JP6421812B2 - 動力伝達機構 - Google Patents

動力伝達機構 Download PDF

Info

Publication number
JP6421812B2
JP6421812B2 JP2016231792A JP2016231792A JP6421812B2 JP 6421812 B2 JP6421812 B2 JP 6421812B2 JP 2016231792 A JP2016231792 A JP 2016231792A JP 2016231792 A JP2016231792 A JP 2016231792A JP 6421812 B2 JP6421812 B2 JP 6421812B2
Authority
JP
Japan
Prior art keywords
bearing
gear
axial
shaft
helical gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016231792A
Other languages
English (en)
Other versions
JP2018087619A (ja
Inventor
守弘 松本
守弘 松本
忠史 高垣
忠史 高垣
石田 忍
忍 石田
徹郎 浜嶋
徹郎 浜嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016231792A priority Critical patent/JP6421812B2/ja
Priority to US15/783,571 priority patent/US10683910B2/en
Priority to MYPI2017703876A priority patent/MY193384A/en
Priority to TW106134994A priority patent/TWI666139B/zh
Priority to KR1020170134360A priority patent/KR101968005B1/ko
Priority to EP17196810.0A priority patent/EP3327313B1/en
Priority to CN201711169202.9A priority patent/CN108119610B/zh
Priority to RU2017140785A priority patent/RU2666482C1/ru
Priority to BR102017025535-2A priority patent/BR102017025535A2/pt
Publication of JP2018087619A publication Critical patent/JP2018087619A/ja
Application granted granted Critical
Publication of JP6421812B2 publication Critical patent/JP6421812B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/206Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members characterised by the driving or driven member being composed of two or more gear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • F16H1/08Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes the members having helical, herringbone, or like teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0018Shaft assemblies for gearings
    • F16H57/0025Shaft assemblies for gearings with gearing elements rigidly connected to a shaft, e.g. securing gears or pulleys by specially adapted splines, keys or methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • F16H57/022Adjustment of gear shafts or bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02043Gearboxes for particular applications for vehicle transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • F16H57/022Adjustment of gear shafts or bearings
    • F16H2057/0221Axial adjustment

