光弾性複屈折を示すモノマー:
メチルメタクリレート [-4.3×10-12Pa-1
2,2,2−トリフルオロエチルメタクリレート [-1.7×10-12Pa-1
2,2,2−トリクロロエチルメタクリレート [-10.2×10-12Pa-1
イソボルニルメタクリレート [-5.8×10-12Pa-1
共重合体ポリマーの光弾性定数は、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの光弾性定数との間に加成性が成り立つことが知られている。例えば、メチルメタクリレート(MMA)とベンジルメタクリレート(BzMA)の2元共重合系については、poly−MMA/BzMA=92/8(wt%)にて光弾性複屈折がほぼゼロになることが報告されている。また、2種以上のポリマー混合(アロイ)についても同様であり、各ポリマーが有する光弾性定数との間に加成性が成り立つ。以上のことから、本発明の光学用樹脂組成物、および成形体の光弾性複屈折が小さくなるように、熱可塑性樹脂と架橋構造含有重合体の光弾性定数を異符号にし、且つその配合量(wt%)を調整することが必要である。
また、共重合体ポリマーの配向複屈折についても、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの固有複屈折との間に加成性が成り立つことが知られている。また、2種以上のポリマー混合(アロイ)についても同様であり、各ポリマーが有する固有複屈折との間に加成性が成り立つ。架橋構造含有重合体の硬質重合体層に使用され、熱可塑性樹脂の配向複屈折を打ち消すのに適したモノマー種に関しては、熱可塑性樹脂と架橋構造含有重合体の各々の配向複屈折が異符号となるように選択すればよい。ポリマーの配向複屈折を設定する上で、参考になる具体的なモノマー(そのモノマーからなるホモポリマーの固有複屈折)の例を以下に記すが、これらに限定されるわけではない。なお、固有複屈折とは、ポリマーが完全に一方向に配向した状態のときの複屈折(配向複屈折)である。
正の固有複屈折を示すポリマー:
ポリベンジルメタクリレート [+0.002]
ポリフェニレンオキサイド [+0.210]
ビスフェノールAポリカーボネート [+0.106]
ポリビニルクロライド [+0.027]
ポリエチレンテレフタレート [+0.105]
ポリエチレン [+0.044]
負の固有複屈折を示すポリマー:
ポリメチルメタクリレート [−0.0043]
ポリスチレン [−0.100]
以上、一部のポリマーの光弾性定数、配向複屈折のデータを記載したが、ポリマーによっては配向複屈折は「正」、光弾性定数は「負」など、両方の複屈折が同じ符号であるとは限らない。次の表1に一部のホモポリマーの配向複屈折と光弾性複屈折(定数)の符号の例を示す。
Figure 0006691778
たとえば、ポリ(MMA/BzMA=82/18(wt%))付近の組成は配向複屈折がほぼゼロとなること、poly(MMA/BzMA=92/8(wt%))付近の組成は光弾性複屈折(定数)がほぼゼロとなることが知られている。このように、熱可塑性樹脂がアクリル系樹脂の場合は、配向複屈折、光弾性定数の両方がともに負になることが多いため、架橋構造含有重合体(特には外層の硬質の重合体層)に、配向複屈折も光弾性複屈折の両方の符号が正であるベンジルメタクリレートを使用することで、光弾性複屈折も打ち消しながら、配向複屈折も打ち消すことができ、好適であることがわかる。
次に、硬質重合体層の詳細なポリマー組成について説明する。
マトリックスとなる熱可塑性樹脂の光弾性複屈折、場合によっては配向複屈折を打ち消すという観点、および、機械的強度、耐熱性、フィッシュアイ等の外観欠陥を低減させるために架橋構造含有重合体の熱可塑性樹脂中での分散性を向上させる(すなわち、相溶性をあげる)という観点から、上記式(4)で表される単量体を構造単位に含むことが好ましい。硬質重合体層における上記式(4)で表される単量体としては、架橋重合体層における式(4)で表される単量体と同一のものを使用してもよいし、異なるものを使用してもよい。
式(4)で表される単量体は、式(4)において、Rは、水素原子、または置換もしくは無置換の炭素数1のアルキル基である、(メタ)アクリル系単量体であることが好ましい。式(4)において、R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造を有する、(メタ)アクリル系単量体であることがより好ましい。
式(4)において、lは1〜2の整数である、nは0〜2の整数である、(メタ)アクリル系単量体であることがより好ましい。
式(4)で表される(メタ)アクリル系単量体の中でも、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルが好ましい。
前記式(4)で表される単量体のなかでも、(メタ)アクリル酸ベンジルが光学的等方性、熱可塑性樹脂との相溶性、成形性の面で最も好ましい。さらには、メタクリル酸ベンジルのほうが、ガラス転移温度が高く、耐熱性の面で好ましい。たとえば、熱可塑性樹脂がアクリル系樹脂の場合、光弾性定数が負であるため、比較的大きな正の光弾性定数を有するメタクリル酸ベンジルを用いることで、メタクリル酸ベンジルの使用量が少なくて済み、また架橋構造含有重合体の使用量も少なくて済むなど、光学用樹脂組成物の設計自由度が増えるなどのメリットがある。また、成形体の配向複屈折が大きく、実用上問題となるケースにおいても、アクリル系樹脂が配向複屈折/光弾性複屈折ともに負であるのに対して、メタクリル酸ベンジルは配向複屈折/光弾性複屈折ともに正であるため、光学用樹脂組成物、および成形体の光弾性複屈折を小さくしながら、同時に配向複屈折も小さくすることが可能である。
優れた光学的等方性を維持しながら、架橋構造含有重合体の分散性を良好にし、フィッシュアイ等の外観欠陥を低減させる観点から、前記式(4)で表される単量体を構成単位に有する硬質重合体層は、前記式(4)で表される単量体1〜99重量%、これと共重合可能な他の単官能性単量体99〜1重量%および多官能性単量体0〜2.0重量部(前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体の総量100重量部に対して)を重合してなるものが好ましい。当該硬質重合体層は単量体を全部混合して一段で重合してなるものであってもよく、また単量体組成を変化させて2段以上で重合してなるものであってもよい。
本発明においては、前記式(4)で表される単量体として、メタクリル酸ベンジル、アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルのいずれでも好適に使用することができ、いずれか1種、もしくは併用して使用することができる。より高い耐熱性を求める用途に対しては、ガラス転移温度の観点からメタクリル酸ベンジルを使用したほうが好ましい。
前記式(4)で表される単量体と共重合可能な他の単官能性単量体としては、メタクリル酸エステルが挙げられ、重合性やコストの点よりメタクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数1〜12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、アクリル酸オクチル、メタクリル酸β−ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等が挙げられる。また、アクリル酸エステルも好適に用いることができ、重合反応性やコストの点からアクリル酸アルキルエステルが好ましく、具体的にはアルキル基の炭素数が1〜12であるものが好ましく、直鎖状でも分岐状でもよい。その具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸−2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸β−ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル等があげられる。また、共重合可能な他の単官能性単量体としては、無水マレイン酸、無水シトラコン酸、ジメチル無水マレイン酸、ジクロロ無水マレイン酸、ブロモ無水マレイン酸、ジブロモ無水マレイン酸、フェニル無水マレイン酸、ジフェニル無水マレイン酸等の無置換及び/又は置換無水マレイン酸類、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド等の(メタ)アクリルアミド類、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α−メチルスチレン等の芳香族ビニルおよびその誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、メタクリル酸、メタクリル酸ナトリウム、メタクリル酸カルシウム等のメタクリル酸およびその塩、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸ノルマルブチル、2−(ヒドロキシメチル)アクリル酸ターシャリーブチル等の(ヒドロキシアルキル)アクリル酸エステル等があげられる。これらの単量体は単独、もしくは2種以上が併用されてもよい。なかでも、メタクリル酸アルキルエステル、アクリル酸アルキルエステルが好ましく、さらにはアクリル系熱可塑性樹脂との相溶性の点でメタクリル酸メチル、ジッパー解重合を抑制する点でアクリル酸メチル、アクリル酸エチル、もしくはアクリル酸n−ブチルを用いるのが好ましい。
