JP6466330B2 - 一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒 - Google Patents

一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒 Download PDF

Info

Publication number
JP6466330B2
JP6466330B2 JP2015528252A JP2015528252A JP6466330B2 JP 6466330 B2 JP6466330 B2 JP 6466330B2 JP 2015528252 A JP2015528252 A JP 2015528252A JP 2015528252 A JP2015528252 A JP 2015528252A JP 6466330 B2 JP6466330 B2 JP 6466330B2
Authority
JP
Japan
Prior art keywords
catalyst composition
methanation
catalyst
particles
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015528252A
Other languages
English (en)
Other versions
JPWO2015012189A1 (ja
Inventor
林 克彦
克彦 林
敏広 宮尾
敏広 宮尾
東山 和寿
和寿 東山
出来 成人
成人 出来
渡辺 政廣
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
University of Yamanashi NUC
Original Assignee
Mitsui Mining and Smelting Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, University of Yamanashi NUC filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2015012189A1 publication Critical patent/JPWO2015012189A1/ja
Application granted granted Critical
Publication of JP6466330B2 publication Critical patent/JP6466330B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/898Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、一酸化炭素(CO)を選択的にメタン化する触媒活性作用を有する触媒及びそれの構成材料としての一酸化炭素メタン化触媒組成物に関する。
固体高分子形燃料電池は80℃程度の低温で運転するため、燃料である水素リッチガス中に一酸化炭素が一定量以上含まれていると、アノード白金触媒のCO被毒により、発電性能が低下したり、発電ができなくなったりする可能性がある。そこで、燃料ガス中に含まれる一酸化炭素を選択的にメタン化する触媒((「COメタン化触媒」又は「一酸化炭素メタン化触媒」と称する)が注目されている。例えば特許文献1(特開平3−93602号公報)や特許文献2(特開2007−252988号公報)には、一酸化炭素を選択的にメタン化するCOメタン化触媒が開示されている。
また、特許文献3(WO2010/122855号公報)には、少なくともNiとAlとを含み、前記NiとAlは非化学量論組成比であり、かつ、両元素が均一な割合で構成された複合酸化物前駆体を担体とし、該前駆体の担体表面上に金属ニッケル粒子が析出してなることを特徴とする一酸化炭素の選択的メタン化触媒が開示されている。
この種のCOメタン化触媒は、燃料ガス中に含まれる二酸化炭素(CO2)も同時にメタン化反応させてしまう場合がある。そうなると、燃料源である水素を大量に消費することになり、熱的な暴走を起こす可能性があるため、COメタン化触媒に関しては、一酸化炭素のメタン化活性が高く、しかも、二酸化炭素のメタン化活性が低い特性が求められる。そこで、例えば特許文献4(WO2011/142481号公報)においては、一酸化炭素及び二酸化炭素を含有する水素ガス中の一酸化炭素を選択的にメタン化する触媒として、酸化物担体に活性成分が担持され、二酸化炭素のメタン化反応抑制剤が吸着又は結合され、前記メタン化反応抑制剤として、フッ素、塩素、臭素、ヨウ素、塩酸、硝酸、硫酸、リン酸、ホウ酸、バナジウム酸、タングステン酸、クロム酸などを含む触媒が提案されている。
特開平3−93602号公報 特開2007−252988号公報 WO2010/122855号公報 WO2011/142481号公報
この種のCOメタン化触媒は、実際に触媒として使用する際、還元処理を施して使用するのが一般的である。しかし、従来のCOメタン化触媒の多くは、還元処理を施した際に酸化物が相転移することでシンタリングを起こすために、COメタン化触媒としての触媒活性が低下するという課題を抱えていた。
そこで本発明は、還元処理した際のシンタリングを効果的に抑制することができ、COメタン化触媒としての触媒活性の低下を抑制することができる、新たなCOメタン化触媒組成物を提案せんとするものである。
本発明は、一酸化炭素(CO)をメタン化するCOメタン化触媒活性成分を含有する粒子の表面に、ケイ素酸化物を有する表面層が存在し、且つ、前記COメタン化触媒活性成分の結晶子径が0.1nm〜48nmであることを特徴とする一酸化炭素メタン化触媒組成物を提案する。
本発明が提案する一酸化炭素メタン化触媒組成物は、還元処理した時にシンタリングを効果的に抑制することができ、COメタン化触媒としての触媒活性の低下を防ぐことができる。
実施例16で得た触媒組成物粉末(観察サンプル)のXRDパターンであり、上のパターンは還元前のものであり、下のパターンは還元後のものである。 実施例16で得た触媒組成物粉末(観察サンプル)のSTEM像である。 図2内に示した枠部分を拡大して示したEDXS Mappingであり、(A)はバナジウム(V)の分布状態、(B)はニッケル(Ni)の分布状態、(C)はジルコニウム(Zr)の分布状態、(D)はケイ素(Si)の分布状態を示した図である。 参考比較例1、参考比較例2及び参考例3で得た触媒組成物粉末(観察サンプル)、並びに、対照としてのV25(バナジン酸アンモニウムを550℃で3時間焼成品)のXRD測定結果としてのXRDパターンを並べて示した図である。 参考例3で得た触媒組成物粉末(観察サンプル)のFE−SEM像(1500倍)である。 参考例3で得た触媒組成物粉末(観察サンプル)のTEM像であり、(A)は通常のTEM像であり、NiO粒状結晶の集合体と見られる粒子の拡大写真であり、(B)はその一部の高角度散乱暗視野像(HAADF像)である。 同じく参考例3で得た触媒組成物粉末(観察サンプル)のTEM像であり、(A)は通常のTEM像であり、NiO針状結晶の集合体と見られる粒子の拡大写真であり、(B)はその一部の高角度散乱暗視野像(HAADF像)である。 参考例3で得た触媒組成物粉末(観察サンプル)のFE−TEMによる電子線回折パターンであり、FCC(面心立方格子)及びNiOの特徴である(I111<I002)が現れている。 参考例3で得た触媒組成物粉末(観察サンプル)のFE−TEM/EDX像であり、(a)は粒状結晶の集合体と見られる粒子の拡大写真(TEM像)であり、(b)その粒子におけるバナジウム(V)の分布状態を示した拡大写真であり、(c)はその粒子におけるニッケルの分布状態を示した拡大写真である。 参考例3で得た触媒組成物粉末(観察サンプル)のFE−TEM/EDX像であり、(a)は針状結晶の集合体と見られる粒子の拡大写真(TEM像)であり、(b)その粒子におけるバナジウム(V)の分布状態を示した拡大写真であり、(c)はその粒子におけるニッケルの分布状態を示した拡大写真である。 参考例3で得た触媒組成物粉末(観察サンプル)のXPSによるV2pスペクトルである。 参考例2、3及び参考比較例1で得た触媒組成物粉末(COメタン化評価サンプル)について、COメタン化評価試験結果を示したグラフである。 実施例17で得た触媒組成物粉末(観察サンプル)のFE−STEM画像であり、(a)は粒状結晶の集合体と見られる粒子の拡大写真(TEM像)であり、(b)その粒子におけるケイ素(Si)の分布状態を示した拡大写真であり、(c)はその粒子におけるニッケル(Ni)の分布状態を示した拡大写真であり、(d)はその粒子におけるバナジウム(V)の分布状態を示した拡大写真である。
次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
