JP6484936B2 - トランスインピーダンス増幅器 - Google Patents

トランスインピーダンス増幅器 Download PDF

Info

Publication number
JP6484936B2
JP6484936B2 JP2014128850A JP2014128850A JP6484936B2 JP 6484936 B2 JP6484936 B2 JP 6484936B2 JP 2014128850 A JP2014128850 A JP 2014128850A JP 2014128850 A JP2014128850 A JP 2014128850A JP 6484936 B2 JP6484936 B2 JP 6484936B2
Authority
JP
Japan
Prior art keywords
current
signal
voltage
input
offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014128850A
Other languages
English (en)
Other versions
JP2016009971A (ja
Inventor
良之 杉本
良之 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014128850A priority Critical patent/JP6484936B2/ja
Priority to US14/747,465 priority patent/US9577753B2/en
Publication of JP2016009971A publication Critical patent/JP2016009971A/ja
Application granted granted Critical
Publication of JP6484936B2 publication Critical patent/JP6484936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0797Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6933Offset control of the differential preamplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/375Circuitry to compensate the offset being present in an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/453Controlling being realised by adding a replica circuit or by using one among multiple identical circuits as a replica circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/462Indexing scheme relating to amplifiers the current being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45288Differential amplifier with circuit arrangements to enhance the transconductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Amplifiers (AREA)

