JP6365591B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6365591B2
JP6365591B2 JP2016107278A JP2016107278A JP6365591B2 JP 6365591 B2 JP6365591 B2 JP 6365591B2 JP 2016107278 A JP2016107278 A JP 2016107278A JP 2016107278 A JP2016107278 A JP 2016107278A JP 6365591 B2 JP6365591 B2 JP 6365591B2
Authority
JP
Japan
Prior art keywords
fuel pressure
value
processing unit
fuel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016107278A
Other languages
English (en)
Other versions
JP2017214832A (ja
Inventor
智洋 中野
智洋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016107278A priority Critical patent/JP6365591B2/ja
Priority to US15/602,642 priority patent/US10012172B2/en
Priority to EP17172866.0A priority patent/EP3252290B1/en
Priority to CN201710384569.6A priority patent/CN107448310B/zh
Publication of JP2017214832A publication Critical patent/JP2017214832A/ja
Application granted granted Critical
Publication of JP6365591B2 publication Critical patent/JP6365591B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2048Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit said control involving a limitation, e.g. applying current or voltage limits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の燃焼室に燃料を噴射する噴射弁であってコイルに通電することで開弁する筒内噴射弁と、前記筒内噴射弁に燃料を供給する供給路と、前記供給路に加圧した燃料を供給する高圧燃料ポンプとを備える内燃機関を制御対象とする、内燃機関の制御装置に関する。
たとえば特許文献1に見られるように、筒内噴射弁に内蔵されたコイルに開弁電圧を印加してコイルに流れる電流を増大させた後、開弁電圧よりも小さい保持電圧を断続的にコイルに印加してコイルに流れる電流を保持電流値とする装置が提案されている。特にこの装置では、コイルに流れる電流が予め定めたピーク値となることにより、開弁電圧から保持電圧に切り替えている。
また、上記装置では、筒内噴射弁に燃料を供給するデリバリパイプ(供給路)内の燃圧が高い場合には低い場合よりも燃料噴射弁を確実に開弁させるうえで要求される電流値が大きくなることに鑑み、上記ピーク値を、燃圧の検出値が高いほど大きい値に設定している。換言すれば、燃圧が高い場合には低い場合よりも筒内噴射弁による燃料の噴射を可能とするうえで要求される電流値が大きくなることに鑑み、上記ピーク値を、燃圧の検出値が高いほど大きい値に設定している。また、上記装置では、上記ピーク値を、目標燃圧から燃圧の検出値を減算した値(差圧)が大きいほど大きい値に設定している。これは、上記差圧が大きい場合に小さい場合よりもデリバリパイプ内に燃料を供給する高圧燃料ポンプの吐出量が多くなり、燃圧の変動が大きくなることに鑑みたものである。すなわち、燃圧の変動が大きい場合には燃圧の変動が小さい場合よりも燃圧の極大値が大きくなる。そして、燃圧の極大値が大きくなる場合、筒内噴射弁による燃料の噴射を可能とするのに要する電流値が大きくなることがあることに鑑み、燃圧の極大値が大きくなっても筒内噴射弁による燃料の噴射を可能とすることができるピーク値を設定することを狙っている。
特開2014−238047号
ところで、ピーク値の設定のために検出される燃圧の検出値と目標燃圧との上記差圧が同一であっても、高圧燃料ポンプを操作することによる目標燃圧への制御によって燃圧の検出値が目標燃圧に収束しているか収束していないかに応じて、燃圧の極大値は変動する。このため、ピーク値の設定のために検出される燃圧の検出値と目標燃圧との差圧が同一であっても、高圧燃料ポンプを操作することによる目標燃圧への制御によって燃圧の検出値が目標燃圧に収束しているか収束していないかに応じて、筒内噴射弁による燃料の噴射を可能とするうえで要求される必要最小限の電流値は相違する。しかし上記装置の場合、目標燃圧への制御によって燃圧の検出値が目標燃圧に収束しているか収束していないかに差を設けていないため、必要以上にピーク値が大きい値に設定されるおそれがあり、その結果、コイルを備えた筒内噴射弁の駆動回路に要求される熱定格が大きくなるおそれがある。
本発明は、そうした実情に鑑みてなされたものであり、その目的は、筒内噴射弁による燃料の噴射を可能としつつもコイルを流れる電流のピーク値が過度に大きくなることを抑制できるようにした内燃機関の制御装置を提供することにある。
以下、上記課題を解決するための手段およびその作用効果について記載する。
1.内燃機関の制御装置は、内燃機関の燃焼室に燃料を噴射する噴射弁であってコイルに通電することで開弁する筒内噴射弁と、前記筒内噴射弁に燃料を供給する供給路と、前記供給路に加圧した燃料を供給する高圧燃料ポンプとを備える内燃機関を制御対象とし、前記高圧燃料ポンプを操作して前記供給路内の燃圧の検出値を目標燃圧に制御する燃圧制御処理部と、前記燃圧の検出値に基づき、前記コイルを流れる電流のピーク値の指令値であるピーク指令値を算出する指令値算出処理部と、前記指令値算出処理部が算出する前記ピーク指令値に対し上限ガード値によるガード処理を施す上限ガード処理部と、前記ガード処理が施されたピーク指令値に基づき前記コイルを通電する通電処理部と、前記燃圧制御処理部の制御によって前記燃圧の検出値が前記目標燃圧に収束しているか否かを判定する収束判定処理部と、前記収束判定処理部が収束していると判定することを条件に、収束していないと判定する場合よりも前記上限ガード値を低下させる低下処理部とを備える。
上記構成では、収束判定処理部によって収束していると判定される場合、収束していないと判定される場合と比較して、低下処理部によって上限ガード値を低下させるため、燃圧が目標燃圧を上回る超過量が小さいときには大きいときよりも小さい上限ガード値によって、ピーク指令値の値が制限される。このため、上記超過量が小さいときに必要以上にピーク指令値が大きくなることを抑制することができる。したがって、筒内噴射弁による燃料の噴射を可能としつつもコイルを流れる電流のピーク値が過度に大きくなることを抑制できる。
2.上記1記載の内燃機関の制御装置において、前記供給路には、該供給路内の燃圧がリリーフ圧以上となる場合に開弁して前記供給路内の燃料を前記供給路の外に流出させるリリーフ弁が設けられており、前記収束していない場合の前記上限ガード値である未収束時ガード値は、前記供給路内の燃圧が前記リリーフ圧である場合においても前記筒内噴射弁による燃料の噴射が可能となる値に設定されている。
上記構成では、供給路内の燃圧がリリーフ圧以上となることにより開弁するリリーフ弁を備えるため、供給路内の燃圧の最高値は、リリーフ圧程度となる。そこで、上記構成では、未収束時ガード値を、リリーフ圧においても筒内噴射弁による燃料の噴射が可能となる値とすることにより、燃圧制御処理部の制御によって燃圧が目標燃圧に収束していないときにガード処理によって筒内噴射弁による燃料の噴射ができなくなることを回避することができる。ただし、筒内噴射弁の駆動回路の熱定格は、未収束時ガード値となる期間として想定される期間が長い場合に短い場合よりも大きくなる。この点、上記構成では、低下処理部を備えることで、熱定格が大きくなることを抑制できる。