<本触媒組成物>
本発明の実施形態の一例としての一酸化炭素メタン化触媒組成物(以下「本触媒組成物」と称する)は、一酸化炭素(CO)をメタン化するCOメタン化触媒活性成分を含有する粒子(「触媒活性粒子」又は「コア材」と称する)の表面に、ケイ素酸化物を含む表面層が存在する構成を備えた触媒粒子(以下「本触媒粒子」と称する)を含む組成物である。
本触媒組成物は、前記本触媒粒子以外に他の成分を含有していてもよい。他の成分としては、例えばアルミナなどの金属酸化物を含有する酸化物粒子を挙げることができる(詳しくは後述する)。
本触媒組成物の形態としては、粉体、スラリー、ペレット、層状物など任意の形態をとることができる。
(本触媒粒子)
本触媒粒子は、一酸化炭素(CO)をメタン化するCOメタン化触媒活性成分を含有する粒子(「触媒活性粒子」)の表面に、ケイ素酸化物を含む表面層が存在する構成を備えた粒子である。
本触媒粒子は、その触媒活性粒子の一次粒子が凝集してなる凝集粒子でもよいし、また、当該一次粒子が単分散してなる粒子であってもよい。一例として、粒状又は針状の一次粒子が凝集して凝集粒子を形成し、該一次粒子の表面にケイ素酸化物を含む表面層が存在してなる構成の粒子を挙げることができる。
(COメタン化触媒活性成分)
COメタン化触媒活性成分としては、一酸化炭素(CO)をメタン化する作用を有することが知られている元素を挙げることができる。例えば、Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素を挙げることができる。これらのうちの2種以上であってもよい。中でも、結晶子径を制御する観点から、特にNiを含むのが好ましく、例えばNi、或いは、NiとRu又はRhとを含むのが好ましい。
COメタン化触媒活性成分は、酸化物又は金属の状態で存在するのが好ましい。すなわち、還元処理前の状態では酸化物として存在し、還元処理後は、前記酸化物が還元された状態、例えば金属の状態で存在するのが好ましい。
COメタン化触媒活性成分は、還元処理前の状態、すなわち酸化物の状態での結晶子径が0.1nm〜48nmであるのが好ましい。
本触媒組成物においては、COメタン化触媒活性成分を構成する酸化物の結晶子径を0.1nm〜48nmに調製することにより、本触媒組成物を還元処理した時における本触媒粒子のシンタリングを、より一層効果的に抑制することができ、COメタン化触媒としての触媒活性の低下をより一層効果的に防ぐことができる。
かかる観点から、本触媒組成物において、COメタン化触媒活性成分を構成する酸化物の結晶子径は0.1nm〜48nmであることが好ましく、中でも0.3nm以上或いは30nm以下、特に0.5nm以上或いは20nm以下であるのがより好ましい。
この結晶子径は、X線回折法により結晶構造を同定し、該当する回折パターンのピーク幅からScherrer法により算出することができる値であるから、結晶子径の平均値に相当する値である。
なお、本触媒組成物を還元処理した状態では、COメタン化触媒活性成分も還元された状態、例えばFe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素の金属状態で存在し、且つ、その結晶子径は0.1nm〜48nm、中でも1nm以上或いは40nm以下、その中でも3nm以上或いは32nm以下であるのがより好ましい。
なお、本触媒組成物において、COメタン化触媒活性成分の結晶子径を前記範囲に調製するには、水酸化ニッケルなどのCOメタン化触媒活性成分の水酸化物、必要に応じてさらにポリ陰イオン形成成分イオンを含有する水溶液を静置して、ろ過及び乾燥を行った後、大気雰囲気下300〜600℃(品温)で焼成するようにすればよく、この際、焼成温度、水酸化ニッケルの結晶子径などを調整することでCOメタン化触媒活性成分の結晶子径を調整することができる。但し、そのような方法に限定されるものではない。
(ポリ陰イオン形成成分)
触媒活性粒子(コア材)は、上記COメタン化触媒活性成分の他に、ポリ陰イオンを形成し得る遷移金属又はその酸化物(「ポリ陰イオン形成成分」と称する)を含有するのが好ましい。
このようなポリ陰イオン形成成分を含有することにより、シンタリングをより一層抑制することができる。
ここで、「ポリ陰イオンを形成し得る遷移金属」とは、MO6(Mは金属)八面体を含む多量体のオキソ陰イオンとなる傾向を有する遷移金属であり、例えばV、W、Nb、Ta及びMoを挙げることができる。これらのうちの少なくとも一種の元素であればよく、二種以上の元素を含んでもよい。中でも、シンタリングを抑制する観点から、特にVを含有するのが好ましい。
本触媒組成物において、ポリ陰イオンを形成し得る遷移金属は、少なくとも還元処理前は酸化物の状態で存在するのが好ましい。
中でも、これらポリ陰イオンを形成し得る遷移金属は、上記COメタン化触媒活性成分を含む粒子中に、結晶性を示さない状態で分散して存在するのが好ましい。
ポリ陰イオンを形成し得る遷移金属が、結晶性を示さない状態で分散して存在することで、本触媒組成物を還元処理した時に、シンタリングをより一層効果的に抑制することができ、COメタン化触媒としての触媒活性の低下をより一層効果的に防ぐことができる。
「結晶性を示さない状態で分散して存在する」とは、FE−TEM(電界放射型透過電子顕微鏡)のEDX(エネルギー分散型X線分析)により、当該遷移金属が100nm以下のサイズで分散していることが確認されればよい。例えば、仮にXRDで当該遷移金属由来のピークが観察されたとしても、FE−TEMのEDXにより、遷移金属が100nm以下のサイズで分散していることが確認されればよい。
分散の程度は、48nm以下が好ましく、20nm以下がさらに好ましく、10nm以下のサイズであることが特に好ましい。
また、COメタン化触媒活性成分をFE−TEM EDXで分析した時の画像と前記遷移金属の同画像とが、ほぼ重なっていれば(同じ位置に存在していれば)、当該遷移金属は触媒活性成分中に分散して存在していることが認められ、当該遷移金属はそのような状態で存在していることが更に好ましい。
遷移金属が存在するかどうかは、X線光電子分光(XPS)などにより、ポリ陰イオンを形成し得る遷移金属に由来するピークが観察されるなどにより確認することができる。
X線回折装置(XRD)で観察しても、当該遷移金属に由来する成分又は結晶が観察されない状態であることが好ましいが、仮に遷移金属の粗大粒子が存在し、それに由来するピークがXRDで観察されたとしても、FE−TEM(電界放射型透過電子顕微鏡)のEDX(エネルギー分散型X線分析)により、遷移金属が100nm以下のサイズで分散していることが確認されればよい。
ポリ陰イオン形成成分は、シンタリングを効果的に抑制することができ、且つ、触媒活性成分であるニッケルの活性を劣化させないという観点から、前記COメタン化触媒活性成分100質量部に対して、0.1〜50質量部、中でも0.5質量部以上或いは40質量部以下、その中でも1質量部以上或いは30質量部以下の割合で含まれるのが好ましい。
上記触媒活性粒子(コア材)は、COメタン化触媒活性成分及びポリ陰イオン形成成分のほかに、他の成分を含んでいてもよい。
(表面層)
本触媒粒子は、上述した触媒活性粒子(コア材)の表面に、ケイ素酸化物を含む表面層が存在する構成を備えた触媒粒子である。
ここで、当該ケイ素酸化物としては、一酸化ケイ素(SiO)、二酸化ケイ素(SiO2)のほか、例えば亜酸化ケイ素(Si32)などを挙げることができる。
表面層は、ケイ素酸化物のSi及びOのほかに、Ca、Ba、Mg、Ti、Zr、Al、Ce、La、Vのうち少なくとも一種の元素(「元素A」と称する)を含むのが好ましい。これらのうちの2種類以上を含んでいてもよい。
表面層がこのような元素Aを含むことにより、一酸化炭素(CO)の浄化性能をさらに高めることができる。
前記元素Aは、表面層において、全体に均一に分散していることが好ましい。
表面層において、ケイ素酸化物及び前記元素Aは混在した状態で存在してもよいし、ケイ素酸化物を含有する層と、前記元素Aを含有する層とに分離して存在してもよい。
表面層は、触媒活性粒子表面の全面を被覆するように存在してもよいし、又、触媒活性粒子表面に部分的に存在し、表面層が存在しない部分があってもよい。
また、触媒活性粒子と表面層の間に、他の層が介在していてもよいし、表面層の表面に他の層が存在していてもよい。
表面層の厚さは、シンタリング抑制の観点から、0.1nm〜200nmであるのが好ましく、中でも0.2nm以上或いは190nm以下、その中でも0.3nm以上或いは180nm以下であるのが好ましい。