Description

本発明は、光受信器等に使用されるトランスインピーダンス増幅器に関する。
通信ネットワークのトラフィックの増大に伴い、光トランシーバの小型化・低消費電力化が継続的に要求されている。光トランシーバの受信部には、光信号を電流信号に変換するフォトダイオード(PD:Photo Diode)等の受光素子と、電流信号を電圧信号に変換すると共に増幅するトランスインピーダンス増幅器(TIA:TransImpeadance Amplifier)とが含まれている。PDによって生成される電流信号は、光トランシーバの送信部で変調された信号を復調するために利用されるだけでなく、受信した光信号の強度の測定及び無信号状態の検出を行うためにも利用される。
光信号の強度の測定等を行う構成として、例えば特許文献1には、PDに直列につながったカレントミラー回路を用いた電流モニタ回路が開示されている。また、特許文献2には、PDに直列につながった抵抗の両端に生じる電圧差(電圧降下)に基づき抵抗を流れる電流量を検出する電流モニタ回路が開示されている。
特開平11−40840号公報 特開2009−260300号公報
上述した特許文献1の構成では、カレントミラー回路としてPNP型バイポーラトランジスタ又はPチャネルFET(Field Effect Transistor)等を採用する必要がある。一方、トランスインピーダンス増幅器は、高性能を担保する上でNPN型バイポーラトランジスタにより構成されることが好ましい。一般的に、PNP型及びNPN型バイポーラトランジスタを1チップ上に集積化することは困難であるので、それぞれのトランジスタは、別々のチップで製造されることとなる。このことは、トランスインピーダンス増幅器の小型化を図る上で好ましくない。さらに、特許文献1の構成では、PDに直列につながったカレントミラー回路のトランジスタのエミッタ−コレクタ間に所定の電圧を与える必要があるので、低消費電力化の点において好ましくない。また、特許文献2の構成の場合も同様に、PDに直列につながった抵抗の電圧降下を考慮して大きな電源電圧を与える必要があるので、低消費電力化の点において好ましくない。
本発明は上記の課題を解決するためになされたものであり、小型化及び低消費電力化に好適なトランスインピーダンス増幅器を提供することを目的とする。
本発明はその一側面としてトランスインピーダンス増幅器に関する。このトランスインピーダンス増幅器は、電流信号を電圧信号に変換して該電圧信号を出力する第1の増幅部と、電圧信号に応じて振幅が増減する差動電圧信号を出力する差動増幅部と、差動電圧信号に応じて、電流信号の時間平均が所定の値となるように制御する制御信号を出力する帰還制御部と、制御信号に応じて、第1の増幅部に流れ込む前の入力電流信号からバイパス電流を引き抜く電流バイパス部と、制御信号に応じて、モニタ電流を流す電流モニタ部と、を備える。
本発明によれば、小型化及び低消費電力化に好適なトランスインピーダンス増幅器を提供することができる。
(a)はPON方式のシステムを例示するブロック図であり、(b)はPON方式の時間に対する受信器で受信される光信号の模式図である。 図1の受信部の構成例を示す図である。 第1実施形態に係るトランスインピーダンス増幅器を示す回路図である。 比較例に係るトランスインピーダンス増幅器を示す回路図である。 第2実施形態に係るトランスインピーダンス増幅器を示す回路図である。 オフセット電流源の構成例を示す図である。 条件毎のモニタ電流値を示す図である。
[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
本発明はその一側面としてトランスインピーダンス増幅器に関する。このトランスインピーダンス増幅器は、入力電流信号からバイパス電流を差し引いた電流信号に応じて電圧が増減する電圧信号を出力する第1の増幅部と、電圧信号に応じて振幅が増減する差動電圧信号を出力する差動増幅部と、制御信号に応じて、入力電流信号からバイパス電流を引き抜く電流バイパス部と、差動電圧信号に応じて、電流信号の時間平均が所定の値となるように、制御信号を出力する帰還制御部と、制御信号に応じて、バイパス電流の電流量に比例したモニタ電流を流す電流モニタ部と、を備える。
このトランスインピーダンス増幅器では、制御信号に応じたモニタ電流が流される。当該制御信号は、バイパス電流量の決定に利用されるものであり、モニタ電流の電流量はバイパス電流量に応じた(比例した)値となる。また、制御信号は、第1の増幅部に流れ込む電流信号の時間平均が所定の値となるように制御する信号であるので、バイパス電流量は、第1の増幅部に流れ込む前の入力電流信号に応じた値となる。よって、モニタ電流の電流量は、入力電流信号に応じた値となる。当該モニタ電流によって、トランスインピーダンスアンプを含む光受信部が受信した光信号の強度が適切に検出される。このように制御信号に応じたモニタ電流を利用することにより、例えばトランスインピーダンス増幅器に対してカレントミラー回路又は抵抗等を直列に接続して光信号の強度を検出する場合と比較して、トランスインピーダンスアンプを含む光受信部の小型化・低消費電力化を実現することができる。
また、上記のトランスインピーダンス増幅器において、参照電圧信号を出力するオフセット設定部を更に備え、差動増幅部は、差動入力信号に応じて振幅が増減する差動電圧信号を出力する差動増幅器を有し、差動入力信号の正相成分として電圧信号が差動増幅部に入力されるとともに、逆相成分として参照電圧信号が差動増幅部入力され、オフセット設定部は、入力電流信号がゼロの場合にバイパス電流の電流量が所定の値になるように参照電圧信号を出力してもよい。これにより、オフセット設定部の参照電圧信号を設定することによって、簡易且つ正確に光信号の強度を導出することができる。
また、上記のトランスインピーダンス増幅器において、オフセット設定部は、オフセット電流に応じて電圧が増減する参照電圧信号を出力する第2の増幅部と、オフセット電流を第2の増幅部から引き込むオフセット電流源とを有し、第2の増幅部の入出力特性は第1の増幅部の入出力特性と略一致し、バイパス電流の電流値は、入力電流信号がゼロである場合にオフセット電流の電流値に略一致してもよい。これにより、オフセット電流の電流値とモニタ電流の電流値とから、光信号の強度を簡易且つ正確に導出することができる。