Description

本発明は、動力伝達機構に関する。
特許文献1には、車両に搭載される動力伝達機構として、ファイナルドライブギヤとファイナルドリブンギヤとが噛み合うファイナルギヤ対をやまば歯車同士が噛み合うギヤ対により構成した動力伝達機構が開示されている。
特開2016−56888号公報
やまば歯車同士が噛み合うギヤ対では、やまば歯車に誤差成分(噛合い誤差)がある場合、噛合い部でやまば歯車が片歯面当たりとなり軸方向の力が発生する。この軸方向の力によってやまば歯車が軸方向に移動するため、噛合い部でやまば歯車が両歯面当たりとなる調芯作用が働く。これにより、やまば歯車は平歯車よりも振動や騒音を低減することができる。
しかしながら、一つの回転軸に複数のやまば歯車が設けられている場合、複数の噛合い部でそれぞれに軸方向の力が発生するため、同一軸上で複数のやまば歯車の軸方向挙動が干渉して調芯作用を互いに阻害するおそれがある。
本発明は、上記事情を鑑みてなされたものであって、同一軸上に複数のやまば歯車が設けられている場合にやまば歯車の調芯作用を確保することができる動力伝達機構を提供することを目的とする。
本発明は、第1やまば歯車を有する第1軸と、前記第1やまば歯車と噛み合う第2やまば歯車、および前記第2やまば歯車と軸方向に並んで設けられた第3やまば歯車を有する第2軸と、前記第3やまば歯車と噛み合う第4やまば歯車を有する第3軸と、前記第1軸を回転自在に支持する転がり軸受である第1軸受と、前記第2軸を回転自在に支持する転がり軸受である第2軸受と、前記第3軸を回転自在に支持する転がり軸受である第3軸受と、を備えている動力伝達機構において、前記第1やまば歯車と前記第1軸とは、一体回転し、かつ軸方向に一体的に移動するように構成されており、前記第2やまば歯車と前記第3やまば歯車と前記第2軸とは、一体回転し、かつ軸方向に一体的に移動するように構成されており、前記第4やまば歯車と前記第3軸とは、一体回転し、かつ軸方向に一体的に移動するように構成されており、前記第1やまば歯車と前記第2やまば歯車との噛合い部で生じた軸方向の力に対する前記第1軸受の軸方向変位量および前記第2軸受の軸方向変位量と、前記第3やまば歯車と前記第4やまば歯車との噛合い部で生じた軸方向の力に対する前記第2軸受の軸方向変位量および前記第3軸受の軸方向変位量との関係について、前記第2軸受は、前記第1軸受および前記第3軸受のうちの少なくとも一方よりも前記軸方向変位量が小さくなるように構成されていることを特徴とする。
本発明では、複数のやまば歯車を支持している第2軸受が、単数のやまば歯車を支持している第1軸受および第3軸受のうちの少なくとも一方よりも軸方向変位量が小さくなるように構成されている。つまり、第1やまば歯車と第2やまば歯車との噛合い部で生じた軸方向の力に対して、第1やまば歯車は第2やまば歯車よりも軸方向に動きやすいため、第1やまば歯車と第2やまば歯車とが噛み合うギヤ対の調芯作用は、第1やまば歯車の軸方向挙動によって確保される。または、第3やまば歯車と第4やまば歯車との噛合い部で生じた軸方向の力に対して、第4やまば歯車は第3やまば歯車よりも軸方向に動きやすいため、第3やまば歯車と第4やまば歯車とが噛み合うギヤ対の調芯作用は、第4やまば歯車の軸方向挙動によって確保される。これにより、第2軸において第2やまば歯車の軸方向挙動と第3やまば歯車の軸方向挙動とが干渉して、互いの調芯作用が阻害されることを抑制できる。
本発明は、上記発明において、前記第2軸受の軸方向剛性は、前記第1軸受の軸方向剛性および前記第3軸受の軸方向剛性のうちの少なくとも一方よりも大きいことが好ましい。
上記発明では、複数のやまば歯車を支持している第2軸受は、単数のやまば歯車を支持している第1軸受および第3軸受のうちの少なくとも一方よりも軸方向剛性が大きくなるように構成されている。軸方向剛性は、軸方向の力に対する軸方向変形のしづらさの度合いを表す。そのため、第1やまば歯車は第2やまば歯車よりも軸方向に移動しやすく、または第4やまば歯車は第3やまば歯車よりも軸方向に移動しやすい。これにより、第2軸において第2やまば歯車の軸方向挙動と第3やまば歯車の軸方向挙動とが干渉して、互いの調芯作用が阻害されることを抑制できる。
本発明は、上記発明において、前記第1軸受および前記第3軸受のうちの少なくとも一方は、前記第2軸受よりも、内輪および外輪のうちの一方の軌道輪を固定して他方の軌道輪を軸方向に移動させた場合の移動量としての軸方向内部すきまが大きく形成されていることが好ましい。
上記発明では、複数のやまば歯車を支持している第2軸受は、単数のやまば歯車を支持している第1軸受および第3軸受のうちの少なくとも一方よりも軸方向内部すきまが小さく形成されている。軸方向内部すきまは、軌道輪が軸方向に移動可能な量を表す。そのため、第1やまば歯車は第2やまば歯車よりも軸方向に移動しやすく、または第4やまば歯車は第3やまば歯車よりも軸方向に移動しやすく構成されている。これにより、第2軸において第2やまば歯車の軸方向挙動と第3やまば歯車の軸方向挙動とが干渉して、互いの調芯作用が阻害されることを抑制できる。
本発明は、上記発明において、前記第2軸受は、軸方向の予圧が付与されている軸受であり、かつ前記第1軸受および前記第3軸受のうちの少なくとも一方とは種類が異なる軸受であることが好ましい。
上記発明では、第2軸受は軸方向の予圧が付与されている軸受であるため、第2軸受に支持されている第2やまば歯車および第3やまば歯車は軸方向に移動しにくく構成されている。これにより、第2軸において第2やまば歯車の軸方向挙動と第3やまば歯車の軸方向挙動とが干渉して、互いの調芯作用が阻害されることを抑制できる。
本発明は、上記発明において、前記第1軸受は、円筒ころ軸受または深溝玉軸受により構成され、前記第2軸受は、テーパころ軸受により構成され、前記第3軸受は、円筒ころ軸受または深溝玉軸受により構成されていることが好ましい。
上記発明では、テーパころ軸受は円筒ころ軸受および深溝玉軸受よりも軸方向変位量が小さいため、第2軸受は第1軸受および第3軸受よりも軸方向変位量が小さく構成されている。このように、転がり軸受の種類の違いによって軸受の軸方向変位量に差をつけることができる。
本発明は、上記発明において、前記第1軸受、前記第2軸受、および前記第3軸受は、軌道面を有する軌道輪と、前記軌道面上を転動する玉と、を備える玉軸受であり、前記第2軸受は、前記第1軸受および前記第3軸受のうちの少なくとも一方よりも、前記玉の直径に対する前記軌道面の曲率半径の割合の最小値が小さく形成されていることが好ましい。
上記発明では、複数のやまば歯車を支持している第2軸受は、単数のやまば歯車を支持している第1軸受および第3軸受のうちの少なくとも一方よりも、玉の直径に対する軌道面の曲率半径の割合の最小値が小さく形成されている。その割合は、軌道輪が軸方向に移動可能な量を表す。そのため、第1やまば歯車は第2やまば歯車よりも軸方向に移動しやすく、または第4やまば歯車は第3やまば歯車よりも軸方向に移動しやすく構成されている。これにより、第2軸において第2やまば歯車の軸方向挙動と第3やまば歯車の軸方向挙動とが干渉して、互いの調芯作用が阻害されることを抑制できる。
本発明は、上記発明において、前記第1軸受は、深溝玉軸受により構成され、前記第2軸受は、深溝玉軸受により構成され、前記第3軸受は、深溝玉軸受により構成されていることが好ましい。
本発明は、上記発明において、前記第2やまば歯車と噛み合う第5やまば歯車を有する第4軸と、前記第4軸を回転自在に支持する転がり軸受である第4軸受と、をさらに備え、前記第2やまば歯車と前記第5やまば歯車との噛合い部で生じた軸方向の力に対する前記第1軸受の軸方向変位量および前記第2軸受の軸方向変位量の関係について、前記第2軸受は、前記第4軸受よりも前記軸方向変位量が小さくなるように構成されていることが好ましい。
上記発明では、第2軸受は、単数のやまば歯車を支持している第4軸受よりも軸方向変位量が小さくなるように構成されている。つまり、第2やまば歯車と第5やまば歯車との噛合い部で生じた軸方向の力に対して、相対的に軸方向変位量が大きい第4軸受側の第5やまば歯車は第2やまば歯車よりも軸方向に動きやすい。そのため、第2やまば歯車と第5やまば歯車とが噛み合うギヤ対の調芯作用は、第5やまば歯車の軸方向挙動によって確保される。
本発明は、上記発明において、前記第2軸受の軸方向剛性は、前記第4軸受の軸方向剛性よりも大きく、かつ前記第1軸受の軸方向剛性および前記第3軸受の軸方向剛性のうちの少なくとも一方よりも大きいことが好ましい。
上記発明では、第2軸受は、単数のやまば歯車を支持している第4軸受よりも軸方向剛性が大きくなるように構成されている。つまり、第2やまば歯車と第5やまば歯車との噛合い部で生じた軸方向の力に対して、相対的に軸方向剛性が小さい第4軸受側の第5やまば歯車は、第2やまば歯車よりも軸方向に動きやすい。そのため、第2やまば歯車と第5やまば歯車とが噛み合うギヤ対の調芯作用は、第5やまば歯車の軸方向挙動によって確保される。
本発明は、上記発明において、前記第2やまば歯車と噛み合う第5やまば歯車を有する第4軸と、前記第4軸を回転自在に支持する転がり軸受である第4軸受と、をさらに備え、前記第4軸受は、前記第2軸受よりも前記軸方向内部すきまが大きく形成されていることが好ましい。
上記発明では、第2軸受は、単数のやまば歯車を支持している第4軸受よりも軸方向内部すきまが小さく形成されている。つまり、第2やまば歯車と第5やまば歯車との噛合い部で生じた軸方向の力に対して、相対的に軸方向内部すきまが大きい第4軸受側の第5やまば歯車は、第2やまば歯車よりも軸方向に動きやすい。そのため、第2やまば歯車と第5やまば歯車とが噛み合うギヤ対の調芯作用は、第5やまば歯車の軸方向挙動によって確保される。
本発明は、上記発明において、前記第2軸受は、前記第4軸受とは種類が異なる軸受であり、かつ前記第1軸受および前記第3軸受のうちの少なくとも一方とは種類が異なる軸受であることが好ましい。
本発明は、上記発明において、前記第1軸受、前記第2軸受、前記第3軸受、および前記第4軸受は、軌道面を有する軌道輪と、前記軌道面上を転動する玉と、を備える玉軸受であり、前記第2軸受は、前記玉の直径に対する前記軌道面の曲率半径の割合の最小値が前記第4軸受よりも小さく、かつ前記第1軸受および前記第3軸受のうちの少なくとも一方よりも前記最小値が小さく形成されていることが好ましい。
上記発明では、第2軸受は、単数のやまば歯車を支持している第4軸受よりも、玉の直径に対する軌道面の曲率半径の割合の最小値が小さく形成されている。つまり、第2やまば歯車と第5やまば歯車との噛合い部で生じた軸方向の力に対して、相対的に上記最小値が大きい第4軸受側の第5やまば歯車は、第2やまば歯車よりも軸方向に動きやすい。そのため、第2やまば歯車と第5やまば歯車とが噛み合うギヤ対の調芯作用は、第5やまば歯車の軸方向挙動によって確保される。
本発明によれば、複数のやまば歯車と噛み合う歯車軸において、やまば歯車の軸方向挙動が干渉して互いの調芯作用が阻害されることを抑制できる。これにより、複数のやまば歯車と噛み合う歯車軸でやまば歯車の調芯作用を確保することができる。
図1は、第1実施形態の動力伝達機構を模式的に示す基本構成図である。 図2は、第3軸がデフケースである場合の動力伝達機構を模式的に示す基本構成図である。 図3は、転がり軸受の軸方向剛性と転がり軸受の種類との関係を説明するための図である。 図4は、動力伝達機構を搭載した第1車両例を模式的に示すスケルトン図である。 図5は、動力伝達機構を搭載した第2車両例を模式的に示すスケルトン図である。 図6は、転がり軸受の軸方向内部すきまと転がり軸受の種類との関係を説明するための図である。 図7は、深溝玉軸受における軌道面の曲率半径および玉の直径を説明するための図である。 図8は、玉の直径に対する軌道面の曲率半径の割合と軸方向剛性との関係を説明するための図である。 図9は、玉の直径に対する軌道面の曲率半径の割合と軸方向内部すきまとの関係を説明するための図である。
以下、図面を参照して、本発明の実施形態における動力伝達機構について具体的に説明する。
[1.第1実施形態]
図1〜図5を参照して、第1実施形態の動力伝達機構について説明する。図1は、第1実施形態の動力伝達機構を模式的に示す基本構成図である。図2は、第3軸がデフケースである場合の動力伝達機構を模式的に示す基本構成図である。図3は、転がり軸受の軸方向剛性と転がり軸受の種類との関係を説明するための図である。図4は、動力伝達機構を搭載した第1車両例を模式的に示すスケルトン図である。図5は、動力伝達機構を搭載した第2車両例を模式的に示すスケルトン図である。