前記式(4)で表される単量体の使用量は、前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体の総量100重量%において1〜99重量%が好ましく、5〜70重量%がより好ましく、5〜50重量%が最も好ましい。
成形加工時の熱安定性が向上し、耐溶剤性が向上し、架橋構造含有重合体の分散性が向上する点から、(メタ)アクリル酸および/またはその塩が使用されることが好ましい。(メタ)アクリル酸の塩としては、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カルシウム、(メタ)アクリル酸マグネシウム、(メタ)アクリル酸アンモニウムなどが挙げられる。
(メタ)アクリル酸および/またはその塩を使用する場合は、前記式(4)で表される単量体、(メタ)アクリル酸および/またはその塩およびこれと共重合可能な他の単官能性単量体の総量100重量%において0.1〜30重量%含まれることが好ましく、0.1〜20重量%がより好ましく、0.1〜15重量%がさらに好ましく、0.1〜10重量%がよりさらに好ましく、0.1〜7重量%が最も好ましい。
硬質重合体層中に(メタ)アクリル酸および/またはその塩由来の構造が存在することにより、(メタ)アクリル酸のカルボキシル基、及び(メタ)アクリル酸の隣に存在する(メタ)アクリル酸誘導体のアルキル基が、成形加工時に脱アルキルアルコール化することにより環化し、酸無水物構造を取る。たとえば、(メタ)アクリル酸の隣が(メタ)アクリル酸メチルであれば、脱メタノール反応が起こり、酸無水物構造となる。さらに、(メタ)アクリル酸の隣が(メタ)アクリル酸ベンジルであれば、脱ベンジルアルコール反応が起こり、酸無水物構造となる。実際に成形加工時の高温条件下では、(メタ)アクリル酸塩であっても、後述する塩凝固処理において(メタ)アクリル酸由来のカルボキシル基が塩を形成することがあっても、遊離酸に解離し得るため、(メタ)アクリル酸および/またはその塩由来の構造は、遊離の酸またはマグネシウム塩、カルシウム塩、アンモニウム塩などの塩の形態であってもよい。
(メタ)アクリル酸が無水物構造になる割合は、加工条件等の熱履歴で変わり、必ずしも全ての(メタ)アクリル酸が酸無水物構造になる必要はなく、環化率は必要な特性に応じて任意に調整すればよい。
なお、前記式(4)で表される(メタ)アクリレート単量体を構成単位に有する硬質重合体層には、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体を使用してもよい。ここで、多官能性単量体としては、架橋重合体層に使用され得る多官能性単量体を同様に使用することができる。硬質重合体層における多官能性単量体の使用量(前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体の総量100重量部に対して)は、光学的等方性および分散性の観点から、0〜2.0重量部が好ましく、0〜1.0重量部がより好ましく、0〜0.5重量部がさらに好ましく、0〜0.04重量部がなおさら好ましく、0重量部が最も好ましい。
架橋構造含有重合体は、多層構造中に前記式(4)で表される単量体を構成単位に有する硬質重合体層を有することが好ましく、硬質の最外層を有する場合に、この最外層に前記式(4)で表される単量体を構成単位に有する硬質重合体層を有することがより好ましい。硬質の最外層に有することにより、アクリル系熱可塑性樹脂とより相溶しやすくなり、配向複屈折および光弾性定数をより小さくでき、さらに光学的等方性に優れる成形体を得やすくなる。この硬質の最外層の内側に、(メタ)アクリル系架橋重合体層((メタ)アクリル系ゴム)を有する軟質層が隣接していてもよい。
架橋構造含有重合体は、上記硬質重合体層の他に、異なる硬質重合体層を1層以上有していても良い。
架橋構造含有重合体の好ましい一形態を例示すれば、軟質の内層および硬質の外層を有し、上記内層が前記(4)で表される単量体を構成単位に有する架橋重合体層を有し、上記外層が前記式(4)で表される単量体を構成単位に有する硬質重合体層を有する形態を挙げることができる。この形態は生産性の観点から好ましい。その他の好ましい一形態を例示すれば、架橋構造含有重合体が、硬質の内層、軟質の中間層および硬質の外層を有し、上記内層が少なくとも一種の硬質重合体層からなり、上記中間層が前記(4)で表される単量体を構成単位に有する架橋重合体層からなる軟質重合体層を有し、上記外層が前記式(4)で表される単量体を構成単位に有する硬質重合体層を有する形態を挙げることができ、この形態はさらに軟質の最内層を有していてもよい。本発明においては、これらを適宜1種、または2種以上を組合せて使用することができる。
本願における、軟質の内層、軟質の中間層および軟質層(以下、軟質層)は、少なくとも1種の軟質重合体からなる内層、中間層および層のことをいう。
一方、本願における、硬質の(最)外層および硬質の内層は、少なくとも1種の硬質重合体からなる(最)外層および内層のことをいう。ここでいう「軟質」および「硬質」とは、上述した「軟質」および「硬質」と同様である。
架橋構造含有重合体が、例えば、硬質の内層、軟質の中間層および硬質の外層からなる多層構造体のように、最内層に硬質層を有する場合は、最内層の硬質重合体としては、硬度や耐割れ性バランスの観点から、メタクリル酸エステル40〜100重量%、アクリル酸エステル0〜60重量%、芳香族ビニル系単量体0〜60重量%、多官能性単量体0〜10重量%、ならびにメタクリル酸エステル、アクリル酸エステル、および芳香族ビニル系単量体と共重合可能な他の単官能性単量体0〜20重量%からなる硬質重合体が好適に例示されうる。
架橋構造含有重合体は、例えば、前記式(4)で表される単量体を構成単位に有する架橋重合体層を有する軟質の内層、および、前記式(4)で表される単量体を構成単位に有する重合体層を有する硬質の外層からなる多層構造体である場合、軟質の内層を外層の硬質重合体が完全に被覆した層構造が一般的であるが、軟質の内層と硬質の外層の重量比等によっては、層構造を形成するための硬質重合体量が不充分な場合もありうる。そのような場合は、完全な層構造である必要はなく、軟質の内層の一部を外部となる硬質重合体が被覆した構造、或いは軟質の内層の一部に外部となる硬質重合体がグラフト重合した構造も好適に用いることができる。なお、その他形態の多層構造体についても同様のことが当てはまる。
架橋構造含有重合体の架橋重合体層までの体積平均粒子径は、20〜450nmが好ましく、40〜350nmがより好ましく、80〜300nmが更に好ましく、80〜250nmが最も好ましい。20nm未満では耐衝撃性が悪化する場合がある。一方、450nmを超えると透明性が低下する場合がある。なお、体積平均粒子径は、動的散乱法により、例えば、MICROTRAC UPA150(日機装株式会社製)を用いることにより測定することができる。ここで、架橋構造含有重合体の架橋重合体層までの体積平均粒子径とは、具体的には、架橋構造含有重合体粒子の中心から架橋重合体層までの粒子の体積平均粒子径を指す。架橋構造含有重合体が架橋重合体層を2層以上有する場合は、中心に対して最も外側に位置する架橋重合体層までの体積平均粒子径をいうものとする。
架橋構造含有重合体中の架橋重合体の含有量は、架橋構造含有重合体を100重量%とした場合、10〜90重量%が好ましく、20〜80重量%がより好ましく、30〜60重量%がさらに好ましく、35〜55重量%が最も好ましい。10重量%未満では、得られる光学用樹脂組成物の耐衝撃性等の機械的強度が低くなる場合がある。一方、90重量%を上回ると、架橋構造含有重合体の分散性が損なわれ、成形体の表面の平滑性が得られず、フィッシュアイ等の外観不良が発生する傾向がある。また、硬質重合体の含有量が十分ではなく、配向時の複屈折や光弾性定数が大きくなるなど光学的等方性を保てなくなる傾向がある。
架橋構造含有重合体の製造方法は特に限定されず、公知の乳化重合法、乳化−懸濁重合法、懸濁重合法、塊状重合法または溶液重合法が適用可能である。架橋構造含有重合体の重合については乳化重合法が特に好ましい。
架橋構造含有重合体は、多段重合により得られるものが好ましく、この多段重合の少なくとも1段の重合として、前記式(4)で表される単量体を構成単位に有する架橋重合体含有粒子の存在下において、前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体を含有する単量体混合物を重合することによって得られる、多段重合のグラフト共重合体を好ましく使用できる。
前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体を含有する単量体混合物の重合により、前記式(4)で表される単量体を構成単位に有する硬質重合体が形成される。前記式(4)で表される単量体と共重合可能な他の単官能性単量体は、上述の例示と同様であり、同様に好ましく使用できる。前記式(4)で表される単量体と共重合可能な他の単官能性単量体の好ましい含有量についても同様である。また、多官能性単量体およびその配合量についても、上述の例示と同様であり、同様に好ましく使用できる。