また、上記のトランスインピーダンス増幅器において、オフセット電流源は、第1の制御電圧によって電流量が増減するオフセット電流を引き込む第1の電流源と、第1の制御電圧を供給する定電圧回路と、を有してもよい。これにより、オフセット電流源を、例えばNPN型バイポーラトランジスタ及び抵抗からなる構成とし、大きな電源電圧を必要としない構成とすることができる。
また、上記のトランスインピーダンス増幅器において、オフセット電流源は、第2の制御電圧に応じて電流量が増減する制御電流を引き込む第2の電流源と、第2の制御電圧に応じて電流量が増減するオフセット電流を引き込む第3の電流源と、を有し、第3の電流源の入出力特性は、第2の電流源の入出力特性と略一致し、制御電流は、第2の制御電圧を調整することによって、電源電圧及び温度の変動に対して所定の値を維持するように制御されてもよい。これにより、電源電圧及び温度の変動に対して一定の制御電流が引き込まれ、オフセット電流を電源電圧及び温度に依存しないようにすることができる。
[本願発明の実施形態の詳細]
[第1実施形態]
まず、本発明の第1実施形態に係るシステムの一例として、PON(PassiveOptical Network)方式の通信システムについて説明する。図1(a)は、PON方式のブロック図である。局舎80内の局側通信装置82は、例えば、複数の家庭70a〜70c内の各家庭側通信装置72と光ファイバである通信経路L1及びL2を介し接続されている。局側通信装置82は、例えばOLT(Optical Line Terminal)である。局側通信装置82とオプティカルスプリッタ74とは1本の通信経路L1で接続されている。オプティカルスプリッタ74と各家庭側通信装置72との間は各通信経路L2を介し接続されている。オプティカルスプリッタ74は、各家庭側通信装置72から各通信経路L2を介し入出力された光信号を通信経路L1に結合する。通信経路L1の光信号は局側通信装置82に入出力される。局側通信装置82は制御回路84、送信部86及び受信部88を有している。送信部86は、各家庭側通信装置72に光信号を送信する送信回路である。受信部88は、各家庭側通信装置72からの光信号を受信する受信回路である。制御回路84は送信部86及び受信部88を制御する回路である。送信部86から送信される光信号と受信部88で受信される光信号とはそれぞれ互いに異なった波長を有している。
図1(b)は、受信部88の受光素子89(図2参照)に入力される光信号を時間に対し示す模式図である。期間Ton1の間は家庭70aの家庭側通信装置72からの光信号が入力される。期間Toff1の間には光信号は入力されず、期間Ton2において家庭70bの家庭側通信装置(不図示)からの光信号が入力される。さらに、期間Toff2の間には光信号は入力されず、期間Ton3において家庭70cの家庭側通信装置(不図示)からの光信号が入力される。各家庭側通信装置72の出力信号の振幅及び各通信経路L2での光信号の損失はそれぞれ異なる。このため、期間Ton1、Ton2及びTon3(入力信号期間)の光信号の振幅はそれぞれ振幅A1、A2及びA3のように互いに異なった大きさとなる。このように、PON用の受信部88には、異なる家庭から光信号が異なる振幅で不定期に入力される。なお、期間Toff1及びToff2は通信経路L2を切り換える期間(インターバル期間)である。受信部88に用いられる増幅回路においては、入力する光信号の振幅が異なるため、帰還制御回路が用いられる。
次に、局側通信装置82に含まれる受信部88の構成について説明する。図2は、図1の受信部88の構成例を示す図である。受信部88は、例えば10G−EPON(10 Gigabit Ethernet Passive Optical Network)受信器である。受信部88は、受光素子89と、トランスインピーダンス増幅器(TIA:Trans-Impedance Amplifier)1と、リミット増幅器(LIA:LimitingAmplifier)50とを備えている。
受光素子89は、受信部88に入力された光信号を電気信号、より詳細には電流信号に変換する素子であり、例えば、アバランシェ・フォト・ダイオード(APD:Avalanche PhotoDiode)である。受光素子89によって出力された電流信号は、TIA1に入力される。
TIA1は、入力された電流信号をインピーダンス変換するとともに増幅し、電圧信号として出力するIC(Integrated Circuit)である。TIA1は、入力信号の強度が比較的微弱な場合には高い増幅率で動作し、入力信号の強度が比較的強い場合には低い増幅率で動作するように利得が制御される。TIA1によって増幅された差動信号(電圧信号)は、LIA50に入力される。なお、TIA1とLIA50とは、コンデンサ51によってAC結合されている。AC結合に用いられるコンデンサ51は、バースト信号への高速応答を実現するために、幹線系システム用等の主に連続信号を受信する受信器において用いられるコンデンサと比較して、容量値の小さいものが用いられる。TIA1の詳細については後述する。
LIA50は、様々な強度の電圧信号を一定振幅の電圧信号に変換して出力するICである。LIA50は、差動信号の正相信号及び逆相信号の電圧レベルを揃えて出力する。LIA50から出力された一定振幅の電圧信号は、そこからCDR(Clock and Data Recovery)(不図示)によって所定のクロック信号が抽出され、ジッタの少ないクロック信号で識別再生処理を行うことにより波形が成形される。
次に、第1実施形態のTIA1について詳細に説明する。図3は、第1実施形態に係るTIA1を示す回路図である。図3に示されるように、TIA1は、TIAコア部11(第1の増幅部)と、差動増幅部12と、電流バイパス部13と、帰還制御部14と、電流モニタ部15と、を備えている。入力端子Tinには、受光素子89のアノードが接続されている。また、受光素子89のカソードは電源Vpdに接続されている。入力端子Tinに入力した通信信号である入力電流信号Ipdは、TIAコア部11の入力信号(電流信号)Itiaとなる(詳細は後述)。TIA1は、NPN型トランジスタを複数含んで構成されている。
TIAコア部11は、アンプ16と帰還抵抗R0とを有し、電流信号Itiaを電圧信号Vtia1に変換して該電圧信号Vtia1を出力する。より詳細には、TIAコア部11は、入力電流信号Ipdからバイパス電流Ishuntを差し引いた電流信号Itiaに応じて電圧が増減する電圧信号Vtia1を差動増幅部12に向けて出力する。