3.上記2記載の内燃機関の制御装置において、前記目標燃圧を可変設定する目標燃圧設定処理部を備え、前記収束判定処理部により収束していると判定される場合に前記低下処理部によって設定される前記上限ガード値である収束時ガード値は、前記目標燃圧が最高値とされているときに前記燃圧制御処理部の制御によって前記燃圧の検出値が前記目標燃圧に収束している場合に前記筒内噴射弁から燃料を噴射することが可能となる値に設定されている。
上記構成によれば、収束時ガード値を上記のように設定することにより、燃圧制御処理部の制御によって燃圧が目標燃圧に収束しているときにガード処理によって筒内噴射弁による燃料の噴射ができなくなることを回避しつつも、ピーク指令値が過度に大きな値とされることを抑制することができる。
4.上記1〜3のいずれか1項に記載の内燃機関の制御装置において、前記収束判定処理部は、前記燃圧の検出値の変動量が規定量以下であることを条件に、収束していると判定する。
燃圧制御処理部の制御によって燃圧が目標燃圧に収束するのは、燃圧制御処理部の制御に応答遅れが生じうることに鑑みれば、目標燃圧の変動量が小さい場合であると考えられ、その場合、制御によって目標燃圧に収束すると、燃圧の検出値の変動量が小さくなる。上記構成では、この点に鑑み、収束していると判定する条件を設定した。
5.上記1〜4のいずれか1項に記載の内燃機関の制御装置において、前記目標燃圧を可変設定する目標燃圧設定処理部を備え、前記収束判定処理部は、前記目標燃圧の変動量が規定量以下であることを条件に、収束していると判定する。
燃圧制御処理部の制御によって燃圧が目標燃圧に収束するのは、燃圧制御処理部の制御に応答遅れが生じうることに鑑みると、目標燃圧の変動量が小さい場合であると考えられる。上記構成では、この点に鑑み、収束していると判定する条件を設定した。
6.上記2または3記載の内燃機関の制御装置において、前記収束判定処理部は、前記目標燃圧と前記燃圧の検出値との差の絶対値が規定量を超える場合、収束していないと判定する。
上記構成では、目標燃圧と燃圧の検出値との差の絶対値が規定量を超える場合、上限ガード値が未収束時ガード値とされる。このため、目標燃圧への制御が収束していないことに起因して燃圧がリリーフ圧程度に上昇する場合であっても、ガード処理によって筒内噴射弁による燃料の噴射ができなくなることを回避することができる。
7.上記2または3記載の内燃機関の制御装置において、前記目標燃圧を可変設定する目標燃圧設定処理部を備え、前記収束判定処理部は、前記燃圧の検出値が閾値よりも高い場合、収束していないと判定するものであり、前記閾値は、前記目標燃圧の最高値よりも所定量大きい。
燃圧制御処理部の制御によって燃圧が目標燃圧に収束している場合には、目標燃圧と燃圧の検出値との差が小さくなる。このため、燃圧の検出値が上記閾値よりも高い場合には、収束していないと判定できる。そして、上記構成では、燃圧の検出値が上記閾値よりも高いために収束していないと判定される場合、上限ガード値を、未収束ガード値とすることにより、ガード処理によって筒内噴射弁による燃料の噴射ができなくなることを回避することができる。
8.上記2または3に記載の内燃機関の制御装置において、前記収束判定処理部は、前記検出値の前記目標燃圧への制御であって前記高圧燃料ポンプを操作して前記高圧燃料ポンプから燃料を吐出させることによる制御を前記燃圧制御処理部が実行していない場合、前記燃圧制御処理部の制御によっては前記燃圧の検出値が前記目標燃圧に収束していないと判定する。
燃圧制御処理部は、燃料を吐出させるように高圧燃料ポンプを操作するものであるため、燃料を吐出させるように高圧燃料ポンプが操作されていない場合、燃圧制御処理部の制御がなされない。上記構成では、この点に鑑み、収束していないと判定する条件を設定した。
なお、一般に、高圧燃料ポンプによる燃料の吐出操作は、筒内噴射弁から燃料が噴射されない場合に停止される。そしてその場合、供給路内の燃料の温度が上昇することに起因して、燃圧がリリーフ圧程度まで上昇することがある。そしてこれにより、燃圧が目標燃圧を上回ることによって筒内噴射弁から一時的に燃料を噴射させる場合、上記構成では未収束時ガード値が用いられるため、供給路内の減圧のために筒内噴射弁を用いる際に、ガード処理によって筒内噴射弁による燃料の噴射ができなくなることを回避することができる。
第1の実施形態にかかる制御装置および内燃機関を示す図。 同実施形態にかかる制御装置の構成を示す図。 同実施形態にかかる制御装置が実行する処理の一部を示すブロック図。 同実施形態にかかる筒内噴射弁を用いた燃料噴射制御の処理手順を示す流れ図。 同実施形態にかかる筒内噴射弁を用いた燃料噴射制御のタイムチャート。 同実施形態にかかるピーク指令値の設定処理の手順を示す流れ図。 燃圧とピーク電流ベース値との関係を示す図。 同実施形態にかかる上限ガード値の設定処理の手順を示す流れ図。 同実施形態にかかる燃圧および上限ガード値の推移を示すタイムチャート。 第2の実施形態にかかる上限ガード値の設定処理の手順を示す流れ図。
<第1の実施形態>
以下、内燃機関の制御装置にかかる第1の実施形態について図面を参照しつつ説明する。
図1に示すように、内燃機関10の吸気通路12には、ポート噴射弁14が設けられている。吸気通路12内の流体は、吸気バルブ16の開動作に伴ってシリンダ18およびピストン20によって区画された燃焼室22に吸入される。燃焼室22には、筒内噴射弁24および点火装置25が突出している。そして、燃焼室22内において、空気と燃料との混合気は、点火装置25によって着火されることにより燃焼に供される。燃焼室22内における混合気の燃焼エネルギは、ピストン20を介してクランク軸26の回転エネルギに変換される。燃焼に供された混合気は、排気バルブ28の開動作に伴って、排気として排気通路29に排出される。
ポート噴射弁14および筒内噴射弁24から噴射される燃料は、燃料タンク30内に貯蔵されている。燃料タンク30内の燃料は、フィードポンプ32によって汲み上げられ、ポート噴射弁14に燃料を供給する低圧デリバリパイプ34に供給されたり、高圧燃料ポンプ40に供給されたりする。
高圧燃料ポンプ40は、フィードポンプ32から送られた燃料を更に加圧して、筒内噴射弁24に燃料を供給する高圧デリバリパイプ36に吐出する。高圧燃料ポンプ40は、プランジャ43を備えており、プランジャ43が、ポンプ駆動用のカム44により往復動することにより、加圧室42が膨張および収縮を繰り返す。カム44は、内燃機関10のカム軸31に連結されており、カム軸31には、タイミングチェーン33および可変バルブタイミング装置35を介してクランク軸26の回転動力が伝達される。
フィードポンプ32から吐出された燃料は、電磁スピル弁45が開弁しているときに、加圧室42に吸入される。そして、加圧室42内に吸入された燃料は、加圧室42内の容積が縮小する期間において電磁スピル弁45が閉弁することによって加圧される。加圧室42内で加圧された燃料は、逆止弁46を介して、高圧デリバリパイプ36に圧送される。逆止弁46は、加圧室42内が高圧デリバリパイプ36内よりも高圧となった場合、開弁して加圧室42から高圧デリバリパイプ36への燃料吐出を許容するとともに、高圧デリバリパイプ36内が加圧室42内よりも高圧となった場合、閉弁して高圧デリバリパイプ36から加圧室42への燃料の逆流を規制する。
なお、本実施形態では、内燃機関10として4気筒のものを想定している。また、カム44として、1燃焼サイクルに4度、燃料を吐出するようにプランジャ43を駆動するものを例示している。ちなみに、高圧デリバリパイプ36には、その内部の圧力が過上昇したときに開弁して、その内部の燃料を、燃料タンク30内にリリーフするリリーフ弁38が取り付けられている。
電子制御装置(ECU60)は、内燃機関10を制御対象とし、その制御量(トルク、空燃比)を制御するために、ポート噴射弁14、筒内噴射弁24、点火装置25、可変バルブタイミング装置35、および電磁スピル弁45等の各種アクチュエータを操作する。ECU60は、この際、吸入空気量Gaを検出するエアフローメータ50、高圧デリバリパイプ36内の燃圧PFを検出する燃圧センサ52、およびクランク軸26の回転角度を検出するクランク角センサ54の出力信号を参照する。