このような表面層を形成する方法としては、例えばケイ素酸化物及び元素Aを含む溶液中に触媒活性粒子(コア材)を入れて含浸させ、必要に応じて乾燥及び焼成を行うことによって形成することができる。例えばA元素を含むシランカップリング剤やシリカアルコキシドなどを用いて触媒活性粒子を表面処理した後、必要に応じて乾燥させ、その後、300℃以上、好ましくは300〜600℃で加熱処理することにより形成することができる。
また、ケイ素酸化物を含む溶液中に触媒活性粒子を入れて含浸させ、必要に応じて乾燥を行った後、A元素を含む溶液中に前記触媒活性粒子を入れて含浸させ、必要に応じて乾燥を行い、その後、焼成を行うことによって形成することもできる。
なお、表面層は、上記以外の成分を含んでいてもよい。特に表面層中のSiに対して1wt%以下の量であれば、効果に影響を及ぼさないと考えられるため、どのような成分であっても含有することを許容できると考えられる。
(本触媒粒子以外の成分)
本触媒組成物は、前記本触媒粒子以外に他の成分を含有していてもよい。
他の成分としては、例えばアルミナなどの金属酸化物を含有する酸化物粒子を挙げることができる。このような酸化物粒子を含有させることにより、本触媒粒子間を離して存在させることができるため、互いに焼結するのを防ぐと共に、触媒活性を好適な程度に調整することができる。
このような酸化物粒子としては、例えばAl、Ti、Si、Zr、Ceなどの酸化物を含む酸化物粒子を挙げることができる。
(BET比表面積)
本触媒組成物のBET比表面積は、単位触媒重量あたりのCO選択メタン化に対する触媒活性を向上させることができるという観点から、本触媒組成物が還元処理前の酸化物の状態では、15m2/g〜250m2/gであるのが好ましく、中でも40m2/g以上或いは200m2/g以下、その中でも70m2/g以上或いは190m2/g以下であるのが特に好ましい。
また、本触媒組成物を還元処理しCOメタン化触媒活性成分が還元された状態では、本触媒組成物のBET比表面積は、5m2/g〜100m2/gであるのが好ましく、中でも10m2/g以上或いは90m2/g以下、その中でも20m2/g以上或いは80m2/g以下であるのが特に好ましい。
COメタン化触媒活性一次粒子の比表面積を前記範囲に調製するには、水酸化ニッケルなどのCOメタン化触媒活性成分の水酸化物と、ポリ陰イオン形成成分イオンを含有する水溶液とを混合し、適当な条件で適当な時間静置して前記水酸化物の粒子に前記ポリ陰イオン形成成分イオンを含浸吸着させ、ろ過及び乾燥を行った後、大気雰囲気下300〜600℃(品温)で焼成するようにすればよく、この際、焼成温度、水酸化ニッケルの比表面積などを調整することでCOメタン化触媒活性成分の比表面積を調整することができる。但し、そのような方法に限定されるものではない。
(本触媒組成物の製造方法)
本触媒組成物は次のようにして製造することができる。但し、次に説明する製造方法はあくまでも一例である。
すなわち、ポリ陰イオン形成成分イオンを含有する水溶液(例えばバナジン酸アンモニウム水溶液)と、Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素の水酸化物粉とを混合し、室温〜70℃に15分〜12時間静置して、該水酸化粉末粒子に前記ポリ陰イオン形成成分イオンを含浸吸着させた後、ろ過及び乾燥を行った後、大気雰囲気下、300〜600℃(品温)を30分〜6時間維持するように焼成を行い、必要に応じて粉砕して、触媒活性粒子粉末を得ることができる。
次に、得られた触媒活性粒子粉末を、ケイ素酸化物及び元素Aを含む溶液中に触媒活性粒子を入れて含浸させ、必要に応じて乾燥させた後、300〜600℃(品温)を30分〜6時間維持するように焼成を行い、必要に応じて粉砕して、本触媒粒子からなる粉末、すなわち本触媒組成物(粉体)の一例を得ることができる。
なお、前記のように含浸吸着させる代わりに、蒸発乾固させるようにしてもよい。
<本触媒>
本発明の実施形態の一例として、一酸化炭素メタン化触媒(以下「本触媒」と称する)は、本触媒組成物を用いてなる触媒である。
本触媒は、ペレット状などの適宜形状に成形され、単独で触媒として用いることもできるし、また、セラミックス又は金属材料からなる基材に担持された形態として用いることもできる。
(基材)
基材の材質としては、セラミックス等の耐火性材料やフェライト系ステンレス等の金属材料を挙げることができる。
セラミック製基材の材質としては、耐火性セラミック材料、例えばコージライト、コージライト−アルファアルミナ、窒化ケイ素、ジルコンムライト、アルミナ−シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。
金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などを挙げることができる。
基材の形状は、ハニカム状、ペレット状、球状を挙げることができる。
(本触媒の製法)
本触媒の製法としては、本触媒組成物と、必要に応じてバインダ−及び水を混合・撹拌してスラリーとし、得られたスラリーを、例えばセラミックハニカム体などの基材にウォッシュコートし、これを焼成して、基材表面に触媒層を形成する方法などを挙げることができる。
また、本触媒組成物と、必要に応じてバインダ−及び水を混合・撹拌してスラリーとし、得られたスラリーを、例えばセラミックハニカム体などの基材にウォッシュコートして触媒担体層を形成した後、これを触媒活性成分が溶けた溶液に浸漬して、前記触媒担体層に触媒活性成分を吸着させてこれを焼成して、基材表面に触媒層を形成する方法を挙げることもできる。
また、本触媒組成物と、必要に応じてバインダ−及び水を混合・撹拌してスラリーとし、得られたスラリーを基材に塗布し、これを焼成して基材表面に触媒層を形成する方法を挙げることもできる。
なお、本触媒を製造するための方法は公知のあらゆる方法を採用することが可能であり、上記例に限定するものではない。
いずれの製法においても、触媒層は、単層であっても、二層以上の多層であってもよい。
<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
以下、本発明を実施例及び比較例に基づいてさらに詳述する。
<実施例1>
水4mLとシランカップリング剤(信越化学工業社製「KBE−903、分子量221.4」)0.249mLとを混合した溶液に、水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)3gを含浸させて十分混練した後、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行い、触媒組成物粉末(観察サンプル)を得た。
次に、得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.5μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は77.4m2/g、酸化ニッケルの結晶子径は9.8nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。
<実施例2>
水4mLとシランカップリング剤(信越化学工業社製「KBE−903、分子量221.4」)0.249mLと酢酸ジルコニウム0.189mLとを混合した溶液に、酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)3gを含浸させて十分混練した後、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行い、触媒組成物粉末(観察サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.5μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は92.3m2/g、酸化ニッケルの結晶子径は9.5nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。
<実施例3−10>
表面層における添加成分として、実施例2の酢酸Zrに代えて、表1に示す添加成分(元素A)を使用した以外、実施例2と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
実施例3−10で得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、いずれも、0.5μm〜20μmの粒状粒子が観察された。さらにこの粒状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。
また、触媒組成物粉末(観察サンプル)は、粒子の表面に、Si、O及び各元素Aを含む表面層が存在することが確認された。
<実施例11>