差動増幅部12は、電圧信号Vtia1に応じて振幅が増減する差動電圧信号Vout,Voutbを出力する。差動増幅部12は、差動入力信号に応じて振幅が増減する差動電圧信号Vout,Voutbを出力する差動増幅器17を有している。差動増幅器17は、TIAコア部11から出力された電圧信号Vtia1と、参照電圧端子Tref1に印加された参照電圧信号Vref1との差分、すなわち、Vtia1−Vref1を増幅する差動増幅回路である。例えば、差動増幅器17において、電圧信号Vtia1が参照電圧信号Vref1に等しいときには、差動電圧信号Vout,Voutbは等しくなり、それを中心電圧Vcenterとする。この場合、差動増幅器17は、電圧信号Vtia1が参照電圧信号Vref1より大きければ、出力端子Toutに中心電圧Vcenterよりも大きい差動電圧信号Voutを、出力端子Toutbに中心電圧Vcenterよりも小さい差動電圧信号Voutbを、それぞれ出力する。また、差動増幅器17は、電圧信号Vtia1が参照電圧信号Vref1より小さければ、出力端子Toutに中心電圧Vcenterよりも小さい差動電圧信号Voutを、出力端子Toutbに中心電圧Vcenterよりも大きい差動電圧信号Voutbを、それぞれ出力する。差動電圧信号Vout,Voutbは、互いに位相が180度異なる相補信号である。
電流バイパス部13は、帰還制御部14から出力される制御信号Vc(詳細は後述)に応じて、TIAコア部11に流れ込む前の入力電流信号Ipdからバイパス電流Ishuntを引き抜くバイパス回路である。電流バイパス部13は、NPN型トランジスタであるトランジスタQ1と、抵抗R1とを有している。トランジスタQ1のコレクタは端子Tsに、エミッタは抵抗R1に、それぞれ接続されている。また、抵抗R1は接地されている。トランジスタQ1のベースには、帰還制御部14から出力される制御信号Vcが入力される。電流バイパス部13は、制御信号Vcの電圧に応じて、入力電流信号Ipdの一部をバイパス電流Ishuntとしてバイパス(分流)する。
このように、電流バイパス部13は、制御信号Vcに基づいて、入力電流信号Ipdをバイパスする。入力電流信号Ipdがバイパスされることで、TIAコア部11に入力する電流信号Itiaの時間平均値が減少する。すなわち、電流バイパス部13は、電圧信号Vtia1が大きくなるとバイパス電流Ishuntを大きくしTIAコア部11に入力する電流信号Itiaの時間平均値を減少させるように、帰還制御部14によって制御される。
帰還制御部14は、差動増幅部12から出力された差動電圧信号Vout,Voutbに応じて、電流信号Itiaの時間平均が所定の値となるように制御する制御信号Vcを出力する自動オフセット制御回路である。帰還制御部14は、抵抗R3及び抵抗R4と、コンデンサC1と、DCアンプ18とを含んだフィルタ回路を有している。抵抗R3には端子Tpから差動電圧信号Voutが入力される。また、抵抗R4には端子Tnから差動電圧信号Voutbが入力される。当該入力された信号は、抵抗R3,R4及びコンデンサC1によって、低周波成分が透過された後に、入力電圧信号Vf1,Vf2としてDCアンプ18に入力される。DCアンプ18は、入力電圧信号Vf1,Vf2に基づいて出力電圧信号Vf3を出力する。そして当該出力電圧信号Vf3が、抵抗R5及びコンデンサC2からなるフィルタ回路を通過し、制御信号Vcが生成される。
電流モニタ部15は、制御信号Vcに応じて、バイパス電流Ishuntの電流量に比例したモニタ電流Imを流す電流源である。電流モニタ部15は、NPN型トランジスタであるトランジスタQ2と、抵抗R2と、抵抗RLと電源VCCmとを有している。トランジスタQ2は、上述した電流バイパス部13のトランジスタQ1と同じ(同一特性)トランジスタであり、抵抗R2は、上述した電流バイパス部13の抵抗R1と同じ抵抗値の抵抗である。トランジスタQ2のエミッタは抵抗R2に接続されており、抵抗R2は接地されている。また、トランジスタQ2のベースは、トランジスタQ1のベースに接続された端子Tcに接続されており、トランジスタQ2のベースにはトランジスタQ1のベースと同様に制御信号Vcが入力される。また、トランジスタQ2のコレクタは抵抗RLに接続されており、抵抗RLは電源VCCmに接続されている。
上記構成において、抵抗RLとトランジスタQ2のコレクタとの間の端子Vmonの電圧を測定し、電源VCCmの電圧と端子Vmonにおける電圧との差すなわち抵抗RLにおける電圧降下を、抵抗RLで除算することにより、電流モニタ部15を流れるモニタ電流Imを導出することができる。そして、当該モニタ電流Imは、電流バイパス部13による電流引き抜き量の決定に用いられる制御信号Vcに応じた値であるので、モニタ電流Imはバイパス電流Ishuntに応じた(比例した)値となる。ここで、制御信号Vcは、電流信号Itiaの時間平均が所定の値になるように制御する信号であるので、バイパス電流Ishuntは、TIAコア部11に流れ込む前の入力電流信号Ipdの大きさに応じた値となる。よって、モニタ電流Imは、TIAコア部11に流れ込む前の入力電流信号Ipdの大きさに応じた値となる。
また、電流モニタ部15のトランジスタQ2は電流バイパス部13のトランジスタQ1と同一特性であり、電流モニタ部15の抵抗R2は電流バイパス部13の抵抗R1と同じ抵抗値の抵抗であるので、モニタ電流Imはバイパス電流Ishuntと等しくなる。よって、モニタ電流Im、バイパス電流Ishunt、入力電流信号Ipd、及び電流信号Itiaの関係は以下の式(1)で表される。
Im=Ishunt=Ipd−Itia・・・(1)
ここで、入力電流信号Ipd=0(無入力時)における、バイパス電流Ishuntの値をIshunt0、モニタ電流Imの値をIm0とすると、
Itia=−Ishunt0=−Im0・・・(2)
となるので、式(1)及び式(2)より、
Im=Ipd+Ishunt0=Ipd+Im0・・・(3)
と表される。
よって、入力電流信号Ipd=0におけるモニタ電流Im0の値を得ておくことにより、当該Im0の値と、導出したモニタ電流Imの値とに基づき、入力電流信号Ipdを導出することができる。
次に、本実施形態に係るTIA1の作用効果について説明する。