本実施形態では、筒内噴射弁24内蔵のコイルに通電するための駆動回路が、ECU60内に搭載されている。図2に、ECU60の内部構成の一部を示す。
図2に示すように、ECU60は、ECU60の外部のバッテリ56の端子電圧を昇圧する昇圧回路62を備えている。昇圧回路62の出力端子は、出力用スイッチング素子64を介してコイル24aの一方の端子に接続されており、コイル24aの他方の端子は、シャント抵抗74を介して接地されている。なお、図2においては、特定の1つの気筒の筒内噴射弁24に設けられたコイル24aのみを明記している。
また、出力用スイッチング素子64とコイル24aとの間には、保持制御用スイッチング素子66およびダイオード68を介して、バッテリ56の端子電圧が印加可能となっている。また、出力用スイッチング素子64とコイル24aとの間には、ダイオード70のカソードが接続されており、ダイオード70のアノードは接地されている。
上記シャント抵抗74の電圧降下は、コイル24aを流れる電流Iとして、マイコン90に取り込まれる。マイコン90は、電流Iや昇圧回路62の出力電圧Vc等に基づき、昇圧回路62や、出力用スイッチング素子64、保持制御用スイッチング素子66を操作する。
マイコン90は、中央処理装置(CPU92)およびメモリ94を備えており、メモリ94に記憶されたプログラムをCPU92が実行することにより、内燃機関10の制御量(トルク、排気成分)を制御する。
図3に、メモリ94に記憶されたプログラムをCPU92が実行することにより実現される処理の一部を示す。
目標燃圧設定処理部M10は、クランク角センサ54の出力信号Scrに基づき算出された回転速度NEと、吸入空気量Gaとを入力とし、燃圧PFの目標値である目標燃圧PF*を可変設定する。詳しくは、目標燃圧設定処理部M10は、負荷が大きい場合に小さい場合よりも目標燃圧PF*を高い値に設定する。噴射量算出処理部M12は、回転速度NEおよび吸入空気量Gaに基づき、指令噴射量Q*を算出する。詳しくは、噴射量算出処理部M12は、負荷が大きい場合に小さい場合よりも指令噴射量Q*を多い値に設定する。
燃圧制御処理部M20は、燃圧センサ52による検出値(燃圧PF)を目標燃圧PF*に制御するために高圧燃料ポンプ40を操作する。詳しくは、燃圧制御処理部M20は、指令噴射量Q*に基づき高圧燃料ポンプ40に要求される吐出量(開ループ操作量Qff)を算出する。フィードバック処理部M22は、燃圧PFを目標燃圧PF*にフィードバック制御するための操作量であるフィードバック操作量Qfbを算出する。詳しくは、フィードバック処理部M22は、比例要素M22aおよび積分要素M22bを備えている。フィードバック処理部M22は、フィードバック操作量Qfbの算出に、比例要素M22aの出力値を常時利用する一方、積分要素M22bの出力値については、目標燃圧PF*の変動量が所定量以下であることを条件に、利用する。図3には、この条件として、後述する目標平均値PF*aと目標燃圧PF*との差の絶対値が所定値Δ以下である旨の条件を例示している。なお、積分要素M22bの出力値を利用する場合、フィードバック操作量Qfbは、比例要素M22aの出力値と積分要素M22bの出力値との和となる。
加算処理部M26は、開ループ操作量Qffとフィードバック操作量Qfbとを加算した値を出力する。ポンプ操作処理部M28は、加算処理部M26の出力値に基づき、高圧燃料ポンプ40を操作すべく、操作信号MSsを生成して電磁スピル弁45に出力する。操作信号MSsは、加算処理部M26が出力する値に応じた吐出量の燃料を高圧燃料ポンプ40に吐出させるために、電磁スピル弁45の閉弁タイミングを操作する信号である。
目標平均値算出処理部M14は、短いタイムスケールにおける目標燃圧PF*の変動を除いた目標平均値PF*aを算出する。ここでは、加重移動平均処理を例示している。すなわち、目標平均値PF*aの更新タイミングにおける目標燃圧PF*に、係数αを乗算した値と、更新タイミング直前において保持されていた目標平均値PF*aに係数βを乗算した値との和を、更新された目標平均値PF*aとする。ここで、「0<α<β<1、α+β=1」である。
燃圧平均値算出処理部M16は、短いタイムスケールにおける燃圧PFの変動を除いた燃圧平均値PFaを算出する。ここでは、加重移動平均処理を例示している。すなわち、燃圧平均値PFaの更新タイミングにおける燃圧PFに、係数αを乗算した値と、更新タイミング直前において保持されていた燃圧平均値PFaに係数βを乗算した値との和を、更新された燃圧平均値PFaとする。ここで、「0<α<β<1、α+β=1」である。
上記係数α、βや上記更新タイミング間の間隔(更新周期)は、筒内噴射弁24による燃料の噴射周期を有した燃圧PFの脈動や高圧燃料ポンプ40の燃料の吐出周期を有した燃圧PFの脈動を平均化できる値に設定されている。これは、本実施形態では、燃圧の脈動の周期が、噴射時期が時系列的に隣り合う一対の気筒の圧縮上死点間の期間(180°CA)となることに鑑み、同期間における変動を十分に除去できる値とすることで実現できる。
噴射弁操作処理部M30は、指令噴射量Q*や、燃圧PF、目標燃圧PF*、目標平均値PF*a、燃圧平均値PFaに基づき、ポート噴射弁14の操作信号MSpや筒内噴射弁24の操作信号MSdを生成して出力する。
ここで、筒内噴射弁24の操作信号MSdは、図2に示した昇圧回路62や、出力用スイッチング素子64、保持制御用スイッチング素子66を操作する信号である。
図4に、筒内噴射弁24の操作による燃料噴射制御の処理手順を示す。図4に示す処理は、メモリ94に記憶されたプログラムをCPU92が実行することにより、図3に示した噴射弁操作処理部M30の処理として実現される。図4に示す処理は、操作対象となる筒内噴射弁24を備えた気筒の圧縮上死点から所定角度だけ前となる都度繰り返し実行される。なお、この処理は、実際には、各気筒毎になされる処理であるが、ここでは、特定の気筒に関する処理について記載する。
図4に示す一連の処理において、CPU92は、まず、コイル24aに流れる電流のピーク値の指令値(ピーク指令値Ipeak*)を取得する(S10)。続いて、燃料噴射時期に応じて定まるコイル24aの通電タイミングとなると、CPU92は、出力用スイッチング素子64を閉操作する(S12)。
次に、CPU92は、電流Iのサンプリング値を取得する(S14)。そして、CPU92は、電流Iがピーク指令値Ipeak*となるまで待機する(S16:NO)。そして、CPU92は、電流Iがピーク指令値Ipeak*となったと判定すると(S16:YES)、出力用スイッチング素子64を開操作する(S18)。そしてCPU92は、コイル24aを流れる電流Iが保持電流指令値Ik*となるように制御する保持電流制御を実行する(S20)。
CPU92は、噴射終了時期となるまで保持電流制御を実行する(S22:NO)。そしてCPU92は、噴射終了時期となったと判定すると(S22:YES)、保持電流制御を停止する(S24)。
なお、CPU92は、ステップS24の処理が完了する場合、図4に示す一連の処理を一旦終了する。
図5に、出力用スイッチング素子64の操作状態、保持制御用スイッチング素子66の操作状態、コイル24aを流れる電流I、および筒内噴射弁24のノズルニードルのリフト量のそれぞれの推移を示す。
図5に示すように、噴射開始時期に対応する時刻t1において、出力用スイッチング素子64が閉操作される。これにより、昇圧回路62、出力用スイッチング素子64、コイル24aを備えるループ回路が閉ループとなり、コイル24aに電流が流れる。そして、時刻t2において、電流Iがピーク指令値Ipeak*となることで、出力用スイッチング素子64が開操作されると、コイル24aに昇圧回路62の出力電圧Vcが印加されなくなるため、コイル24aを流れる電流Iは減少する。この際、コイル24aに流れる電流Iの減少を打ち消す極性を有した起電力によって、ダイオード70、コイル24a、およびシャント抵抗74を備えるループ回路に電流が流れるため、コイル24aに流れる電流はステップ状にゼロとなることはなく、漸減する。そして、コイル24aに流れる電流Iが保持電流指令値Ik*を下回る時刻t3以降、噴射終了時期に対応する時刻t4まで、保持制御用スイッチング素子66の開閉操作によって、保持電流制御がなされる。
