JP6621300B2 - SiC単結晶成長装置およびSiC単結晶成長方法 - Google Patents

SiC単結晶成長装置およびSiC単結晶成長方法 Download PDF

Info

Publication number
JP6621300B2
JP6621300B2 JP2015215686A JP2015215686A JP6621300B2 JP 6621300 B2 JP6621300 B2 JP 6621300B2 JP 2015215686 A JP2015215686 A JP 2015215686A JP 2015215686 A JP2015215686 A JP 2015215686A JP 6621300 B2 JP6621300 B2 JP 6621300B2
Authority
JP
Japan
Prior art keywords
single crystal
sic single
guide member
crystal growth
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015215686A
Other languages
English (en)
Other versions
JP2017088415A (ja
Inventor
陽平 藤川
陽平 藤川
秀隆 鷹羽
秀隆 鷹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Denso Corp
Original Assignee
Showa Denko KK
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Denso Corp filed Critical Showa Denko KK
Priority to JP2015215686A priority Critical patent/JP6621300B2/ja
Publication of JP2017088415A publication Critical patent/JP2017088415A/ja
Application granted granted Critical
Publication of JP6621300B2 publication Critical patent/JP6621300B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、SiC単結晶成長装置およびSiC単結晶成長方法に関する。
炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きい。また、炭化珪素(SiC)は、シリコン(Si)に比べて熱伝導率が3倍程度高い等の特性を有する。そのため炭化珪素(SiC)は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。このため、近年、上記のような半導体デバイスにSiCエピタキシャルウェハが用いられるようになっている。
SiCエピタキシャルウェハは、SiC単結晶基板上に化学的気相成長法(Chemical Vapor Deposition:CVD)によってSiC半導体デバイスの活性領域となるSiCエピタキシャル膜を成長させることによって製造される。
SiC単結晶基板は、SiC単結晶を切り出して作製する。このSiC単結晶は、一般に昇華法によって得ることができる。昇華法は、黒鉛製の坩堝内に配置した台座にSiC単結晶からなる種結晶を配置し、坩堝を加熱することで坩堝内の原料粉末から昇華した昇華ガスを種結晶に供給し、種結晶をより大きなSiC単結晶へ成長させる方法である。
近年、市場の要求に伴い、SiCエピタキシャル膜を成長させるSiC単結晶基板の大口径化が求められている。そのためSiC単結晶自体の大口径化、長尺化の要望も高まっている。例えば、特許文献1には、SiC単結晶の口径拡大のために、テーパー状のガイド部材を設けた単結晶の成長装置が記載されている。
またSiC単結晶は大口径化、長尺化の要望と共に、高品質化の要望も高まっている。SiC単結晶の結晶成長において、その品質に影響を及ぼす要素は種々存在する。
例えば、SiC単結晶の結晶成長時の温度条件は、SiC単結晶の品質に大きな影響を及ぼす。そのため特許文献2には、SiC単結晶の結晶成長面の温度を均一にするために、種結晶と坩堝の位置を上下に稼働すると共に回転可能とした単結晶育成装置が記載されている。
また種結晶から結晶成長した単結晶とその他の部分に結晶成長した多結晶が接すると、欠陥、異種多形、クラックの原因となり、SiC単結晶の品質を劣化させる。そのため、例えば特許文献3には、テーパー状のガイド部材を高温に保ちながら、単結晶を製造する方法が記載されている。ガイド部材を高温に保つことで、ガイド部材表面に多結晶のSiCが結晶成長することを抑制している。
特開2002−60297号公報 特開平6−298594号公報 特開2013−166672号公報
しかしながら、特許文献1〜3に記載の方法では、十分に長尺、大口径で、かつ高品質なSiC単結晶を形成することができなかった。
例えば、特許文献1に記載のテーパー状のガイド部材を設けた単結晶の結晶装置では、ガイド部材表面に多結晶が結晶成長する。成長の過程で種結晶から結晶成長した単結晶とこの多結晶は一体化することがある。多結晶と単結晶が一体化すると、その界面付近で欠陥、異種多形、クラック等が発生することがあり、高品質なSiC単結晶を得ることができない。