本実施形態に係るTIA1では、電流モニタ部15において、制御信号Vcに応じたモニタ電流Imが流される。当該制御信号Vcは、バイパス電流Ishuntの電流量の決定に利用されるものであるので、モニタ電流Imの電流量はバイパス電流Ishuntの電流量に応じた(比例した)値となる(本実施形態では、電流モニタ部15のトランジスタQ2は電流バイパス部13のトランジスタQ1と同一特性であり、電流モニタ部15の抵抗R2は電流バイパス部13の抵抗R1と同じ抵抗値の抵抗であるので、モニタ電流Imはバイパス電流Ishuntと等しくなる。)。また、制御信号Vcは、TIAコア部11に流れ込む電流信号Itiaの時間平均が所定の値となるように制御する信号であるので、バイパス電流Ishuntの電流量は、TIAコア部11に流れ込む前の、入力電流信号Ipdに応じた値となる。よって、モニタ電流Imの電流量は、入力電流信号Ipdに応じた値となる。よって、当該モニタ電流Imによって、TIA1を含む受信部88が受信した光信号の強度が適切に検出される。
例えば、図4に示される、比較例に係るTIA100では、TIA100の回路内には光信号の強度の測定等を行う構成が設けられていない。そのため、TIA100では、PD189のカソード側に、光信号の強度の測定を行うモニタ構成MC(例えばカレントミラー回路、又は抵抗)を直列接続して光信号の強度の測定等を行っている。このように、PD189のカソード側に、直列に素子をつなぐ場合には、TIA100を含む受信部が大型化してしまう。例えば、PNP型バイポーラトランジスタであるカレントミラー回路をPD189のカソード側に接続した場合には、NPN型バイポーラトランジスタで構成されたTIA100と同一チップ上に集積化することが難しく、チップ数が増えることにより大型化してしまう。また、直列に回路が追加されることにより、当該追加された回路に与える電圧が必要になり、低消費電力化の点においても好ましくない。
この点、TIA1において、制御信号Vcに応じたモニタ電流Imを利用することにより、TIA100のようにPDのカソード側にカレントミラー回路又は抵抗等を直列に接続する必要がないので、TIA100と比較して、受信部88の小型化・低消費電力化を実現することができる。
[第2実施形態]
次に、図5を参照して、第2実施形態に係るTIA1Aを説明する。なお、本実施形態の説明では、上記実施形態と異なる点について主に説明する。
図5は、第2実施形態に係るTIA1Aを示す回路図である。図5に示されるように、TIA1Aは、第1実施形態に係るTIA1の差動増幅部12に代えて差動増幅部12Aを、電流モニタ部15に代えて電流モニタ部15Aを、備えている。電流モニタ部15Aは、制御信号Vcに応じてモニタ電流Imを流す電流源である点で、電流モニタ部15と同様であるが、電流モニタ部15が電圧降下を測定しモニタ電流Imの大きさを導出するのに対し、電流モニタ部15はモニタ電流Imを直接測定する点で異なっている。以下、差動増幅部12Aの詳細について説明する。
差動増幅部12Aは、差動増幅部12と同様、差動増幅器17を有している。差動増幅器17には、差動入力信号の正相成分として上述した電圧信号Vtia1が入力されるとともに、逆相成分として参照電圧信号Vref1が入力される。差動増幅器17に入力される参照電圧信号Vref1は、オフセット設定部30により出力される。オフセット設定部30は、入力電流信号Ipdがゼロの場合に、バイパス電流Ishuntの電流量が所定の値になるように、参照電圧信号Vref1を出力する。
オフセット設定部30は、ダミーTIAコア部31(第2の増幅部)と、オフセット電流源32とを有している。ダミーTIAコア部31は、TIAコア部11と同等の入出力特性(機能・特性)を有している。すなわち、ダミーTIAコア部31のアンプ33は、TIAコア部11のアンプ16と同じ機能・特性を有しており、ダミーTIAコア部31の帰還抵抗R10は、TIAコア部11の帰還抵抗R0と同じ抵抗値を有している。
ダミーTIAコア部31は、オフセット電流Ioffsetに応じて電圧が増減する参照電圧信号Vref1を出力する。上述したように、ダミーTIAコア部31がTIAコア部11と同等の入出力特性を有しているので、オフセット電流Ioffsetの値は、入力電流信号Ipdがゼロの場合のバイパス電流Ishunt0の値に略一致する。
オフセット電流源32は、オフセット電流IoffsetをダミーTIAコア部31から引き込む電流源である。オフセット電流源32の構成例について図6を参照して説明する。図6(a)は、オフセット電流源32の一構成例を示すオフセット電流源32Aを示す図である。また、図6(b)は、オフセット電流源32の別の構成例を示すオフセット電流源32Bを示す図である。
図6(a)に示されるように、オフセット電流源32Aは、制御電圧Vc1(第1の制御電圧)によって電流量が増減するオフセット電流Ioffsetを引き込む電流源321A(第1の電流源)と、上記制御電圧Vc1を供給するBGR(Band Gap Reference)回路322A(定電圧回路)とを有している。BGR回路322Aは、例えば、反対の温度依存性を持つ電圧の重みづけを変えて加算することで任意の温度依存性を持った制御電圧Vc1を発生する。これにより、電源電圧及び温度に依存しないオフセット電流Ioffsetを構成することができる。また、このようなBGR回路322Aにより、例えば、消費電力の削減を意図して、ダミーTIAコア部31とTIAコア部11とを異なる構成とした場合(入出力特性を異ならせた場合)においても、バイパス電流Ishuntの電流量を所望の値とすることができる。
図6(b)に示されるように、オフセット電流源32Bは、制御電圧Voffsetcntl(第2の制御電圧)に応じて電流量が増減する制御電流Icを引き込む電流源322B(第2の電流源)と、制御電圧Voffsetcntlに応じて電流量が増減するオフセット電流Ioffsetを引き込む電流源321B(第3の電流源)と、を有する。電流源322Bは直列接続されたトランジスタQ4及び抵抗R4を含み、電流源321Bは直列接続されたトランジスタQ3及び抵抗R3を含む。トランジスタQ4,Q3は同一特性であり、抵抗R3,R4は同一抵抗値であるので、電流源321B,322Bの入出力特性は同等(略一致)となる。