図5には、筒内噴射弁24のノズルニードルがフルリフト量に達する前に閉弁方向に変位し始めるいわゆるパーシャルリフト噴射の場合を例示した。パーシャルリフト噴射によって噴射される燃料量の精度を高く維持する上では、ノズルニードルがフルリフト量に達するフルリフト噴射を実行する場合よりもコイル24aを流れる電流の所定時間当たりの積算値を大きくする要求が生じる。そして、積算値を大きくするためには、ピーク指令値Ipeak*が大きくなる。そのため、本実施形態では、パーシャルリフト噴射による噴射量の精度を高く維持することができるようにピーク指令値Ipeak*を設定する。
図6に、ピーク指令値Ipeak*の設定処理の手順を示す。図6に示す処理は、メモリ94に記憶されたプログラムをCPU92が実行することにより、図3に示した噴射弁操作処理部M30の処理として実現される。図6に示す処理は、クランク軸26の所定の回転角度(たとえば30°CA間隔の角度)毎に、繰り返し実行される。
図6に示す一連の処理において、CPU92は、まず、燃圧PFを取得する(S30)。次に、CPU92は、燃圧PFに基づき、ピーク指令値Ipeak*のベース値(ピーク電流ベース値Ib)を算出する(S32)。具体的には、CPU92は、図7に示すように、燃圧PFが高いほどピーク電流ベース値Ibを大きい値に設定する。これは、燃圧PFが高いほど、筒内噴射弁24を開弁させることができるピーク電流値が大きくなることに鑑みた設定である。なお、本実施形態では、メモリ94に、燃圧PFとピーク電流ベース値Ibとの関係を定めた1次元マップを記憶しておき、同1次元マップを用いてピーク電流ベース値Ibを設定する。
次に、CPU92は、目標燃圧PF*から燃圧PFを減算した差圧ΔPFを算出し(S34)、また、指令噴射量Q*を取得する(S36)。そして、CPU92は、差圧ΔPFおよび指令噴射量Q*に基づき、高圧燃料ポンプ40の吐出量に応じた燃圧PFの変動を考慮したピーク電流ベース値Ibの補正量である吐出量補正量ΔIを算出する(S38)。ここでは、差圧ΔPFが大きいほど、高圧燃料ポンプ40からの燃料の吐出量が多くなり、燃圧PFの変動が大きくなるとして、吐出量補正量ΔIを大きい値に算出する。また、指令噴射量Q*が多いほど、高圧燃料ポンプ40からの燃料の吐出量が多くなり、燃圧PFの変動が大きくなるとして、吐出量補正量ΔIを大きい値に算出する。これは、ピーク指令値Ipeak*を、筒内噴射弁24を確実に開弁させることができる値としつつも極力小さい値に設定することを狙ったものである。すなわち、高圧燃料ポンプ40の吐出量に応じてピーク指令値Ipeak*を可変とすることなく燃圧PFのみに基づきピーク指令値Ipeak*を設定する場合、ステップS34の処理が完了してからコイル24aに通電するまでの期間における燃圧PFの変動を考慮してピーク指令値Ipeak*にマージンを設ける必要が生じる。これに対し、高圧燃料ポンプ40の吐出量に応じた吐出量補正量ΔIを用いることにより、ピーク指令値Ipeak*の値を極力小さい値とすることができる。
ただし、吐出量補正量ΔIおよびピーク電流ベース値Ibの少なくとも一方は、高圧燃料ポンプ40の吐出量の誤差を考慮したマージンが設けられた値とされている。吐出量の誤差の要因の1つは、電磁スピル弁45の閉弁タイミングに誤差が生じることである。ここで、電磁スピル弁45の閉弁タイミングの誤差は、タイミングチェーン33の伸びや可変バルブタイミング装置35がバルブタイミングを変更しているときであることに起因して、電磁スピル弁45の閉弁タイミングが操作信号MSsによって意図したタイミングからずれることによるものである。なお、燃料の体積弾性率が温度に応じて変化し、極低温において特に高くなることに鑑み、吐出量補正量ΔIは、極低温において高圧燃料ポンプ40から燃料が吐出されることに起因した燃圧PFの変動によっても、筒内噴射弁24を確実に開弁させることができる値に設定されている。
次に、CPU92は、ピーク電流ベース値Ibに吐出量補正量ΔIを加算することによってピーク指令値Ipeak*を算出する(S40)。次に、CPU92は、上限ガード値Ithを取得する(S42)。そして、CPU92は、ピーク指令値Ipeak*が上限ガード値Ithよりも大きいか否かを判定する(S44)。そして、CPU92は、ピーク指令値Ipeak*が上限ガード値Ithよりも大きいと判定する場合(S44:YES)、上限ガード値Ithをピーク指令値Ipeak*としてメモリ94に記憶する(S46)。
なお、CPU92は、ステップS46の処理が完了する場合や、ステップS44において否定判定する場合には、図6に示す一連の処理を一旦終了する。
図8に、上限ガード値Ithの設定処理の手順を示す。図8に示す処理は、メモリ94に記憶されたプログラムをCPU92が実行することにより、図3に示した噴射弁操作処理部M30の処理として実現される。図8に示す処理は、たとえば所定の時間周期で繰り返し実行される。なお、ここでの周期は、回転速度NEに想定される最大値において、1燃焼サイクル程度またはそれよりも短い時間となることが望ましい。
図8に示す一連の処理において、CPU92は、まず、以下の(ア)〜(エ)の条件の論理積が真であるか否かを判定する(S50)。この処理は、燃圧制御処理部M20による燃圧PFの目標燃圧PF*への制御が収束しているか否かを判定する処理である。
(ア)目標燃圧PF*の変動量が規定量以下である旨の条件。本実施形態では、この条件を、目標平均値PF*aと、図8の処理の今回の制御周期における目標燃圧PF*との差の絶対値が、閾値ST*以下である旨の条件として定量化している。
(イ)燃圧PFの変動量が規定量以下である旨の条件。本実施形態では、この条件を、燃圧平均値PFaと、図8の処理の今回の制御周期における燃圧PFとの差の絶対値が、閾値ST以下である旨の条件として定量化している。
(ウ)燃圧PFと目標燃圧PF*の差の絶対値が、規定量Δth以下である旨の条件。
(エ)燃圧PFが、目標燃圧PF*の最高値よりも所定量大きい閾値PFth以下である旨の条件。この条件は、燃圧制御処理部M20による燃圧PFの目標燃圧PF*への制御が収束している場合には、燃圧PFが、目標燃圧PF*の最高値を過度に上回ることがないことに鑑みたものである。
CPU92は、上記論理積が偽であると判定する場合(S50:NO)、上限ガード値Ithを、未収束時ガード値IthHに設定する(S52)。未収束時ガード値IthHは、燃圧PFがとりうる最高値となっても、筒内噴射弁24を開弁させ、筒内噴射弁24による燃料の噴射が可能となる固定値に設定されている。ここで、燃圧PFがとりうる最高値は、リリーフ弁38の開弁圧(リリーフ圧)である。詳しくは、リリーフ弁38に公差が存在し中央特性品と比較してリリーフ圧が高い側にずれるものが存在することに鑑み、その最高値(リリーフ圧の最高値PRu)とする。さらに、未収束時ガード値IthHは、電流Iの誤差をも考慮して、検出される電流Iのピーク値が未収束時ガード値IthHとなって且つ燃圧PFがリリーフ圧である場合に、コイル24aを流れる実際の電流が筒内噴射弁24による燃料の噴射が可能となる固定値に設定されている。
一方、CPU92は、上記論理積が真であると判定する場合(S50:YES)、上限ガード値Ithを、未収束時ガード値IthHよりも小さい収束時ガード値IthLに設定する(S54)。収束時ガード値IthLは、目標燃圧PF*が最高値であって且つ、燃圧制御処理部M20による燃圧PFの目標燃圧PF*への制御が収束しているときの燃圧PFの極大値において、筒内噴射弁24による燃料の噴射が可能となる値に設定されている。ここで、本実施形態では、目標燃圧PF*が最高値であって且つ、燃圧制御処理部M20による燃圧PFの目標燃圧PF*への制御が収束しているときの燃圧PFの極大値は、リリーフ弁38の公差に起因したリリーフ圧の最低値PRd未満であって且つ最低値PRdに極力近い値に設定されている。このため、本実施形態では、収束時ガード値IthLは、燃圧PFがリリーフ圧の最低値PRdであっても、筒内噴射弁24を確実に開弁させ、筒内噴射弁24による燃料の噴射が可能となる値に設定されている。
なお、CPU92は、ステップS52,S54の処理が完了する場合、図6に示す一連の処理を一旦終了する。
ここで、本実施形態の作用を説明する。
図9に、燃圧PFおよび上限ガード値Ithの推移を示す。