バナジウム濃度4.5g/Lのバナジン酸アンモニウム水溶液47mLに、水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)10gを添加し、50℃のウオーターバス中で2時間静置させて、水酸化ニッケル粉末粒子にバナジウムイオン(V5+)を含浸吸着させた後、ろ過を行い、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行って、酸化バナジウムが担持されてなる酸化ニッケル粒子を含有する粉末を得た。
次に、水4mLと酢酸ジルコニウム0.189mLとを添加したシランカップリング剤(信越化学工業社製「KBE−903、分子量221.4」)の水溶液中に、このようにして得られた粉末3gを含浸させて十分混練した後、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行って触媒組成物粉末(観察サンプル)を得た。
次に、得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.5μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は126.4m2/gであり、酸化ニッケルの結晶子径は5.5nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。また、EDXを用いて成分観察を行った結果、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察された。但し、XRDを用いて定性分析をしてもバナジウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウムに由来した微粒子は確認されなかった。XPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
また、触媒組成物粉末(観察サンプル)は、粒子の表面に、Si、O及びZrを含む表面層が存在することが確認された。
<実施例12>
表面層における添加成分として、実施例11の酢酸ジルコニウムに代えて、酢酸Mg4水和物0.142gを使用した以外、実施例11と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は118.7m2/gであり、酸化ニッケルの結晶子径は6.0nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。また、EDXを用いて成分観察を行った結果、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察された。但し、XRDを用いて定性分析をしてもバナジウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウムに由来した微粒子は確認されなかった。XPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
また、触媒組成物粉末(観察サンプル)は、粒子の表面に、Si、O及びMgを含む表面層が存在することが確認された。
<実施例13>
実施例11で使用したバナジン酸アンモニウム水溶液の代わりに、ルテニウム濃度0.5g/Lの硝酸ルテニウム溶液10mLを使用し、且つ、表面層における添加成分としての酢酸ジルコニウムを加えず、乾燥条件を80℃で5hとした以外、実施例11と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は77.8m2/gであり、酸化ニッケルの結晶子径は8.2nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。ICPにより触媒組成物粉末を分析したところ、ルテニウムの存在が確認されたが、EDXを用いて成分観察を行った結果、酸化ニッケル粒子にルテニウムが分散して存在した状態は確認できなかった。また、XRDを用いて定性分析をしてもルテニウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもルテニウムに由来した微粒子は確認されなかった。
<実施例14>
実施例11で使用したバナジン酸アンモニウム水溶液の代わりに、ルテニウム濃度0.5g/Lの硝酸ルテニウム溶液10mLを使用し、乾燥条件を80℃で5hとした以外、実施例11と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は79.2m2/gであり、酸化ニッケルの結晶子径は8.8nmであった。
また、触媒組成物粉末(観察サンプル)は、粒子の表面に、Si、O及びZrを含む表面層が存在することが確認された。
<実施例15>
実施例11で使用したバナジン酸アンモニウム水溶液の代わりに、バナジウム濃度4.5g/Lのバナジン酸アンモニウム水溶液47mLと、ルテニウム濃度0.5g/Lの硝酸ルテニウム水溶液10mLとの混合水溶液を使用し、乾燥条件を80℃で5hとし、且つ、表面層における添加成分としての酢酸ジルコニウムを加えなかった以外、実施例11と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は126.1m2/gであり、酸化ニッケルの結晶子径は5.2nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。また、EDXを用いて成分観察を行った結果、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察されたが、ルテニウムについては含有量が0.05重量%と低いためEDXでは確認できなかった。但し、XRDを用いて定性分析をしてもバナジウム及びルテニウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウム及びルテニウムに由来した微粒子は確認されなかった。
ICPにより触媒組成物粉末を分析したところ、バナジウムとルテニウムの存在が確認され、またXPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
<実施例16>
実施例11で使用したバナジン酸アンモニウム水溶液の代わりに、バナジウム濃度4.5g/Lのバナジン酸アンモニウム水溶液47mLと、ルテニウム濃度0.5g/Lの硝酸ルテニウム水溶液10mLとの混合水溶液を使用し、乾燥条件を80℃で5hとした以外、実施例11と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は122.9m2/gであり、酸化ニッケルの結晶子径は5.3nmであった。この触媒組成物粉末をXRDで確認したところ、図1(上側)に示すような酸化Niに起因する回折ピークが認められた。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。また、EDXを用いて成分観察を行った結果、図2及び図3(A)〜(D)に見られる分布が得られ、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察されたが、ルテニウムについては含有量が0.05重量%と低いためEDXでは確認できなかった。但し、XRDを用いて定性分析をしてもバナジウム及びルテニウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウム及びルテニウムに由来した微粒子は確認されなかった。
ICPにより触媒組成物粉末を分析したところ、バナジウムとルテニウムの存在が確認され、またXPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
また、触媒組成物粉末(観察サンプル)は、粒子の表面に、Si、O及びZrを含む表面層が存在することが確認された。
<実施例17>
バナジウム濃度4.5g/Lのバナジン酸アンモニウム水溶液47mLに、水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)10gを添加し、50℃のウオーターバス中で2時間静置させて、水酸化ニッケル粉末粒子にバナジウムイオン(V5+)を含浸吸着させた後、ろ過を行い、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行って、酸化バナジウムが担持されてなる酸化ニッケル粒子を含有する粉末を得た。
次に、水4mLとシランカップリング剤(信越化学工業社製「KBE−903、分子量221.4」)0.249mLとを混合した溶液に、このようにして得られた粉末3gを含浸させて十分混練した後、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行って触媒組成物粉末(観察サンプル)を得た。