[1−1.基本構成]
図1に示すように、動力伝達機構1は、互いに平行に配置された三つの回転軸として、第1軸10、第2軸20、および第3軸30を備えている。第1軸10と第2軸20との間は、やまば歯車同士が噛み合う第1ギヤ対2によって動力伝達可能に連結されている。第2軸20と第3軸30との間は、やまば歯車同士が噛み合う第2ギヤ対3によって動力伝達可能に連結されている。そして、第1軸10の動力は第1軸10から第2軸20を介して第3軸30に伝達される。なお、この説明では、軸方向の配置について図1に示す右側と左側を用いる場合がある。
詳細には、動力伝達機構1は、第1やまば歯車11を有する第1軸10と、第1やまば歯車11と噛み合う第2やまば歯車22を有する第2軸20と、第2軸20上に第2やまば歯車22と軸方向に並んで設けられた第3やまば歯車23と、第3やまば歯車23と噛み合う第4やまば歯車34を有する第3軸30とを備えている。
第1ギヤ対2は、駆動歯車の第1やまば歯車11と、被動歯車の第2やまば歯車22とによって構成されている。第1ギヤ対2の噛合い部2aでは、第1やまば歯車11の左歯面11aと第2やまば歯車22の左歯面22aとが噛み合い、かつ第1やまば歯車11の右歯面11bと第2やまば歯車22の右歯面22bとが噛み合う。
第1やまば歯車11は、ねじれ方向が逆向きの左歯面11aと右歯面11bとを有する歯車(ダブルヘリカルギヤ)である。第1やまば歯車11および第1軸10は一体的に形成されている。そのため、第1やまば歯車11は第1軸10と一体回転し、かつ軸方向に一体的に移動する。
第2やまば歯車22は、ねじれ方向が逆向きの左歯面22aと右歯面22bとを有する歯車(ダブルヘリカルギヤ)である。第2やまば歯車22および第2軸20は一体的に形成されている。そのため、第2やまば歯車22は第2軸20と一体回転し、かつ軸方向に一体的に移動する。例えば、第2やまば歯車22と第2軸20とは別体であり、第2やまば歯車22の内周部が第2軸20の外周部にスプライン嵌合している。この嵌合状態で第2やまば歯車22が第2軸20に対して軸方向に移動できないように一体化されている。
第2ギヤ対3は、駆動歯車の第3やまば歯車23と、被動歯車の第4やまば歯車34とによって構成されている。第2ギヤ対3の噛合い部3aでは、第3やまば歯車23の左歯面23aと第4やまば歯車34の左歯面34aとが噛み合い、かつ第3やまば歯車23の右歯面23bと第4やまば歯車34の右歯面34bとが噛み合う。
第3やまば歯車23は、ねじれ方向が逆向きの左歯面23aと右歯面23bとを有する歯車(ダブルヘリカルギヤ)である。第3やまば歯車23および第2軸20は一体的に形成されている。そのため、第3やまば歯車23は第2軸20と一体回転し、かつ軸方向に一体的に移動する。例えば、第2軸20の外周部に左歯面23aおよび右歯面23bが形成されている。このように、第2軸20は、第2やまば歯車22および第3やまば歯車23と一体回転する回転軸、すなわち複数のやまば歯車(第1やまば歯車11、第4やまば歯車34)が噛み合う歯車軸である。
第4やまば歯車34は、ねじれ方向が逆向きの左歯面34aと右歯面34bとを有する歯車(ダブルヘリカルギヤ)である。第4やまば歯車34および第3軸30は一体的に形成されている。そのため、第4やまば歯車34は第3軸30と一体回転し、かつ軸方向に一体的に移動する。例えば、第4やまば歯車34と第3軸30とは別体であり、第4やまば歯車34の内周部が第3軸30の外周部にスプライン嵌合している。この嵌合状態で第4やまば歯車34が第3軸30に対して軸方向に移動できないように一体化されている。
このように、第1軸10および第3軸30は、一つのやまば歯車を有する回転軸(別軸上に設けられた単数のやまば歯車と噛み合う歯車軸)である。一方、中間軸である第2軸20は、二つのやまば歯車を有する回転軸(別軸上に設けられた複数のやまば歯車と噛み合う歯車軸)である。
また、動力伝達機構1は、第1軸10を回転自在に支持する第1軸受4と、第2軸20を回転自在に支持する第2軸受5と、第3軸30を回転自在に支持する第3軸受6とを備えている。第1〜第3軸受4,5,6は、全て転がり軸受により構成されている。
第1軸受4は、第1やまば歯車11を支持する軸受である。その第1軸受4は、第1軸10の軸方向両端に取り付けられた二つの軸受4a,4bを含む。各軸受4a,4bは、円筒ころ軸受により構成されている。第1軸10および第1やまば歯車11は、二つの円筒ころ軸受からなる軸受対(第1軸受対)によって支持されている。
第2軸受5は、第2やまば歯車22および第3やまば歯車23を支持する軸受である。その第2軸受5は、第2軸20の軸方向両端に取り付けられた二つの軸受5a,5bを含む。各軸受5a,5bは、テーパころ軸受により構成されている。つまり、第2軸20と第2やまば歯車22と第3やまば歯車23とは、二つのテーパころ軸受からなる軸受対(第2軸受対)によって支持されている。
第3軸受6は、第4やまば歯車34を支持する軸受である。その第3軸受6は、第3軸30の軸方向両端に取り付けられた二つの軸受6a,6bを含む。各軸受6a,6bは、円筒ころ軸受により構成されている。つまり、第3軸30および第4やまば歯車34は、二つの円筒ころ軸受からなる軸受対(第3軸受対)によって支持されている。
そして、やまば歯車同士が噛み合う第1ギヤ対2では、噛合い部2aの誤差成分(噛合い誤差)によって、第1やまば歯車11の左右歯面11a,11bと第2やまば歯車22の左右歯面22a,22bとが片歯面当たりとなる。例えば、左歯面11aと左歯面22aとは接触しているものの、右歯面11bと右歯面11bとが非接触の場合、噛合い部2aで軸方向左側に作用する軸方向の力(スラスト力)が発生する。つまり、軸方向反対側に作用するスラスト力が不均衡になると、やまば歯車を軸方向に移動させるスラスト力(推力)が発生する。そして、軸方向左側のスラスト力(推力)によって第1やまば歯車11または第2やまば歯車22が軸方向左側に移動すると、非接触であった右歯面同士11b,22bが接触して両歯面当たりとなる調芯作用が働く。この両歯面当たりの状態では、左歯面同士11a,22aが接触することにより生じる軸方向左側のスラスト力と、右歯面同士11b,22bが接触することにより生じる軸方向右側のスラスト力とが打ち消し合う。すなわち、噛合い部2aで軸方向反対側に作用するスラスト力が釣り合う。この釣り合い状態では、第1やまば歯車11および第2やまば歯車22は軸方向に移動しない。
また、やまば歯車同士が噛み合う第2ギヤ対3では、噛合い部3aの誤差成分(噛合い誤差)によって、第3やまば歯車23の左右歯面23a,23bと第4やまば歯車34の左右歯面34a,34bとが片歯面当たりとなる。例えば、左歯面23aと左歯面34aとは接触しているものの、右歯面23bと右歯面34bとが非接触の場合、噛合い部3aで軸方向左側に作用するスラスト力(推力)が発生する。この軸方向左側のスラスト力(推力)によって第3やまば歯車23または第4やまば歯車34が軸方向左側に移動すると、非接触であった右歯面同士23b,34bが接触して両歯面当たりとなる調芯作用が働く。この両歯面当たりの状態では、左歯面同士23a,34aが接触することにより生じる軸方向左側のスラスト力と、右歯面同士23b,34bが接触することにより生じる軸方向右側のスラスト力とが打ち消し合う。すなわち、噛合い部3aで軸方向反対側に作用するスラスト力が釣り合う。この釣り合い状態では、第3やまば歯車23および第4やまば歯車34は軸方向に移動しない。
また、第1軸10、第2軸20、および第3軸30は、やまば歯車と一体的に形成された回転部材であればよい。つまり、上述した回転軸(歯車軸)には、転がり軸受が取り付けられる回転部材であって、やまば歯車と一体のボス部や、車両に搭載されるデファレンシャル機構のデフケースなどが含まれる。例えば、第3軸30は、デファレンシャル機構のデフケースであってもよい。第3軸30がデフケースである場合の動力伝達機構1の一例を図2に示す。
図2に示す動力伝達機構1は、第3軸30であるデフケース31と、第4やまば歯車34であるデフリングギヤ35と、デフケース31を回転自在に支持する第3軸受6とを備えている。デフリングギヤ35はデフケース31と一体化されている。そして、第3軸受6の軸受6a,6bは、デフケース31の左右のインボード部31a,31bに取り付けられている。このように、車両に搭載されるデファレンシャル機構の一部を第3軸30と第4やまば歯車34とによって構成することができる。動力伝達機構1は、後述するように車両に搭載される駆動装置100(図4に示す)に適用可能である。
このように構成された動力伝達機構1では、第1軸10の動力を第3軸30に伝達する際、第1ギヤ対2の噛合い部2aで発生するスラスト力を第1軸受4および第2軸受5で受けるとともに、第2ギヤ対3の噛合い部3aで発生するスラスト力を第2軸受5および第3軸受6で受ける。つまり、第2軸受5には複数の噛合い部2a,3aからスラスト力が作用する。
[1−2.軸方向剛性]
図3を参照して、転がり軸受の軸方向剛性と転がり軸受の種類との関係について説明する。なお、図3には、円筒ころ軸受、深溝玉軸受、アンギュラ玉軸受、テーパころ軸受の四種類の転がり軸受を例示する。
ここで、軸方向剛性とは、軸方向の力(スラスト力)に対する軸方向変形のしづらさの度合いを表す。また、「軸方向の剛性値=軸方向に単位変形するのに必要な力(軸方向荷重/軸方向変形量)」の関係が成り立つ。すなわち、軸受の軸方向剛性は、軸受の軸方向変位量を表す。軸受の軸方向変位量は、転がり軸受の外輪がケースに固定されている状態で、回転軸(回転部材)に取り付けられた転がり軸受の内輪(回転可能な軌道輪)が、外輪(固定された軌道輪)に対して相対的に軸方向に移動する際の移動量(軸方向変形量)を表す。なお、軸受対の軸方向剛性は、二つの軸受の軸方向剛性を合成(軸方向剛性値を合算)したものである。
図3に示すように、転がり軸受では、円筒ころ軸受、深溝玉軸受、アンギュラ玉軸受、テーパころ軸受の順に軸方向剛性が大きくなる。テーパころ軸受およびアンギュラ玉軸受は、接触角度を有するため軸方向荷重を受ける(支持する)ことができる軸受である。また、深溝玉軸受も接触角度を有する軸受であるため軸方向荷重を受けることができる軸受である。一方、円筒ころ軸受は、内部構造によっては軸方向荷重を受けることも可能であるが、その支持可能な軸方向荷重はテーパころ軸受やアンギュラ玉軸受や深溝玉軸受に比べて小さい。そのため、円筒ころ軸受は、テーパころ軸受、アンギュラ玉軸受、および深溝玉軸受に比べて軸方向剛性が小さい。このように、転がり軸受の種類によって軸方向剛性の大きさに違いが生じる。
なお、図3に示す四種類の転がり軸受の軸方向剛性の大小関係は、一例であり、必ずしもこの限りではない。ただし、円筒ころ軸受とテーパころ軸受との関係については、図3に示す軸方向剛性の大小関係が成立する。
上述したように円筒ころ軸受はテーパころ軸受よりも軸方向剛性が小さいため、第2軸受5は、第1軸受4および第3軸受6よりも軸方向剛性が大きくなるように構成されている。これにより、複数のやまば歯車と噛み合う歯車軸である第2軸20において、第2やまば歯車22の軸方向挙動と第3やまば歯車23の軸方向挙動とが干渉して、互いの調芯作用が阻害されることを抑制できる。
具体的には、動力伝達機構1では、やまば歯車および回転軸が一体的に形成されているので、軸受の軸方向剛性は、噛合い部で発生したスラスト力に対するやまば歯車の軸方向挙動のしづらさを表すことになる。つまり、軸受の軸方向剛性が大きいということは、その軸受に支持されているやまば歯車が軸方向に移動しにくいことを表す。第1軸受4は第2軸受5よりも軸方向剛性が小さいため、噛合い部2aで生じたスラスト力に対して、第1やまば歯車11は第2やまば歯車22よりも軸方向に移動しやすい。また、第3軸受6は第2軸受5よりも軸方向剛性が小さいため、噛合い部3aで生じたスラスト力に対して、第4やまば歯車34は第3やまば歯車23よりも軸方向に移動しやすい。
例えば、第1ギヤ対2の噛合い部2aでやまば歯車の片歯面当たりが生じた場合、第1軸受4の軸方向剛性が第2軸受5の軸方向剛性よりも小さいため、噛合い部2aで発生したスラスト力によって主に第1軸10側の第1やまば歯車11が軸方向に移動し、第2軸20側の第2やまば歯車22の軸方向挙動は小さくなる。このように、噛合い部2aの誤差成分によって第2やまば歯車22が積極的に軸方向に移動しなくても、第1やまば歯車11の軸方向挙動によって第1ギヤ対2の調芯作用が発揮される。