前記式(4)で表される単量体を構成単位に有する架橋重合体含有粒子は、少なくとも前記式(4)で表される単量体を構成単位に有する架橋重合体を有する多段重合体粒子であればよく、アクリル酸エステル50〜100重量%、アクリル酸エステルと共重合可能な他の単官能性単量体50〜0重量%、ならびに多官能性単量体0.05〜10重量部(アクリル酸エステルおよびこれと共重合可能な他の単官能性単量体の総量100重量部に対して)を重合してなるゴム((メタ)アクリル系架橋重合体)部を更に有してもよい。ゴム部は、単量体成分を全部混合して1段で重合してもよいし、単量体組成を変化させて2段以上で重合してもよい。
前記式(4)で表される単量体を構成単位に有する架橋重合体粒子は、多段重合における少なくとも1段の重合として前記式(4)で表される単量体を構成単位に有する架橋重合体(ゴム部)が形成されるものであれば特に限定されず、前記式(4)で表される単量体を構成単位に有する架橋重合体の重合段階の前および/または後に、硬質重合体の重合を行なっても良い。
中でも、生産性の点から、架橋構造含有重合体が、(b−1)前記式(4)で表される単量体1〜100重量%およびこれと共重合可能な単官能性単量体99〜0重量%、および多官能性単量体0.05〜10重量部(前記式(4)で表される単量体およびこれと共重合可能な単官能性単量体の総量100重量部に対して)からなる単量体混合物を重合して(メタ)アクリル系ゴム含有重合体粒子を得、
(b−2)上記前記式(4)で表される単量体を構成単位に有する架橋重合体含有粒子の存在下に、前記式(4)で表される単量体1〜99重量%、これと共重合可能な他の単官能性単量体99〜1重量%および多官能性単量体0〜2.0重量部(前記式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体の総量100重量部に対して)からなる単量体混合物を重合して、グラフト共重合体として得られるものを使用するのが好ましい。ここで、(b−1)重合段階の単量体混合物、および/または(b−2)重合段階の単量体混合物は、単量体成分を全部混合して1段で重合してもよいし、単量体組成を変化させて2段以上で重合してもよい。また、(b−1)における、単量体混合物の成分およびこれらの好ましい使用量は、上述の架橋重合体層における例示と同様である。(b−2)における、単量体混合物の成分およびこれらの好ましい使用量は、上述の硬質重合体層における例示と同様である。
架橋構造含有重合体の架橋重合体層までの体積平均粒子径は、上述の架橋構造含有重合体の架橋重合体層までの体積平均粒子径と同様に測定されるものであり、好ましい範囲も同様である。
架橋構造含有重合体を乳化重合により製造する場合には、公知の乳化剤を用いて通常の乳化重合により製造することができる。具体的には、例えばアルキルスルフォン酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ジオクチルスルフォコハク酸ナトリウム、ラウリル硫酸ナトリウム、脂肪酸ナトリウム、ポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩等の陰イオン性界面活性剤や、アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド、エチレンオキサイドとの反応生成物等の非イオン性界面活性剤等が示される。これらの界面活性剤は単独で用いてもよく、2種以上併用してもよい。更に要すれば、アルキルアミン塩等の陽イオン性界面活性剤を使用してもよい。このうち、得られた架橋構造含有重合体の熱安定性を向上させる観点から、特にはポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩(アルカリ金属、又はアルカリ土類金属)を用いて重合することが好ましい。
このように乳化重合で製造された架橋構造含有重合体は、水相中に、架橋構造含有重合体の一次粒子が乳化分散した、いわゆるラテックスの状態で得られる。このような架橋構造含有重合体のラテックスは、架橋構造含有重合体粒子の多層重合の工程にともなって副生する、スケールと言われる、より粒子径の大きな、しばしば部分的または全体に架橋構造を伴うポリマー粒子やポリマー塊を含むことが多い。更に、重合工程を通じて、外部環境から、無機物や気相中や水中のダストなどを含む異物が混入することが有る。これらのスケールや異物は、本発明の光学用樹脂組成物中に混入した場合に、成形体の光学的な欠陥の原因となり好ましくない。このため、これらのスケールや異物を減少あるいは除去する目的で、架橋構造含有重合体のラテックスを、メッシュあるいはフィルターでろ過することが好ましい。ろ過に使用されるメッシュやフィルターは、液状物のろ過目的で提案されている公知のものが広く適用可能であり、架橋構造含有重合体の一次粒子が通過出来る範囲の目開きで、副生する重合スケールや混入する異物の大きさや必要な除去率に応じて、方式や目開き、ろ過容量などを適宜選択すれば良い。
乳化重合により得られる架橋構造含有重合体ラテックスは、例えば、噴霧乾燥、凍結乾燥、あるいは塩化カルシウム、塩化マグネシウム等の塩、または塩酸、硫酸等の酸を凝固剤として添加することで凝固を行ない、適宜加熱処理等により凝固した樹脂分を水相より分離して、洗浄、乾燥を行なう、等の既知の方法により処理することで、粉末状の架橋構造含有重合体が得られる。重合体ラテックスの凝固により架橋構造含有重合体を得る場合には、凝固剤としては、酸や塩などの公知の凝固剤が使用できるが、得られた架橋構造含有重合体の成形時の熱安定性を向上させる観点からマグネシウム塩、特には硫酸マグネシウムを用いることが特に好ましい。
架橋構造含有重合体は、光学用樹脂組成物100重量部において架橋重合体層または架橋重合体含有粒子が1〜60重量部含まれるように配合されることが好ましく、1〜30重量部がより好ましく、1〜25重量部がさらに好ましい。1重量部未満では耐衝撃性などの機械的強度が低下し、また光弾性定数が大きくなり、光学的等方性に劣ったりする場合がある。一方、60重量部を越えると成形体の耐熱性、表面硬度、透明性、色調などが悪化する傾向がある。
熱可塑性樹脂と架橋構造含有重合体の配合比率については、前記配合条件を満たしていれば特に問題はなく、また、架橋構造含有重合体に含まれる架橋重合体層の量にもよるが、熱可塑性樹脂と架橋構造含有重合体の合計を100重量%とした場合、架橋構造含有重合体が1〜99重量%が好ましく、1〜80重量%がより好ましく、1〜60重量%がさらに好ましい。1重量%未満では成形体の耐衝撃性などの機械的強度が低下したり、また光弾性定数が大きくなるなどの光学的等方性に劣ったりする場合がある。一方、99重量%を越えると成形体の耐熱性、表面硬度、透明性、色調、成形体の表面外観性が悪化する傾向がある。
本発明の光学用樹脂組成物は、各成分を粒状のまま混合して、または押出機によりペレット状としたのち、加熱しながら押出成形や射出成形、圧縮成形、ブロー成形、紡糸成形等により、用途に適した形状の成形品とすることができる。これらの成形法の中で射出成形は、レンズ等の複雑な立体形状の部材の量産性に優れた成形法であるが、溶融樹脂を高速で金型内に流入させ賦形・急冷するため、例えばキャスト成形や圧縮成形、溶融押出成形等と比較して成形体の残留配向、残留応力共に極めて大きいという問題が有る。このため従来の透明樹脂材料では残留は移行や残留応力に由来する複屈折を完全に除去する事が困難であるのに対して、本発明の光学用樹脂組成物は、形状や成形条件によらず複屈折が極めて小さく、且つ、架橋構造重合体と熱可塑性樹脂との屈折率の差を小さく設計しているため、成形体内の光の散乱が小さく、透過光の色調も着色が少ないので、透明性と光学等方性に優れた射出成形による光学部材を得ることができる。射出成形は、一般的に公知の射出成形機等の装置を用いる成形方法であれば特に限定されない。射出成形機は、縦型でも横型でもよい。射出成形では、一般に公知の成形技術を用いることもできる。
本発明の光学用樹脂組成物から得られる成形体は透明性に優れることが特徴であり、厚みが2mmの成形体にした場合にヘイズが6%以下となる。成形体のヘイズ値が5.0%以下であることがより好ましく、4.0%以下であることがさらに好ましく、3.0%以下であることがよりさらに好ましく、2.0%以下であることがことさら好ましく、1.5%以下であることが一層好ましく、1.0%以下であることがより一層好ましく、0.7%以下であることが特に好ましい。本発明の成形体のヘイズ値が上記範囲内であれば、成形体の透明性を十分に高く、透明性が要求される光学用途に好適である。成形体のヘイズを6%以下にするためには、本発明の熱可塑性樹脂と架橋構造含有重合体の屈折率の差を小さくし、入射光が散乱しにくくすることが重要である。具体的には、熱可塑性樹脂の屈折率から架橋構造含有重合体の屈折率を引いた値(実測値)で−0.02〜+0.001の範囲であることが好ましい。上限は0以下がより好ましく、−0.001未満が更に好ましい。一方、下限は−0.015以上がより好ましく、−0.01以上が更に好ましい。本発明の実施例で使用した熱可塑性樹脂と、架橋構造含有重合体の屈折率を表3にまとめているが、たとえば、実施例1の熱可塑性樹脂A1の屈折率が1.4965、架橋構造含有重合体B3の屈折率が1.5048であり、その差は−0.0083である。