次に、得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.5μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は131.4m2/gであり、酸化ニッケルの結晶子径は5.1nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。また、EDXを用いて成分観察を行った結果、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察された。但し、XRDを用いて定性分析をしてもバナジウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウムに由来した微粒子は確認されなかった。XPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
また、触媒組成物粉末(観察サンプル)は、粒子の表面に、Si及びOを含む表面層が存在することが確認された。
<実施例18>
実施例11で使用したバナジン酸アンモニウム水溶液の代わりに、バナジウム濃度4.5g/Lのバナジン酸アンモニウム水溶液47mLと、ロジウム濃度0.5g/Lの硝酸ロジウム水溶液10mLとの混合水溶液を使用し、乾燥条件を80℃で5hとした以外、実施例11と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は124.7m2/gであり、酸化ニッケルの結晶子径は5.4nmであった。この触媒組成物粉末をXRDで確認したところ、図1(上側)と同様に、酸化Niに起因する回折ピークが認められた。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。また、EDXを用いて成分観察を行った結果、図2及び図3と同様に、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察されたが、ロジウムについては含有量が0.05重量%と低いためEDXでは確認できなかった。但し、XRDを用いて定性分析をしてもバナジウム及びロジウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウム及びロジウムに由来した微粒子は確認されなかった。
ICPにより触媒組成物粉末を分析したところ、バナジウムとロジウムの存在が確認され、またXPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
また、触媒組成物粉末(観察サンプル)は、粒子の表面に、Si、O及びZrを含む表面層が存在することが確認された。
<比較例1>
水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)10gを50℃の水10mLに添加し、ろ過を行い、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行い、触媒組成物粉末(観察サンプル)を得た。
そして、上記のようにして得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.5μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は28.9m2/g、酸化ニッケルの結晶子径は26.8nmであった。
<比較例2>
バナジウム濃度4.5g/Lのバナジン酸アンモニウム水溶液47mLに、水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)10gを添加し、50℃のウオーターバス中で2時間静置させて、水酸化ニッケル粉末粒子にバナジウムイオン(V5+)を含浸吸着させた後、ろ過を行い、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行って、酸化バナジウムが担持されてなる酸化ニッケル粒子を含有する粉末を得た。
次に、得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.1μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
<結晶子径の測定方法>
X線回折法により結晶構造を同定し、該当する回折パターンのピーク幅からScherrer法により結晶子径を算出した。
<BET比表面積の測定方法>
窒素ガスの物理吸着法で測定し、多分子層吸着モデルによるBET等温式で算出した値をBET比表面積とした。
<ポリ陰イオン形成成分の担持量の測定>
ポリ陰イオン形成成分を担持吸着法で担持した場合は、吸着後ろ別したろ液中の成分量をICPで分析し、仕込み量との差分から担持量を算出した。そして、担持量を検算するため、粉サンプルを蛍光X線元素分析法(XRF)による半定量値で確認した。
他方、蒸発乾固した場合は、成分仕込み量をそのまま担持量とした。担持量の検算のため、前記同様にXRFによる半定量値で確認した。
<還元処理(前処理)>
活性評価の前処理として、酸化ニッケルをニッケル金属に還元する必要がある。そのため、実施例及び比較例で得た触媒組成物粉末(COメタン化評価サンプル)を、水素雰囲気中で500℃、1時間の還元処理を行った。還元後の触媒組成物粉末をXRDで確認したところ、図1(下側)に示すような金属Niに起因する回折ピークが認められた。
<COメタン化評価>
実施例・比較例で得た触媒組成物粉末(COメタン化評価サンプル)について、固定床常圧流通式反応評価装置により、COメタン化除去性能を評価した。
この際、固定床常圧流通式反応評価装置の管径は10mm、サンプル容積は3mL、評価ガス流通量はH2 :73.5%、CO2:20.0%、CO:0.5%とした。また、空間速度(SV)は13589(L/hr)とした。
この結果、実施例1〜18のいずれも、比較例1及び2に比べて、優れたCOメタン化浄化触媒活性を示すことが確認された。
(考察)
実施例1〜18で得た触媒組成物粉末(COメタン化評価サンプル)はいずれも、比較例1,2に比べて、還元処理した時のシンタリングを抑制することができ、COメタン化触媒としての触媒活性の低下を防ぐことができることが分かった。
また、実施例1〜18で得た触媒組成物粉末(観察サンプル)はいずれも、一酸化炭素(CO)をメタン化するCOメタン化触媒活性成分が、酸化物として存在し、且つ、その結晶子径が0.1nm〜48nmの範囲内にあり、しかも、粒子の表面に、Si及びO(実施例によってはさらに元素A)を含む表面層が存在することが確認された。このように、COメタン化触媒活性成分の結晶子径が0.1nm〜48nmであり、粒子の表面に、Si及びO(実施例によってはさらに元素A)を含む表面層が存在することで、還元処理した時のシンタリングをより一層効果的に抑制することができ、COメタン化触媒としての触媒活性の低下をより一層効果的に防ぐことができることが分かった。
また、図13に示した、実施例17で得た触媒組成物粉末(観察サンプル)のFE−STEM画像を観察すると、粒子表面に、ケイ素(Si)、ニッケル(Ni)及びバナジウム(V)が存在していることが確認された。実施例17の結果より、シリカ単分子層と、酸化バナジウム(V)とがニッケル粒子表面に高分散で存在しており、比表面積が向上すると共に酸強度が向上し、その結果、COが付着し難くなったことが分かった。
<実施例19・20>
次に、シリカの表面被覆率と、CO浄化性能との関係を検討するべく、シランカップリング剤の混合量を変更した以外、実施例1と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)について、上記同様に、結晶子径の測定、BET比表面積の測定、還元処理(前処理)及びCOメタン化評価を行った。この結果を下記表2に示す。
実施例1、19及び20の結果を比較検討すると、シリカによる表面被覆率が高いほど、CO浄化性能が向上することが分かった。
かかる観点から、シリカによる表面被覆率は5〜200%が好ましく、中でも10%以上或いは150%以下、その中でも20%以上或いは120%以下であるのが特に好ましいと考えることができる。
なお、シリカによる表面被覆率(=下記シランカップリング剤添加量(g)×100)は、次の2式から算出することができる。
最小被覆面積(m2/g)=6.02×1023×13×10-20/シランカップリング剤分子量
シランカップリング剤添加量(g)=Ni(OH)2重量(g)×Ni(OH)2の比表面積(m2/g)/上記最小被覆面積(m2/g)
<参考比較例1>