特許文献3に記載の単結晶の成長方法は、この問題を解決することを目的としている。しかしながら、ガイド部材を高温にしても、ガイド上に多結晶が結晶成長することを完全に抑制することはできない。そのため、十分に高品質なSiC単結晶を得ることはできない。
特許文献2に記載の単結晶育成装置は、結晶成長面の温度を一定にできる。しかしながら、ガイド部材を有さないため、長尺、大口径化を実現することができない。またガイド部材を有さないため、種結晶以外の部分に供給された原料ガスは、それらの場所で多結晶として結晶成長を行う。これらの多結晶は、種結晶から結晶成長した単結晶と一体化し結晶の品質を劣化させる恐れがある。また種結晶以外の部分に供給された原料ガスは、装置の上下方向の間隙から流れ出る。原料ガスの流出量が増えると効率的な結晶成長を行うことができない。さらに種結晶以外の部分に供給された原料ガスは、種結晶を設置する支持部を上下及び回転させる駆動面付近の隙間で結晶成長し、その隙間を詰まらせる恐れがある。この場合、上下及び回転が出来なくなる。すなわち、十分に高品質なSiC単結晶を得ることができない。
このため、長尺、大口径で、かつ高品質なSiC単結晶を形成することができるSiC単結晶成長装置及びSiC単結晶成長方法が切に求められていた。
本発明は上記問題に鑑みてなされたものであり、長尺、大口径で、かつ高品質なSiC単結晶を形成することができるSiC単結晶成長装置及びSiC単結晶成長方法を提供することを目的とする。
本発明者らは、鋭意検討の結果、種結晶から結晶成長した単結晶とガイド部材等に形成された多結晶が一体化するためには、ある程度の時間が必要であることに気付いた。そこで、単結晶に対してガイド部材が相対的に常に動いている状態で結晶成長を行うことで、単結晶と多結晶が一体化することなく、長尺、大口径で、かつ高品質なSiC単結晶を形成することができることを見出し、本発明を完成させた。
すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係るSiC単結晶成長装置は、内部にSiC単結晶成長用原料を収納できる坩堝と、前記坩堝に対向する位置に種結晶設置部を有する天井部と前記坩堝を囲む側壁とを有し、前記坩堝を覆う蓋体と、前記種結晶設置部側から前記坩堝側へ向かって延在するガイド部と、前記ガイド部を支持する支持部とを有するガイド部材と、前記種結晶設置部及び/または前記ガイド部材を回転させる回転駆動手段と、を備える。
(2)上記(1)に記載のSiC単結晶成長装置において、前記ガイド部材と前記坩堝が一体化されていてもよい。
(3)上記(1)または(2)のいずれかに記載のSiC単結晶成長装置において、前記坩堝の外壁と前記蓋体の側壁との最短距離が0.01mm超10mm以下であってもよい。
(4)上記(1)〜(3)のいずれか一つに記載のSiC単結晶成長装置において、前記ガイド部材の表面が炭化タンタルでコーティングされていてもよい。
(5)本発明の一態様に係るSiC単結晶成長方法は、坩堝内にSiC単結晶成長用原料を収納する工程と、前記坩堝の開口端側にガイド部材を配設する工程と、蓋体の種結晶設置部に種結晶を設置する工程と、前記種結晶が前記SiC単結晶成長用原料と対向するように、前記種結晶が設置された蓋体で前記坩堝及び前記ガイド部材を覆う工程と、前記種結晶と前記ガイド部材を相対的に回転させながら、SiC単結晶成長用原料を昇華させる工程と、を有する。
(6)上記(5)に記載のSiC単結晶成長方法において、前記種結晶に対する前記ガイド部材の回転速度が、0.1rpm〜30rpmであってもよい。
本発明の一態様に係るSiC単結晶成長装置は、種結晶設置部及び/またはガイド部材を回転させる回転駆動手段を有する。そのため、種結晶設置部設置される種結晶と、ガイド部材とを、相対的に動作させることができる。したがって、ガイド部材上に結晶成長した多結晶と、種結晶から結晶成長する単結晶とが一体化することを阻害することができる。そのため、長尺、大口径で、かつ高品質なSiC単結晶を形成することができる。
また蓋体は、坩堝を覆っている。そのため、坩堝内に収納されたSiC単結晶用原料から発生した原料ガスの一部は、蓋体に沿って流動し、SiC単結晶成長装置の下方から流出する。原料ガスは高温から低温に向かって流れるため、原料ガスの流出を抑制することができ、効率的な結晶成長を行うことができる。またSiC単結晶成長装置の下方は、坩堝を加熱するために高温になっているため、原料ガスがその付近で再結晶化することを抑制できる。したがって、原料ガスが再結晶化し、駆動領域の隙間を埋め、回転駆動を阻害すること抑制することができる。
本発明の一態様に係るSiC単結晶成長装置において、坩堝とガイド部材が一体化されていてもよい。坩堝とガイド部材が一体化することで、装置に用いられる部材の量を少なくすることができ、装置の費用を低減することができる。またSiC単結晶の成長においては、外部に流出する原料ガスの量を少なくし、効率的に結晶成長を行うことが好ましい。装置に用いられる部材の量を少なくすることで、原料ガスが流出する流路を狭めることができる。