また、第2ギヤ対3の噛合い部3aでやまば歯車の片歯面当たりが生じた場合、第3軸受6の軸方向剛性は第2軸受5の軸方向剛性よりも小さいため、噛合い部3aで発生したスラスト力によって主に第3軸30側の第4やまば歯車34が軸方向に移動し、第2軸20側の第3やまば歯車23の軸方向挙動は小さくなる。このように、噛合い部3aの誤差成分によって第3やまば歯車23が積極的に軸方向に移動しなくても、第4やまば歯車34の軸方向挙動によって第2ギヤ対3の調芯作用が発揮される。
[1−3.車両例]
[1−3−1.第1車両例]
図4に示すように、第1車両例である車両Veの駆動装置100は、走行用動力源であるエンジン101と、第3軸30がデフケース31である動力伝達機構1と、を備えている。エンジン101から出力された動力は、変速機構102、動力伝達機構1、車軸103を介して駆動輪104に伝達される。動力伝達機構1は、出力ギヤ105とカウンタギヤ機構106とデファレンシャル機構107とを構成している。なお、車両Veの説明では、上述した動力伝達機構1と同様の構成については説明を省略し、その参照符号を引用する。
まず、エンジン101の出力軸は、変速機構102の入力軸102aに連結されている。エンジン101から出力された動力は入力軸102aから変速機構102に入力される。変速機構102は周知の変速機構により構成されている。変速機構102の一例として、シングルピニオン型の第1遊星歯車機構と、四つの回転要素を有するラビニヨ型の第2遊星歯車機構と、複数のクラッチおよびブレーキにより構成された変速用係合装置とを備えている自動変速機が挙げられる。変速機構102で変速された動力は、変速機構102の出力軸102bから動力伝達機構1に入力される。
次に、出力ギヤ105は、変速機構102の出力軸102bの動力を駆動輪104に向けて出力する第1やまば歯車11である。また、出力ギヤ105は、第1軸10である伝動軸105aと一体的に形成されている。伝動軸105aは出力軸102bの外周部とスプライン嵌合しているため、出力軸102bと伝動軸105aと出力ギヤ105とは一体回転する。この場合、伝動軸105aと出力軸102bとのスプライン嵌合部では、伝動軸105aが出力軸102bに対して軸方向に相対移動可能に構成されている。さらに、伝動軸105aは、第1軸受4によってケースなどの固定部材(図示しない)に対して回転自在に支持されている。第1軸受4の内輪は伝動軸105aの外周部に取り付けられ、第1軸受4の外輪はケースに取り付けられている。伝動軸105aの軸方向両端には、二つの軸受4a,4bが取り付けられている。
また、出力ギヤ105は、第2やまば歯車22であるカウンタドリブンギヤ106aと噛み合っている。出力ギヤ105とカウンタドリブンギヤ106aとによって、第1ギヤ対2であるカウンタギヤ対110が構成されている。
カウンタギヤ機構106は、第2やまば歯車22であるカウンタドリブンギヤ106aと、第3やまば歯車23であるドライブピニオンギヤ106bと、第2軸20であるカウンタ軸106cとを備えている。カウンタ軸106cは出力軸102bと平行に配置されている。カウンタ軸106c上に並んで配置されたカウンタドリブンギヤ106aとドライブピニオンギヤ106bとは一体回転する。さらに、カウンタ軸106cは、第2軸受5によってケースなどの固定部材(図示しない)に対して回転自在に支持されている。第2軸受5の内輪はカウンタ軸106cの外周部に取り付けられ、第2軸受5の外輪はケースに取り付けられている。カウンタ軸106cの軸方向両端には、二つの軸受5a,5bが取り付けられている。
ドライブピニオンギヤ106bは、第4やまば歯車34であるデフリングギヤ35と噛み合っている。ドライブピニオンギヤ106bとデフリングギヤ35とによって、第2ギヤ対3であるファイナルギヤ対120が構成されている。
このように、カウンタギヤ機構106は、一つの回転軸(カウンタ軸106c)上に、一体回転する二つのやまば歯車(カウンタドリブンギヤ106a、ドライブピニオンギヤ106b)が設けられたやまば歯車装置である。カウンタドリブンギヤ106aとドライブピニオンギヤ106bとは、それぞれに別軸(伝動軸105a、デフケース31)上に設けられたやまば歯車(出力ギヤ105、デフリングギヤ35)と噛み合っている。
デファレンシャル機構107は、第4やまば歯車34であるデフリングギヤ35と、第3軸30であるデフケース31と、図示しないデフピニオンギヤおよびデフサイドギヤとを備えている。デフケース31は、第3軸受6によってケースなどの固定部材(図示しない)に対して回転自在に支持されている。第3軸受6の内輪はデフケース31のインボード部31a,31bに取り付けられ、第3軸受6の外輪はケースに取り付けられている。デフケース31の軸方向両端、すなわち左右のインボード部31a,31bには、二つの軸受6a,6bが取り付けられている。
デファレンシャル機構107には、左右の車軸103,103を介して左右の駆動輪104,104が連結されている。デフケース31およびデフリングギヤ35の回転中心は、車軸103の回転中心軸線と同一軸線上に設けられている。車軸103は、伝動軸105aおよびカウンタ軸106cと平行に配置されている。
このように構成された駆動装置100では、エンジン101の動力を駆動輪104に伝達する際、カウンタギヤ対110の噛合い部110aで発生するスラスト力を第1軸受4および第2軸受5で受けるとともに、ファイナルギヤ対120の噛合い部120aで発生するスラスト力を第2軸受5および第3軸受6で受ける。そして、第1軸受4は第2軸受5よりも軸方向剛性が小さいため、カウンタギヤ対110の噛合い部110aで生じたスラスト力に対して、出力ギヤ105はカウンタドリブンギヤ106aよりも軸方向に移動しやすい。また、第3軸受6は第2軸受5よりも軸方向剛性が小さいため、ファイナルギヤ対120の噛合い部120aで生じたスラスト力に対して、デフリングギヤ35はドライブピニオンギヤ106bよりも軸方向に移動しやすい。すなわち、カウンタギヤ対110のスラスト力に対するカウンタドリブンギヤ106aの軸方向挙動が小さくなり、かつファイナルギヤ対120のスラスト力に対するドライブピニオンギヤ106bの軸方向挙動が小さくなる。これにより、カウンタ軸106cにおいてカウンタドリブンギヤ106aの軸方向挙動とドライブピニオンギヤ106bの軸方向挙動とが干渉して互いの調芯作用が阻害されることを抑制できる。
[1−3−2.第2車両例]
まず、図5に示す車両Veに搭載された動力伝達機構1について説明する。この動力伝達機構1は、上述した構成とは異なり、第2やまば歯車22と噛み合う第5やまば歯車45を有する第4軸40と、第4軸40を回転自在に支持する第4軸受8と、を備えている。
第4軸40は、第1〜第3軸10,20,30と平行に配置されている。第4軸40と第2軸20との間は、やまば歯車同士の噛み合う第3ギヤ対7により動力伝達可能に連結されている。そして、第4軸40の動力は第4軸40から第2軸20を介して第3軸30に伝達される。
第3ギヤ対7は、駆動歯車の第5やまば歯車45と、被動歯車の第2やまば歯車22とによって構成されている。第3ギヤ対7の噛合い部7aでは、第5やまば歯車45の左歯面45aと第2やまば歯車22の左歯面22aとが噛み合い、かつ第5やまば歯車45の右歯面45bと第2やまば歯車22の右歯面22bとが噛み合う。
第5やまば歯車45は、ねじれ方向が逆向きの左歯面45aと右歯面45bとを有する歯車(ダブルヘリカルギヤ)である。第5やまば歯車45および第4軸40は一体的に形成されている。そのため、第5やまば歯車45は第4軸40と一体回転し、かつ軸方向に一体的に移動する。
第4軸受8は、第5やまば歯車45を支持する転がり軸受である。例えば、第4軸受8は、円筒ころ軸受であり、第4軸40の軸方向一方端に取り付けられている。第4軸40および第5やまば歯車45は、一つの円筒ころ軸受によって支持されている。
このように構成された動力伝達機構1では、第4軸40の動力を第3軸30に伝達する際、第3ギヤ対7の噛合い部7aで発生するスラスト力を第4軸受8および第2軸受5で受ける。上述したように円筒ころ軸受はテーパころ軸受よりも軸方向剛性が小さいため、第4軸受8は第2軸受5よりも軸方向剛性が小さい。そのため、第3ギヤ対7の噛合い部7aで生じたスラスト力に対して、第5やまば歯車45は第2やまば歯車22よりも軸方向に移動しやすい。
例えば、第3ギヤ対7の噛合い部7aでやまば歯車の片歯面当たりが生じた場合、第4軸受8は第2軸受5よりも軸方向剛性が小さいため、噛合い部7aで発生したスラスト力によって主に第4軸40側の第5やまば歯車45が軸方向に移動し、第2軸20側の第2やまば歯車22の軸方向挙動は小さくなる。このように、噛合い部7aの誤差成分によって第2やまば歯車22が軸方向に移動しなくても、第5やまば歯車45の軸方向挙動によって第3ギヤ対7の調芯作用が発揮される。
次に、図5に示す車両Veの駆動装置100について説明する。この駆動装置100は、走行用動力源としてのモータ108と、第4軸40を含む動力伝達機構1と、を備えたハイブリッド車両である。モータ108は、電動機および発電機として機能する周知のモータ・ジェネレータである。モータ108の出力軸であるモータ軸108aは、カウンタ軸106cと平行に配置され、リダクションギヤ109と一体回転する。
リダクションギヤ109は、モータ軸108aの動力を駆動輪104に向けて出力する第5やまば歯車45である。また、リダクションギヤ109は、第4軸40である支持軸109aと一体的に形成されている。支持軸109aはモータ軸108aの外周部とスプライン嵌合しているため、モータ軸108aと支持軸109aとリダクションギヤ109とは一体回転する。この場合、支持軸109aとモータ軸108aとのスプライン嵌合部では、支持軸109aがモータ軸108aに対して軸方向に相対移動可能に構成されている。支持軸109aは、第4軸受8によってケースなどの固定部材(図示せず)に対して回転自在に支持されている。第4軸受8の内輪は支持軸109aの外周部に取り付けられ、第4軸受8の外輪はケースに取り付けられている。図5に示す例では、支持軸109aが一つの第4軸受8によって片持ち状態で支持されている。
また、リダクションギヤ109は、第2やまば歯車22であるカウンタドリブンギヤ106aと噛み合っている。リダクションギヤ109とカウンタドリブンギヤ106aとによって、第3ギヤ対7であるリダクションギヤ対130が構成されている。
そして、モータ108の動力を駆動輪104に伝達する際、リダクションギヤ対130の噛合い部130aで発生するスラスト力を第4軸受8および第2軸受5で受ける。
さらに、第4軸受8の軸方向剛性は第2軸受5の軸方向剛性よりも小さいため、リダクションギヤ対130の噛合い部130aで生じたスラスト力に対して、リダクションギヤ109はカウンタドリブンギヤ106aよりも軸方向に移動しやすい。すなわち、リダクションギヤ対130のスラスト力に対するカウンタドリブンギヤ106aの軸方向挙動が小さくなる。これにより、カウンタ軸106cにおいてカウンタドリブンギヤ106aの軸方向挙動とドライブピニオンギヤ106bの軸方向挙動とが干渉して互いに調芯作用を阻害することが抑制される。
以上説明した通り、第1実施形態によれば、第2軸受5は第1軸受4および第3軸受6よりも軸方向剛性が大きいため、第2軸20において第1ギヤ対2と第2ギヤ対3との調芯作用が互いに阻害されることを抑制できる。これにより、複数のやまば歯車と噛み合う歯車軸においてやまば歯車の軸方向挙動が干渉することを抑制でき、互いの調芯作用を確保することができる。そのため、やまば歯車の調芯作用が適切に働き、噛合い部での騒音および振動の発生を抑制できる。
また、第4軸40を備える動力伝達機構1の場合も、第2軸受5は第4軸受8よりも軸方向剛性が大きいため、第2軸20において第1ギヤ対2と第2ギヤ対3と第3ギヤ対7とが互いに調芯作用を阻害することを抑制できる。そのため、一つのやまば歯車に複数のやまば歯車が噛み合う場合も、やまば歯車の調芯作用が適切に働くため、騒音と振動の発生を抑制することができる。
なお、本発明は、上述した第1実施形態の構成に限定されず、本発明の目的を逸脱しない範囲で適宜変更が可能である。
例えば、第2軸受5は、第1軸受4および第3軸受6のうちの少なくとも一方よりも軸方向剛性が大きく構成されていればよい。