オフセット電流源32Bは、例えば受信部88が内蔵するCPU50(制御回路)により制御電圧Voffsetcntlが調整される。電流源322BのトランジスタQ4、及び電流源321BのトランジスタQ3には、CPU50とオフセット電流源32Bとを接続するオフセット電流制御端子Offsetcntlから入力される制御電圧Voffsetcntlに応じてほぼ同等の電流(制御電流Ic=オフセット電流Ioffset)が流れる。
電流源322BのトランジスタQ4のコレクタは抵抗Rmonに接続されており、当該抵抗Rmonは電源Vccに接続されている。当該構成において、抵抗RmonとトランジスタQ4のコレクタとの間の接続点に、CPU50とオフセット電流源32Bとを接続するオフセット電流モニタ端子Offsetmonが接続される。CPU50は、オフセット電流モニタ端子Offsetmonの電圧Voffsetmonを取得し、電源Vccの電圧とオフセット電流モニタ端子Offsetmonにおける電圧Voffsetmonとの差を抵抗Rmonで除算することにより、トランジスタQ4に流れる制御電流Icを導出する。CPU50は、導出した制御電流Icに応じて、制御電流Icが所望の値となるように(すなわちオフセット電流Ioffsetが所望の値となるように)、制御電圧Voffsetcntlの値を調整する。すなわち、CPU50は、導出した制御電流Icの値をフィードバック制御することにより、オフセット電流Ioffsetを所望の値に調整する。
なお、CPU50は、電圧Voffsetmonとともに、図示しない温度センサにより抵抗Rmonの周囲温度を測定することにより、周囲温度の変動をも考慮して、オフセット電流Ioffsetの値を所望の値に調整することができる。
次に、本実施形態に係るTIA1Aの作用効果について説明する。
本実施形態に係るTIA1Aは、差動増幅器17に入力される参照電圧信号Vref1を出力するオフセット設定部30を備えている。また、オフセット設定部30は、入力電流信号Ipdがゼロの場合に、バイパス電流Ishuntの電流量が所定の値になるように、参照電圧信号Vref1を出力する。これによって、オフセット設定部30の参照電圧信号Vref1の設定により制御信号Vcを生成することができ、簡易且つ正確に光信号の強度を導出することが可能となる。
また、オフセット設定部30は、オフセット電流Ioffsetに応じて電圧が増減する参照電圧信号Vref1を出力するダミーTIAコア部31と、オフセット電流IoffsetをダミーTIAコア部31から引き込むオフセット電流源32とを有する。そして、ダミーTIAコア部31の入出力特性はTIAコア部11の入出力特性と略一致し、オフセット電流Ioffsetの値は、入力電流信号Ipdがゼロの場合のバイパス電流Ishunt0の値、すなわち、モニタ電流Im0に略一致する。これにより、上述した式(3)に基づき、オフセット電流源32に設定されたオフセット電流Ioffsetの値とモニタ電流Imの値とから、光信号の強度を簡易且つ正確に導出することができる。
また、オフセット電流源32Aは、制御電圧Vc1によって電流量が増減するオフセット電流Ioffsetを引き込む電流源321Aと、上記制御電圧Vc1を供給するBGR回路322Aとを有している。これにより、オフセット電流源32Aを、NPN型バイポーラトランジスタ及び抵抗のみからなる構成とでき、大きな電源電圧を必要としない構成とすることができる。
また、オフセット電流源32Bは、制御電圧Voffsetcntlに応じて電流量が増減する制御電流Icを引き込む電流源322Bと、制御電圧Voffsetcntlに応じて電流量が増減するオフセット電流Ioffsetを引き込む電流源321Bと、を有する。電流源322B,321Bの入出力特性は略一致する。また、制御電流Icは、制御電圧Voffsetcntlの値が調整されることにより、電圧及び温度の変動に対して所定の値を維持するように制御される。これにより、電圧及び温度の変動を考慮して一定の制御電流Ic(すなわちオフセット電流Ioffset)が引き込まれ、オフセット電流Ioffsetを電圧及び温度に依存せずに一定とできる。これによって、入力電流信号Ipdがゼロの場合のバイパス電流Ishunt0の値、すなわち、モニタ電流Im0の値が一定となり、上述した式(3)に基づき、オフセット電流源32に設定されたオフセット電流Ioffsetの値とモニタ電流Imの値とから、光信号の強度を正確に導出することができる。
図7に示す比較例(図7のグラフG1)のように、オフセット電流Ioffsetが電圧又は温度(以下温度等と記載する)に関して依存性を持つ場合には、温度等をプラス側に振った条件Typ+Δ及びマイナス側に振った条件Typ−Δについてもオフセット電流Ioffsetを設定(校正)する必要があり作業が煩雑になる。これに対し、オフセット電流源32B(図7のグラフG2)のオフセット電流Ioffsetのように、温度等に依存せず一定値とされる場合には、モニタ電流Im0の値が一定となるので、オフセット電流Ioffsetを複数回設定(校正)する必要がなく、TIA1の製造性及び製造コストの削減の点で優位である。
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。例えば、電流モニタ部15のトランジスタQ2は電流バイパス部13のトランジスタQ1と同一特性であり、電流モニタ部15の抵抗R2は電流バイパス部13の抵抗R1と同じ抵抗値の抵抗であるとして説明したがこれに限定されず、トランジスタQ1,Q2及び抵抗R1,R2がそれぞれ異なる入力特性を有し、それぞれの入力特性の差異に応じてモニタ電流Imが求められるものであってもよい。すなわち、例えばトランジスタQ2=Q1×2、抵抗R2=R1×0.5である場合には、
Im=Ipd×2+Im0・・・(4)
でモニタ電流Imが求められてもよい。
また、オフセット電流源32Aの構成として、BGR回路322Aが制御電圧Vc1を供給するとして説明したが、制御電圧Vc1を供給する構成はこれに限定されず、所定の定電圧を供給できる低電圧回路であれば、その他の回路であってもよい。
1…TIA、11…TIAコア部、12,12A…差動増幅部、13…電流バイパス部、14…帰還制御部、15,15A…電流モニタ部、17…差動増幅器、30…オフセット設定部、31…ダミーTIAコア部、32,32A,32B…オフセット電流源、321A,321B,322B…電流源、322A…BGR回路。