本発明の一態様に係るSiC単結晶成長装置において、ガイド部材と蓋体の側壁との最短距離が0.01mm超10mm以下であってもよい。ガイド部材と蓋体の側壁との距離をある程度の幅で確保することで、原料ガスがこの間で再結晶化し、回転駆動を阻害することを抑制することができる。またガイド部材と蓋体の内壁との距離をある程度の幅を可能な限り狭めることで、外部に流出する原料ガスの量を少なくし、効率的に結晶成長を行うことができる。
本発明の一態様に係るSiC単結晶成長装置において、ガイド部材の表面が炭化タンタルでコーティングされていてもよい。SiCの結晶成長時において、SiC単結晶成長装置内は、2000℃〜2550℃程度の高温になる。炭化タンタルは、高温に耐えることができると共に、原料ガスと不要な反応を生じることもない。したがって、安定的に高品質なSiC単結晶成長を行うことができる。
本発明の一態様に係るSiC単結晶成長方法は、種結晶とガイド部材を相対的に回転させながら、SiC単結晶成長用原料を昇華させる。したがって、ガイド部材上に結晶成長した多結晶と、種結晶から結晶成長する単結晶とが一体化することなく、種結晶上に高品質なSiC単結晶を結晶成長させることができる。またガイド部材によって、長尺かつ大口径なSiC単結晶を得ることができる。
本発明の一態様に係るSiC単結晶成長方法において、種結晶に対するガイド部材の回転速度が、0.1rpm〜30rpmであってもよい。相対的な回転速度を当該範囲にすることで、効率的かつ低コストに、多結晶とSiC単結晶が一体化することを阻害することができる。
本発明の第1実施形態に係るSiC単結晶成長装置の断面模式図である。 本発明の一態様に係るSiC単結晶成長装置の種結晶設置部付近を拡大した断面模式図である。 本発明の一態様に係るSiC単結晶成長装置の機能を説明するための図であり、原料ガスの流れに関係のある部分を拡大した断面模式図である。 ガイド部材を有さないSiC単結晶成長装置の断面模式図である。 回転駆動しないSiC単結晶成長装置の断面模式図である。 本発明の第2実施形態に係るSiC単結晶成長装置の断面模式図である。 本発明の第2実施形態に係るSiC単結晶成長装置のガイド付き坩堝のその他の例を示す断面模式図である。
以下、本発明を適用したSiC単結晶成長装置およびSiC単結晶成長方法について、図を適宜参照しながら詳細に説明する。
なお、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。また、以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(SiC単結晶成長装置、SiC単結晶成長方法)
[第1実施形態]
図1は、本発明の第1実施形態に係るSiC単結晶成長装置の断面模式図である。
SiC単結晶成長装置100は、坩堝10と、蓋体20と、ガイド部材30と、回転駆動手段40とを備える。蓋体20の外周には、加熱手段50と、加熱された坩堝10を保温する断熱材60とを有していてもよい。図1では、理解の助けになるように、SiC単結晶成長用原料11、種結晶22、種結晶22から成長したSiC単結晶23を併せて図示した。SiC単結晶成長用原料11は、坩堝10内に収納されている。種結晶22は、蓋体20に設けられた種結晶設置部21に設けられている。
以下図示において、種結晶載置部21とSiC単結晶成長用原料11が対向する方向を上下方向とし、上下方向に対して垂直な方向を左右方向とする。
坩堝10は、SiC単結晶を昇華法により作製するための坩堝であれば、公知の物を用いることができる。例えば、黒鉛、炭化タンタル等を用いることができる。坩堝10は、成長時に高温となる。そのため、高温に耐えることのできる材料によって形成されている必要がある。例えば、黒鉛は昇華温度が3550℃と極めて高く、成長時の高温にも耐えることができる。
坩堝10の下方には、坩堝10を保持する支持部材12を有していてもよい。例えば、支持部材12は、上下方向に稼働できるようにすることで、加熱部材50によって加熱される領域内への坩堝10の出し入れを容易に行うことができる。
蓋体20は、天井部20Aと坩堝10を囲む側壁20Bとを有する。蓋体20は、坩堝10よりその径が大きく、蓋体20の天井部20A及び側壁20Bによって、坩堝10を覆う。蓋体20の下面は解放されていてもよい。
SiC単結晶23の結晶成長が進められる反応空間Kは、坩堝10と蓋体20によって形成される。本来、反応空間Kは原料ガスの無駄を抑制するために閉空間であることが好ましい。本実施形態においては、後述するガイド部材を回転駆動させるために、坩堝10と蓋体20の間には、隙間を有する。
種結晶設置部21は、蓋体20によって坩堝10を覆うことで、坩堝10内に収納されたSiC単結晶成長用原料11と対向する。SiC単結晶成長用原料11と種結晶設置部21に設置された種結晶22が対向することで、種結晶22への効率的な原料ガスの供給を行うことができる。
種結晶設置部21は、蓋体20の左右方向中央に設けることが好ましい。種結晶設置部21を蓋体20の左右方向中央に設けることで、SiC単結晶23の成長速度を左右方向で一定とすることができる。後述するが、本実施形態のSiC単結晶成長装置100においては、蓋体20が回転する場合があるため、回転の影響を最小にする意味でも、種結晶設置部21を蓋体20の左右方向中央に設けることが好ましい。
蓋体20及び種結晶設置部21は、高温に耐えることができれば特に制限はなく、坩堝10と同様の材質を用いることができる。