また、本発明の射出成形体は、全光線透過率が80%以上であることが好ましく、83%以上であることがより好ましく、85%以上であることがさらに好ましく、88%以上であることが一層好ましく、90%以上であることが特に好ましい。本発明の成形体の全光線透過率が上記範囲内であれば、成形体の透明性を十分に高く、透明性が要求される光学用途に好適である。
また、本発明の射出成形体において、好ましい成形体の色調としては、たとえば透過YI(黄色度)が18以下であることが好ましく、15以下であることがより好ましく、10以下であることが更に好ましく、7以下であることが一層好ましく、4以下であることがより一層好ましく、2以下であることがことさら好ましく、1以下であることが特に好ましい。
また、本発明の光学用樹脂組成物は、機械的強度、特に耐衝撃性が高いことが特徴である。耐衝撃性の指標の一つであるIzod衝撃試験において、高い透明性、色調、光学的等方性を維持しながら2.0KJ/m以上の優れた耐衝撃性を発現することができる。
本発明の成形体は、ガラス転移温度が100℃以上が好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましく、124℃以上であることがなおさら好ましい。ガラス転移温度が上記範囲内であれば、十分に耐熱性が優れた成形体を得ることができ、レンズ、ディスプレイ、光学フィルター部材などの光学用途など、耐熱性が必要な用途に好適である。
本発明の光学用熱可塑性樹脂は、成形加工時の複屈折が生じず、実用上問題のない成形体を得られる点から、成形体の配向複屈折の値が−1.7×10-4〜1.7×10-4であることが好ましく、−1.6×10-4〜1.6×10-4であることがより好ましく、−1.5×10-4〜1.5×10-4であることがさらに好ましく、−1.0×10-4〜1.0×10-4であることがとりわけ好ましく、−0.5×10-4〜0.5×10-4であることが特に好ましく、−0.2×10-4〜0.2×10-4であることがより特に好ましく、−0.1×10-4〜0.1×10-4であることが最も好ましい。
また、本発明の成形体の面内位相差も小さいことが好ましい。より具体的には、面内位相差の絶対値が10nm以下であることが好ましく、6nm以下であることがより好ましく、5nm以下であることがより好ましく、3nm以下であることがさらに好ましく、2nm以下であることが特に好ましい。位相差は複屈折をベースに算出される指標値であり、面内位相差(Re)は、以下の式により算出することができる。
Re=(nx−ny)×d
上記式中において、nx、nyは、それぞれ、面内において伸張方向(ポリマー鎖の配向方向)をX軸、X軸に垂直な方向をY軸とし、それぞれの軸方向の屈折率を表す。また、dは成形体の厚さを表し、nx−nyは配向複屈折を表す。
本発明の光学用樹脂組成物は、高温高湿などの環境下において成形体に応力がかかった際にも生じる複屈折が小さい点から、成形体の光弾性定数が−3.7×10-12〜3.7×10-12であることがより好ましく、−2×10-12〜2×10-12であることがさらに好ましく、−1.5×10-12〜1.5×10-12であることがよりさらに好ましく、−1×10-12〜1×10-12であることがとりわけ好ましく、−0.5×10-12〜0.5×10-12であることが特に好ましく、−0.3×10-12〜0.3×10-12であることが最も好ましい。光弾性定数が−3.7×10-12〜3.7×10-12であれば、レンズ等の光学部材に用いた場合にも、位相差ムラが発生したり、画像焦点ズレなどの光学的欠陥が発生したりすることがない。
本発明の光学用樹脂組成物は、配向複屈折を調整する意味合いで、特許第3648201号や特許第4336586号に記載の複屈折性を有する無機微粒子や、特許第3696649号に記載の複屈折性を有する、分子量5000以下、好ましくは1000以下の低分子化合物を適宜配合してもよい。
また、本発明の光学用樹脂組成物は、熱可塑性樹脂と架橋構造含有重合体を各々少なくとも1種類含むものであればよく、本発明の目的を満たす範囲であれば、1種以上の他の樹脂を特に制限なく添加することができる。他の樹脂としては、たとえば、熱可塑性樹脂、コアシェルポリマー、グラフト共重合体などの多層構造重合体、ブロックポリマーなどの熱可塑性エラストマー、などが挙げられる。
本発明の光学用樹脂組成物は、必要に応じて、光安定剤、紫外線吸収剤、熱安定剤、艶消し剤、光拡散剤、着色剤、染料、顔料、帯電防止剤、熱線反射材、滑剤、可塑剤、紫外線吸収剤、安定剤、フィラー等の公知の添加剤、または、その他の樹脂を含有しても良い。
本発明の射出成形体は、その耐熱性、透明性、色調、耐衝撃性などの機械的強度、光学等方性などの性質を利用して、以下の各種用途に使用することができる。具体的には、自動車内外装、パソコン内外装、携帯内外装、太陽電池内外装、;カメラ、VTR、プロジェクター用の撮影レンズ、ファインダー、フィルター、プリズム、フレネルレンズなどの映像分野、CDプレイヤー、DVDプレイヤー、MDプレイヤーなどにおける光ディスク用ピックアップレンズ、一般カメラ用レンズ,ビデオカメラ用レンズ,レーザーピックアップ用の対物レンズ,回折格子,ホログラム,及びコリメータレンズ,レーザープリンター用のfθレンズ,シリンドリカルレンズ,液晶プロジェクター用のコンデンサーレンズや投射レンズ,フレネルレンズ,眼鏡用レンズなどのレンズ分野、CD、DVD、MDなどの光ディスク用の光記録分野、液晶用導光板、拡散板などの液晶ディスプレイ用部材、プロジェクター用スクリーン、光導波路、プリズム、光ファイバ、光スイッチ、光コネクターなどの光通信分野、自動車ヘッドライト、テールランプレンズ、インナーレンズ、計器カバー、サンルーフなどの車両分野、ヘッドアップディスプレイなどのディスプレイ関連部材(たとえば前面板)、眼鏡、コンタクトレンズ、内視鏡用レンズ、滅菌処理の必要な医療用品などの医療機器分野、道路標識、浴室設備、床材、道路透光板、ペアガラス用レンズ、採光窓、カーポート、照明用レンズ、照明カバー、建材用サイジングなどの建築・建材分野、電子レンジ調理容器(食器)、家電製品のハウジング、玩具、サングラス、文房具などに使用することができる。
以下、本発明を実施例にて具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下で「部」および「%」は、特記ない限り、「重量部」および「重量%」を意味する。
(架橋構造含有重合体の架橋重合体層までの体積平均粒子径)
架橋構造含有重合体の架橋重合体層までの体積平均粒子径は、架橋重合体粒子ラテックスの状態で測定した。測定装置として、日機装株式会社製のMICROTRAC UPA150を用いて体積平均粒子径(μm)を測定した。
(重合転化率)
まず、得られたスラリーの一部を採取・精秤し、それを熱風乾燥器中で120℃、1時間乾燥し、その乾燥後の重量を固形分量として精秤した。次に、乾燥前後の精秤結果の比率をスラリー中の固形成分比率として求めた。最後に、この固形成分比率を用いて、以下の計算式により重合転化率を算出した。なお、この計算式において、連鎖移動剤は仕込み単量体として取り扱った。
重合転化率(%)
=〔(仕込み原料総重量×固形成分比率−水・単量体以外の原料総重量)/仕込み単量体重量〕×100
(グラフト率)
得られた架橋構造含有重合体 2gをメチルエチルケトン50mlに溶解させ、遠心分離機(日立工機(株)製、CP60E)を用い、回転数30000rpmにて1時間遠心分離を行い、不溶分と可溶分とを分離した(遠心分離作業を合計3セット)。得られた不溶分を用いて、次式によりグラフト率を算出した。
グラフト率(%)={(メチルエチルケトン不溶分の重量−架橋重合体層の重量)/架橋重合体層の重量}×100
なお、架橋重合体層の重量は、架橋重合体層を構成する単官能性単量体の仕込み重量である。
(イミド化率)
イミド化率の算出は、IRを用いて下記の通り行った。生成物のペレットを塩化メチレンに溶解し、その溶液について、SensIR Tecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたIRスペクトルより、1720cm−1のエステルカルボニル基に帰属する吸収強度(Absester)と、1660cm−1のイミドカルボニル基に帰属する吸収強度(Absimide)との比からイミド化率(Im%(IR))を求めた。ここで、「イミド化率」とは、全カルボニル基中のイミドカルボニル基の占める割合をいう。
(グルタルイミド単位の含有量)
H−NMR BRUKER AvanceIII(400MHz)を用いて、樹脂のH−NMR測定を行い、樹脂中のグルタルイミド単位またはエステル単位などの各モノマー単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各モノマー単位の分子量を使用して含有量(重量%)に換算した。
(酸価)
得られたグルタルイミドアクリル系樹脂0.3gを37.5mlの塩化メチレンおよび37.5mlのメタノールの混合溶媒の中で溶解した。フェノールフタレインエタノール溶液を2滴加えた後に、0.1Nの水酸化ナトリウム水溶液を5ml加えた。過剰の塩基を0.1N塩酸で滴定し、酸価を、添加した塩基と中和に達するまでに使用した塩酸との間のミリ当量で示す差で算出した。
(屈折率)