一例として、第2軸受5は、第1軸受4よりも軸方向剛性が大きく、かつ第3軸受6よりも軸方向剛性が小さくまたは等しくなるように構成されてもよい。この場合、軸方向剛性は「第3軸受6≧第2軸受5>第1軸受4」の順に小さくなる。これにより、第1ギヤ対2の調芯作用は、第2やまば歯車22の軸方向挙動ではなく、第1やまば歯車11の軸方向挙動によって確保される。すなわち、第1ギヤ対2の調芯作用を発揮するために第2やまば歯車22が軸方向に移動することを抑制できる。そのため、第2ギヤ対3の調芯作用を発揮するために第3やまば歯車23が軸方向に移動しても、第3やまば歯車23の軸方向挙動が第2やまば歯車22の軸方向挙動に干渉されることは抑制される。このように、第2軸20において第1ギヤ対2の調芯作用と第2ギヤ対3の調芯作用とが互いに阻害されることを抑制できる。
別の例として、第2軸受5は、第3軸受6よりも軸方向剛性が大きく、かつ第1軸受4よりも軸方向剛性が小さくまたは等しくなるように構成されてもよい。この場合、軸方向剛性は「第1軸受4≧第2軸受5>第3軸受6」の順に小さくなる。これにより、第2ギヤ対3の調芯作用は、第3やまば歯車23の軸方向挙動ではなく、第4やまば歯車34の軸方向挙動によって確保される。すなわち、第2ギヤ対3の調芯作用を発揮するために第3やまば歯車23が軸方向に移動することを抑制できる。そのため、第1ギヤ対2の調芯作用を発揮するために第2やまば歯車22が軸方向に移動しても、第2やまば歯車22の軸方向挙動が第3やまば歯車23の軸方向挙動に干渉されることは抑制される。このように、第2軸20において第1ギヤ対2の調芯作用と第2ギヤ対3の調芯作用とが互いに阻害されることを抑制できる。
また、第2軸受5は、第1軸受4および第3軸受6のうちの少なくとも一方と種類が異なる転がり軸受により構成されていればよい。例えば、上述した軸方向剛性が「第3軸受6≧第2軸受5>第1軸受4」の順に小さくなる場合の一例として、第2軸受5がテーパころ軸受である場合、第1軸受4は円筒ころ軸受、第3軸受6はテーパころ軸受であってもよい。あるいは、上述した軸方向剛性は「第1軸受4≧第2軸受5>第3軸受6」の順に小さくなる場合の一例として、第2軸受5がテーパころ軸受である場合、第1軸受4はテーパころ軸受、第3軸受6は円筒ころ軸受であってもよい。
加えて、第1〜第3軸受4,5,6の種類は、上述した円筒ころ軸受およびテーパころ軸受の二種類の組み合わせに限定されない。例えば、上述した図3に示す四種類の転がり軸受を適宜組み合わせることが可能である。要するに、第1〜第3軸受4,5,6について、ころ軸受と玉軸受との組み合わせが可能である。第2軸受5がテーパころ軸受である場合、第1軸受4および第3軸受6は、円筒ころ軸受、深溝玉軸受、アンギュラ玉軸受のうちのいずれか一つにより構成することができる。そのため、第1軸受4は深溝玉軸受、第2軸受5はテーパころ軸受、第3軸受6は深溝玉軸受であってもよい。また、第2軸受5は、第4軸受8とは種類が異なる軸受により構成されていればよい。
さらに、第1〜第3軸受4,5,6のそれぞれの個数は二つに限定されず、一つであってもよい。つまり、第1やまば歯車11は一つの軸受からなる第1軸受4によって片持ち状態で支持されてもよい。同様に、第2やまば歯車22および第3やまば歯車23は一つの軸受からなる第2軸受5によって片持ち状態で支持されてもよく、第4やまば歯車34は一つの軸受からなる第3軸受6によって片持ち状態で支持されてもよい。そのため、第1〜第3軸受4,5,6について、それぞれに軸受が一つの場合と二つの場合とを組み合わせることが可能である。一例として、第1軸受4は一つの軸受4aにより構成され、第2軸受5は二つの軸受5a,5bにより構成され、第3軸受6は二つの軸受6a,6bにより構成される。他の例として、全ての軸受4,5,6がそれぞれ一つの軸受により構成されてもよい。要するに、第1軸受4と記載する場合には、一つの軸受4aのみにより構成される場合と、一つの軸受4bのみにより構成される場合と、二つの軸受4a,4bにより構成される場合とが含まれる。これと同様のことが、第2軸受5および第3軸受6についても言える。
また、第1〜第4軸受4,5,6,8は、単列軸受であってもよく、あるいは複列軸受であってもよい。
第1〜第3軸10,20,30と第1〜第4やまば歯車11,22,23,34とは、一つの部材であるか、または別体であるかは特に限定されない。例えば、別体の場合には、やまば歯車および回転軸が一体回転可能かつ軸方向に相対移動不能に一体化されていればよい。つまり、やまば歯車と回転軸とが一体的に形成されると記載する場合、やまば歯車および回転軸は、一体回転し、かつ軸方向に一体的に移動することを意味する。
また、上述した図4、図5に示す車両例は一例であり、適用可能な車両はこれに限定されない。例えば、変速機構102は、自動変速機に限らず、ベルト式無段変速機(CVT)などであってもよい。また、動力伝達機構1を適用可能なハイブリッド車両は、上述した1モータ式ハイブリッド車両に限らず、2モータ式ハイブリッド車両を含む。図5に示す動力伝達機構1が2モータ式ハイブリッド車両に搭載される場合、駆動装置100は図示しない第1モータをさらに備え、モータ108が第2モータとして機能する。この場合、第1モータから出力された動力は出力ギヤ105を介して駆動輪104に伝達される。
[2.第2実施形態]
図1〜図2、図4〜図6を参照して、第2実施形態の動力伝達機構について説明する。図6は、転がり軸受の軸方向内部すきまと転がり軸受の種類との関係を説明するための図である。なお、第2実施形態の説明では、第1実施形態と同様の構成については説明を省略し、その参照符号を引用する。
[2−1.第2実施形態の基本構成]
まず、第2実施形態の動力伝達機構1について、図1、図2を参照して説明する。第2実施形態の動力伝達機構1では、第1実施形態とは異なり、第1軸受4および第3軸受6は、玉軸受により構成されている。
第1軸受4の各軸受4a,4bは、深溝玉軸受により構成されている。第1軸10および第1やまば歯車11は、二つの深溝玉軸受からなる軸受対(第1軸受対)によって支持されている。また、第3軸受6の各軸受6a,6bは、深溝玉軸受により構成されている。第3軸30および第4やまば歯車34は、二つの深溝玉軸受からなる軸受対(第3軸受対)によって支持されている。
第2実施形態では、転がり軸受の軸方向内部すきまについて、複数のやまば歯車を有する回転軸(中間軸)を支持する軸受と、単数のやまば歯車を有する回転軸を支持する軸受との間に差が設けられている。
ここで、転がり軸受の軸方向内部すきまとは、内輪および外輪のうち一方の軌道輪を固定して他方の軌道輪を軸方向に移動させた場合の移動量である。すなわち、転がり軸受の軸方向内部すきまは、軸受の軸方向変位量(移動可能量)を表すものである。
[2−2.軸方向内部すきま]
次に、図6を参照して、転がり軸受の軸方向内部すきまと転がり軸受の種類との関係について説明する。なお、図6には、転がり軸受として、円筒ころ軸受、深溝玉軸受、テーパころ軸受、アンギュラ玉軸受の四種類を例示する。また、以下の説明では、「転がり軸受の軸方向内部すきま」を単に「軸方向内部すきま」と記載する。
図6に示すように、転がり軸受では、円筒ころ軸受、深溝玉軸受、テーパころ軸受およびアンギュラ玉軸受の順に軸方向内部すきまが小さくなる。テーパころ軸受およびアンギュラ玉軸受は、予圧が付与されている軸受であるため、軸方向内部すきまが略ない状態となっている。深溝玉軸受は、接触角度を有する軸受であるが、テーパころ軸受およびアンギュラ玉軸受に比べて軸方向内部すきまは大きく形成されている。そして、円筒ころ軸受は、相対的に軸方向内部すきまが最も大きい軸受となる。このように、転がり軸受の種類によって軸方向内部すきまが異なる。
なお、図6に示す四種類の転がり軸受における軸方向内部すきまの大小関係は、一例であり、必ずしもこの限りではない。ただし、深溝玉軸受とテーパころ軸受との関係については、図6に示す軸方向内部すきまの大小関係が成立する。
上述したように深溝玉軸受はテーパころ軸受よりも軸方向内部すきまが大きいため、第2軸受5は、第1軸受4および第3軸受6よりも軸方向内部すきまが小さく形成されている。また、動力伝達機構1では、やまば歯車および回転軸は一体的に形成されているので、軸受の軸方向内部すきまは、噛合い部のスラスト力(推力)が作用した際のやまば歯車の軸方向挙動のしやすさを表すことになる。
例えば、第1ギヤ対2の噛合い部2aでやまば歯車の片歯面当たりが生じた場合、第1軸受4は第2軸受5よりも軸方向内部すきまが大きいため、噛合い部2aで発生したスラスト力によって主に第1軸10側の第1やまば歯車11が軸方向に移動し、第2軸20側の第2やまば歯車22の軸方向挙動は小さくなる。このように、噛合い部2aの誤差成分によって第2やまば歯車22が積極的に軸方向に移動しなくても、第1やまば歯車11の軸方向挙動によって第1ギヤ対2の調芯作用が発揮される。
また、第2ギヤ対3の噛合い部3aでやまば歯車の片歯面当たりが生じた場合、第3軸受6は第2軸受5よりも軸方向内部すきまが大きいため、噛合い部3aで発生したスラスト力によって主に第3軸30側の第4やまば歯車34が軸方向に移動し、第2軸20側の第3やまば歯車23の軸方向挙動は小さくなる。このように、噛合い部3aの誤差成分によって第3やまば歯車23が積極的に軸方向に移動しなくても、第4やまば歯車34の軸方向挙動によって第2ギヤ対3の調芯作用が発揮される。
[2−3.第2実施形態の車両例]
また、第2実施形態の動力伝達機構1は、図4〜図5に示す車両Veに搭載することができる。
図4に示す第1車両例では、第1軸受4は第2軸受5よりも軸方向内部すきまが大きいため、カウンタギヤ対110の噛合い部110aで生じたスラスト力に対して、出力ギヤ105はカウンタドリブンギヤ106aよりも軸方向に移動しやすい。さらに、第3軸受6は第2軸受5よりも軸方向内部すきまが大きいため、ファイナルギヤ対120の噛合い部120aで生じたスラスト力に対して、デフリングギヤ35はドライブピニオンギヤ106bよりも軸方向に移動しやすい。
図5に示す第2車両例の動力伝達機構1では、第4軸受8は、深溝玉軸受により構成されている。第4軸40および第5やまば歯車45は、一つの深溝玉軸受によって支持されている。また、深溝玉軸受はテーパころ軸受よりも軸方向内部すきまが大きいため、第4軸受8は第2軸受5よりも軸方向内部すきまが大きく形成されている。そのため、第3ギヤ対7の噛合い部7aで生じたスラスト力に対して、第5やまば歯車45は第2やまば歯車22よりも軸方向に移動しやすい。
図5に示す第2車両例の駆動装置100では、第4軸受8は第2軸受5よりも軸方向内部すきまが大きいため、リダクションギヤ対130の噛合い部130aで生じたスラスト力に対して、リダクションギヤ109はカウンタドリブンギヤ106aよりも軸方向に移動しやすい。
以上説明した通り、第2実施形態によれば、第2軸受5は第1軸受4および第3軸受6よりも軸方向内部すきまが小さいため、第2軸20において第1ギヤ対2と第2ギヤ対3との調芯作用が互いに阻害されることを抑制できる。これにより、複数のやまば歯車と噛み合う歯車軸においてやまば歯車の軸方向挙動が干渉することを抑制でき、互いの調芯作用を確保することができる。そのため、やまば歯車の調芯作用が適切に働き、噛合い部の騒音および振動の発生を抑制できる。
なお、本発明は、上述した第2実施形態の構成に限定されず、本発明の目的を逸脱しない範囲で適宜変更が可能である。
例えば、第2軸受5は、第1軸受4および第3軸受6のうちの少なくとも一方よりも軸方向内部すきまが小さく形成されていればよい。
一例として、第2軸受5は、第1軸受4よりも軸方向内部すきまが小さく、かつ第3軸受6よりも軸方向内部すきまが大きくまたは等しくなるように構成されてもよい。この場合、軸方向内部すきまは「第1軸受4>第2軸受5≧第3軸受6」の順に小さくなる。これにより、第1ギヤ対2の調芯作用は、第2やまば歯車22の軸方向挙動ではなく、第1やまば歯車11の軸方向挙動によって確保される。すなわち、第1ギヤ対2の調芯作用を発揮するために第2やまば歯車22が軸方向に移動することを抑制できる。そのため、第2ギヤ対3の調芯作用を発揮するために第3やまば歯車23が軸方向に移動しても、第3やまば歯車23の軸方向挙動が第2やまば歯車22の軸方向挙動に干渉されることは抑制される。このように、第2軸20において第1ギヤ対2の調芯作用と第2ギヤ対3の調芯作用とが互いに阻害されることを抑制できる。