ガイド部材30は、ガイド部30Aと、支持部30Bとを有する。ガイド部30Aは、種結晶設置部21から坩堝10側に延在している。すなわち、種結晶設置部21に設置された種結晶22の結晶成長方向に沿って配設されている。
坩堝10の上面の径は、種結晶設置部21の径より大きい。そのためガイド部30Aは、種結晶設置部21側から坩堝10側へ向かって広がるように形成されていることが好ましい。ガイド部30Aは、種結晶設置部21の全周に渡って形成されていることが好ましい。ガイド部30Aを全周に渡って設けることで、種結晶設置部21に設置された種結晶22から結晶成長するSiC単結晶23が、いずれの周方向でも口径拡大することができる。ガイド部30Aが傾斜する場合、傾斜角はガイド部30Aを種結晶設置部21に対して垂直ないずれの面で切断した場合においても同一であることが好ましい。傾斜角が同一であれば、SiC単結晶23の口径拡大率を一定にすることができる。
支持部30Bは、坩堝10と蓋体20の間にガイド部30Aを支持することができれば特に問わない。例えば支持部30Bは、図1に示すように、ガイド部30Aの端部の一部に接続し、傾斜面30Aの端部から鉛直方向に下した棒状の部材でもよい。また棒状に限られず、板状の部材でもよく、ガイド部30Aの端部全面に接続された管状の部材でもよい。ガスの流出を避けるためには、坩堝10と蓋体20の間の隙間を狭くすることが好ましく、管状の部材を設けることが好ましい。
ガイド部30Aと支持部30Bの接続部は、かしめ構造であることが好ましい。かしめ構造とは、ガイド部30Aに物理的な力が加わった際に、ガイド部30Aと支持部30Bの接続部が締まるように設計された構造をいい、例えば接続部がネジ切加工されたネジ構造等が挙げられる。ガイド部30Aは、結晶成長するSiC単結晶23と物理的に接触する場合があり、その場合にもガイド部30Aが脱落することを防ぐことができる。
ガイド部材30は、坩堝10と蓋体20の間で、SiC単結晶成長用原料11から発生した原料ガス(Si、SiC、SiC等)の流れを制御する。そのため、SiC単結晶23は、ガイド部30Aに沿って結晶成長する。
ガイド部材30の表面は、炭化タンタルでコーティングされていることが好ましい。ガイド部材30は、原料ガスの流れを制御するため、常に原料ガスに晒されている。ガイド部材30を黒鉛むき出しで使用すると、黒鉛が原料ガスと反応し、劣化損傷することがある。劣化損傷すると、ガイド部材30に穴あきが発生することが生じる。また劣化によって剥離したカーボン粉がSiC単結晶23内に取り込まれ、SiC単結晶23の品質を劣化させる原因にも繋がる。これに対し、炭化タンタルは、高温に耐えることができると共に、原料ガスと不要な反応を生じることもない。したがって、安定的に高品質なSiC単結晶成長を行うことができる。
回転駆動手段40は、種結晶設置部21及び/またはガイド部材30を回転させる。回転駆動手段40としては、例えば外部に設けられた駆動モーター等を用いることができる。図1では、蓋体20及びガイド部材30の下方に、回転台41が設けられる例を図示した。図1における回転台41は、蓋体20の下端面及びガイド部材30の下端面が接続されている。回転駆動手段40により回転台41が回転し、その回転が蓋体20及びガイド部材30に連動する。種結晶設置部21は、蓋体20に接続されているため、蓋体20と共に回転する。
回転台41と蓋体20及び/またはガイド部材30の接続は、いずれの方法を用いて実現してもよい。例えば、回転台41に蓋体20及び/またはガイド部材30の下端面を嵌めこむことができる凹部を形成してもよい。また回転台41に蓋体20及び/またはガイド部材30にクリップ等を設け、回転台41を挟み込む支持できるようにしてもよい。またガイド部30Aと支持部30Bの接続部のように、かしめ構造としてもよい。
なお、回転台41と蓋体20及び/またはガイド部材30の接続は、蓋体20及び/またはガイド部材30を回転させることができれば、下端面である必要はない。
種結晶設置部21の回転は、蓋体20を介して行わず、直接回転させてもよい。図2は、本発明の一態様に係るSiC単結晶成長装置の種結晶設置部付近を拡大した断面模式図である。図2では、回転軸42が蓋体20の上部を貫通し、種結晶設置部21に接続されている。回転軸42を回転させることで、種結晶設置部21を直接回転させることができる。
加熱手段50及び断熱材60は一般に公知の物を用いることができる。加熱手段50としては、例えば高周波コイル等を用いることができる。
次いで、SiC単結晶23の成長過程を説明すると共に、SiC単結晶成長装置100の機能について説明する。
図3は、本発明の一態様に係るSiC単結晶成長装置の機能を説明するための図であり、原料ガスの流れに関係のある部分を拡大した断面模式図である。
加熱手段50によって加熱されたSiC単結晶成長用原料11は昇華し、原料ガスを発生させる。発生した原料ガスは、矢印G1で示すように、種結晶設置部21に設置された種結晶22に向かって供給される。
原料ガスの一部は、矢印G2に示すように、ガイド部材30のガイド部30aに沿ってその流れの向きを変更する。そのため、ガイド部材30によって種結晶22に集まるように原料ガスが供給される。原料ガスが周囲から種結晶22に集まるように供給されることで、SiC単結晶23は、種結晶22から口径を拡大しながら効率的に結晶成長する。