熱可塑性樹脂、および架橋構造含有重合体の屈折率は、それぞれの組成物をシート状に加工し、JIS K7142に準じて、アタゴ社製アッベ屈折計2Tを用いて、ナトリウムD線波長における屈折率(nD)を測定した。
(ガラス転移温度)
セイコーインスツルメンツ製の示差走査熱量分析装置(DSC)SSC−5200を用い、試料を一旦200℃まで25℃/分の速度で昇温した後10分間ホールドし、25℃/分の速度で50℃まで温度を下げる予備調整を経て、10℃/分の昇温速度で200℃まで昇温する間の測定を行い、得られたDSC曲線から積分値を求め(DDSC)、その極大点からガラス転移温度を求めた。
(全光線透過率・ヘイズ値)
成形体の全光線透過率、ヘイズ値は、(株)日本電色工業 NDH−300Aを用い、JIS K7105に記載の方法にて測定した。
(透過YI(Yellowness index))
JIS Z8722に準拠した測色色差計(日本電色工業(株)製ZE−2000)を用いた。測定には射出成形で作製した厚み2mmの平板サンプルを用いた。
(膜厚)
成形体の膜厚は、デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した。
(成形体の配向複屈折)
射出成形体(厚み2mm、15cm×10cm)の中央部から15mm×90mm(長辺方向に90mmがくるように切り出す)の試験片を切り出し、自動複屈折計(王子計測株式会社製 KOBRA−WR)を用いて、温度23 ± 2℃、湿度50 ± 5 % において、波長590nm、入射角0°にて測定した。同時に、面内位相差Reも測定した。
(面内位相差Reに関しては、その詳細を後述する)
(面内位相差Re)
厚み2mm、15cm×10cmの射出成形体から、15mm×90mm(長辺方向に90mmがくるように切り出す)の試験片を切り出した。この試験片の面内位相差Reを、自動複屈折計(王子計測株式会社製 KOBRA−WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0゜で測定した。
デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した試験片の厚みd、アッベ屈折計(株式会社アタゴ製 3T)で測定した屈折率n、自動複屈折計で測定した波長590nmでの面内位相差Reを計算した。
(光弾性定数)
厚み2mm、15cm×10cmの射出成形体の中央部から15 mm×90mmの短冊状に試験片を切断した(長辺方向に90mmがくるように切り出す)。自動複屈折計(王子計測株式会社製 KOBRA−WR)を用いて、温度23 ± 2 ℃、湿度50 ± 5 % において、波長590nm、入射角0°にて測定した。測定は、成形体の長辺の一方を固定し、他方は無荷重から4kgfまで0.5kgfずつ荷重をかけた状態で複屈折を測定し、得られた結果から、単位応力による複屈折の変化量を算出した。
なお、架橋構造含有重合体単体の配向複屈折、光弾性定数の測定に関しては、架橋構造含有重合体単品を、190℃でプレスし、膜厚500μmのプレス板を作成する。得られたプレス板中央部から、15mm×90mmの試験片を切り出し、上記記載と同様に測定した。
熱可塑性樹脂は、実施例1と同様にして射出成形体を製造し、上記記載と同様に測定した。
(耐衝撃性)
ASTM D−256に準じて、アイゾット試験(温度23℃、湿度50%)により評価した。
(製造例1)
<グルタルイミドアクリル系樹脂(A1)の製造>
原料樹脂としてポリメタクリル酸メチル、イミド化剤としてモノメチルアミンを用いて、グルタルイミドアクリル系樹脂(A1)を製造した。
この製造においては、押出反応機を2台直列に並べたタンデム型反応押出機を用いた。
タンデム型反応押出機に関しては、第1押出機、第2押出機共に直径が75mm、L/D(押出機の長さLと直径Dの比)が74の噛合い型同方向二軸押出機を使用し、定重量フィーダー(クボタ(株)製)を用いて、第1押出機の原料供給口に原料樹脂を供給した。
第1押出機、第2押出機における各ベントの減圧度は−0.095MPaとした。更に、直径38mm、長さ2mの配管で第1押出機と第2押出機を接続し、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力制御機構には定流圧力弁を用いた。
第2押出機から吐出された樹脂(ストランド)は、冷却コンベアで冷却した後、ペレタイザでカッティングしペレットとした。ここで、第1押出機の樹脂吐出口と第2押出機の原料供給口を接続する部品内圧力調整、又は押出変動を見極めるために、第1押出機の吐出口、第1押出機と第2押出機間の接続部品の中央部、および、第2押出機の吐出口に樹脂圧力計を設けた。
第1押出機において、原料樹脂としてポリメタクリル酸メチル樹脂(Mw:10.5万)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。この際、押出機の最高温部の温度は280℃、スクリュー回転数は55rpm、原料樹脂供給量は150kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して2.0部とした。定流圧力弁は第2押出機の原料供給口直前に設置し、第1押出機のモノメチルアミン圧入部圧力を8MPaになるように調整した。
第2押出機において、リアベント及び真空ベントで残存しているイミド化剤及び副生成物を脱揮したのち、エステル化剤として炭酸ジメチルを添加しイミド樹脂中間体2を製造した。この際、押出機の各バレル温度は260℃、スクリュー回転数は55rpm、炭酸ジメチルの添加量は原料樹脂100部に対して3.2部とした。更に、ベントでエステル化剤を除去した後、ストランドダイから押し出し、水槽で冷却した後、ペレタイザでペレット化することで、グルタルイミドアクリル系樹脂(A1)を得た。
得られたグルタルイミドアクリル系樹脂(A1)は、一般式(1)で表されるグルタミルイミド単位と、一般式(2)で表される(メタ)アクリル酸エステル単位が共重合したアクリル系樹脂(A)である。
グルタルイミドアクリル系樹脂(A1)について、上記の方法に従って、イミド化率、グルタルイミド単位の含有量、酸価、ガラス転移温度、および、屈折率を測定した。その結果、イミド化率は13%、グルタルイミド単位の含有量は7重量%、酸価は0.4mmol/g、ガラス転移温度は130℃、屈折率は1.50であった。 グルタルイミドアクリル系樹脂(A1)の光弾性定数の符号は−(マイナス)であった。
(製造例2)
<架橋構造含有重合体(B1)の製造>
撹拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水 200部
ポリオキシエチレンラウリルエーテルリン酸ナトリウム 0.05部
ソディウムホルムアルデヒドスルフォキシレ−ト 0.11部
エチレンジアミン四酢酸−2−ナトリウム 0.004部
硫酸第一鉄 0.001部
重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を40℃にし、表2に示したアクリル系ゴム粒子(B−1)の原料混合物45.266部を135分かけて連続的に添加した。(B−1)追加開始から12分後、24分後、36分後にポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD−510Yのナトリウム塩)0.2部ずつ重合機に添加した。添加終了後、さらに0.5時間重合を継続し、アクリル系ゴム粒子((B−1)の重合物)を得た。重合転化率は99.4%であった。
その後、内温を60℃にし、ソディウムホルムアルデヒドスルフォキシレ−ト0.2部を仕込んだ後、表2に示した硬質重合体層(B−2)の原料混合物55.254部を165分間かけて連続的に添加し、さらに1時間重合を継続し、架橋構造含有重合体ラテックスを得た。重合転化率は100.0%であった。得られたラテックスを硫酸マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状の架橋構造含有重合体(B1)を得た。
架橋構造含有重合体(B1)のゴム粒子(B−1の重合物)の平均粒子径は133nmであった。架橋構造含有重合体(B1)のグラフト率は77%であった。
(製造例3)
<架橋構造含有重合体(B2)の製造>
撹拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水 200部
ポリオキシエチレンラウリルエーテルリン酸ナトリウム 0.05部
ソディウムホルムアルデヒドスルフォキシレ−ト 0.11部
エチレンジアミン四酢酸−2−ナトリウム 0.004部
硫酸第一鉄 0.001部
重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を40℃にし、表2に示したアクリル系ゴム粒子(B−1)の原料混合物45.266部を135分かけて連続的に添加した。(B−1)追加開始から12分後、37分後、62分後、87分後にポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD−510Yのナトリウム塩)を、0.21部、0.21部、0.21部、0.11部ずつ重合機に添加した。添加終了後、さらに0.5時間重合を継続し、アクリル系ゴム粒子((B−1)の重合物)を得た。重合転化率は99.9%であった。