他の例として、第2軸受5は、第3軸受6よりも軸方向内部すきまが小さく、かつ第1軸受4よりも軸方向内部すきまが大きくまたは等しくなるように構成されてもよい。この場合、軸方向内部すきまは「第3軸受6>第2軸受5≧第1軸受4」の順に小さくなる。これにより、第2ギヤ対3の調芯作用は、第3やまば歯車23の軸方向挙動ではなく、第4やまば歯車34の軸方向挙動によって確保される。すなわち、第2ギヤ対3の調芯作用を発揮するために第3やまば歯車23が軸方向に移動することを抑制できる。そのため、第1ギヤ対2の調芯作用を発揮するために第2やまば歯車22が軸方向に移動しても、第2やまば歯車22の軸方向挙動が第3やまば歯車23の軸方向挙動に干渉されることは抑制される。このように、第2軸20において第1ギヤ対2の調芯作用と第2ギヤ対3の調芯作用とが互いに阻害されることを抑制できる。
また、第2軸受5は、第1軸受4および第3軸受6のうちの少なくとも一方と種類が異なる転がり軸受により構成されていればよい。例えば、上述した軸方向内部すきまが「第1軸受4>第2軸受5≧第3軸受6」の順に小さくなる場合の一例として、第2軸受5がテーパころ軸受である場合、第1軸受4は深溝玉軸受、第3軸受6はテーパころ軸受であってもよい。あるいは、上述した軸方向内部すきまが「第3軸受6>第2軸受5≧第1軸受4」の順に小さくなる場合の一例として、第2軸受5がテーパころ軸受である場合、第1軸受4はテーパころ軸受、第3軸受6は深溝玉軸受であってもよい。
加えて、第1〜第3軸受4,5,6の種類は、上述した深溝玉軸受およびテーパころ軸受の二種類の組み合わせに限定されない。例えば、上述した図6に示す四種類の転がり軸受を適宜組み合わせることが可能である。第2軸受5は、テーパころ軸受またはアンギュラ玉軸受により構成されてもよい。この場合、第1軸受4および第3軸受6は、円筒ころ軸受または深溝玉軸受により構成することができる。そのため、第2実施形態では、第1軸受4は円筒ころ軸受、第2軸受5はテーパころ軸受、第3軸受6は円筒ころ軸受であってもよい。
[3.第3実施形態]
図1〜図2、図4〜図5、図7〜図9を参照して、第3実施形態の動力伝達機構について説明する。図7は、深溝玉軸受における軌道面の曲率半径および玉の直径を説明するための図である。図8は、玉の直径に対する軌道面の曲率半径の割合と軸方向剛性との関係を説明するための図である。図9は、玉の直径に対する軌道面の曲率半径の割合と軸方向内部すきまとの関係を説明するための図である。なお、第3実施形態の説明では、第2実施形態と同様の構成については説明を省略し、その参照符号を引用する。
[3−1.基本構成]
まず、第3実施形態の動力伝達機構1について、図1、図2を参照して説明する。第3実施形態の動力伝達機構1では、第2実施形態とは異なり、第1〜第3軸受4,5,6は、全て玉軸受により構成されている。
第2軸受5の各軸受5a,5bは、深溝玉軸受により構成されている。第2軸20と第2やまば歯車22と第3やまば歯車23とは、二つの深溝玉軸受からなる軸受対である第2軸受5(第2軸受対)によって支持されている。
[3−2.玉径に対する軌道面半径の割合と軸方向変位量との関係]
図7に示すように、第1〜第3軸受4,5,6は、転動体である玉91と、玉91が転動する軌道面92aを有する軌道輪92と、を備えている深溝玉軸受9により構成されている。なお、図7に示す軌道輪92は深溝玉軸受9の内輪であり、深溝玉軸受9の外輪は図7には示されていない。
深溝玉軸受9では、玉91の直径(以下「玉径」という)Rが軌道面92aの曲率半径(以下「軌道面半径」という)R以上の大きさに形成されている。また、軌道面半径Rを玉径Rで割った値は0.5以上となる。すなわち、玉径Rに対する軌道面半径Rの割合Xは、百分率で表すと50%以上となる。なお、この説明では、その割合Xを百分率で表現する。さらに、以下の説明では、「玉径Rに対する軌道面半径Rの割合X」を単に「割合X」と記載して説明する。
また、軌道面半径Rは、軌道面92aの軸方向両端側のほうが軸方向中心側よりも大きくなるため、軌道面92aのうちの軸方向両端側の曲率半径において最大値となる。すなわち、軌道面半径Rの最大値を玉径Rで割った場合に求まる割合Xは、その深溝玉軸受9における割合Xの最小値である。
第3実施形態では、第1〜第3軸受4,5,6における割合Xの最小値について、複数のやまば歯車を有する回転軸(中間軸)を支持する軸受と、単数のやまば歯車を有する回転軸を支持する軸受との間に差が設けられている。
ここで、深溝玉軸受9における玉径Rに対する軌道面半径Rの割合Xの最小値とは、やまば歯車同士の噛合い部で生じた軸方向の力(スラスト力)に対する軸受の軸方向変位量(移動可能量)を表すものである。その割合Xの最小値が大きいと、深溝玉軸受9の軸方向変位量は大きくなる。反対に、その割合Xの最小値が小さいと、深溝玉軸受9の軸方向変位量は小さくなる。
[3−2−1.玉径に対する軌道面半径の割合と軸方向剛性との関係]
図8を参照して、深溝玉軸受9における割合Xと軸方向剛性との関係について説明する。なお、図8には、軸方向剛性の違いを説明するために、割合X>52%の場合、割合X=52%の場合、割合X=50%の場合を例示する。また、図8に示す割合Xは、割合Xの最小値である。
図8に示すように、深溝玉軸受9の軸方向剛性は、割合Xが52%よりも大きい場合、割合Xが52%の場合、割合Xが50%の場合の順に大きくなる。このように、深溝玉軸受9では、割合Xが小さくなると軸方向剛性は大きくなることがわかる。すなわち、割合Xは、噛合い部で生じたスラスト力に対する深溝玉軸受9の軸方向剛性の大きさを表す。つまり、深溝玉軸受9同士であっても、割合Xの大きさが異なることによって軸方向剛性は異なる大きさとなる。
[3−2−2.玉径に対する軌道面半径の割合と軸方向内部すきまとの関係]
図9を参照して、深溝玉軸受9における割合Xと軸方向内部すきまとの関係について説明する。なお、図9には、玉軸受の軸方向内部すきまの違いを説明するために、割合X>52%の場合、割合X=52%の場合、割合X=50%の場合を例示する。また、図9に示す割合Xは、割合Xの最小値である。
図9に示すように、深溝玉軸受9の軸方向内部すきまは、割合Xが52%よりも大きい場合、割合Xが52%の場合、割合Xが50%の場合の順に小さくなる。このように、深溝玉軸受9では、割合Xが小さくなると軸方向内部すきまは小さくなることがわかる。すなわち、割合Xは、噛合い部で生じたスラスト力に対する深溝玉軸受9の軸方向変位量(移動可能量)を表す。つまり、深溝玉軸受9同士であっても、割合Xの大きさが異なることによって軸方向内部すきまは異なる大きさとなる。
第3実施形態の動力伝達機構1では、第2軸受5は第1軸受4および第3軸受6よりも、深溝玉軸受9における割合Xの最小値が小さく形成されている。例えば、第1軸受4の軸受4a,4bは、割合Xが52%以上となるように構成されている。第2軸受5の軸受5a,5bは、割合Xが52%未満となるように構成されている。第3軸受6の軸受6a,6bは、割合Xが52%以上となるように構成されている。これにより、第2軸受5は、第1軸受4および第3軸受6よりも軸方向剛性が大きくなる(軸方向変位量が小さくなる)。あるいは、第2軸受5は、第1軸受4および第3軸受6よりも軸方向内部すきまが小さくなる(軸方向変位量が小さくなる)。
また、動力伝達機構1では、やまば歯車および回転軸が一体的に形成されているため、深溝玉軸受9における割合Xの最小値が小さいということは、やまば歯車同士の噛合い部で生じたスラスト力に対して、やまば歯車が軸方向に移動しにくいことを表す。
例えば、第1ギヤ対2の噛合い部2aでやまば歯車の片歯面当たりが生じた場合、第1軸受4は第2軸受5よりも割合Xの最小値が大きいため、噛合い部2aで発生したスラスト力によって主に第1軸10側の第1やまば歯車11が軸方向に移動し、第2軸20側の第2やまば歯車22の軸方向挙動は小さくなる。これにより、噛合い部2aの誤差成分によって第2やまば歯車22が積極的に軸方向に移動しなくても、相対的に割合Xの最小値が小さい第1軸受4側の第1やまば歯車11の軸方向挙動によって第1ギヤ対2の調芯作用は発揮される。
また、第2ギヤ対3の噛合い部3aでやまば歯車の片歯面当たりが生じた場合、第3軸受6は第2軸受5よりも割合Xの最小値が大きいため、噛合い部3aで発生したスラスト力によって主に第3軸30側の第4やまば歯車34が軸方向に移動し、第2軸20側の第3やまば歯車23の軸方向挙動は小さくなる。これにより、噛合い部3aの誤差成分によって第3やまば歯車23が積極的に軸方向に移動しなくても、相対的に割合Xの最小値が小さい第3軸受6側の第4やまば歯車34の軸方向挙動によって第2ギヤ対3の調芯作用が発揮される。
[3−3.第3実施形態の車両例]
また、第3実施形態の動力伝達機構は、図4〜図5に示す車両Veに搭載することができる。
図4に示す第1車両例では、第1軸受4は第2軸受5よりも割合Xの最小値が大きいため、カウンタギヤ対110の噛合い部110aで生じたスラスト力に対して、出力ギヤ105はカウンタドリブンギヤ106aよりも軸方向に移動しやすい。さらに、第3軸受6は第2軸受5よりも割合Xの最小値が大きいため、ファイナルギヤ対120の噛合い部120aで生じたスラスト力に対して、デフリングギヤ35はドライブピニオンギヤ106bよりも軸方向に移動しやすい。
図5に示す第2車両例の動力伝達機構1では、第4軸受8は、深溝玉軸受であり、第2軸受5よりも割合Xの最小値が大きく形成されている。そのため、第3ギヤ対7の噛合い部7aで生じたスラスト力に対して、第5やまば歯車45は第2やまば歯車22よりも軸方向に移動しやすい。
図5に示す第2車両例の駆動装置100では、第4軸受8は第2軸受5よりも割合Xの最小値が大きいため、リダクションギヤ対130の噛合い部130aで生じたスラスト力に対して、リダクションギヤ109はカウンタドリブンギヤ106aよりも軸方向に移動しやすい。
以上説明した通り、第3実施形態によれば、第2軸受5は第1軸受4および第3軸受6よりも割合Xの最小値が小さいため、第2軸20において第1ギヤ対2と第2ギヤ対3との調芯作用が互いに阻害されることを抑制できる。これにより、やまば歯車の軸方向挙動が干渉することを抑制でき、互いの調芯作用を確保することができる。そのため、やまば歯車の調芯作用が適切に働くため、騒音と振動の発生を抑制することができる。
なお、本発明は、上述した第3実施形態に限定されず、本発明の目的を逸脱しない範囲で適宜変更が可能である。
例えば、深溝玉軸受9における割合Xは、上述した値に限定されない。要するに、第2軸受5における割合Xの最小値が、相対的に第1軸受4および第3軸受6よりも小さければよい。
また、第2軸受5は、第1軸受4および第3軸受6のうちの少なくとも一方よりも割合Xの最小値が小さければよい。この場合も、第2軸20において第1ギヤ対2の調芯作用と第2ギヤ対3の調芯作用とが互いに阻害されることを抑制できる。
一例として、第2軸受5は、第1軸受4よりも割合Xの最小値が小さく、かつ第3軸受6よりも割合Xの最小値が大きくまたは等しくなるように形成されてもよい。この場合、割合Xの最小値は「第1軸受4>第2軸受5≧第3軸受6」の順に小さくなる。これにより、第1ギヤ対2の調芯作用は、第2やまば歯車22の軸方向挙動ではなく、第1やまば歯車11の軸方向挙動によって確保される。
他の例として、第2軸受5は、第3軸受6よりも割合Xの最小値が小さく、かつ第1軸受4よりも割合Xの最小値が大きくまたは等しくなるように形成されてもよい。この場合、割合Xの最小値は「第3軸受6>第2軸受5≧第1軸受4」の順に小さくなる。これにより、第2ギヤ対3の調芯作用は、第3やまば歯車23の軸方向挙動ではなく、第4やまば歯車34の軸方向挙動によって確保される。
1 動力伝達機構
2 第1ギヤ対
2a 噛合い部
3 第2ギヤ対
3a 噛合い部
4 第1軸受
5 第2軸受
6 第3軸受
7 第3ギヤ対
7a 噛合い部
8 第4軸受
10 第1軸
11 第1やまば歯車
20 第2軸
22 第2やまば歯車
23 第3やまば歯車
30 第3軸
31 デフケース
35 デフリングギヤ
34 第4やまば歯車
40 第4軸
45 第5やまば歯車
105 出力ギヤ
105a 伝動軸
106 カウンタギヤ機構
106a カウンタドリブンギヤ
106b ドライブピニオンギヤ
106c カウンタ軸
107 デファレンシャル機構
108 モータ
108a モータ軸
109 リダクションギヤ
109a 支持軸
110 カウンタギヤ対
110a 噛合い部
120 ファイナルギヤ対
120a 噛合い部
130 リダクションギヤ対
130a 噛合い部