Claims (3)

  1. 入力電流信号からバイパス電流を差し引いた電流信号に応じて電圧が増減する電圧信号を出力する第1の増幅部と、
    参照電圧信号を出力するオフセット設定部と、
    前記電圧信号と前記参照電圧信号との差電圧に応じて振幅が増減する差動電圧信号を出力する差動増幅部と、
    制御信号に応じて、前記入力電流信号から前記バイパス電流を引き抜く電流バイパス部と、
    前記差動電圧信号に応じて、前記電流信号の時間平均が所定の値となるように、前記制御信号を出力する帰還制御部と、
    前記制御信号に応じて、前記バイパス電流の電流量に比例したモニタ電流を流す電流モニタ部と、を備え
    前記オフセット設定部は、オフセット電流を生成するオフセット電流源と、前記オフセット電流に応じて電圧値が増減する前記参照電圧信号を生成する第2の増幅部と、を有し、
    前記第2の増幅部の入出力特性は前記第1の増幅部の入出力特性と略一致し、
    前記オフセット電流源は、前記オフセット電流を電源電圧及び温度の変動に対して前記入力電流信号がゼロのときの前記バイパス電流の電流値となるように維持する、トランスインピーダンス増幅器。
  2. 前記オフセット電流源は、第1の制御電圧によって電流量が増減する前記オフセット電流を引き込む第1の電流源と、前記第1の制御電圧を供給する定電圧回路と、を有する、請求項記載のトランスインピーダンス増幅器。
  3. 前記オフセット電流源は、第2の制御電圧に応じて電流量が増減する制御電流を引き込む第2の電流源と、前記第2の制御電圧に応じて電流量が増減する前記オフセット電流を引き込む第3の電流源と、を有し、
    前記第3の電流源の入出力特性は、前記第2の電流源の入出力特性と略一致し、
    前記制御電流は、前記第2の制御電圧を調整することによって、電源電圧及び温度の変動に対して所定の値を維持するように制御される、請求項記載のトランスインピーダンス増幅器。
JP2014128850A 2014-06-24 2014-06-24 トランスインピーダンス増幅器 Active JP6484936B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014128850A JP6484936B2 (ja) 2014-06-24 2014-06-24 トランスインピーダンス増幅器
US14/747,465 US9577753B2 (en) 2014-06-24 2015-06-23 Transimpedance amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128850A JP6484936B2 (ja) 2014-06-24 2014-06-24 トランスインピーダンス増幅器