その後、内温を60℃にし、ポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD−510Yのナトリウム塩)を0.11部、続けてソディウムホルムアルデヒドスルフォキシレ−ト0.2部を仕込んだ後、表2に示した硬質重合体層(B−2)の原料混合物55.309部を165分間かけて連続的に添加し、さらに1時間重合を継続し、架橋構造含有重合体ラテックスを得た。重合転化率は100.0%であった。得られたラテックスを硫酸マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状の架橋構造含有重合体(B2)を得た。
架橋構造含有重合体(B2)のゴム粒子(B−1の重合物)の平均粒子径は117nmであった。架橋構造含有重合体(B2)のグラフト率は69%であった。
(製造例4)
<架橋構造含有重合体(B3)の製造>
撹拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水 200部
ポリオキシエチレンラウリルエーテルリン酸ナトリウム 0.05部
ソディウムホルムアルデヒドスルフォキシレ−ト 0.11部
エチレンジアミン四酢酸−2−ナトリウム 0.004部
硫酸第一鉄 0.001部
重合機内を窒素ガスで充分に置換し実質的に酸素のない状態とした後、内温を40℃にし、表2に示したアクリル系ゴム粒子(B−1)の原料混合物45.266部を135分かけて連続的に添加した。(B−1)追加開始から12分後、37分後、62分後、87分後にポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD−510Yのナトリウム塩)を、0.21部、0.21部、0.21部、0.11部ずつ重合機に添加した。添加終了後、さらに1時間重合を継続し、アクリル系ゴム粒子((B−1)の重合物)を得た。重合転化率は99.6%であった。
その後、内温を60℃にし、ポリオキシエチレンラウリルエーテルリン酸ナトリウム(ポリオキシエチレンラウリルエーテルリン酸(東邦化学工業株式会社製、商品名:フォスファノールRD−510Yのナトリウム塩)を0.11部、続けてソディウムホルムアルデヒドスルフォキシレ−ト0.2部を仕込んだ後、表2に示した硬質重合体層(B−2)の原料混合物55.254部を165分間かけて連続的に添加し、さらに1時間重合を継続し、架橋構造含有重合体ラテックスを得た。重合転化率は99.6%であった。得られたラテックスを硫酸マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状の架橋構造含有重合体(B3)を得た。
架橋構造含有重合体(B3)のゴム粒子(B−1の重合物)の平均粒子径は113nmであった。架橋構造含有重合体(B3)のグラフト率は84%であった。
Figure 0006691778
(成形体の作製)
比較例3では、A2を100重量部使用した。
A2:PMMA樹脂 スミペックスEX (住友化学株式会社)
実施例1〜2、および比較例1〜3の組成物を、ベント付単軸押出機(HW−40−28:40m/m、L/D=28、田端機械(株)製)を用い、設定温度C1〜C3=210℃、C4=220℃、C5=230℃、D=240℃で押出混練しペレット化した。得られたペレットを90℃で3時間以上乾燥したあと、射出成形機(160MSP−10型、三菱重工(株)製)を使用してシリンダー温度T3=250℃、T2=250℃、T1=260℃、ノズル温度N=260℃、射出速度=19.7%、金型温度=60℃)で射出成形して厚み2mm、15cm×10cmの平板サンプルを得た。得られた平板サンプルについて、透明性の指標として全光線透過率、ヘイズ、透過YIを測定した。
また同じ射出成形温度にて、1/4インチのテストピースを作成し、耐衝撃性を評価した。結果を表3に示した。
Figure 0006691778
実施例1および2で得られた平板サンプルは、比較例3、4で得られた平板サンプルに比べて耐衝撃性が優れている上に、光弾性定数が小さいことがわかる。また、実施例1の平板サンプルは比較例1、2の平板サンプルに比べて配向複屈折が小さく、更にはヘイズが低いなど透明性に優れることがわかる。
さらに、得られた平板サンプル全体の位相差(Re)の比較をするため、平板サンプル(厚み2mm、15cm×10cm)を、2枚の直交する偏光板の間に置き、透過光(光漏れの有無)が観測されるかを確認するクロスニコル試験を実施した。図1〜図5は、それぞれ実施例1および2、比較例1〜3のクロスニコル試験の結果を示す写真である。一般に射出成形の場合、特にゲート近傍部分において樹脂が配向しやすく、その結果、配向複屈折に起因した光漏れが生じ易い(比較例2、図4)。
一方、図1に示すように、本発明に係る光学用樹脂組成物(実施例1)からなる平板サンプルにおいては、そのような光漏れが観測されないことが確認された。比較例3の平板サンプルに関しても配向複屈折に起因した光漏れが生じていないが、表3に示されるとおり、実施例1の平板サンプルは比較例3の平板サンプルに比べ、光弾性複屈折(定数)がかなり小さく、さらには耐衝撃性が優れることがわかる。すなわち、本発明に係る光学用樹脂組成物は、極めて高い光学等方性が要求されるレンズ、ピックアップレンズ、レンズアレイ、ヘッドアップディスプレイなどのディスプレイ材料などの光学用途向け射出成形体にも好適な材料である。また、耐衝撃性が求められる光学用途にも好適である。

Claims (16)

  1. アクリル系樹脂である熱可塑性樹脂、および
    架橋重合体層と硬質重合体層とを有するアクリル樹脂粒子である架橋構造含有重合体を含有し、
    前記架橋重合体層は、下記一般式(4)で表される単量体を構造単位に含み、
    前記硬質重合体は、ガラス転移温度が20℃以上の重合体であり、
    前記架橋構造含有重合体の光弾性定数が前記熱可塑性樹脂の光弾性定数と異符号であり、且つ、厚みが2mmの成形体のヘイズが3.0%以下である、光学用樹脂組成物。
    Figure 0006691778
    (式中、R は、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R 10 は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
  2. 前記架橋構造含有重合体が、脂環式構造、複素環式構造または芳香族基を有するビニル系単量体を構造単位に含む硬質重合体層を有する、請求項に記載の光学用樹脂組成物。
  3. 前記架橋構造含有重合体が、下記一般式(4)で表される単量体を構造単位に含む硬質重合体層を有する、請求項1又は2に記載の光学用樹脂組成物。
    Figure 0006691778
    (式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
  4. 熱可塑性樹脂の配向複屈折と、架橋構造含有重合体の配向複屈折とが異符号である、請求項1〜のいずれか一項に記載の光学用樹脂組成物。
  5. アクリル系樹脂である熱可塑性樹脂、並びに、多段重合体を含有し、
    前記多段重合体が、架橋重合体含有粒子の存在下に、下記一般式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体を含む単量体混合物を重合して得られるアクリル樹脂粒子である多段重合体であり、
    前記架橋重合体含有粒子が、下記一般式(4)で表される単量体および多官能性単量体を含む単量体混合物を重合して形成される架橋重合体を有し、且つ、
    厚みが2mmの成形体のヘイズが3.0%以下である、光学用樹脂組成物。
    Figure 0006691778
    (式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
  6. アクリル系樹脂である熱可塑性樹脂、並びに、多層構造重合体を含有し、
    前記多層構造重合体が、架橋重合体層、および、下記一般式(4)で表される単量体およびこれと共重合可能な他の単官能性単量体を含む単量体混合物を重合して得られる層を有するアクリル樹脂粒子である多層構造重合体であり、
    前記架橋重合体層が、下記一般式(4)で表される単量体および多官能性単量体を含む単量体混合物を重合して形成される架橋重合体層であり、且つ、
    厚みが2mmの成形体のヘイズが3.0%以下である、光学用樹脂組成物。
    Figure 0006691778
    (式中、Rは、水素原子、または、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1〜12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1〜24の芳香族基、または、置換もしくは無置換の炭素数1〜24の脂環式基であり、単素環式構造または複素環式構造を有する。lは1〜4の整数を示す。mは0〜1の整数を示す。nは0〜10の整数を示す。)
  7. 前記一般式(4)で表される単量体が、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、及び(メタ)アクリル酸フェノキシエチルからなる群より選択される少なくとも1種である、請求項1〜6のいずれか一項に記載の光学用樹脂組成物。
  8. 前記熱可塑性樹脂の光弾性定数と、前記多段重合体または前記多層構造重合体の光弾性定数とが異符号である、請求項5〜7のいずれか一項に記載の光学用樹脂組成物。