水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)10gを50℃の水10mLに添加し、ろ過を行い、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行い、触媒組成物粉末(観察サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は28.9m2/g、酸化ニッケルの結晶子径は26.8nmであった。
そして、上記のようにして得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.5μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
<参考例1>
バナジウム濃度1.7g/Lのバナジン酸アンモニウム水溶液32mLに、水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)10gを添加し、50℃のウオーターバス中で2時間静置させて水酸化ニッケル粉末粒子にバナジウムイオン(V5+)を含浸吸着させた後、ろ過を行い、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行い、酸化バナジウムが担持されてなる酸化ニッケル粒子を含有する触媒組成物粉末(観察サンプル)を得た。
得られた触媒組成物粉末(観察サンプル)のBET比表面積は56.1m2/gであり、酸化ニッケルの結晶子径は15.5nmであった。
また、得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された。また、EDXを用いて成分観察を行った結果、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察された。但し、XRDを用いて定性分析をしてもバナジウムに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウムに由来した微粒子は確認されなかった。XPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
そして、上記のようにして得られた触媒組成物粉末(観察サンプル)に、混合後にNi換算量で30質量%となる様に、γアルミナ粉末(二次粒子粒径0.5μm〜10μm、BET比表面積160m2/g)を混合して、触媒組成物粉末(COメタン化評価サンプル)を得た。
<参考例2−6>
上記参考例1において、バナジン酸アンモニウム水溶液と水酸化ニッケル粉の混合割合を変化させた以外、参考例1と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
但し、参考例5及び6については、水酸化ニッケル粉末粒子にバナジウムイオン(V5+)を含浸吸着させる代わりに、水分が完全に蒸発するまで加熱する蒸発乾固させることにより、水酸化ニッケル粉末粒子にバナジウムイオン(V5+)を吸着させた。
参考例2−6で得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、いずれも、0.5μm〜20μmの粒状粒子が観察された(図5参照)。さらにこの粒状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された(図6及び図7参照)。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみ確認された(図8参照)。また、EDXを用いて成分観察を行った結果、酸化ニッケル粒子にバナジウムが分散して存在した状態が観察された(図9及び図10参照)。
但し、XRDを用いて定性分析をしてもバナジウムに由来した成分は検出されず(図4参照)、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもバナジウムに由来した微粒子は確認されなかった(図6及び図7参照)。他方、XPSでV2pスペクトルを測定したところ、517eV付近にVに起因したピークが出現した(図11参照)。
これらの結果から、バナジウムは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散状態で存在していることが観察された。
<参考例7−8>
上記参考例3において、バナジン酸アンモニウム水溶液の代わりに、モリブデン酸アンモニウム又はパラタングステン酸アンモニウムを使用した以外、参考例3と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
参考例7及び8で得られた触媒組成物粉末(観察サンプル)をFE−SEMで観察したところ、いずれも、0.5μm〜20μmの球状粒子が観察された。さらにこの球状粒子をFE−TEMで詳細に観察したところ、1nm〜20nmの粒状又は針状結晶の集合体であることが観察された。電子線回折による結晶構造を解析したところ、FCC(面心立方格子)及びNiOの特徴のみが確認された。また、EDXを用いて成分観察を行った結果、モリブデン又はタングステンが酸化ニッケル粒子に分散して存在した状態が観察された。その一方で、XRDを用いて定性分析をしてもモリブデン及びタングステンに由来した成分は検出されず、FE−TEMで酸化ニッケル一次粒子を詳細に観察してもモリブデン及びタングステンに由来した微粒子は確認されなかった。
これらの結果から、モリブデン及びタングステンは、結晶性を示さない状態で、酸化ニッケル一次粒子に均一に分散している状態で存在していることが観察された。
<参考例9>
上記参考例3において、バナジン酸アンモニウム水溶液の代わりに、硝酸鉄を使用した以外、参考例3と同様にして、触媒組成物粉末(観察サンプル)及び触媒組成物粉末(COメタン化評価サンプル)を得た。
<参考比較例2>
水酸化ニッケル粉(FE−SEM観察から二次粒子の平均粒径約3μm、最小粒径約1μm、最大粒径約8μm、BET比表面積120m2/g)10gを50℃の水10mLに添加し、ろ過を行い、120℃(品温)で2時間の乾燥を行った。その後、大気雰囲気下、550℃(品温)を3時間保持するように焼成を行って、酸化ニッケル(NiO)粉を得た。この酸化ニッケル(NiO)粉に、NiO1g当たり26.3gとなるように酸化バナジウム粉(粒径20μm、比表面積0.9m/g)を混合(表では「物理混合」と称する)して、触媒組成物粉末(観察サンプル)を得た。
<結晶子径の測定方法>
X線回折法により結晶構造を同定し、該当する回折パターンのピーク幅からScherrer法により結晶子径を算出した。
<BET比表面積の測定方法>
窒素ガスの物理吸着法で測定し、多分子層吸着モデルによるBET等温式で算出した値をBET比表面積とした。
<シンタリング抑制成分の担持量の測定>
シンタリング抑制成分を担持吸着法で担持した場合は、吸着後ろ別したろ液中の成分量をICPで分析し、仕込み量との差分から担持量を算出した。そして、担持量を検算するため、粉サンプルを蛍光X線元素分析法(XRF)による半定量値で確認した。
他方、蒸発乾固した場合は、成分仕込み量をそのまま担持量とした。担持量の検算のため、前記同様にXRFによる半定量値で確認した。
<還元処理(前処理)>
活性評価の前処理として、酸化ニッケルをニッケル金属に還元する必要がある。そのため、参考例及び参考比較例で得た触媒組成物粉末(COメタン化評価サンプル)を、水素雰囲気中で500℃、1時間の還元処理を行った。
<COメタン化評価>
参考例・参考比較例で得た触媒組成物粉末(COメタン化評価サンプル)について、固定床常圧流通式反応評価装置により、COメタン化除去性能を評価した。
この際、固定床常圧流通式反応評価装置の管径は10mm、サンプル容積は3mL、評価ガス流通量はH2 :73.5%、CO2:20.0%、CO:0.5%とした。また、空間速度(SV)は2464(L/hr)とした。
この結果、参考例1〜9のいずれも、参考比較例1及び2に比べて、優れたCOメタン化浄化触媒活性を示すことが確認された(図12参照)。
(考察)
参考例1〜9で得た触媒組成物粉末(COメタン化評価サンプル)はいずれも、参考比較例1,2に比べて、還元処理した時にシンタリングを抑制することができ、COメタン化触媒としての触媒活性の低下を防ぐことができることが分かった。
また、参考例1〜9で得た触媒組成物粉末(観察サンプル)はいずれも、一酸化炭素(CO)をメタン化するCOメタン化触媒活性成分からなる粒子に、ポリ陰イオンを形成し得る遷移金属が結晶性を示さない状態で分散して存在した状態であったことが観察された。
よって、一酸化炭素(CO)をメタン化するCOメタン化触媒活性成分と、ポリ陰イオンを形成し得る遷移金属とを含有する一酸化炭素メタン化触媒組成物であって、当該遷移金属が結晶性を示さない状態で存在してなる構成を備えた一酸化炭素メタン化触媒組成物であれば、還元処理した時にシンタリングを抑制することができ、COメタン化触媒としての触媒活性の低下を防ぐことができるものと考えることができる。