一方、ガイド部材30がないと、図4の矢印G4に示すようにSiC単結晶成長用原料11から供給される原料ガスは、上方に一律に供給される。そのため、種結晶22から結晶成長するSiC単結晶23の口径はほとんど大きくならない。
またガイド部材30がないと、種結晶22に供給されず、その他の部分に供給された原料ガスにより、蓋体20の上方角部に多結晶24が多く結晶成長する。すなわち、多くの原料ガスが多結晶24を形成するために用いられることを意味し、効率的にSiC単結晶23を結晶成長することができない。
蓋体20の上方角部24で結晶成長する多結晶24は、ガイド部材30を有するSiC単結晶成長装置では、全く生じないわけではない。一部、形成されるがガイド部材30を有さない場合と比較して少ない。
一方、ガイド部材30を有するSiC単結晶成長装置では、図5に示すように、ガイド部材30表面に多結晶24が形成される。多結晶24は、ガイド部材30の中でも原料ガスの流れる方向に沿ったガイド部30aの端部で特に結晶成長しやすい。この多結晶24は、結晶成長が進むに従い、SiC単結晶23と接触し、一体化する。SiC単結晶23と多結晶24はその結晶性が異なるため、一体化するとその接触面に歪みが生じる。この歪みは、SiC単結晶23内の欠陥及び異種多形の発生原因となる。またこの歪みは、SiC単結晶23にクラックを発生させる要因ともなりうる。
ここで、SiC単結晶23と多結晶24は、互いに結晶成長を行いながら一体化する。SiCの結晶成長は極めて緩やかであるため、互いの相対位置が一定期間以上同じでなければ、一体化することはない。すなわち、SiC単結晶23と、ガイド部材30表面に形成された多結晶24とを、SiCの結晶成長過程で相対的に移動させる必要がある。
本実施形態に係るSiC単結晶成長装置100は、回転駆動手段40によって種結晶設置部21及び/またはガイド部材30が回転させることにより、SiC単結晶23とガイド部材30の位置関係を相対的に動かしている。したがって、SiC単結晶23と多結晶24が一体化することを阻害し、より高品質なSiC単結晶を得ることができる。
このとき、回転するのは、種結晶設置部21及びガイド部材30のいずれか一方のみでもよいし、両方が回転してもよい。いずれの場合でも、SiC単結晶23とガイド部材30表面に形成された多結晶24との位置関係を相対的に動く。種結晶設置部21及びガイド部材30の両方を駆動させる場合は、それぞれの回転方向は異なる方が好ましい。それぞれの回転方向を異なる向きとすることで、よりSiC単結晶23と多結晶24が一体化することを阻害することができる。
このとき種結晶23に対するガイド部材30の回転速度は、0.1rpm〜30rpmであることが好ましい。SiC単結晶23の成長速度は極めて遅いため、ある程度の回転速度があれば、多結晶24とSiC単結晶23が一体化することは十分阻害することができる。また回転数が速すぎると、SiC単結晶23に対する負荷が大きくなることと、回転させるための回転駆動手段24が不要に過大なものとなる。
ここで、SiC単結晶23の結晶成長に用いられなかった原料ガスは、蓋体20と坩堝10に囲まれた領域内に滞留する。この滞留する原料ガスの一部は、矢印G3に示すように、蓋体20と坩堝10の間に沿って下方から流出する。下方から流出した原料ガスは、図視略の排気手段等で適切にSiC単結晶成長装置100外部に排出される。
SiC単結晶成長装置100は、下方が高温で上方が低温である。下方はSiC単結晶成長用原料11を昇華し、上方は種結晶22上にSiC単結晶23を成長させるためである。原料ガスは高温側から低温側に向かって流れるため、下方に隙間を有していても、流出する原料ガスの量を最小限に抑えることができ、効率的な結晶成長を行うことができる。また下方から排出される原料ガスは、より高温の領域を通過してから外部に排出される。すなわち、原料ガスが、蓋体20と坩堝10の間で再結晶化して、詰まることは殆どない。したがって、種結晶設置部21及び/またはガイド部材30の回転駆動が阻害されることなく、高品質なSiC単結晶23を得ることができる。
ガイド部材30と蓋体20の側壁20Bとの最短距離は、0.01mm超10mm以下であることが好ましい。「ガイド部材30と蓋体20の側壁20Bとの最短距離」とは、ガイド部材30において傾斜面30Aが蓋体20の側壁20Bに向かって支持部30Bより突出している場合は、傾斜面30Aの端部と蓋体20の側壁20Bの距離を意味する。一方、ガイド部材30において支持部30Bが傾斜面30Aの端部と接続している場合は、支持部30Bと蓋体20の側壁20Bの距離を意味する。
ガイド部材30と蓋体20の側壁20Bとの距離をある程度の幅で確保することで、原料ガスがこの間で再結晶化し、回転駆動を阻害することを抑制することができる。またガイド部材30と蓋体20の側壁20Bとの距離をある程度の幅を可能な限り狭めることで、外部に流出する原料ガスの量を少なくし、効率的に結晶成長を行うことができる。
また蓋体20の側壁20Bと、坩堝10の外壁との距離も可能な限り狭めることが好ましい。
本実施形態のSiC単結晶成長装置100は、ガイド部材30を有し、ガイド部材30と結晶成長するSiC単結晶23とを相対的に回転させる。そのため、ガイド部材30に沿って、SiC単結晶23の口径が拡大すると共に、ガイド部材30上に結晶成長した多結晶24と、種結晶22から結晶成長する単結晶23とが一体化することを阻害することができる。その結果、長尺、大口径で、かつ高品質なSiC単結晶を形成することができる。