図9に示す時刻t1〜t2の期間は、燃圧PFを目標燃圧PF*よりも低い状態から目標燃圧PF*へと上昇制御している期間である。ここで、目標燃圧PF*は、その最高値PF*maxとされている。図9に示すように、燃圧PFを目標燃圧PF*に追従させようと制御している過渡時には、燃圧PFが目標燃圧PF*を大きく上回るオーバーシュートが生じうる。図9に示す例では、リリーフ弁38が、リリーフ圧が最高値PRuとなるものであることを想定しており、そのため、燃圧PFがリリーフ圧の最低値PRdを超えて上昇している。
この期間においては、CPU92は、上限ガード値Ithを、未収束時ガード値IthHとする。このため、図6に示したステップS44,S46の処理によって、筒内噴射弁24による燃料の噴射ができなくなることは回避される。
図9に示す時刻t3〜t4の期間は、燃圧制御処理部M20の制御によって燃圧PFが目標燃圧PF*としての最高値PF*maxに収束している期間を示す。この期間においては、CPU92は、上限ガード値Ithを、収束時ガード値IthLに設定する。このため、図6のステップS40の処理によって算出されたピーク指令値Ipeak*が、収束時ガード値IthLを上回っている場合であっても、コイル24aの電流のピーク値は、収束時ガード値IthLに制限される。ここで、収束時ガード値IthLは、目標燃圧PF*が最高値PF*maxとされて且つ、燃圧制御処理部M20による燃圧PFの目標燃圧PF*への制御が収束しているときの燃圧PFの最高値において、筒内噴射弁24を開弁することができる値に設定されている。このため、コイル24aに流れる電流の最大値を低減しつつも、筒内噴射弁24を確実に開弁させて燃料を噴射させることができる。
図9に示す時刻t4以降の期間は、燃圧制御処理部M20による目標燃圧PF*への制御が停止し、高圧燃料ポンプ40から高圧デリバリパイプ36に燃料が吐出されなくなっている期間を示す。燃圧制御処理部M20による制御は、筒内噴射弁24を用いた燃料噴射が行われず、ポート噴射弁14のみを用いて燃料噴射がなされるときや、フューエルカット処理時等において、停止される。図9に示す例では、高圧デリバリパイプ36内の燃料の温度上昇に伴って燃圧PFが最高値PF*maxを大きく上回って上昇している。しかし、高圧燃料ポンプ40は、逆止弁46を備えているため、高圧デリバリパイプ36内の燃料を高圧燃料ポンプ40側に流入させて燃圧PFを減圧させることはできない。この場合、図3に示した目標燃圧設定処理部M10が逐次設定している目標燃圧PF*から燃圧PFが大きく外れたとして、CPU92は、高圧燃料ポンプ40からの燃料の吐出を停止させた状態で筒内噴射弁24から燃料を噴射させて高圧デリバリパイプ36内の燃圧PFを減圧させる。すなわち、たとえば内燃機関10の運転領域がポート噴射弁14のみを用いて燃焼室22に燃料を供給する領域であっても、燃圧PFを低下させるために筒内噴射弁24から一時的に燃料を噴射する。
時刻t4以降の期間において、燃圧PFを低下させるために筒内噴射弁24から燃料を噴射する場合、CPU92は、上記(ウ)および上記(エ)の条件を満たさないため、上限ガード値Ithとして、未収束時ガード値IthHを設定する。このため、筒内噴射弁24を確実に開弁させ、燃料を噴射させることができる。
以上のように、本実施形態では、ピーク指令値Ipeak*が、未収束時ガード値IthH相当まで大きい値に設定されるのは、主として次の2つとなる。1つ目は、燃圧PFを目標燃圧PF*に追従させようとする過渡時であり、2つ目は、目標燃圧PF*が高い状態において高圧燃料ポンプ40を停止させている状態で高圧デリバリパイプ36内を減圧するために筒内噴射弁24から燃料が噴射されるときである。このため、燃圧制御処理部M20の制御が収束している場合においても上限ガード値Ithを未収束時ガード値IthHに設定する場合と比較すると、図2に示したコイル24aおよびその駆動回路に要求される熱定格が大きくなることを抑制することができる。
以上説明した本実施形態によれば、さらに以下に記載する効果が得られる。
(1)目標燃圧PF*の変動量が所定量以下となることを条件に、積分要素M22bを動作させて、積分要素M22bの出力値をフィードバック操作量Qfbの算出に用いた。このため、目標燃圧PF*を上昇させた後、燃圧PFが目標燃圧PF*に追従する過程において積分要素M22bが動作することが抑制され、ひいては積分要素M22bに起因して燃圧PFがオーバーシュートする事態が生じることを抑制できる。このため、ピーク電流ベース値Ibや、吐出量補正量ΔIの設定に際して設けられるマージン量が、積分要素M22bに起因して大きくなることを十分に抑制することができ、ひいては、上限ガード処理の対象となるピーク指令値Ipeak*が過度に大きくなることを極力抑制することができる。
(2)筒内噴射弁24を用いたパーシャルリフト噴射を実行した。この場合、フルリフト噴射のみを実行する場合と比較して、噴射量の精度を高く維持する上で要求されるピーク指令値Ipeak*が大きくなる。このため、コイル24aおよびその駆動回路に要求される熱定格が大きくなることを抑制するうえで、上述した上限ガード値Ithの設定処理の利用価値が特に大きい。
<第2の実施形態>
以下、内燃機関の制御装置にかかる第2の実施形態について、第1の実施形態との相違点を中心に、図面を参照しつつ説明する。
上記第1の実施形態では、燃圧PFの制御のために高圧燃料ポンプ40の吐出量がゼロよりも大きい値に操作されていない場合については、上記(ウ)および上記(エ)の条件を満たさないことに基づき、燃圧制御処理部M20による制御が収束していないと判定した。本実施形態は、収束判定に上記(ウ)および上記(エ)の条件を設けない代わりに、燃圧制御処理部M20による燃圧PFの目標燃圧PF*へのフィードバック制御によって高圧燃料ポンプ40から燃料の吐出がなされている旨の条件である(オ)の条件を用いる。
図10に、本実施形態にかかる上限ガード値Ithの設定処理の手順を示す。図10に示す処理は、メモリ94に記憶されたプログラムをCPU92が実行することにより、図3に示した噴射弁操作処理部M30の処理として実現される。図10に示す処理は、たとえば所定の時間周期で繰り返し実行される。なお、図10において、図8に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
図10に示す一連の処理において、CPU92は、まず、上記(ア)および(イ)の条件の論理積が真であるか否かを判定する(S50a)。そして、CPU92は、論理積が真であると判定する場合(S50a:YES)、上記(オ)の条件が成立するか否かを判定する(S50b)。ステップS50aおよびステップS50bの処理は、燃圧制御処理部M20の制御によって燃圧PFが目標燃圧PF*に収束しているか否かを判定する処理である。そして、CPU92は、高圧燃料ポンプ40が操作されている場合には(S50b:YES)、ステップS54の処理に移行する一方、操作されていない場合(S50b:NO)やステップS50aにおいて否定判定する場合には、ステップS52の処理に移行する。
<対応関係>
上記「課題を解決するための手段」の欄に記載した事項と、実施形態における事項との対応関係は、次の通りである。なお、以下において、「メモリ94に記憶されたプログラムに従って所定の処理を実行するCPU92」のことを、記載を簡素化するために、「所定の処理を実行するCPU92」と記載する。指令値算出処理部は、ステップS30〜S40の処理を実行するCPU92に対応し、上限ガード処理部は、ステップS42〜S46の処理を実行するCPU92に対応し、通電処理部は、ステップS10〜S18の処理を実行するCPU92に対応する。また、収束判定処理部は、ステップS50、S50a、S50bの処理を実行するCPU92に対応し、低下処理部は、ステップS54の処理を実行するCPU92に対応する。また、供給路は、高圧デリバリパイプ36に対応し、内燃機関の制御装置は、マイコン90に対応する。
<その他の実施形態>
なお、上記実施形態の各事項の少なくとも1つを、以下のように変更してもよい。
・「燃圧制御処理部について」
開ループ処理部M24としては、指令噴射量Q*に基づき、必要な吐出量を、開ループ操作量Qffとして算出するものに限らない。たとえば、目標燃圧PF*の変化量によって必要となる吐出量分をさらに加えたものを開ループ操作量とするものであってもよい。なお、燃圧制御処理部が開ループ処理部M24を備えることは必須ではない。