Publications (2)

Publication Number Publication Date
JP2016009971A JP2016009971A (ja) 2016-01-18
JP6484936B2 true JP6484936B2 (ja) 2019-03-20

Family

ID=54870568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128850A Active JP6484936B2 (ja) 2014-06-24 2014-06-24 トランスインピーダンス増幅器

Country Status (2)

Country Link
US (1) US9577753B2 (ja)
JP (1) JP6484936B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089047A (ja) * 2013-10-31 2015-05-07 富士通オプティカルコンポーネンツ株式会社 光受信装置及び伝送装置
JP2016012856A (ja) * 2014-06-30 2016-01-21 日立金属株式会社 光受信回路、光トランシーバ、および受信出力波形のクロスポイント制御方法
JP2017152776A (ja) * 2016-02-22 2017-08-31 技術研究組合光電子融合基盤技術研究所 光受信回路
US10122472B2 (en) * 2016-06-28 2018-11-06 Inphi Corporation Apparatus and method for recovering data at an optical receiver with automatic tuning
US9819421B1 (en) * 2016-07-07 2017-11-14 Oracle International Corporation Extracting an embedded DC signal to provide a reference voltage for an optical receiver
WO2018042873A1 (ja) * 2016-08-29 2018-03-08 富士電機株式会社 絶縁ゲート型半導体素子の駆動回路
US9935718B1 (en) * 2016-12-05 2018-04-03 Oracle International Corporation Feed-forward DC-bias acquisition for burst-mode optical receivers
CN107231132A (zh) * 2017-07-25 2017-10-03 杭州洪芯微电子科技有限公司 突发模式跨阻放大器
US10944486B2 (en) * 2017-12-06 2021-03-09 Elenion Technologies, Llc DC current cancellation scheme for an optical receiver
US11349444B2 (en) * 2019-07-30 2022-05-31 Sumitomo Electric Industries, Ltd. Transimpedance amplifier circuit
JP7251388B2 (ja) * 2019-07-30 2023-04-04 住友電気工業株式会社 トランスインピーダンス増幅回路
JP7259625B2 (ja) * 2019-07-30 2023-04-18 住友電気工業株式会社 トランスインピーダンス増幅回路
JP7251387B2 (ja) * 2019-07-30 2023-04-04 住友電気工業株式会社 トランスインピーダンス増幅回路
US11411542B2 (en) * 2019-07-30 2022-08-09 Sumitomo Electric Industries, Ltd. Transimpedance amplifier circuit
JP7334576B2 (ja) * 2019-10-24 2023-08-29 住友電気工業株式会社 トランスインピーダンス増幅回路
JP2022059802A (ja) * 2020-10-02 2022-04-14 住友電気工業株式会社 トランスインピーダンス増幅回路
CN112787599B (zh) * 2021-01-06 2022-04-29 湖北工业大学 一种电流信号检测电路、tia电路和光信号接收前端
JP2023008550A (ja) * 2021-07-06 2023-01-19 住友電気工業株式会社 受信回路
CN114039666B (zh) * 2021-11-26 2023-02-21 济南量子技术研究院 一种强度调制装置及其稳定控制方法、qkd系统
US20230246603A1 (en) * 2022-02-02 2023-08-03 Semtech Corporation Transimpedance Amplifiers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140840A (ja) 1997-07-16 1999-02-12 Sumitomo Electric Ind Ltd 光受信器
JP2000068945A (ja) * 1998-08-25 2000-03-03 Oki Electric Ind Co Ltd 光受信装置
JP3284128B1 (ja) * 2000-05-12 2002-05-20 ローム株式会社 携帯型機器における表示装置の照明用led素子駆動回路
US6404281B1 (en) * 2000-11-14 2002-06-11 Sirenza Microdevices, Inc. Wide dynamic range transimpedance amplifier
US6778021B2 (en) * 2002-11-26 2004-08-17 Finisar Corporation Wide dynamic range transimpedance amplifier with a controlled low frequency cutoff at high optical power
US7202732B2 (en) * 2003-12-15 2007-04-10 Jds Uniphase Corporation Transimpedance amplifier with linearized transconductance feedback
JP4800648B2 (ja) * 2005-03-23 2011-10-26 オンセミコンダクター・トレーディング・リミテッド 定電流駆動回路
US7525391B2 (en) * 2007-05-17 2009-04-28 Finisar Corporation Linear transimpedance amplifier with multiplexed gain stage
JP2009260300A (ja) 2008-03-24 2009-11-05 Fujitsu Ltd Apdを用いた光受信装置およびapdバイアス制御方法
JP5494285B2 (ja) * 2010-06-24 2014-05-14 住友電気工業株式会社 電子回路
JP2012235376A (ja) * 2011-05-06 2012-11-29 Sumitomo Electric Ind Ltd 電子回路及び光受光回路
JP6024412B2 (ja) * 2012-11-19 2016-11-16 住友電気工業株式会社 利得可変差動増幅器
JP6011273B2 (ja) * 2012-11-26 2016-10-19 住友電気工業株式会社 増幅器

Also Published As

Publication number Publication date
JP2016009971A (ja) 2016-01-18
US20150372648A1 (en) 2015-12-24
US9577753B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
JP6484936B2 (ja) トランスインピーダンス増幅器
JP3893969B2 (ja) 光受信装置
US10079584B1 (en) Closed-loop automatic gain control in linear burst-mode transimpedance amplifier
US8766728B2 (en) Trans-impedance amplifier with enhanced dynamic range but invariable input impedance
US9954622B2 (en) Trans-impedance amplifier and optical receiver including the same
US9496826B2 (en) Transimpedance amplifier
US20150155951A1 (en) Receiver and reception method
JP3749718B2 (ja) バーストモード光受信機
US20140333285A1 (en) Optical receiver and light reception current monitoring method
JP2022059802A (ja) トランスインピーダンス増幅回路
Tavernier et al. A high-speed POF receiver with 1 mm integrated photodiode in 180 nm CMOS
KR101541975B1 (ko) 광통신 수신기 및 이에 사용되는 칩
US8301038B2 (en) Electronic circuit and communication system
US7221229B2 (en) Receiver circuit having an optical reception device
JP5944750B2 (ja) 光信号検出回路
US7142574B2 (en) Laser driver circuit and system
Lee et al. A single-chip 2.5-Gb/s burst-mode optical receiver with wide dynamic range
JP5273409B2 (ja) 光受信器および受光電流モニタ方法
WO2017017470A1 (en) Burst-mode receiver
JP2010041158A (ja) 光受信器
CN111327282A (zh) 一种控制电路、跨阻放大电路及控制方法
JPS58165020A (ja) 光電変換装置
JP2014093759A (ja) 光通信モジュール、通信装置、受光素子のバイアス電圧調整方法および受光素子の増倍率測定方法
WO2020225892A1 (ja) トランスインピーダンスアンプ
JP2013081064A (ja) 光受信器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6484936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250