また本実施形態のSiC単結晶成長装置100は、SiC単結晶成長装置100内で高温となる下方から原料ガスを排出する。そのため、原料ガスの再結晶化を阻害し、ガイド部材30と結晶成長するSiC単結晶23とを相対的に回転を維持することができる。
[第2実施形態]
図6は、第2実施形態にかかるSiC単結晶成長用坩堝の断面を模式的に示した断面模式図である。第2実施形態に係るSiC単結晶成長装置200は、第1実施形態に係るSiC単結晶成長装置100の坩堝10とガイド部材30が一体化され、ガイド部付坩堝70となっている点が異なる。以下の説明では、上記実施形態と共通な箇所の説明は省略し、説明に用いる各図面において、図1〜図5と共通の構成要素には同一の符号を付すものとする。
ガイド付き坩堝70は、SiC単結晶成長用原料11を収納する収納部70Aと、収納部70Aから蓋体20に設置された種結晶設置部21に向かって傾斜する傾斜部70Bとを有する。収納部70Aは、第1実施形態のSiC単結晶成長装置100の坩堝10に対応し、傾斜部70Bは、第1実施形態のSiC単結晶成長装置100のガイド部材30に対応する。すなわち、第1実施形態の坩堝10の開口端部に、第1実施形態のガイド部材30のガイド部30Aを有する部分の一端が接続され、一体化したものと等しい。坩堝10とガイド部材の接続は、図6の例に限られず、例えば図7に示すように、坩堝10の開口端部にガイド部材30のガイド部30Aの途中が接続され、一体化してもよい。
収納部70A及び傾斜部70Bの構成及び材料は、第1実施形態の坩堝10及びガイド部材30のガイド部30Aと同等のものを用いることができる。
第2実施形態のSiC単結晶成長装置200では、種結晶設置部21と傾斜部70Bとが相対的に回転する。このとき、種結晶設置部21と傾斜部70Bの相対的な回転は、種結晶設置部21を有する蓋体20を回転させてもよいし、ガイド部付坩堝70を保持する支持部材12を回転させてもよい。またこれらの両方を回転させてもよい。
傾斜部70Bには、第1実施形態のガイド部材30と同様に、多結晶が付着する。そのため、種結晶設置部21と傾斜部70Bとが相対的に回転することで、種結晶設置部21に設置された種結晶22から結晶成長するSiC単結晶23と、傾斜部70に付着した多結晶が接触し、一体化することを抑制することができる。
第2実施形態のSiC単結晶成長装置200では、ガイド付き坩堝70と蓋体20の間に滞留した原料ガスは、ガイド部付坩堝70と蓋体20の間を通り、下方から流出する。SiC単結晶成長装置200の下方は、SiC単結晶成長用原料11を昇華させるために高温であるため、流出する原料ガスの量を抑えることができる。また、原料ガスが外部に流出する過程で再結晶化することを抑制することができる。
ガイド部付坩堝70の外壁と蓋体20の内壁の最短距離は、0.01mm超10mm以下であることが好ましい。第2実施形態におけるガイド部付坩堝70の外壁と蓋体20の内壁の最短距離との記載は、特許請求の範囲の「ガイド部材と前記蓋体の内壁との最短距離」との記載に対応する。図6の場合は、収納部70Bの外壁(傾斜部70Bの一端)と蓋体20の内壁との距離を意味し、図7の場合は、傾斜部70Bの一端と蓋体20との距離を意味する。
ガイド部付坩堝70の外壁と蓋体20の内壁との距離をある程度の幅で確保することで、原料ガスがこの間で再結晶化し、回転駆動を阻害することを抑制することができる。またガイド部付坩堝70の外壁と蓋体20の内壁との距離をある程度の幅を可能な限り狭めることで、外部に流出する原料ガスの量を少なくし、効率的に結晶成長を行うことができる。ガイド部付坩堝70を用いる場合は、第1実施形態におけるガイド部30を設ける隙間を考慮する必要が無く、坩堝10と蓋体20の間に形成される隙間を最も狭くすることができ、原料ガスの流出を最も抑えることができる。
本実施形態のSiC単結晶成長装置200は、傾斜部70Bを有し、傾斜部70Bと結晶成長するSiC単結晶23とを相対的に回転させる。そのため、傾斜部70Bに沿って、SiC単結晶23の口径が拡大すると共に、傾斜部70B上に結晶成長した多結晶24と、種結晶22から結晶成長する単結晶23とが一体化することを阻害することができる。その結果、長尺、大口径で、かつ高品質なSiC単結晶を形成することができる。
また本実施形態のSiC単結晶成長装置100は、SiC単結晶成長装置200内で高温となる下方から原料ガスを流出する。そのため、反応空間から原料ガスの流出を抑えることができる。また流出経路が高温になるため、原料ガスの再結晶化を阻害し、傾斜部70Bと結晶成長するSiC単結晶23とを相対的に回転を維持することができる。
以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10…坩堝、11…SiC単結晶成長用原料、12…支持部材、20…蓋体、21…種結晶設置部、22…種結晶、23…SiC単結晶、24…多結晶、30…ガイド部材、30a…ガイド部、40…回転駆動手段、41…回転台、42…回転軸、50…加熱手段、60…断熱材、70…ガイド付き坩堝、70A…収納部、70B…傾斜部、100,200…SiC単結晶成長装置