Claims (9)

  1. 一酸化炭素(CO)をメタン化するCOメタン化触媒活性成分を含有する粒子(「触媒活性粒子」と称する)の表面に、ケイ素酸化物を有する表面層が存在する構成を備えた触媒粒子を含む組成物であって、
    前記COメタン化触媒活性成分の結晶子径が0.1nm〜48nmであり、且つ、
    前記触媒活性粒子は、前記COメタン化触媒活性成分を含有するほか、ポリ陰イオンを形成し得る遷移金属である、V、W、Nb、Ta及びMoのうちの少なくとも一種の元素を含有することを特徴とし、ただし、前記触媒粒子は、担体を有する担持金属触媒を除き、前記担体は、前記COメタン化触媒活性成分の酸化物を除く、一酸化炭素メタン化触媒組成物。
  2. 前記表面層は、Si及びOのほかに、Ca、Ba、Mg、Ti、Zr、Al、Ce、La、Vのうち少なくとも一種の元素を含むことを特徴とする請求項1に記載の一酸化炭素メタン化触媒組成物。
  3. 前記COメタン化触媒活性成分として、Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素を含むことを特徴とする請求項1又は2に記載の一酸化炭素メタン化触媒組成物。
  4. 前記COメタン化触媒活性成分は、Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素を酸化物として含むことを特徴とする請求項1〜3のいずれか1項に記載の一酸化炭素メタン化触媒組成物。
  5. 前記COメタン化触媒活性成分は、Fe、Ni、Co、Ru、Rh、Pt、Pd及びIrのうちの少なくとも一種の元素を金属として含むことを特徴とする請求項1〜4のいずれか1項に記載の一酸化炭素メタン化触媒組成物。
  6. 前記表面層の厚さは200nm以下であることを特徴とする請求項1〜5のいずれか1項に記載の一酸化炭素メタン化触媒組成物。
  7. 前記ポリ陰イオンを形成し得る遷移金属は、触媒活性粒子中に、結晶性を示さない状態で分散して存在することを特徴とする請求項1〜6のいずれか1項に記載の一酸化炭素メタン化触媒組成物。
  8. 請求項1〜7のいずれか1項に記載の一酸化炭素メタン化触媒組成物を、ペレット状に成型してなる一酸化炭素メタン化触媒。
  9. 請求項1〜7のいずれか1項に記載の一酸化炭素メタン化触媒組成物を、セラミック材料又は金属からなる基材に担持してなる構成を備えた一酸化炭素メタン化触媒。
JP2015528252A 2013-07-23 2014-07-17 一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒 Active JP6466330B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013152867 2013-07-23
JP2013152867 2013-07-23
PCT/JP2014/069015 WO2015012189A1 (ja) 2013-07-23 2014-07-17 一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒

Publications (2)

Publication Number Publication Date
JPWO2015012189A1 JPWO2015012189A1 (ja) 2017-03-02
JP6466330B2 true JP6466330B2 (ja) 2019-02-06

Family

ID=52393231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015528252A Active JP6466330B2 (ja) 2013-07-23 2014-07-17 一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒

Country Status (2)

Country Link
JP (1) JP6466330B2 (ja)
WO (1) WO2015012189A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022065468A1 (ja) * 2020-09-28 2022-03-31

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK144996C (da) * 1980-05-19 1982-12-20 Haldor Topsoe As Fremgangsmaade ved udfoerelse af katalytiske eksoterme gasfaseprocesser og fremgangsmaade til fremstilling af en katalysator dertil
JP2009011981A (ja) * 2007-07-06 2009-01-22 Univ Of Yamanashi 一酸化炭素選択酸化触媒及びその製造方法
JP5691098B2 (ja) * 2009-04-24 2015-04-01 国立大学法人山梨大学 一酸化炭素の選択的メタン化触媒、その製造方法及びそれを用いた装置
JP5810421B2 (ja) * 2010-05-13 2015-11-11 国立大学法人山梨大学 燃料改質装置、一酸化炭素の選択的メタン化方法、一酸化炭素の選択的メタン化触媒及びその製造方法
WO2014038426A1 (ja) * 2012-09-04 2014-03-13 国立大学法人山梨大学 Co選択メタン化触媒
WO2014157055A1 (ja) * 2013-03-25 2014-10-02 三井金属鉱業株式会社 一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒

Also Published As

Publication number Publication date
JPWO2015012189A1 (ja) 2017-03-02
WO2015012189A1 (ja) 2015-01-29

Similar Documents

Publication Publication Date Title
Lee et al. Sintering-resistant Pt@ CeO 2 nanoparticles for high-temperature oxidation catalysis
JP5110249B2 (ja) 炭化水素を分解する触媒、該触媒を用いた炭化水素の分解方法及び水素の製造方法、並びに発電システム
JP6160005B2 (ja) Co選択メタン化触媒
Zhang et al. Synthesis, characterization and activity evaluation of Cu-based catalysts derived from layered double hydroxides (LDHs) for DeNOx reaction
JPWO2007116715A1 (ja) 固体粒子高接触体、固体粒子高接触体基材、及びそれらの製造方法
JP4870900B2 (ja) 炭化水素分解用触媒及びその製造方法、並びに該炭化水素分解用触媒を用いた水素製造方法
JP4332724B2 (ja) オートサーマルリフォーミング触媒及びその製造方法、並びに該オートサーマルリフォーミング触媒を用いた水素の製造方法
JP5708767B1 (ja) 排ガス浄化用触媒及びその製造方法
JP4488178B2 (ja) メタン化触媒及びその製造方法、並びに該メタン化触媒を用いた一酸化炭素をメタン化する方法
JP4670603B2 (ja) 触媒用粒子およびその製造方法
CN110167670B (zh) 废气净化催化剂用铜铁矿型氧化物和使用该铜铁矿型氧化物的废气净化催化剂
JP5975104B2 (ja) 排ガス浄化用触媒およびその製造方法
JP5416497B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP6466330B2 (ja) 一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒
JP4296430B2 (ja) 水性ガスシフト反応用の触媒及びその製造方法
JP6442519B2 (ja) 水蒸気改質触媒組成物及び水蒸気改質触媒
JP4715999B2 (ja) 水性ガスシフト反応用の触媒及びその製造方法
WO2014157055A1 (ja) 一酸化炭素メタン化触媒組成物及び一酸化炭素メタン化触媒
JP2020032331A (ja) メタン化触媒、その製造方法、及びメタンの製造方法
JP6442518B2 (ja) 水蒸気改質触媒組成物及び水蒸気改質触媒
JP4340892B2 (ja) 炭化水素分解用触媒及びその製造法、該炭化水素分解用触媒を用いた水素の製造方法
JP2009078202A (ja) 触媒金属担持酸素吸蔵材、同材の製造方法、及び同材を用いた触媒
JP2007054685A (ja) 水性ガスシフト反応用の触媒
WO2022065468A1 (ja) 二酸化炭素メタン化触媒用コアシェル型粒子
JP2007117835A (ja) 板状酸化物粒子担持カーボン粒子とその製造方法、および貴金属担持板状酸化物粒子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190109

R150 Certificate of patent or registration of utility model

Ref document number: 6466330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250