フィードバック処理部M22としては、比例要素M22aおよび積分要素M22bからなるものに限らない。たとえば、比例要素M22aおよび積分要素M22bに加えて、微分要素を備えるものであってもよい。
また、積分要素M22bの動作条件としては、目標燃圧PF*が定常である旨の条件に限らない。たとえば、燃圧PFと目標燃圧PF*との差の絶対値が所定値以下となる状態が所定時間継続することとしてもよい。またたとえば、積分要素M22bを常時動作させてもよい。ただしこの場合、目標燃圧PF*が変更された際の積分要素M22bによる燃圧PFのオーバーシュートを抑制する上では、目標燃圧PF*の変化量によって必要となる吐出量分を加味して開ループ操作量Qffを算出することが望ましい。
燃料の温度を検出するセンサ等を備えて燃料の温度を取得可能とし、たとえば、フィードバック処理部M22が、燃料の温度に応じて比例要素M22aのフィードバックゲインを可変設定するようにしてもよい。この場合、体積弾性率が温度に応じて変動することに鑑みてフィードバックゲインを調整することが可能となる。このため、ピーク電流ベース値Ibや、吐出量補正量ΔIに設けるマージン量を小さくすることができることから、上限ガード処理の対象となるピーク指令値Ipeak*が上限ガード値Ithよりも大きくなることを抑制することができ、ひいては、コイル24a等における発熱量をいっそう低減することができる。
・「指令値算出処理部について」
吐出量補正量ΔIの算出処理としては、差圧ΔPFおよび指令噴射量Q*の双方に基づくものに限らない。たとえば差圧ΔPFによらず指令噴射量Q*に基づき、上記実施形態の開ループ操作量Qffに応じた吐出量補正量ΔIを算出してもよい。またたとえば、指令噴射量Q*によらず差圧ΔPFに基づき、上記実施形態のフィードバック操作量Qfbに応じた吐出量補正量ΔIを算出してもよい。これらの場合には、吐出量補正量ΔIを算出するうえでの実際の燃圧PFの変動量を把握する精度が低下するため、吐出量補正量ΔIおよびピーク電流ベース値Ibの少なくとも一方により大きなマージンを設定することが望まれる。このため、上述した上限ガード値Ithの設定の利用価値が特に大きい。
また、たとえば、ステップS14の処理を実行しているときの電流Iが所定値に到達するまでに要する到達時間に基づき、電流Iの検出誤差を補償するための補正量にてピーク電流ベース値Ibを更に補正したものをピーク指令値Ipeak*としてもよい。ここで、検出誤差を補償するための補正量は、ピーク電流ベース値Ibと、基準到達時間との関係を定めたマップを用意しておき、マップから定まる基準到達時間よりも実際の到達時間が長い場合に、ピーク電流ベース値Ibを減量補正し、短い場合にピーク電流ベース値Ibを増量補正することによって実現することができる。
・「上限ガード値について」
収束時ガード値IthLを、リリーフ圧の最低値PRdにおいても筒内噴射弁24による燃料の噴射が可能となる値に設定することは必須ではない。たとえば、目標燃圧PF*が最高値であって且つ、燃圧制御処理部M20による目標燃圧PF*への制御が収束しているときの燃圧PFの最高値が、最低値PRdを下回る量が比較的大きいなら、燃圧PFが最低値PRdである場合に筒内噴射弁24による燃料の噴射が可能となる値よりも小さい値に設定してもよい。
たとえば「指令値算出処理部について」の欄に記載したように、電流Iの検出誤差を補償する補正量を算出する場合、収束時ガード値IthLを、そのベース値に補正量を加算した値としてもよい。ただし、この場合であっても、未収束時ガード値IthHは、電流Iの検出誤差をも含めて固定値とすることが望ましい。もっとも、未収束時ガード値IthHを固定値とすることも必須ではなく、未収束時ガード値IthHを、そのベース値に、上記補正量を加算した値とすることもできる。
また、収束時ガード値IthLを、目標燃圧PF*に応じて可変設定してもよい。具体的には、目標燃圧PF*が低い場合に高い場合よりも収束時ガード値IthLを低い値としてもよい。この場合、収束したと判定する条件を、たとえば、上記(ア)、(イ)、(ウ)および(エ)の条件の論理積が真となる条件や、上記(ア)、(イ)および(ウ)の条件の論理積が真となる条件、上記(ア)および(ウ)の条件の論理積が真となる条件、上記(イ)および(ウ)の条件の論理積が真となる条件とすればよい。
さらに、未収束時ガード値IthHを2段階に設定し、所定時間以上、目標燃圧PF*が所定値以下となって且つ燃圧制御処理部M20による目標燃圧PF*への制御が継続されている場合に、低い値に設定してもよい。
・「収束判定処理部について」
上記(ア)の条件である「目標燃圧PFの変動量が規定量以下である旨の条件」としては、上記実施形態において例示した定義を用いるものに限らない。たとえば、目標平均値PF*aを加重移動平均値とする代わりに、目標燃圧PF*のサンプリング値の所定の複数個による単純移動平均値としてもよい。また、たとえば、目標平均値PF*aと目標燃圧PF*との差を用いることなく、たとえば、所定期間における目標燃圧PF*の最高値と最低値との差が規定量以下である旨の条件としてもよい。これは、たとえば、目標燃圧PF*の今回のサンプリング値とi回前のサンプリング値との差が規定値の半分以下であることが、「1」から「N」までのそれぞれの数を「i」としたときに全ての数について成立する条件とすることもできる。ただし、ここで目標燃圧PF*のサンプリング周期は、目標燃圧PF*の更新周期以上とし、さらに、高圧燃料ポンプ40による燃料の吐出周期以上とすることが望ましい。
目標燃圧PF*の変動量が規定量以下であることを条件に、収束していると判定するものとしては、上記(ア)〜(エ)の条件の論理積が真である場合や、上記(ア)、(イ)、(オ)の条件の論理積が真である場合に収束していると判定するものに限らない。たとえば、(ア)、(イ)および(ウ)の条件の論理積が真である場合に収束していると判定するものであってもよい。またたとえば、(ア)および(ウ)の条件の論理積が真である場合に収束していると判定するものであってもよい。また、上記(ア)の条件を、所定期間における目標燃圧PF*の最高値と最低値との差が規定量以下である旨の条件とする場合、この条件と、上記(オ)の条件との論理積が真である場合に収束していると判定してもよい。
上記(イ)の条件である「燃圧PFの変動量が規定量以下である旨の条件」としては、上記実施形態において例示した定義を用いるものに限らない。たとえば、燃圧平均値PFaを加重移動平均値とする代わりに、燃圧PFのサンプリング値の所定の複数個による単純移動平均値としてもよい。また、たとえば、燃圧平均値PFaと燃圧PFとの差を用いることなく、たとえば、所定期間における燃圧PFの最高値と最低値との差が規定量以下である旨の条件としてもよい。これは、たとえば、燃圧PFの今回のサンプリング値とi回前のサンプリング値との差が規定値の半分以下であることが、「1」から「N」までのそれぞれの数を「i」としたときに全ての数について成立する条件とすることもできる。ただし、ここで燃圧PFのサンプリング周期は、筒内噴射弁24による燃料の噴射周期や高圧燃料ポンプ40による燃料の吐出周期とは異なる周期とし、さらに、筒内噴射弁24による燃料の噴射周期や高圧燃料ポンプ40による燃料の吐出周期よりも短くすることが望ましい。
燃圧PFの変動量が規定量以下であることを条件に、収束していると判定するものとしては、上述したものに限らない。たとえば、(イ)および(ウ)の条件の論理積が真である場合に収束していると判定するものであってもよい。また、上記(イ)の条件を、所定期間における燃圧PFの最高値と最低値との差が規定量以下である旨の条件とする場合、この条件と、上記(オ)の条件との論理積が真である場合に収束していると判定してもよい。
目標燃圧PF*と燃圧PFとの差の絶対値が規定量以下であることを条件に、収束していると判定するものとしては、上述したものに限らない。たとえば、上記(ウ)の条件と上記(オ)の条件との論理積が真である状態が所定時間継続して成立する場合に収束していると判定するものであってもよい。なお、ここでの所定時間は、筒内噴射弁24による燃料の噴射周期や高圧燃料ポンプ40による燃料の吐出周期よりも長くすることが望ましい。
上述した(イ)の条件または(イ)および(オ)の条件に代えて、積分要素M22bの出力値に応じて高圧燃料ポンプが操作されて且つ積分要素M22bの出力値の変動量が規定量以下である旨の条件を用いてもよい。