Claims (6)

  1. 内部にSiC単結晶成長用原料を収納できる坩堝と、
    前記坩堝に対向する位置に種結晶設置部を有する天井部と前記坩堝を囲む側壁とを有し、前記坩堝を覆う蓋体と、
    前記種結晶設置部側から前記坩堝側へ向かって延在するガイド部と、前記ガイド部を支持する支持部とを有するガイド部材と、
    前記種結晶設置部及び/または前記ガイド部材を回転させることで、前記種結晶設置部と前記ガイド部材とを相対的に回転させる回転駆動手段と、を備えるSiC単結晶成長装置。
  2. 前記ガイド部材と前記坩堝が一体化されている請求項1に記載のSiC単結晶成長装置。
  3. 前記ガイド部材と前記蓋体の側壁との最短距離が0.01mm超10mm以下である請求項1または2のいずれかに記載のSiC単結晶成長装置。
  4. 前記ガイド部材の表面が炭化タンタルでコーティングされている請求項1〜3のいずれか一項に記載のSiC単結晶成長装置。
  5. 坩堝内にSiC単結晶成長用原料を収納する工程と、
    前記坩堝の開口端側にガイド部材を配設する工程と、
    蓋体の種結晶設置部に種結晶を設置する工程と、
    前記種結晶が前記SiC単結晶成長用原料と対向するように、前記種結晶が設置された蓋体で前記坩堝及び前記ガイド部材を覆う工程と、
    前記種結晶と前記ガイド部材を相対的に回転させながら、SiC単結晶成長用原料を昇華させる工程と、を有するSiC単結晶成長方法。
  6. 前記種結晶に対する前記ガイド部材の回転速度が、0.1rpm〜30rpmである請求項5に記載のSiC単結晶成長方法。
JP2015215686A 2015-11-02 2015-11-02 SiC単結晶成長装置およびSiC単結晶成長方法 Active JP6621300B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215686A JP6621300B2 (ja) 2015-11-02 2015-11-02 SiC単結晶成長装置およびSiC単結晶成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215686A JP6621300B2 (ja) 2015-11-02 2015-11-02 SiC単結晶成長装置およびSiC単結晶成長方法