  9. 前記熱可塑性樹脂の配向複屈折と、前記多段重合体または前記多層構造重合体の配向複屈折とが異符号である、請求項5〜8のいずれか一項に記載の光学用樹脂組成物。
  10. 前記熱可塑性樹脂が、マレイミドアクリル系樹脂、グルタルイミドアクリル系樹脂、ラクトン環含有アクリル系重合体、環状酸無水物繰り返し単位を含有するアクリル系重合体、並びに、水酸基および/またはカルボキシル基を含有するアクリル系重合体、からなる群より選択される少なくとも1種を含む、請求項1〜のいずれか一項に記載の光学用樹脂組成物。
  11. 前記熱可塑性樹脂が、下記一般式(5)で表されるマレイミド単位と(メタ)アクリル酸エステル単位とを有するマレイミドアクリル系樹脂を含有する、請求項1〜10のいずれか一項に記載の光学用樹脂組成物。
    Figure 0006691778
    (式中、R11およびR12は、それぞれ独立して、水素原子、炭素数1〜12のアルキル基、または炭素数6〜14のアリール基であり、
    13は、水素原子、炭素数7〜14のアリールアルキル基、炭素数6〜14のアリール基、炭素数3〜12のシクロアルキル基、炭素数1〜18のアルキル基、又は、下記A群より選ばれる少なくとも一種の置換基を有する炭素数6〜14のアリール基もしくは炭素数1〜12のアルキル基である。
    A群:ハロゲン原子、ヒドロキシル基、ニトロ基、炭素数1〜12のアルコキシ基、炭素数1〜12のアルキル基及び炭素数7〜14のアリールアルキル基。)
  12. 前記マレイミドアクリル系樹脂が、下記一般式(3)で表される単位をさらに有する、請求項11に記載の光学用樹脂組成物。
    Figure 0006691778
    (式中、Rは、水素または炭素数1〜8のアルキル基であり、Rは、炭素数6〜10のアリール基である。)
  13. 前記熱可塑性樹脂が、下記式(1)で表される単位と、下記式(2)で表される単位とを有するグルタルイミドアクリル系樹脂を含有する、請求項1〜12のいずれか一項に記載の光学用樹脂組成物。
    Figure 0006691778
    (式中、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、水素、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または、芳香環を含む炭素数5〜15の置換基である。)
    Figure 0006691778
    (式中、RおよびRは、それぞれ独立して、水素または炭素数1〜8のアルキル基であり、Rは、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または、芳香環を含む炭素数5〜15の置換基である。)
  14. 前記架橋構造含有重合体が含有する架橋構造、前記多段重合体が含有する架橋重合体含有粒子または前記多層構造重合体が含有する架橋重合体層の含有量が、光学用樹脂組成物100重量部において1〜60重量部である、請求項1〜13のいずれか一項に記載の光学用樹脂組成物。
  15. 請求項1〜14のいずれか一項に記載の光学用樹脂組成物からなる成形体。
  16. 請求項1〜14のいずれか一項に記載の光学用樹脂組成物からなる射出成形体。
JP2015554849A 2013-12-25 2014-12-19 光学用樹脂組成物、および成形体 Active JP6691778B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013268041 2013-12-25
JP2013268041 2013-12-25
PCT/JP2014/083787 WO2015098775A1 (ja) 2013-12-25 2014-12-19 光学用樹脂組成物、および成形体

Publications (2)

Publication Number Publication Date
JPWO2015098775A1 JPWO2015098775A1 (ja) 2017-03-23
JP6691778B2 true JP6691778B2 (ja) 2020-05-13

Family

ID=53478632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015554849A Active JP6691778B2 (ja) 2013-12-25 2014-12-19 光学用樹脂組成物、および成形体

Country Status (6)

Country Link
US (1) US11066544B2 (ja)
EP (1) EP3088473A4 (ja)
JP (1) JP6691778B2 (ja)
CN (2) CN111607181B (ja)
TW (1) TW201529732A (ja)
WO (1) WO2015098775A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10174191B2 (en) 2013-11-22 2019-01-08 Kaneka Corporation Resin material and film thereof
EP3075781A4 (en) * 2013-11-29 2017-07-19 Kaneka Corporation Optical resin composition, and film
WO2015079694A1 (ja) 2013-11-29 2015-06-04 株式会社カネカ 光学用樹脂組成物、およびフィルム
EP3088473A4 (en) 2013-12-25 2017-08-30 Kaneka Corporation Optical resin composition and molded article
FR3053350B1 (fr) * 2016-06-29 2020-03-27 Arkema France Composition liquide ou sirop comprenant un polymere a phases multiples et un polymere (meth)acrylique, sirop pour procede d'impregnation, procede d'impregnation pour un substrat fibreux, procede depolymerisation et article structure obtenu de celui-ci
JP7129181B2 (ja) * 2017-03-17 2022-09-01 旭化成株式会社 ヘッドマウントディスプレイ用部材
JP2018203911A (ja) * 2017-06-06 2018-12-27 旭化成株式会社 集光型太陽電池レンズ用メタクリル系樹脂組成物
JP7294921B2 (ja) 2018-07-13 2023-06-20 旭化成株式会社 メタクリル系樹脂、成形体、光学部品又は自動車部品
EP3822295A4 (en) 2018-07-13 2021-12-01 Asahi Kasei Kabushiki Kaisha METHACRYLIC RESIN, MOLDED ARTICLES, OPTICAL COMPONENT OR MOTOR VEHICLE COMPONENT
JP7294922B2 (ja) 2018-07-13 2023-06-20 旭化成株式会社 メタクリル系樹脂、成形体、光学部品又は自動車部品
WO2020105741A2 (ja) * 2019-02-19 2020-05-28 株式会社カネカ 細胞培養容器、その製造方法、及びそれを用いた細胞の製造方法
JP7421404B2 (ja) * 2019-09-06 2024-01-24 株式会社日本触媒 アクリル系樹脂組成物
US12083873B2 (en) * 2020-02-06 2024-09-10 Specialty Manufacturing, Inc. Vehicle hybrid safety hatch

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373065A (en) 1981-02-17 1983-02-08 Xerox Corporation Optically isotropic devices
JPS5966411A (ja) * 1982-10-06 1984-04-14 Konishiroku Photo Ind Co Ltd 光学用樹脂組成物及び光学用素子
US4916171A (en) 1984-07-25 1990-04-10 Rohm And Haas Company Polymers comprising alkali-insoluble core/alkali-soluble shell and copositions thereof
JPS63122748A (ja) 1986-11-12 1988-05-26 Mitsubishi Rayon Co Ltd メタクリル樹脂組成物
JP3696649B2 (ja) * 1994-08-18 2005-09-21 康博 小池 非複屈折性の光学樹脂材料及びその製造方法並びに光学樹脂材料を用いた液晶素子用の部材
CN1257209C (zh) * 1999-10-05 2006-05-24 小池康博 非双折射性的光学树脂材料