Claims (12)

  1. 第1やまば歯車を有する第1軸と、
    前記第1やまば歯車と噛み合う第2やまば歯車、および前記第2やまば歯車と軸方向に並んで設けられた第3やまば歯車を有する第2軸と、
    前記第3やまば歯車と噛み合う第4やまば歯車を有する第3軸と、
    前記第1軸を回転自在に支持する転がり軸受である第1軸受と、
    前記第2軸を回転自在に支持する転がり軸受である第2軸受と、
    前記第3軸を回転自在に支持する転がり軸受である第3軸受と、を備えている動力伝達機構において、
    前記第1やまば歯車と前記第1軸とは、一体回転し、かつ軸方向に一体的に移動するように構成されており、
    前記第2やまば歯車と前記第3やまば歯車と前記第2軸とは、一体回転し、かつ軸方向に一体的に移動するように構成されており、
    前記第4やまば歯車と前記第3軸とは、一体回転し、かつ軸方向に一体的に移動するように構成されており、
    前記第1やまば歯車と前記第2やまば歯車との噛合い部で生じた軸方向の力に対する前記第1軸受の軸方向変位量および前記第2軸受の軸方向変位量と、前記第3やまば歯車と前記第4やまば歯車との噛合い部で生じた軸方向の力に対する前記第2軸受の軸方向変位量および前記第3軸受の軸方向変位量との関係について、前記第2軸受は、前記第1軸受および前記第3軸受のうちの少なくとも一方よりも前記軸方向変位量が小さくなるように構成されている
    ことを特徴とする動力伝達機構。
  2. 前記第2軸受の軸方向剛性は、前記第1軸受の軸方向剛性および前記第3軸受の軸方向剛性のうちの少なくとも一方よりも大きい
    ことを特徴とする請求項1に記載の動力伝達機構。
  3. 前記第1軸受および前記第3軸受のうちの少なくとも一方は、前記第2軸受よりも、内輪および外輪のうちの一方の軌道輪を固定して他方の軌道輪を軸方向に移動させた場合の移動量としての軸方向内部すきまが大きく形成されている
    ことを特徴とする請求項1に記載の動力伝達機構。
  4. 前記第2軸受は、軸方向の予圧が付与されている軸受であり、かつ前記第1軸受および前記第3軸受のうちの少なくとも一方とは種類が異なる軸受である
    ことを特徴とする請求項1から3のいずれか1項に記載の動力伝達機構。
  5. 前記第1軸受は、円筒ころ軸受または深溝玉軸受により構成され、
    前記第2軸受は、テーパころ軸受により構成され、
    前記第3軸受は、円筒ころ軸受または深溝玉軸受により構成されている
    ことを特徴とする請求項1から4のいずれか1項に記載の動力伝達機構。
  6. 前記第1軸受、前記第2軸受、および前記第3軸受は、
    軌道面を有する軌道輪と、
    前記軌道面上を転動する玉と、を備える玉軸受であり、
    前記第2軸受は、前記第1軸受および前記第3軸受のうちの少なくとも一方よりも、前記玉の直径に対する前記軌道面の曲率半径の割合の最小値が小さく形成されている
    ことを特徴とする請求項2または3に記載の動力伝達機構。
  7. 前記第1軸受は、深溝玉軸受により構成され、
    前記第2軸受は、深溝玉軸受により構成され、
    前記第3軸受は、深溝玉軸受により構成されている
    ことを特徴とする請求項6に記載の動力伝達機構。
  8. 前記第2やまば歯車と噛み合う第5やまば歯車を有する第4軸と、
    前記第4軸を回転自在に支持する転がり軸受である第4軸受と、をさらに備え、
    前記第2やまば歯車と前記第5やまば歯車との噛合い部で生じた軸方向の力に対する前記第1軸受の軸方向変位量および前記第2軸受の軸方向変位量の関係について、前記第2軸受は、前記第4軸受よりも前記軸方向変位量が小さくなるように構成されている
    ことを特徴とする請求項1に記載の動力伝達機構。
  9. 前記第2軸受の軸方向剛性は、前記第4軸受の軸方向剛性よりも大きく、かつ前記第1軸受の軸方向剛性および前記第3軸受の軸方向剛性のうちの少なくとも一方よりも大きい
    ことを特徴とする請求項8に記載の動力伝達機構。
  10. 前記第2やまば歯車と噛み合う第5やまば歯車を有する第4軸と、
    前記第4軸を回転自在に支持する転がり軸受である第4軸受と、をさらに備え、
    前記第4軸受は、前記第2軸受よりも前記軸方向内部すきまが大きく形成されている
    ことを特徴とする請求項3に記載の動力伝達機構。
  11. 前記第2軸受は、前記第4軸受とは種類が異なる軸受であり、かつ前記第1軸受および前記第3軸受のうちの少なくとも一方とは種類が異なる軸受である
    ことを特徴とする請求項8から10のいずれか1項に記載の動力伝達機構。
  12. 前記第1軸受、前記第2軸受、前記第3軸受、および前記第4軸受は、
    軌道面を有する軌道輪と、
    前記軌道面上を転動する玉と、を備える玉軸受であり、
    前記第2軸受は、前記玉の直径に対する前記軌道面の曲率半径の割合の最小値が前記第4軸受よりも小さく、かつ前記第1軸受および前記第3軸受のうちの少なくとも一方よりも前記最小値が小さく形成されている
    ことを特徴とする請求項9または10に記載の動力伝達機構。
JP2016231792A 2016-11-29 2016-11-29 動力伝達機構 Active JP6421812B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016231792A JP6421812B2 (ja) 2016-11-29 2016-11-29 動力伝達機構
MYPI2017703876A MY193384A (en) 2016-11-29 2017-10-13 Power transmission mechanism
TW106134994A TWI666139B (zh) 2016-11-29 2017-10-13 動力傳送機構
US15/783,571 US10683910B2 (en) 2016-11-29 2017-10-13 Power transmission mechanism
KR1020170134360A KR101968005B1 (ko) 2016-11-29 2017-10-17 동력 전달 기구
EP17196810.0A EP3327313B1 (en) 2016-11-29 2017-10-17 Power transmission mechanism
CN201711169202.9A CN108119610B (zh) 2016-11-29 2017-11-22 传动机构
RU2017140785A RU2666482C1 (ru) 2016-11-29 2017-11-23 Механизм передачи мощности
BR102017025535-2A BR102017025535A2 (pt) 2016-11-29 2017-11-28 mecanismo de transmissão de potência