Publications (2)

Publication Number Publication Date
JP2017088415A JP2017088415A (ja) 2017-05-25
JP6621300B2 true JP6621300B2 (ja) 2019-12-18

Family

ID=58767545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215686A Active JP6621300B2 (ja) 2015-11-02 2015-11-02 SiC単結晶成長装置およびSiC単結晶成長方法

Country Status (1)

Country Link
JP (1) JP6621300B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055583B (zh) * 2019-04-26 2021-01-12 山东天岳先进科技股份有限公司 一种长晶装置及其应用
CN112981523A (zh) * 2021-03-18 2021-06-18 哈尔滨化兴软控科技有限公司 一种可有效提高SiC单晶质量的方法及装置
JP7305818B1 (ja) 2022-01-26 2023-07-10 國家中山科學研究院 炭化ケイ素単結晶成長の熱場調整方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3216322B2 (ja) * 1993-04-12 2001-10-09 住友金属鉱山株式会社 単結晶育成装置
JP4140123B2 (ja) * 1999-03-23 2008-08-27 株式会社デンソー 炭化珪素単結晶の製造方法及び単結晶製造装置
JP3961750B2 (ja) * 2000-08-21 2007-08-22 独立行政法人産業技術総合研究所 単結晶の成長装置および成長方法
JP2007176718A (ja) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd 炭化珪素単結晶の製造方法及び製造装置
JP2008266115A (ja) * 2007-03-23 2008-11-06 Furukawa Co Ltd 結晶成長装置およびルツボ部材
JP5839315B2 (ja) * 2010-07-30 2016-01-06 株式会社デンソー 炭化珪素単結晶およびその製造方法
JP5482643B2 (ja) * 2010-12-24 2014-05-07 新日鐵住金株式会社 炭化珪素単結晶インゴットの製造装置
JP5613619B2 (ja) * 2011-05-24 2014-10-29 昭和電工株式会社 炭化珪素単結晶製造装置、及び炭化珪素単結晶の製造方法

Also Published As

Publication number Publication date
JP2017088415A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP3961750B2 (ja) 単結晶の成長装置および成長方法
JP4547031B2 (ja) 炭化珪素単結晶製造用坩堝、並びに炭化珪素単結晶の製造装置及び製造方法
JP4388538B2 (ja) 炭化珪素単結晶製造装置
TWI444511B (zh) A silicon carbide single crystal manufacturing apparatus, a manufacturing apparatus for manufacturing a device, and a method for manufacturing a silicon carbide single crystal
JP7076279B2 (ja) SiC単結晶成長装置およびSiC単結晶の成長方法
EP2287367A1 (en) Single crystal manufacturing device and manufacturing method
JP6621300B2 (ja) SiC単結晶成長装置およびSiC単結晶成長方法
JP4924290B2 (ja) 炭化珪素単結晶の製造装置およびその製造方法
JP2008037684A (ja) 単結晶炭化ケイ素種結晶の液相生成方法及び単結晶炭化ケイ素種結晶、単結晶炭化ケイ素種結晶板の液相エピタキシャル生成方法及び単結晶炭化ケイ素種結晶板、単結晶炭化ケイ素種結晶基板の生成方法及び単結晶炭化ケイ素種結晶基板
JP5240100B2 (ja) 炭化珪素単結晶の製造装置
JP5012655B2 (ja) 単結晶成長装置
JP4459211B2 (ja) 単結晶の成長装置および成長方法
JP4238450B2 (ja) 炭化珪素単結晶の製造方法及び製造装置
JP5602093B2 (ja) 単結晶の製造方法および製造装置
JP5516167B2 (ja) 炭化珪素単結晶の製造装置
JP5333315B2 (ja) 炭化珪素単結晶の製造装置および炭化珪素単結晶の製造方法
JP4844127B2 (ja) 単結晶製造装置および製造方法
CN114108093B (zh) 碳化硅晶体生长装置
JP3982022B2 (ja) 単結晶の製造方法及び単結晶製造装置
JP6694807B2 (ja) 炭化珪素単結晶の製造方法
CN110777427A (zh) 晶体生长装置
CN114574954B (zh) 晶体生长装置
WO2020241578A1 (ja) SiC単結晶インゴットの製造方法
US11441235B2 (en) Crystal growing apparatus and crucible having a main body portion and a low radiation portion
WO2022123957A1 (ja) 単結晶製造装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191119

R150 Certificate of patent or registration of utility model

Ref document number: 6621300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350