US6348542B1 (en) 1999-10-12 2002-02-19 Kuraray Co., Ltd. Multiphase structured polymer particles, method of manufacturing same, and uses thereof
WO2001081475A1 (fr) * 2000-04-21 2001-11-01 Kaneka Corporation Composition durcissable, composition pour un materiau optique, materiau optique, affichage a cristaux liquides, film conducteur transparent et procede de production associe
JP2002023363A (ja) 2000-07-13 2002-01-23 Dainippon Ink & Chem Inc フォトリソグラフィー用樹脂組成物
WO2003076982A1 (fr) 2002-03-12 2003-09-18 Yasuhiro Koike Materiau de resine optique non birefringent et son procede de production
JP2005023272A (ja) 2003-07-02 2005-01-27 Kaneka Corp イミドポリマーの製造方法
KR100887486B1 (ko) * 2003-12-02 2009-03-10 가부시키가이샤 가네카 이미드 수지, 및 그의 제조 방법 및 이용
US20070243364A1 (en) 2004-04-28 2007-10-18 Shigetoshi Maekawa Acrylic Resin Films and Process for Producing the Same
JP2006124592A (ja) 2004-10-29 2006-05-18 Kaneka Corp イミド樹脂及びその樹脂組成物
JP4624845B2 (ja) * 2005-04-26 2011-02-02 康博 小池 非複屈折性光学樹脂材料及び光学部材
JP4068120B2 (ja) * 2005-10-07 2008-03-26 旭化成ケミカルズ株式会社 光学補償フィルム
JP2007191706A (ja) * 2005-12-22 2007-08-02 Toray Ind Inc 熱可塑性共重合体、その製造方法、およびそれから成る熱可塑性樹脂組成物
JP5132950B2 (ja) 2006-02-22 2013-01-30 株式会社日本触媒 光学フィルムの製造方法
US7976914B2 (en) * 2006-06-16 2011-07-12 Fujifilm Corporaton Resin film, production method thereof, polarizing plate and liquid crystal display device
JP5166845B2 (ja) 2006-12-25 2013-03-21 花王株式会社 インクジェット記録用インクセット
JP2008276207A (ja) * 2007-04-02 2008-11-13 Asahi Kasei Chemicals Corp 光学フィルム
JP2008291153A (ja) 2007-05-25 2008-12-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、コアシェルポリマ、硬化物
JP2009199044A (ja) * 2008-01-24 2009-09-03 Nippon Shokubai Co Ltd 位相差フィルム
JP5074956B2 (ja) 2008-02-27 2012-11-14 康博 小池 低複屈折性光学樹脂材料及び光学部材
JP5408885B2 (ja) 2008-02-28 2014-02-05 株式会社カネカ 樹脂組成物、フィルムおよび偏光板
JP2009203434A (ja) 2008-02-29 2009-09-10 Toray Ind Inc 多層構造重合体粒子からなる高耐熱ゴムフィルム、およびその製造方法
JP2009203435A (ja) 2008-02-29 2009-09-10 Toray Ind Inc 耐熱性多層構造重合体粒子からなる光学フィルムの製造方法
JP5238341B2 (ja) 2008-05-02 2013-07-17 三菱レイヨン株式会社 樹脂組成物およびその製造方法、塗料組成物、積層体
JP2009293021A (ja) 2008-05-09 2009-12-17 Sanyo Chem Ind Ltd 光学材料用透明樹脂組成物
JP5142938B2 (ja) * 2008-10-15 2013-02-13 旭化成ケミカルズ株式会社 光学フィルム
JP5523721B2 (ja) 2009-03-04 2014-06-18 富士フイルム株式会社 水性インク組成物、インクセット、及び画像形成方法
WO2010119730A1 (ja) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 光学素子
CN103380175B (zh) * 2011-02-21 2015-11-25 株式会社钟化 丙烯酸类树脂膜
WO2012141413A1 (en) 2011-04-13 2012-10-18 Lg Chem, Ltd. Resin composition for optical film and optical film using the same
JP5898887B2 (ja) 2011-05-18 2016-04-06 富士フイルム株式会社 組成物、並びに、これを用いた透明膜、マイクロレンズ、固体撮像素子、透明膜の製造方法、マイクロレンズの製造方法、及び、固体撮像素子の製造方法
US20140221568A1 (en) 2011-07-20 2014-08-07 Nippon Shokubai Co., Ltd. Molding material
JP2013204025A (ja) 2012-03-29 2013-10-07 Mimaki Engineering Co Ltd インクジェット用インク、反応液、インクセット、インクカートリッジ、インクジェット記録方法及びインクジェット記録装置
WO2014002491A1 (ja) 2012-06-26 2014-01-03 株式会社カネカ 非複屈折性樹脂材料、およびフィルム
KR102059714B1 (ko) 2013-04-05 2019-12-26 가부시키가이샤 가네카 수지 조성물 및 그의 필름
US10174191B2 (en) 2013-11-22 2019-01-08 Kaneka Corporation Resin material and film thereof
WO2015079694A1 (ja) 2013-11-29 2015-06-04 株式会社カネカ 光学用樹脂組成物、およびフィルム
EP3088473A4 (en) 2013-12-25 2017-08-30 Kaneka Corporation Optical resin composition and molded article

Also Published As

Publication number Publication date
US20160319121A1 (en) 2016-11-03
EP3088473A4 (en) 2017-08-30
JPWO2015098775A1 (ja) 2017-03-23
CN111607181A (zh) 2020-09-01
CN105874011A (zh) 2016-08-17
WO2015098775A1 (ja) 2015-07-02
CN105874011B (zh) 2020-05-12
TW201529732A (zh) 2015-08-01
CN111607181B (zh) 2023-05-05
US11066544B2 (en) 2021-07-20
EP3088473A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6691778B2 (ja) 光学用樹脂組成物、および成形体
JP6236002B2 (ja) 非複屈折性樹脂材料、およびフィルム
JP6069435B2 (ja) 樹脂組成物、およびそのフィルム
US10578773B2 (en) Optical resin composition and film
WO2017171008A1 (ja) 樹脂組成物、その成形体及びフィルム
US9803078B2 (en) Optical resin composition and film
JP6630569B2 (ja) フィルムの製造方法、熱可塑性樹脂組成物、成形体およびフィルム
JP6523176B2 (ja) 樹脂材料、およびそのフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6691778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250