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231792A JP6421812B2 (ja) 2016-11-29 2016-11-29 動力伝達機構

Publications (2)

Publication Number Publication Date
JP2018087619A JP2018087619A (ja) 2018-06-07
JP6421812B2 true JP6421812B2 (ja) 2018-11-14

Family

ID=60119944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231792A Active JP6421812B2 (ja) 2016-11-29 2016-11-29 動力伝達機構

Country Status (9)

Country Link
US (1) US10683910B2 (ja)
EP (1) EP3327313B1 (ja)
JP (1) JP6421812B2 (ja)
KR (1) KR101968005B1 (ja)
CN (1) CN108119610B (ja)
BR (1) BR102017025535A2 (ja)
MY (1) MY193384A (ja)
RU (1) RU2666482C1 (ja)
TW (1) TWI666139B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798469B2 (ja) 2017-10-30 2020-12-09 トヨタ自動車株式会社 動力伝達機構
US11787283B2 (en) * 2020-03-31 2023-10-17 Aisin Corporation Vehicle drive apparatus and vehicle drive apparatus manufacturing method
US11054001B1 (en) * 2020-07-15 2021-07-06 GM Global Technology Operations LLC Electric drive unit with double helical gear

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734396A (en) * 1956-02-14 Twin drive and driven power
US1357932A (en) * 1916-06-16 1920-11-02 Westinghouse Gear & Dynamomete Reduction-gearing
US1273556A (en) * 1916-11-06 1918-07-23 Fore River Ship Building Corp Gearing.
US2203282A (en) * 1935-08-03 1940-06-04 Timken Axle Co Detroit Power dividing and transmitting mechanism
US2257747A (en) * 1940-09-05 1941-10-07 Jr Warren G Jones Gear speed reducer and the like
GB791594A (en) * 1955-02-08 1958-03-05 Fairfield Shipbuilding & Engin Improvements relating to double reduction gearing for marine propulsion
US4022083A (en) * 1973-03-14 1977-05-10 Fa. Zahnraederfabrik Renk Ag Drive system for connecting two drive shafts to a single output shaft, as in a propeller drive for a watercraft
US4188821A (en) * 1978-03-02 1980-02-19 Ex-Cell-O Corporation Load measurement device
US4641543A (en) * 1984-10-12 1987-02-10 Jessup Thurman W Intermediate shaft thrust balance
US4709590A (en) * 1986-06-11 1987-12-01 Eaton Corporation Herringbone geared multiple load sharing countershaft transmission
RU2010135C1 (ru) * 1991-04-03 1994-03-30 Сибирский металлургический институт им.Серго Орджоникидзе Шевронная зубчатая передача
SE9801533L (sv) * 1998-04-30 1999-10-31 Abb Ab Växel
US6189397B1 (en) * 1998-11-06 2001-02-20 Harrier Technologies, Inc. Multi-speed automotive transmission using paired helical gearing
EP1142744A4 (en) * 1998-12-01 2003-08-27 Hitachi Ltd DRIVE DEVICE AND VEHICLE
JP3859052B2 (ja) * 2000-06-13 2006-12-20 アイシン・エィ・ダブリュ株式会社 駆動装置
WO2002073054A1 (en) * 2001-03-12 2002-09-19 Hansen Transmissions International Nv Gear shaft bearing assembly
US7028583B2 (en) * 2003-07-30 2006-04-18 Arvinmeritor Technology, Llc Axle assembly with transverse mounted electric motors
SE528915C2 (sv) * 2005-08-26 2007-03-13 Skf Ab En metod och ett arrangemang för att undvika låglastsproblem vid rullningslager
JP2008121714A (ja) * 2006-11-08 2008-05-29 Aisin Seiki Co Ltd クラッチ用アクチュエータ
US7963190B2 (en) * 2008-09-15 2011-06-21 Harrier Technologies, Inc. Helical gear sets
DE102009006523B4 (de) * 2009-01-28 2011-04-28 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Elektrische Achsanordnung
KR101282691B1 (ko) * 2011-07-28 2013-07-05 현대자동차주식회사 전기자동차용 2단 변속기
US9234567B2 (en) * 2011-08-19 2016-01-12 Jianwen Li Gear change transmission having axially adjusting countershafts
JP6036700B2 (ja) * 2011-11-08 2016-12-07 トヨタ自動車株式会社 車両用動力伝達装置
CN202461129U (zh) * 2012-02-28 2012-10-03 上海山弈冶金技术有限公司 新型二十辊轧机齿轮箱
CN202812131U (zh) * 2012-09-27 2013-03-20 重庆永进重型机械成套设备有限责任公司 同轴式双分流齿轮箱及其所应用的食品加工设备
KR101497982B1 (ko) * 2013-05-03 2015-03-03 김종근 일방향 동력전달 장치
JP6459370B2 (ja) * 2014-04-10 2019-01-30 株式会社ジェイテクト 駆動ユニット及び駆動モジュール
CN103979387A (zh) * 2014-05-23 2014-08-13 苏州皇森机电科技有限公司 卷扬式电梯主机
JP2016056888A (ja) 2014-09-10 2016-04-21 本田技研工業株式会社 変速機

Also Published As

Publication number Publication date
JP2018087619A (ja) 2018-06-07
TW201819220A (zh) 2018-06-01
CN108119610B (zh) 2021-04-02
BR102017025535A2 (pt) 2018-08-14
RU2666482C1 (ru) 2018-09-07
US10683910B2 (en) 2020-06-16
KR101968005B1 (ko) 2019-04-10
KR20180060960A (ko) 2018-06-07
EP3327313A1 (en) 2018-05-30
TWI666139B (zh) 2019-07-21
CN108119610A (zh) 2018-06-05
US20180149235A1 (en) 2018-05-31
EP3327313B1 (en) 2021-02-24
MY193384A (en) 2022-10-09

Similar Documents

Publication Publication Date Title
US10443657B2 (en) Power transmission device for vehicle
JP5156961B2 (ja) 減速装置
JP6421812B2 (ja) 動力伝達機構
US20160325613A1 (en) Drive device for hybrid vehicle
JP2016031081A (ja) 差動装置
JP4891890B2 (ja) 最終減速装置
JP2017190782A (ja) 差動装置
JP2016056888A (ja) 変速機
WO2020054650A1 (ja) インホイールモータ駆動装置
JP6407678B2 (ja) 動力伝達装置
CN111703293A (zh) 轮内电动机驱动装置
CN108290491B (zh) 轮内电动机驱动装置
JP2020133858A (ja) ヘリカルギヤのスラスト荷重軽減構造
JP6033760B2 (ja) 軸受及びそれを用いた無段変速機
WO2021176951A1 (ja) インホイールモータ駆動装置
WO2019142701A1 (ja) インホイールモータ駆動装置
JP3937556B2 (ja) 複列円すいころ軸受装置
WO2020036138A1 (ja) 車両駆動装置
CN111565958A (zh) 轮毂电动机驱动装置
JP2017141929A (ja) 伝動装置
JP6485381B2 (ja) 動力伝達装置
JP3275403B2 (ja) 減速機付転がり軸受ユニット
JP6361614B2 (ja) トランスファ装置
JP2023018463A (ja) 回転体の支持構造
JP2018054050A (ja) やまば歯車装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R151 Written notification of patent or utility model registration

Ref document number: 6421812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151