・「制御装置について」
ECU60が、CPU92およびメモリ94を備えて、上述した各種処理を全てソフトウェア処理するものに限らない。たとえば、目標平均値算出処理部M14や燃圧平均値算出処理部M16、ステップS50,S50a,S50bの処理を、専用のハードウェア(特定用途向け集積回路:ASIC)にて処理するなど、少なくとも一部の処理を実行するASICを備えたものであってもよい。
・「高圧燃料ポンプについて」
上記実施形態では、燃料の吐出周期が、燃料の噴射周期と同一となるものを例示したがこれに限らず、たとえば上記実施形態において、1燃焼サイクルに2度、燃料を吐出するものとしてもよい。
プランジャ43を駆動するカム44がカム軸31に連結されていることは必須ではない。たとえば、クランク軸26に連結されているものであってもよい。この場合であっても、上限ガード処理の対象となるピーク指令値Ipeak*に、たとえばクランク軸26とカム44との取り付け公差に鑑みたマージンや体積弾性率の温度変化に鑑みたマージンなどを設定する場合、上記実施形態の要領で上限ガード値Ithを設定することは有効である。
また、高圧燃料ポンプとしては、内燃機関10の動力で駆動される機関駆動式のポンプに限らず、たとえば電動機を備えた電動式のポンプであってもよい。この場合であっても、たとえば、操作信号に対する実際の吐出量に誤差が生じる場合等には、ガード処理の対象となるピーク指令値Ipeak*には、この誤差を考慮したマージンを設けることが望まれることから、上記実施形態の要領で上限ガード値Ithを設定することは有効である。
・「内燃機関について」
上記実施形態では、目標平均値算出処理部M14による加重移動平均処理で用いる係数と燃圧平均値算出処理部M16による加重移動平均処理で用いる係数とを同一としたがこれに限らない。
筒内噴射弁24がパーシャルリフト噴射を実行することは必須ではない。
目標燃圧設定処理部M10が目標燃圧PF*を可変設定することも必須ではない。
ポート噴射弁14を備えることは必須ではない。また、4気筒の内燃機関に限らない。
10…内燃機関、12…吸気通路、14…ポート噴射弁、16…吸気バルブ、18…シリンダ、20…ピストン、22…燃焼室、24…筒内噴射弁、24a…コイル、25…点火装置、26…クランク軸、28…排気バルブ、29…排気通路、30…燃料タンク、31…カム軸、32…フィードポンプ、33…タイミングチェーン、34…低圧デリバリパイプ、35…可変バルブタイミング装置、36…高圧デリバリパイプ、38…リリーフ弁、40…高圧燃料ポンプ、42…加圧室、43…プランジャ、44…カム、45…電磁スピル弁、46…逆止弁、50…エアフローメータ、52…燃圧センサ、54…クランク角ンサ、56…バッテリ、60…制御装置、62…昇圧回路、64…出力用スイッチング素子、66…保持制御用スイッチング素子、68,70…ダイオード、74…シャント抵抗、90…マイコン、92…CPU、94…メモリ。

Claims (8)

  1. 内燃機関の燃焼室に燃料を噴射する噴射弁であってコイルに通電することで開弁する筒内噴射弁と、前記筒内噴射弁に燃料を供給する供給路と、前記供給路に加圧した燃料を供給する高圧燃料ポンプとを備える内燃機関を制御対象とし、
    前記高圧燃料ポンプを操作して前記供給路内の燃圧の検出値を目標燃圧に制御する燃圧制御処理部と、
    前記燃圧の検出値に基づき、前記コイルを流れる電流のピーク値の指令値であるピーク指令値を算出する指令値算出処理部と、
    前記指令値算出処理部が算出する前記ピーク指令値に対し上限ガード値によるガード処理を施す上限ガード処理部と、
    前記ガード処理が施されたピーク指令値に基づき前記コイルを通電する通電処理部と、
    前記燃圧制御処理部の制御によって前記燃圧の検出値が前記目標燃圧に収束しているか否かを判定する収束判定処理部と、
    前記収束判定処理部が収束していると判定することを条件に、収束していないと判定する場合よりも前記上限ガード値を低下させる低下処理部とを備える内燃機関の制御装置。
  2. 前記供給路には、該供給路内の燃圧がリリーフ圧以上となる場合に開弁して前記供給路内の燃料を前記供給路の外に流出させるリリーフ弁が設けられており、
    前記収束していない場合の前記上限ガード値である未収束時ガード値は、前記供給路内の燃圧が前記リリーフ圧である場合においても前記筒内噴射弁による燃料の噴射が可能となる値に設定されている請求項1記載の内燃機関の制御装置。
  3. 前記目標燃圧を可変設定する目標燃圧設定処理部を備え、
    前記収束判定処理部により収束していると判定される場合に前記低下処理部によって設定される前記上限ガード値である収束時ガード値は、前記目標燃圧が最高値とされているときに前記燃圧制御処理部の制御によって前記燃圧の検出値が前記目標燃圧に収束している場合に前記筒内噴射弁から燃料を噴射することが可能となる値に設定されている請求項2記載の内燃機関の制御装置。
  4. 前記収束判定処理部は、前記燃圧の検出値の変動量が規定量以下であることを条件に、収束していると判定する請求項1〜3のいずれか1項に記載の内燃機関の制御装置。
  5. 前記目標燃圧を可変設定する目標燃圧設定処理部を備え、
    前記収束判定処理部は、前記目標燃圧の変動量が規定量以下であることを条件に、収束していると判定する請求項1〜4のいずれか1項に記載の内燃機関の制御装置。
  6. 前記収束判定処理部は、前記目標燃圧と前記燃圧の検出値との差の絶対値が規定量を超える場合、収束していないと判定する請求項2または3記載の内燃機関の制御装置。
  7. 前記目標燃圧を可変設定する目標燃圧設定処理部を備え、
    前記収束判定処理部は、前記燃圧の検出値が閾値よりも高い場合、収束していないと判定するものであり、
    前記閾値は、前記目標燃圧の最高値よりも所定量大きい請求項2または3記載の内燃機関の制御装置。
  8. 前記収束判定処理部は、前記検出値の前記目標燃圧への制御であって前記高圧燃料ポンプを操作して前記高圧燃料ポンプから燃料を吐出させることによる制御を前記燃圧制御処理部が実行していない場合、前記燃圧制御処理部の制御によっては前記燃圧の検出値が前記目標燃圧に収束していないと判定する請求項2または3に記載の内燃機関の制御装置。
JP2016107278A 2016-05-30 2016-05-30 内燃機関の制御装置 Expired - Fee Related JP6365591B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016107278A JP6365591B2 (ja) 2016-05-30 2016-05-30 内燃機関の制御装置
US15/602,642 US10012172B2 (en) 2016-05-30 2017-05-23 Controller for internal combustion engine and method for controlling internal combustion engine
EP17172866.0A EP3252290B1 (en) 2016-05-30 2017-05-24 Controller for internal combustion engine and method for controlling internal combustion engine
CN201710384569.6A CN107448310B (zh) 2016-05-30 2017-05-26 内燃机的控制装置及该内燃机的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016107278A JP6365591B2 (ja) 2016-05-30 2016-05-30 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2017214832A JP2017214832A (ja) 2017-12-07
JP6365591B2 true JP6365591B2 (ja) 2018-08-01

Family

ID=58772787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016107278A Expired - Fee Related JP6365591B2 (ja) 2016-05-30 2016-05-30 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US10012172B2 (ja)
EP (1) EP3252290B1 (ja)
JP (1) JP6365591B2 (ja)
CN (1) CN107448310B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6929760B2 (ja) * 2017-11-07 2021-09-01 キヤノン株式会社 電子線検出素子、電子顕微鏡、透過型電子顕微鏡
CN108533414B (zh) * 2018-01-23 2019-10-01 江苏大学 一种基于流量阀电流的轨压控制系统及其控制方法
US10900391B2 (en) 2018-06-13 2021-01-26 Vitesco Technologies USA, LLC. Engine control system and method for controlling activation of solenoid valves
US20200025122A1 (en) * 2018-07-17 2020-01-23 Continental Automotive Systems, Inc. Engine control system and method for controlling activation of solenoid valves
JP7314870B2 (ja) * 2020-06-30 2023-07-26 トヨタ自動車株式会社 エンジン装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680515B2 (ja) * 1997-08-28 2005-08-10 日産自動車株式会社 内燃機関の燃料系診断装置
DE19833830A1 (de) * 1998-07-28 2000-02-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils
JP3932474B2 (ja) * 1999-07-28 2007-06-20 株式会社日立製作所 電磁式燃料噴射装置及び内燃機関
JP3505453B2 (ja) * 1999-11-08 2004-03-08 三菱電機株式会社 燃料噴射制御装置
DE10058674A1 (de) * 2000-11-25 2002-06-06 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer und/oder Regelgerät zum Betreiben einer Brennkraftmaschine
JP2004092573A (ja) * 2002-09-03 2004-03-25 Hitachi Ltd 燃料噴射装置および制御方法
JP4806987B2 (ja) * 2005-07-25 2011-11-02 トヨタ自動車株式会社 内燃機関の制御装置
JP4134216B2 (ja) * 2006-10-27 2008-08-20 三菱電機株式会社 内燃機関制御装置
JP4780051B2 (ja) * 2007-07-09 2011-09-28 株式会社デンソー 内燃機関の燃料噴射装置
JP2009085165A (ja) * 2007-10-02 2009-04-23 Denso Corp 内燃機関の制御装置、及び圧力制御システム
JP4926032B2 (ja) * 2007-12-25 2012-05-09 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US20100300412A1 (en) * 2009-06-02 2010-12-02 Keegan Kevin R Method for Optimizing Flow Performance of a Direct Injection Fuel Injector
JP2012102657A (ja) * 2010-11-09 2012-05-31 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JP5282779B2 (ja) * 2010-12-08 2013-09-04 トヨタ自動車株式会社 内燃機関の燃料供給装置
JP5470294B2 (ja) * 2011-02-02 2014-04-16 日立オートモティブシステムズ株式会社 インジェクタ駆動回路
JP2013194620A (ja) * 2012-03-21 2013-09-30 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置
JP5835117B2 (ja) * 2012-06-19 2015-12-24 トヨタ自動車株式会社 内燃機関の燃料供給制御装置
JP5831502B2 (ja) 2013-06-07 2015-12-09 トヨタ自動車株式会社 燃料噴射弁の制御装置
GB2524259A (en) * 2014-03-17 2015-09-23 Gm Global Tech Operations Inc Method of operating a fuel injector
JP6314614B2 (ja) * 2014-04-03 2018-04-25 株式会社デンソー 筒内噴射式内燃機関の噴射制御装置
JP6275605B2 (ja) * 2014-09-17 2018-02-07 愛三工業株式会社 燃料供給装置

Also Published As

Publication number Publication date
EP3252290A1 (en) 2017-12-06
US10012172B2 (en) 2018-07-03
EP3252290B1 (en) 2019-07-31
CN107448310B (zh) 2020-08-28
US20170342937A1 (en) 2017-11-30
CN107448310A (zh) 2017-12-08
JP2017214832A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6365591B2 (ja) 内燃機関の制御装置
JP4101802B2 (ja) 内燃機関の高圧燃料ポンプ制御装置
JP4582191B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP5124612B2 (ja) 内燃機関の高圧燃料ポンプ制御装置
JP5212501B2 (ja) 燃料噴射装置
JP3833540B2 (ja) 内燃機関の燃料供給装置
JP5939227B2 (ja) ポンプ制御装置
JP2010071187A (ja) 燃料噴射制御装置
JP6203159B2 (ja) 燃料噴射装置
JP5045640B2 (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP5382006B2 (ja) 燃料噴射制御装置
WO2019088188A1 (ja) 燃料噴射制御装置
JP5085483B2 (ja) エンジンの高圧燃料ポンプ制御装置
JP5982536B2 (ja) 内燃機関の高圧燃料ポンプ制御装置
JP5810140B2 (ja) 内燃機関の高圧燃料ポンプ制御装置
JP3984446B2 (ja) 内燃機関の制御装置
JP2018115582A (ja) 内燃機関の制御装置
JP5708411B2 (ja) 内燃機関の燃料噴射制御システム
WO2018061472A1 (ja) 車両用制御装置
JP2003314338A (ja) 内燃機関用噴射量制御装置
JP4408936B2 (ja) 筒内噴射内燃機関の高圧燃料ポンプ制御装置
JP5042288B2 (ja) 高圧燃料ポンプの制御装置
JP5575833B2 (ja) 内燃機関の高圧燃料ポンプ制御装置
JP5633422B2 (ja) 蓄圧式燃料噴射装置
JP2019039408A (ja) リリーフ弁の開弁判定装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6365591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees