WO2019088188A1 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
WO2019088188A1
WO2019088188A1 PCT/JP2018/040564 JP2018040564W WO2019088188A1 WO 2019088188 A1 WO2019088188 A1 WO 2019088188A1 JP 2018040564 W JP2018040564 W JP 2018040564W WO 2019088188 A1 WO2019088188 A1 WO 2019088188A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
fuel
fuel pressure
basic
time
Prior art date
Application number
PCT/JP2018/040564
Other languages
English (en)
French (fr)
Inventor
将巳 中村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP18873169.9A priority Critical patent/EP3705709A4/en
Publication of WO2019088188A1 publication Critical patent/WO2019088188A1/ja
Priority to US16/855,104 priority patent/US11193445B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to a fuel injection control device applied to a fuel injection system that performs fuel injection using high pressure fuel stored in a pressure accumulation container.
  • a pressure accumulation container For example, in a gasoline direct injection type internal combustion engine, high pressure fuel stored in a pressure accumulation container is injected from the fuel injection valve to the internal combustion engine.
  • the injection rate at the time of fuel injection depends on the fuel pressure in the pressure accumulation container. Therefore, fuel pressure is detected by a pressure sensor provided in the pressure accumulation container, and the injection condition is adjusted based on the fuel pressure.
  • Patent Document 1 a pressure sensor for detecting the discharge pressure of a fuel pump is installed, and the target fuel pressure set according to the operating state of the internal combustion engine to which the fuel is supplied It is described that the fuel injection time of the fuel injection valve is corrected based on the difference between the fuel pressure and the fuel pressure.
  • the fuel injection amount and the injection start timing are calculated before the fuel injection is performed by the fuel injection valve.
  • the required fuel injection amount and the actual injection amount An error may occur in Also in the technique of Patent Document 1 described above, it is considered that if the fuel pressure changes after fuel is discharged from the fuel pump until fuel injection of the fuel injection valve, an error in the fuel injection amount also occurs.
  • the present disclosure provides a fuel injection control device capable of controlling the injection amount of fuel injected from a fuel injection valve with high accuracy.
  • the present disclosure relates to a pressure accumulation container that holds high pressure fuel, a fuel pump that pumps fuel to the pressure accumulation container, and a fuel injection that injects high pressure fuel accumulated and held in the pressure accumulation container into a cylinder of an internal combustion engine.
  • a fuel injection control device applied to a fuel injection system including a valve and a fuel pressure sensor for detecting a fuel pressure in the pressure accumulation container, wherein the fuel pressure acquisition unit acquires a fuel pressure detected by the fuel pressure sensor, and And an injection control unit for controlling fuel injection by the fuel injection valve, wherein the injection control unit is based on the operating state of the internal combustion engine at a predetermined basic calculation timing set for each combustion cycle of the internal combustion engine.
  • the injection calculation timing and the injection time are first set by the basic calculation unit, and then the injection time is corrected by the correction unit based on the fuel pressure actually measured at the injection start timing. Therefore, it is possible to simultaneously start the injection at an appropriate timing and control the fuel injection amount with high accuracy using the fuel pressure measured at the injection start timing.
  • FIG. 1 is a block diagram showing a fuel injection control device according to an embodiment, and a fuel injection system and an internal combustion engine controlled thereby.
  • FIG. 2 is a diagram showing the relationship between the fuel injection amount and the injection time
  • FIG. 3 is a flowchart of fuel injection control processing executed by the ECU
  • FIG. 4 is a time chart specifically illustrating fuel injection control
  • FIG. 5 is a flowchart of fuel injection control processing in the second embodiment
  • FIG. 6 is a time chart specifically explaining fuel injection control in the second embodiment
  • FIG. 7 is a time chart specifically illustrating fuel injection control in the second embodiment
  • FIG. 8 is a time chart explaining how to refer to the basic fuel pressure difference ⁇ P1
  • FIG. 9 is a time chart explaining how to refer to the basic fuel pressure difference ⁇ P1.
  • the fuel injection control device is a control device that controls a fuel injection system 1 that targets an internal combustion engine 40 that is a direct injection 4-cylinder gasoline engine (multi-cylinder internal combustion engine). is there.
  • the fuel injection system 1 is an accumulator fuel injection system for storing high pressure fuel, and includes a fuel tank 33, a feed pump 32, a high pressure fuel pump 30, an accumulator container 20, a fuel injection valve 10, a fuel pressure sensor 21 and the like. It is equipped with various sensors.
  • the feed pump 32 sucks the fuel from the fuel tank 33 and supplies it to the high pressure fuel pump 30.
  • the high pressure fuel pump 30 pressure feeds the fuel supplied from the fuel tank 33 by the feed pump 32 to the pressure accumulation container 20.
  • the high pressure fuel pump 30 sucks and pressurizes the fuel and supplies it to the pressure accumulation container 20 by a plunger that reciprocates the inside of the housing in conjunction with the crankshaft of the internal combustion engine 40.
  • the high pressure fuel pump 30 discharges the fuel twice, for example, as the crankshaft rotates once.
  • the pressure accumulation container 20 accumulates and holds the fuel supplied from the high pressure fuel pump 30.
  • a fuel pressure sensor 21 is installed in the pressure accumulation container 20, and the fuel pressure sensor 21 detects the fuel pressure (actual pressure) in the pressure accumulation container 20.
  • the fuel injection valve 10 for the number of cylinders is connected to the pressure accumulation container 20 via a fuel pipe.
  • the fuel injection valve 10 injects the fuel accumulated and held in the pressure accumulation container 20 into each cylinder.
  • the fuel injection valve 10 is a known electromagnetic or piezo driven valve that opens and closes the nozzle needle by controlling the fuel pressure in the control chamber that applies pressure to the nozzle needle in the valve closing direction. As the opening period of the fuel injection valve 10 becomes longer, the injection amount to be injected becomes larger.
  • the fuel injection valve 10 provided for each of the four cylinders performs fuel injection in a predetermined sequence of 180 ° CA cycles.
  • the high pressure fuel pump 30 also discharges fuel in the same 180 ° CA cycle. That is, the fuel injection of the fuel injection valve 10 and the fuel discharge of the high pressure fuel pump 30 are synchronized, and the fuel injection valve 10 of each cylinder has a temporal relationship of the fuel injection with respect to the fuel discharge by the high pressure fuel pump 30 Is also the same.
  • the ECU 50 is an electronic control unit configured by a well-known microcomputer or the like including a CPU, memories such as a ROM and a RAM, and I / O and the like, and the fuel injection control unit is configured by the ECU 50.
  • the detection signal of the fuel pressure sensor 21 described above the detection signal of the rotation speed sensor 41 for detecting the engine rotation speed and the detection signal of the air quantity sensor 42 for detecting the intake air quantity as the engine load are input to the ECU 50 Ru.
  • the ECU 50 controls the driving of the fuel injection valve 10 and the high pressure fuel pump 30 by executing a program stored in the ROM.
  • the ECU 50 sets the target fuel pressure based on the engine operating state such as the engine rotational speed and the engine load, and the fuel discharge by the high-pressure fuel pump 30 based on the deviation between the target fuel pressure and the actual fuel pressure detected by the fuel pressure sensor 21. Feedback control the amount.
  • the ECU 50 has a fuel pressure acquisition unit 51 for acquiring the fuel pressure detected by the fuel pressure sensor 21 and an injection control unit 52 for controlling fuel injection by the fuel injection valve 10 of each cylinder as functions related to fuel injection control.
  • the injection control unit 52 has a basic calculation unit 53.
  • the basic calculation unit 53 calculates the required injection amount and the injection start timing at predetermined basic calculation timing set for each combustion cycle of the internal combustion engine 40 based on the engine operating state such as the engine rotational speed and the engine load.
  • the injection time Ti which is the energization time for the fuel injection valve 10, in other words, the time width of the injection pulse is calculated.
  • the required injection amount, the injection start timing, and the injection time Ti are calculated with, for example, 600 ° CA before compression TDC as the basic calculation timing for each cylinder, but the period from the basic calculation timing to the injection start timing In this case, it is conceivable that a change in fuel pressure resulting from fuel discharge or the like of the high pressure fuel pump 30 may occur. And there is a concern that an error may occur in the fuel injection amount due to the change in fuel pressure.
  • the change amount of the injection amount Q with respect to the change amount of the injection time Ti is larger than that in the normal area.
  • the amount of change in the injection amount Q relative to the amount of change in the injection time Ti increases. That is, in the small injection region, the deviation of the injection amount with respect to the deviation of the injection time Ti is larger than that in the normal region, and the deviation of the injection amount Q tends to be larger as the fuel pressure is higher. There is.
  • the injection control unit 52 has a correction unit 54.
  • the correction unit 54 corrects the injection time Ti based on the fuel pressure Pb acquired by the fuel pressure acquisition unit 51 at the injection start timing after the basic calculation timing. In this case, at the basic calculation timing that is the injection amount calculation timing, the required injection amount is converted to time while the fuel pressure Pa at the basic calculation timing is reflected, and the injection time Ti of the fuel injection valve 10 is calculated. The injection time Ti is corrected based on the fuel pressure Pb at the injection start timing.
  • the correction time Ti When the injection time Ti is corrected based on the fuel pressure Pb at the injection start timing, it is considered that the correction may not be completed before the current fuel end (the fall of the injection pulse). For example, when the injection time Ti is short, it is considered that the correction time can not be secured and the correction may not be completed by the end of the injection time Ti.
  • the ECU 50 is provided with the storage processing unit 55, and the storage processing unit 55 sets the difference between the fuel pressure Pa acquired at the basic calculation timing and the fuel pressure Pb acquired at the injection start timing to the basic fuel pressure difference ⁇ P1.
  • the basic fuel pressure difference .DELTA.P1 is stored in the memory 56.
  • the memory 56 is a storage unit made of, for example, a RAM.
  • the basic calculation unit 53 calculates the injection time Ti based on the fuel pressure Pa acquired at the basic calculation timing and the basic fuel pressure difference ⁇ P1. This corresponds to estimating the fuel pressure at the injection start timing at the basic calculation timing, and calculating the injection time Ti by reflecting the estimation result. In this case, even if the correction of the injection time Ti after the start of injection is not completed, the injection time can be calculated using a value closer to the fuel pressure Pb at the injection start timing of the current cycle.
  • FIG. 3 shows a flowchart of a fuel injection control process that the ECU 50 executes. The present process is repeatedly executed by the ECU 50 in a predetermined cycle.
  • step S101 it is determined whether it is at the basic calculation timing now.
  • the basic calculation timing is set as a predetermined timing (for example, 600 ° CA before compression TDC) for each combustion cycle of each cylinder. If it is a basic calculation timing, it will progress to Step S102, and if it is not a basic calculation timing, it will progress to Step S109.
  • step S102 the fuel pressure detected by the fuel pressure sensor 21 is acquired as the fuel pressure Pa.
  • step S103 the required injection amount is calculated based on the engine rotational speed and the engine load.
  • step S104 it is determined whether or not the basic fuel pressure difference ⁇ P1 stored in the memory 56 is read out. At this time, if the basic fuel pressure difference ⁇ P1 is stored in the memory 56 and the basic fuel pressure difference ⁇ P1 is calculated in the previous combustion cycle, the basic fuel pressure difference ⁇ P1 can be read out, and step S104 is affirmed. Then, the process proceeds to step S105. Further, even if the basic fuel pressure difference ⁇ P1 is not stored in the memory 56 or the basic fuel pressure difference ⁇ P1 is stored, if it is not calculated in the previous combustion cycle, the basic fuel pressure difference ⁇ P1 should be read out. If not, step S104 is denied and the process proceeds to step S106. In step S104, it may be determined whether the basic fuel pressure difference ⁇ P1 calculated in the previous combustion cycle for the same fuel injection valve 10 is stored in the memory 56.
  • step S105 the injection time Ti is calculated based on the result of time conversion of the required injection amount and the fuel pressure Pa and the basic fuel pressure difference ⁇ P1. At this time, the injection time Ti is calculated using the addition value (Pa + ⁇ P1) of the fuel pressure Pa and the basic fuel pressure difference ⁇ P1. In step S106, the injection time Ti is calculated based on the result of time conversion of the required injection amount and the fuel pressure Pa.
  • step S107 the injection start timing is calculated based on the engine rotational speed and the engine load.
  • step S108 the injection pulse set by the injection time Ti is set in the output circuit. As a result, the injection pulse is raised at a desired injection start timing, and thereafter, the injection pulse is lowered when the injection time Ti has elapsed.
  • step S109 it is determined whether it is the injection start timing at present. If it is the injection start timing, it will progress to Step S110, and if it is not the injection start timing, this processing will once be ended.
  • step S110 the fuel pressure detected by the fuel pressure sensor 21 is acquired as the fuel pressure Pb.
  • the fuel pressure Pb may be one that is detected before the fuel pressure decreases from the start of the fuel injection at or immediately before the injection start timing.
  • step S111 it is determined whether or not the correction of the injection time Ti based on the fuel pressure Pb is possible within the current injection time Ti. If the correction is possible, the process proceeds to step S112. If the correction is not possible, the process skips step S112 and proceeds to step S113. At this time, it is preferable to determine whether the correction is possible according to the length of the injection time Ti. For example, when the injection time Ti is smaller than a predetermined value, it is determined that the correction is not possible because the time required for the correction process is insufficient.
  • step S112 the injection time Ti is corrected based on the fuel pressure Pb.
  • correction may be made to replace the injection time Ti calculated based on the fuel pressure Pb, or calculated based on the basic fuel pressure difference ⁇ P1 which is the difference between the fuel pressure Pa at the basic calculation timing and the fuel pressure Pb at the injection start timing.
  • the injection time Ti is calculated reflecting the basic fuel pressure difference ⁇ P1 in the memory 56 at the basic calculation timing (step S105), the basic fuel pressure difference ⁇ P1 in the memory 56 and the current basic fuel pressure It is preferable that the injection time Ti be corrected by the difference from the difference ⁇ P1. Also, the process of step S111 can be omitted. For example, if the injection time Ti is corrected based on the fuel pressure Pb without performing the process of step S111, the injection is ended based on the injection time Ti after correction if the correction is in time, and the correction is not in time. The injection ends based on the injection time Ti before correction.
  • FIG. 4 shows a time chart of fuel injection performed in a predetermined cylinder (first cylinder) of the internal combustion engine 40.
  • first cylinder predetermined cylinder
  • FIG. 4 the boundaries of the first to fourth cylinders and the crank angle numbers are shown, and the stroke, injection pulse, required injection amount calculation timing, and injection time Ti calculation timing for the first cylinder are shown. . Also, changes in fuel pressure are shown.
  • the crank angle numbers are assigned, for example, as numbers from 0 to 23 every 30 ° CA within a period in which the crankshaft rotates twice (within 720 ° CA).
  • the calculation timing of the required injection amount and the calculation timing of the injection time Ti are shown at positions corresponding to the crank angle numbers.
  • the fuel pressure repeatedly rises and falls. That is, the fuel pressure increases at a timing corresponding to the fuel discharge of the high pressure fuel pump 30, and the fuel pressure decreases at a timing corresponding to the fuel injection of each fuel injection valve 10.
  • time t2 is the injection start timing, and at the time t2, the fuel pressure Pb is acquired, and the injection time Ti is corrected based on the fuel pressure Pb.
  • the fuel pressure increase due to the fuel discharge of the high pressure fuel pump 30 occurs twice, and the fuel pressure decrease due to the fuel injection of the other cylinders (specifically, the second cylinder) occurs once. . Therefore, although the fuel pressure Pa and Pb have a difference, the correction of the injection time Ti according to the fuel pressure difference is performed.
  • the injection time Ti when the injection time Ti is relatively short, it may be considered that the correction based on the fuel pressure Pb is not completed. Therefore, at time t2 which is the injection start timing, the basic fuel pressure difference ⁇ P1 which is the difference between the fuel pressure Pa at the basic calculation timing and the fuel pressure Pb at the injection start timing is stored in the memory 56, and the next basic injection timing (equivalent to time t1) Then, the injection time Ti is calculated based on the fuel pressure Pa and the basic fuel pressure difference ⁇ P1. Thus, even if Ti correction based on the fuel pressure Pb can not be performed after the start of the subsequent injection, the correction can be performed prospectively.
  • the basic calculation unit 53 first sets the injection start timing and the injection time Ti, and then the correction unit 54 corrects the injection time Ti based on the fuel pressure Pb actually measured at the injection start timing. Therefore, it is possible to simultaneously start the injection at an appropriate timing and control the fuel injection amount with high accuracy using the fuel pressure measured at the injection start timing.
  • the deviation amount of the injection amount Q becomes larger than the deviation amount of the injection time Ti, but this is particularly effective in fuel injection in such a micro injection region It is considered to be.
  • the injection time Ti is corrected based on the fuel pressure Pb at the injection start timing, it is considered that the correction may not be completed by the end of the current fuel (falling of the injection pulse).
  • the difference between the fuel pressure Pa obtained at the basic calculation timing and the fuel pressure Pb obtained at the injection start timing is stored as the basic fuel pressure difference ⁇ P1 in the memory 56, and at the next basic calculation timing, the fuel pressure at that time. Since the injection time Ti is calculated based on Pa and the basic fuel pressure difference ⁇ P1 stored in the memory 56, the fuel injection accuracy is properly optimized even if the correction of the injection time Ti is not completed. Is guaranteed.
  • the injection time Ti is calculated using the basic fuel pressure difference ⁇ P1 calculated in the previous combustion cycle of the same fuel injection valve 10 as the basic fuel pressure difference ⁇ P1. If it is the basic fuel pressure difference ⁇ P1 calculated in the previous combustion cycle of the same fuel injection valve 10, it is considered that there is no difference from the current basic fuel pressure difference ⁇ P1 or the difference is as small as possible. Therefore, appropriate fuel injection can be performed for transient fuel pressure changes.
  • the ECU 50 makes it possible to carry out multiple fuel injections as split injections during one combustion cycle of the internal combustion engine 40.
  • the split injection is implemented in the form of two-stage injection, three-stage injection, four-stage injection or the like.
  • three-stage injection is performed as split injection, it is conceivable that two fuel injections are performed in the intake stroke and one fuel injection is performed in the compression stroke.
  • the storage processing unit 55 in the ECU 50 calculates the basic fuel pressure difference ⁇ P1 and stores it in the memory 56, as well as the fuel pressure difference before and after the fuel injection for each split injection. It is calculated as ⁇ P 2 and stored in the memory 56. Further, the basic calculation unit 53 determines the injection time Ti based on the fuel pressure Pa acquired by the fuel pressure acquisition unit 51 at the basic calculation timing, and the basic fuel pressure difference ⁇ P1 and the before and after fuel pressure difference ⁇ P2 stored in the memory 56. calculate.
  • the storage processing unit 55 uses the fuel pressure acquired by the fuel pressure acquisition unit 51 at the injection start timing of each injection in divided injection and the fuel pressure acquisition unit 51 at the injection start timing of the next injection.
  • the difference between the acquired fuel pressure and the acquired fuel pressure may be calculated as a fuel pressure difference ⁇ P2 before and after injection.
  • the memory processing unit 55 calculates the fuel pressure difference ⁇ P21 and ⁇ P22 between the first and second-stage injections. That is, the difference between the fuel pressure Pb1 acquired at the injection start timing of the first-stage injection and the fuel pressure Pb2 acquired at the injection start timing of the second-stage injection is calculated as the first-injection post-injection fuel pressure difference ⁇ P21 The difference between the fuel pressure Pb2 acquired at the injection start timing of the stage injection and the fuel pressure Pb3 acquired at the injection start timing of the third stage injection is calculated as the injection front-rear fuel pressure difference ⁇ P22 of the second stage injection.
  • FIG. 5 shows a flowchart of the fuel injection control process in the present embodiment.
  • the present process assumes three-stage split injection, and is repeatedly executed by the ECU 50 at a predetermined cycle when the three-stage split injection is performed.
  • FIG. 5 is a partial modification of the above-described FIG. 3, and description of the same processing as FIG. 3 will be simplified.
  • step S203 the fuel pressure detected by the fuel pressure sensor 21 is obtained as the fuel pressure Pa and the required injection amount is calculated on the condition that it is the basic calculation timing at present. The same as S101 to S103).
  • the required injection amount is divided to calculate the injection amount of each stage.
  • step S204 it is determined whether or not the basic fuel pressure difference ⁇ P1 and the fuel pressure differences ⁇ P21 and ⁇ P22 before and after the injection stored in the memory 56 are read out.
  • step S204 it is determined whether or not the basic fuel pressure difference ⁇ P1 and the fuel pressure differences ⁇ P21 and ⁇ P22 before and after the injection stored in the memory 56 are read out.
  • step S204 is affirmed and the process proceeds to step S205.
  • step S204 it may be determined whether or not the basic fuel pressure difference ⁇ P1 and the fuel pressure differences ⁇ P21 and ⁇ P22 before and after the injection calculated for the same fuel injection valve 10 in the previous combustion cycle are stored in the memory 56.
  • step S205 the injection time Ti1, Ti2, Ti3 of each injection is calculated based on the result of time conversion of the required injection amount, the fuel pressure Pa, the basic fuel pressure difference ⁇ P1, and the before and after fuel pressure ⁇ P21, ⁇ P22.
  • the injection time Ti1 of the first stage injection is calculated as an addition value (Pa + ⁇ P1) of the fuel pressure Pa and the basic fuel pressure difference ⁇ P1.
  • the injection time Ti2 of the second stage injection is calculated as an addition value (Pa + ⁇ P1 + ⁇ P21) of the fuel pressure Pa, the basic fuel pressure difference ⁇ P1 and the before and after fuel pressure difference ⁇ P21.
  • the injection time Ti3 of the third stage injection is calculated as the addition value (Pa + ⁇ P1 + ⁇ P21 + ⁇ P22) of the fuel pressure Pa, the basic fuel pressure difference ⁇ P1 and the before and after fuel pressure differences ⁇ P21, ⁇ P22.
  • the injection time Ti is calculated based on the result of time conversion of the required injection amount and the fuel pressure Pa (similar to step S106 in FIG. 3).
  • steps S207 and S208 the injection start timing is calculated, and the injection pulse is set in the output circuit (similar to steps S107 and S108 in FIG. 3).
  • step S209 it is determined whether any injection start timing of each injection in the multistage injection is at present. If it is any injection start timing, it will progress to step S210, and if it is not any injection start timing, this processing will be once ended.
  • step S210 the fuel pressure detected by the fuel pressure sensor 21 is acquired as the fuel pressure Pb every injection.
  • the fuel pressure Pb1 is acquired in the first stage injection
  • the fuel pressure Pb2 is acquired in the second stage injection
  • the fuel pressure Pb3 is acquired in the third stage injection.
  • a difference between the before and after fuel pressure difference ⁇ P2 is calculated.
  • the injection front-rear fuel pressure difference ⁇ P21 of the first stage injection is calculated by “Pb2-Pb1”
  • the injection front-rear fuel pressure difference ⁇ P22 of the second stage injection is calculated by “Pb3-Pb2”.
  • step S212 it is determined whether or not correction of the injection time Ti based on the fuel pressure Pb is possible for the current injection. If the correction is possible, the process proceeds to step S213. If the correction is not possible, the process skips step S213 and proceeds to step S214. As in step S111, step S212 can be omitted.
  • step S213 the injection time Ti is corrected based on the fuel pressure Pb.
  • the injection time Ti1 is corrected based on the fuel pressure Pb1 for the first stage injection
  • the injection time Ti2 is corrected based on the fuel pressure Pb2 for the second stage injection
  • the fuel pressure Pb3 is calculated for the third stage injection.
  • the injection time Ti3 is corrected based on.
  • correction may be made to replace the injection time Ti calculated based on the fuel pressure Pb, or correction may be performed using the change amount of the injection time Ti calculated based on the basic fuel pressure difference ⁇ P1 etc. It is also good.
  • step S214 the basic fuel pressure difference ⁇ P1 and the fuel injection pressure difference ⁇ P2 before and after the injection are stored in the memory 56, and then the present process is ended.
  • FIG. 6 shows the discharge period of the high-pressure fuel pump 30 and the fuel injection period of the fuel injection valve 10 of each cylinder in accordance with the crank angle number.
  • two intake stroke injections (first and second injections (injections 1 and 2 shown in FIG. 6) as the first stage injection and the second stage injection are performed as the first cylinder divided injection, and the third stage injection is performed. It is assumed that one compression stroke injection (injection 3 shown in FIG. 6) is performed.
  • time t10 is the basic injection timing, and at the time t10, the fuel pressure Pa is acquired, and the required injection amount, the injection amount of each stage, and the injection time Ti of each stage are calculated. Further, the timing corresponding to crank angle numbers 14 and 16 in the intake stroke is calculated as the injection start timing of the first stage injection and the second stage injection, and the timing corresponding to crank angle number 20 in the compression stroke is 3 It is calculated as the injection start timing of the stage injection.
  • the fuel pressure Pb1 is acquired, and the fuel pressure Pb1 (one stage based on the basic fuel pressure difference ⁇ P1 when using the change amount of the injection time Ti)
  • the injection time Ti1 of the eye injection is corrected.
  • the basic fuel pressure difference ⁇ P1 is stored in the memory 56.
  • time t12 which is the injection start timing of the second stage injection
  • the fuel pressure Pb2 is acquired, and the fuel pressure Pb2 (if the change amount of the injection time Ti is used, the basic fuel pressure difference ⁇ P1, the fuel pressure difference ⁇ P21 before and after the injection)
  • the injection time Ti2 of the second stage injection is corrected on the basis of.
  • the fuel pressure difference ⁇ P21 between the first and second-stage injections is stored in the memory 56.
  • time t13 which is the injection start timing of the third stage injection
  • the fuel pressure Pb3 is acquired, and the fuel pressure Pb3 (if the change amount of the injection time Ti is used, the basic fuel pressure difference .DELTA.P1, the before and after fuel pressure .DELTA.P21,
  • the injection time Ti3 of the third injection is corrected based on ⁇ P22).
  • the fuel pressure difference ⁇ P22 before and after the second stage injection is stored in the memory 56.
  • the memory processing unit 55 determines the fuel pressures Pb1 and Pb2 acquired by the fuel pressure acquisition unit 51 at the injection start timing of each injection in split injection, and the fuel pressures Pc1 and Pc2 acquired by the fuel pressure acquisition unit 51 at the injection end timing. The difference between the fuel The operation in such a case is shown in FIG.
  • the fuel injection time Ti is corrected using the fuel pressure difference before and after each fuel injection, that is, the fuel pressure difference ⁇ P2 before and after each fuel injection, in addition to the basic fuel pressure difference ⁇ P1 based on the fuel pressure Pa at the basic calculation timing. Proper fuel injection can be realized even when multistage injection is performed.
  • the fuel injection valve 10 In the fuel injection valve 10 among the fuel injection valves 10 of each cylinder of the internal combustion engine 40, the fuel injection valve 10 having the same timing relationship with the fuel discharge of the high pressure fuel pump 30 has the same fuel pressure increase due to the fuel discharge of the high pressure fuel pump 30 The tendency of the fuel pressure fluctuation due to the fuel pressure decrease due to the fuel injection of the fuel injection valve 10 becomes the same. Therefore, among the fuel injection valves 10 in which the temporal relationship of fuel injection to fuel discharge becomes the same, using the basic fuel pressure difference ⁇ P1 calculated at the time of fuel injection in the fuel injection valve 10 immediately before the injection order It becomes possible to calculate the period.
  • the basic calculation unit 53 calculates the injection time Ti in the subsequent fuel injection using the basic fuel pressure difference ⁇ P1 calculated in the previous fuel injection between the cylinders whose combustion order is continuous in the back and forth direction. .
  • the outline is shown in FIG. In FIG. 8, at the basic calculation timing of fuel injection in the first cylinder, the first cylinder is calculated using the fuel pressure Pa and the basic fuel pressure difference ⁇ P1 (# 2 ⁇ P1) calculated in the second cylinder, which is the immediately preceding cylinder.
  • the injection time Ti of is calculated.
  • the fuel discharge cycle of the high pressure fuel pump 30 and the fuel injection cycle of the fuel injection valve 10 in each cylinder are different.
  • the fuel discharge cycle of the high-pressure fuel pump 30 is 360 ° CA cycle
  • the fuel injection cycle of the fuel injection valve 10 in each cylinder is 180 ° CA cycle.
  • the combustion order is # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2
  • the fuel injection valves 10 of # 1 and # 4 and the fuel injection valves 10 of # 3 and # 2 are respectively high-pressure fuel pumps
  • the fuel injection valve 10 becomes the same in time relation of fuel injection to fuel discharge by 30. Therefore, the basic calculation unit 53 calculates the injection time Ti using, for example, the basic fuel pressure difference ⁇ P1 immediately before # 4 at the basic calculation timing for # 1.
  • the injection time Ti may be calculated using the basic fuel pressure difference ⁇ P1 for the past n times (n> 2) including the immediately preceding basic fuel pressure difference ⁇ P1.
  • the outline is shown in FIG. In FIG. 9, for example, an average value of the basic fuel pressure difference ⁇ P1 for n times is calculated, and the injection time Ti is calculated using the average value.
  • the fuel injection control device of the present disclosure is applicable to diesel engines as well as gasoline engines. That is, application to a fuel injection control device that controls a fuel injection valve of a direct injection type diesel engine is possible.

Abstract

燃料噴射制御装置(50)は、燃料を蓄圧保持する蓄圧容器(20)と、蓄圧容器に対し燃料を圧送する燃料ポンプ(30)と、蓄圧容器内に蓄圧保持された高圧燃料を内燃機関(40)の気筒内に噴射する燃料噴射弁(11)と、蓄圧容器内の燃圧を検出する燃圧センサ(21)とを備える燃料噴射システム(1)に適用され、燃圧センサにより検出された燃圧を取得する燃圧取得部(51)と、燃料噴射弁による燃料噴射を制御する噴射制御部(52)とを備え、噴射制御部は、内燃機関の1燃焼サイクルごとに設定された所定の基本算出タイミングで内燃機関の運転状態に基づいて要求噴射量と噴射開始タイミングとを算出するとともに基本算出タイミングで燃圧取得部により取得された燃圧に基づいて噴射時間を算出する基本算出部(53)と、噴射開始タイミングで燃圧取得部により取得された燃圧に基づいて噴射時間を補正する補正部(54)とを備える。

Description

燃料噴射制御装置 関連出願の相互参照
 本出願は、2017年11月2日に出願された日本出願番号2017-212611号に基づくもので、ここにその記載内容を援用する。
 本開示は、蓄圧容器に蓄えられた高圧燃料を用いて燃料噴射を行う燃料噴射システムに適用される燃料噴射制御装置に関するものである。
 例えばガソリン直噴式の内燃機関では、蓄圧容器内に蓄えられた高圧燃料が燃料噴射弁から内燃機関に噴射される。この場合、燃料噴射時の噴射率は、蓄圧容器内の燃圧に依存する。そこで、蓄圧容器に設けた圧力センサにより燃圧を検出し、その燃圧に基づいて噴射条件を調整することが行われている。
 例えば、特許文献1には、燃料ポンプの吐出圧力を検出する圧力センサを設置し、燃料の供給先である内燃機関の運転状態に応じて設定された目標燃圧と、圧力センサによって検出された実際の燃圧との差に基づいて、燃料噴射弁の燃料噴射時間を補正することが記載されている。
特開平11-36935号公報
 ところで、燃料噴射制御では、一般に燃料噴射弁により燃料噴射が行われるよりも前に、燃料噴射量や噴射開始タイミングが算出される。この場合、例えば燃料噴射量を算出した後であって、かつ実際に燃料噴射が行われるまでの間に、燃料ポンプによる燃料圧送が行われると、要求される燃料噴射量と実際の噴射量とに誤差が生じることが考えられる。上述した特許文献1の技術においても、燃料ポンプから燃料が吐出された後、燃料噴射弁の燃料噴射までに燃圧が変化すると、やはり燃料噴射量の誤差が生じると考えられる。
 上記に鑑み、本開示は、燃料噴射弁から噴射される燃料の噴射量を高精度に制御できる燃料噴射制御装置を提供する。
 本開示は、高圧燃料を蓄圧保持する蓄圧容器と、前記蓄圧容器に対して燃料を圧送する燃料ポンプと、前記蓄圧容器内に蓄圧保持された高圧燃料を内燃機関の気筒内に噴射する燃料噴射弁と、前記蓄圧容器内の燃圧を検出する燃圧センサと、を備える燃料噴射システムに適用される燃料噴射制御装置であって、前記燃圧センサにより検出された燃圧を取得する燃圧取得部と、前記燃料噴射弁による燃料噴射を制御する噴射制御部と、を備え、前記噴射制御部は、前記内燃機関の1燃焼サイクルごとに設定された所定の基本算出タイミングで、前記内燃機関の運転状態に基づいて要求噴射量と噴射開始タイミングとを算出するとともに、前記基本算出タイミングで前記燃圧取得部により取得された燃圧に基づいて噴射時間を算出する基本算出部と、前記噴射開始タイミングで前記燃圧取得部により取得された燃圧に基づいて、前記噴射時間を補正する補正部と、を備える。
 本開示によれば、基本算出部によって先に噴射開始タイミングと噴射時間とを設定し、その後、補正部によって噴射開始タイミングに実測した燃圧に基づいて、噴射時間を補正する。このため、適切なタイミングで噴射を開始することと、噴射開始タイミングで実測した燃圧を用いて燃料の噴射量を高精度に制御することとを両立することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態に係る燃料噴射制御装置と、これによって制御される燃料噴射システム及び内燃機関を示すブロック図であり、 図2は、燃料噴射量と噴射時間との関係図であり、 図3は、ECUが実行する燃料噴射制御処理のフローチャートであり、 図4は、燃料噴射制御を具体的に説明するタイムチャートであり、 図5は、第2実施形態における燃料噴射制御処理のフローチャートであり、 図6は、第2実施形態における燃料噴射制御を具体的に説明するタイムチャートであり、 図7は、第2実施形態における燃料噴射制御を具体的に説明するタイムチャートであり、 図8は、基本燃圧差ΔP1の参照のしかたを説明するタイムチャートであり、 図9は、基本燃圧差ΔP1の参照のしかたを説明するタイムチャートである。
 以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
 (第1実施形態)
 図1に示すように、本実施形態に係る燃料噴射制御装置は、直噴式4気筒ガソリンエンジン(多気筒内燃機関)である内燃機関40を噴射対象にした燃料噴射システム1を制御する制御装置である。燃料噴射システム1は、高圧燃料を蓄える蓄圧式燃料噴射システムであり、燃料タンク33と、フィードポンプ32と、高圧燃料ポンプ30と、蓄圧容器20と、燃料噴射弁10と、燃圧センサ21等の各種センサとを備えている。
 フィードポンプ32は、燃料タンク33から燃料を吸入して高圧燃料ポンプ30に供給する。高圧燃料ポンプ30は、燃料タンク33からフィードポンプ32によって供給された燃料を蓄圧容器20に圧送する。高圧燃料ポンプ30は、内燃機関40のクランク軸に連動してハウジング内を往復駆動するプランジャにより、燃料を吸入及び加圧して蓄圧容器20に供給する。高圧燃料ポンプ30は、例えばクランク軸が1回転するのに伴い2度燃料を吐出する。
 蓄圧容器20は、高圧燃料ポンプ30から供給された燃料を蓄圧保持する。蓄圧容器20には燃圧センサ21が設置されており、燃圧センサ21は、蓄圧容器20内の燃料圧力(実圧力)を検出する。
 蓄圧容器20には、燃料配管を介して気筒数分の燃料噴射弁10が接続されている。燃料噴射弁10は、蓄圧容器20内に蓄圧保持された燃料を各気筒に噴射する。燃料噴射弁10は、ノズルニードルに閉弁方向に圧力を加える制御室の燃料圧力を制御することによりノズルニードルを開閉させる公知の電磁駆動式又はピエゾ駆動式の弁である。燃料噴射弁10の開弁期間が長くなるほど、噴射される噴射量は多くなる。
 内燃機関40では、4つの気筒ごとに設けられた燃料噴射弁10が所定順序の180°CA周期で燃料噴射を行う。一方で、高圧燃料ポンプ30も同じ180°CA周期で燃料吐出を行う。つまり、燃料噴射弁10の燃料噴射と高圧燃料ポンプ30の燃料吐出とは同期しており、各気筒の燃料噴射弁10は、高圧燃料ポンプ30による燃料吐出に対する燃料噴射の期間的な関係がいずれも同じになっている。
 ECU50は、CPU、ROM及びRAM等のメモリ、並びにI/O等を備える周知のマイクロコンピュータ等によって構成された電子制御装置であり、ECU50により、燃料噴射制御装置が構成されている。ECU50には、上述した燃圧センサ21の検出信号の他、エンジン回転速度を検出する回転速度センサ41の検出信号や、エンジン負荷としての吸入空気量を検出する空気量センサ42の検出信号が入力される。ECU50は、ROMに記憶されているプログラムを実行することにより、燃料噴射弁10や高圧燃料ポンプ30の駆動を制御する。ECU50は、エンジン回転速度やエンジン負荷等のエンジン運転状態に基づいて目標燃圧を設定するとともに、目標燃圧と燃圧センサ21により検出された実燃圧との偏差に基づいて、高圧燃料ポンプ30による燃料吐出量をフィードバック制御する。
 また、ECU50は、燃料噴射制御に関する機能として、燃圧センサ21により検出された燃圧を取得する燃圧取得部51と、各気筒の燃料噴射弁10による燃料噴射を制御する噴射制御部52とを備えている。噴射制御部52は基本算出部53を有している。基本算出部53は、内燃機関40の1燃焼サイクルごとに設定された所定の基本算出タイミングで、エンジン回転速度やエンジン負荷等のエンジン運転状態に基づいて、要求噴射量と噴射開始タイミングとを算出するとともに、基本算出タイミングで燃圧取得部51により取得された燃圧Paに基づいて、燃料噴射弁10に対する通電時間である噴射時間Ti、換言すれば噴射パルスの時間幅を算出する。
 ところで、燃料噴射に際しては、気筒ごとに例えば圧縮TDC前600°CAを基本算出タイミングとして、要求噴射量や噴射開始タイミング、噴射時間Tiが算出されるが、基本算出タイミングから噴射開始タイミングまでの期間において、高圧燃料ポンプ30の燃料吐出等に起因する燃圧変化が生じることが考えられる。そして、こうした燃圧変化に起因して燃料噴射量に誤差が生じることが懸念される。
 ちなみに、燃料噴射量の誤差による不都合は、いわゆる微小噴射領域で顕著になると考えられる。なお、通常領域(微小噴射領域よりも噴射量が多い領域)では、燃料噴射弁10が備える弁体を最大リフト量に到達させて行う、いわゆるフルリフト噴射が行われ、微小噴射領域では、弁体を最大リフト量に到達させないで行うパーシャルリフト噴射が行われる。
 つまり、図2に示すように、微小噴射領域(パーシャルリフト領域)では、通常領域に比べて噴射時間Tiの変化量に対する噴射量Qの変化量が大きくなる。また、微小噴射領域では、燃圧が高くなるほど、噴射時間Tiの変化量に対する噴射量Qの変化量が大きくなる。すなわち、微小噴射領域では、通常領域と比較して、噴射時間Tiのずれ量に対する噴射量のずれ量が大きくなり、さらには、燃圧が高いほど、その噴射量Qのずれ量がより大きくなる傾向がある。
 本実施形態では、噴射制御部52は補正部54を有している。補正部54は、基本算出タイミングよりも後の噴射開始タイミングで燃圧取得部51により取得された燃圧Pbに基づいて、噴射時間Tiの補正を実施する。この場合、噴射量算出タイミングである基本算出タイミングでは、その基本算出タイミングでの燃圧Paが反映されつつ要求噴射量が時間換算されることにより燃料噴射弁10の噴射時間Tiが算出され、さらにその後、噴射開始タイミングでの燃圧Pbに基づいて噴射時間Tiが補正される。
 また、噴射開始タイミングでの燃圧Pbに基づいて噴射時間Tiが補正される場合には、その補正が今回の燃料終了(噴射パルスの立ち下がり)までに完了しないことがあると考えられる。例えば、噴射時間Tiが短めである場合に、補正時間が確保できず、噴射時間Tiの終わりまでに補正が完了しないことがあり得ると考えられる。
 そこで本実施形態では、ECU50に記憶処理部55を設け、その記憶処理部55が、基本算出タイミングで取得された燃圧Paと、噴射開始タイミングで取得された燃圧Pbとの差を基本燃圧差ΔP1として算出し、その基本燃圧差ΔP1をメモリ56に記憶する。メモリ56は例えばRAMよりなる記憶部である。そして、メモリ56に基本燃圧差ΔP1が記憶されている場合に、基本算出部53は、基本算出タイミングで取得された燃圧Paと、基本燃圧差ΔP1とに基づいて、噴射時間Tiを算出する。これは、言うなれば基本算出タイミングの時点で、噴射開始タイミングでの燃圧を推定し、その推定結果を反映して噴射時間Tiを算出するものに相当する。この場合、仮に噴射開始後における噴射時間Tiの補正が完了しない状況にあっても、現サイクルの噴射開始タイミングにおける燃圧Pbにより近い値を用いて、噴射時間を算出することができる。
 図3に、ECU50が実行する燃料噴射制御処理のフローチャートを示す。本処理は、ECU50により所定周期で繰り返し実行される。
 まず、ステップS101では、今現在、基本算出タイミングであるか否かを判定する。基本算出タイミングは、各気筒の燃焼サイクルごとの所定タイミング(例えば圧縮TDC前600°CA)として設定されている。基本算出タイミングであれば、ステップS102に進み、基本算出タイミングでなければ、ステップS109に進む。ステップS102では、燃圧センサ21により検出された燃圧を燃圧Paとして取得する。
 ステップS103では、エンジン回転速度やエンジン負荷に基づいて要求噴射量を算出する。
 続くステップS104では、メモリ56に記憶されている基本燃圧差ΔP1を読み出すか否かを判定する。このとき、メモリ56に基本燃圧差ΔP1が記憶されており、かつその基本燃圧差ΔP1が前回の燃焼サイクルで算出されたものであれば、基本燃圧差ΔP1が読み出せるとして、ステップS104を肯定してステップS105に進む。また、メモリ56に基本燃圧差ΔP1が記憶されていないか、又は基本燃圧差ΔP1が記憶されていても、それが前回の燃焼サイクルで算出されたものでなければ、基本燃圧差ΔP1が読み出せないとして、ステップS104を否定してステップS106に進む。上記ステップS104では、同じ燃料噴射弁10について前回の燃焼サイクルで算出した基本燃圧差ΔP1がメモリ56に記憶されているか否かが判定されるとよい。
 ステップS105では、要求噴射量を時間換算した結果と、燃圧Pa及び基本燃圧差ΔP1とに基づいて噴射時間Tiを算出する。このとき、燃圧Pa及び基本燃圧差ΔP1の加算値(Pa+ΔP1)を用いて、噴射時間Tiを算出する。また、ステップS106では、要求噴射量を時間換算した結果と燃圧Paとに基づいて噴射時間Tiを算出する。
 その後、ステップS107では、エンジン回転速度やエンジン負荷に基づいて噴射開始タイミングを算出する。ステップS108では、噴射時間Tiにより設定される噴射パルスを出力回路にセットする。これにより、所望の噴射開始タイミングにおいて噴射パルスが立ち上げられ、その後、噴射時間Tiの経過時に噴射パルスが立ち下げられる。
 また、ステップS109では、今現在、噴射開始タイミングであるか否かを判定する。噴射開始タイミングであれば、ステップS110に進み、噴射開始タイミングでなければ、本処理を一旦終了する。ステップS110では、燃圧センサ21により検出された燃圧を燃圧Pbとして取得する。燃圧Pbは、噴射開始タイミング又はその直前において、燃料噴射の開始より燃圧が低下する前に検出されたものであればよい。
 続くステップS111では、今回の噴射時間Ti内において、燃圧Pbに基づく噴射時間Tiの補正が可能であるか否かを判定する。補正が可能である場合には、ステップS112に進み、補正が不可能である場合には、ステップS112を読み飛ばしてステップS113に進む。このとき、噴射時間Tiの長さに応じて、補正の可否を判定するとよい。例えば噴射時間Tiが所定値よりも小さい場合に、補正処理に要する時間が不足するとして、補正不可と判定する。
 ステップS112では、燃圧Pbに基づいて噴射時間Tiの補正を実施する。このとき、燃圧Pbに基づいて算出した噴射時間Tiに置き換える補正を行ってもよいし、基本算出タイミングの燃圧Paと噴射開始タイミングの燃圧Pbとの差である基本燃圧差ΔP1に基づいて算出した噴射時間Tiの変化量を用いて補正してもよい。例えば、Pa<Pbである場合には、基本算出タイミングで想定した噴射率よりも実際の噴射率が大きくなるため、噴射時間Tiを短縮すべく、噴射終了タイミング(噴射パルスの立ち下がりタイミング)を進角側に補正する。
 なお、基本算出タイミングにおいて、メモリ56内の基本燃圧差ΔP1を反映して噴射時間Tiが算出されている場合(ステップS105)には、そのメモリ56内の基本燃圧差ΔP1と、今回の基本燃圧差ΔP1との相違分により噴射時間Tiが補正されるとよい。また、ステップS111の処理を省略することも可能である。例えば、ステップS111の処理を行わないで燃圧Pbに基づいて噴射時間Tiの補正を行った場合、補正が間に合えば補正後の噴射時間Tiに基づいて噴射が終了し、補正が間に合わなかった場合には、補正前の噴射時間Tiに基づいて噴射が終了する。
 その後、ステップS113では、現サイクルでの基本燃圧差ΔP1(=Pb-Pa)をメモリ56に記憶し、その後本処理を終了する。
 図4には、内燃機関40の所定の気筒(第1気筒)において行われる燃料噴射のタイムチャートを示す。図4では、第1~第4気筒のバウンダリとクランク角番号とが示されるとともに、第1気筒についての行程、噴射パルス、要求噴射量の算出時期、噴射時間Tiの算出時期が示されている。また、燃圧の変化が示されている。クランク角番号は、クランク軸が2回転する期間内(720°CA内)で例えば30°CAごとに0~23の番号として付されている。なお図4では、説明の便宜上、要求噴射量の算出時期、噴射時間Tiの算出時期を、クランク角番号に対応する位置に示している。
 図4では、燃圧が上昇及び下降を繰り返している。つまり、高圧燃料ポンプ30の燃料吐出に相当するタイミングでは燃圧が上昇し、各燃料噴射弁10の燃料噴射に相当するタイミングでは燃圧が下降する。
 時刻t1が基本噴射タイミングであり、その時刻t1では、燃圧Paが取得されるとともに、要求噴射量や噴射時間Tiが算出される。また、吸気行程においてクランク角番号=14に相当するタイミングが、噴射開始タイミングとして算出される。
 また、時刻t2が噴射開始タイミングであり、その時刻t2では、燃圧Pbが取得されるとともに、その燃圧Pbに基づいて噴射時間Tiが補正される。このとき、時刻t1~t2の期間では、高圧燃料ポンプ30の燃料吐出による燃圧上昇が2回生じ、かつ他気筒(具体的には第2気筒)の燃料噴射による燃圧下降が1回生じている。そのため、燃圧Pa,Pbには差分が生じているが、その燃圧差分に応じた噴射時間Tiの補正が行われる。
 ここで、例えば噴射時間Tiが比較的短い場合には、燃圧Pbに基づく補正が完了しないことが考えられる。そのため、噴射開始タイミングである時刻t2では、基本算出タイミングの燃圧Paと噴射開始タイミングの燃圧Pbとの差である基本燃圧差ΔP1がメモリ56に記憶され、次回の基本噴射タイミング(時刻t1相当)では、燃圧Pa及び基本燃圧差ΔP1に基づいて噴射時間Tiが算出される。これにより、仮にその後の噴射開始後において燃圧Pbに基づくTi補正が実施できなくても、その補正を見込みで実施できることとなる。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 基本算出部53によって先に噴射開始タイミングと噴射時間Tiとを設定し、その後、補正部54によって噴射開始タイミングに実測した燃圧Pbに基づいて、噴射時間Tiを補正する。このため、適切なタイミングで噴射を開始することと、噴射開始タイミングで実測した燃圧を用いて燃料の噴射量を高精度に制御することとを両立することができる。
 特に微小噴射領域(パーシャルリフト領域)での燃料噴射では、噴射時間Tiのずれ量に対して噴射量Qのずれ量が大きくなることが考えられるが、こうした微小噴射領域での燃料噴射において特に有効であると考えられる。
 噴射開始タイミングでの燃圧Pbに基づいて噴射時間Tiを補正する場合、その補正が今回の燃料終了(噴射パルスの立ち下がり)までに完了しないこともあると考えられる。この点、基本算出タイミングで取得された燃圧Paと、噴射開始タイミングで取得された燃圧Pbとの差を基本燃圧差ΔP1としてメモリ56に記憶しておき、次回の基本算出タイミングでは、その時の燃圧Paと、メモリ56に記憶されている基本燃圧差ΔP1とに基づいて噴射時間Tiを算出するようにしたため、仮に噴射時間Tiの補正が完了しなくても、燃料噴射精度の適正化を図ることが保障される。
 基本算出タイミングにおいて、基本燃圧差ΔP1として、同じ燃料噴射弁10の前回の燃焼サイクルで算出した基本燃圧差ΔP1を用いて、噴射時間Tiを算出するようにした。同じ燃料噴射弁10の前回の燃焼サイクルで算出した基本燃圧差ΔP1であれば、今回の基本燃圧差ΔP1との差異が無いか、又は差異が極力小さいと考えられる。そのため、過渡的な燃圧変化に対して、適切な燃料噴射を実施できる。
 (第2実施形態)
 次に、第2実施形態について上述した第1実施形態との相違点を中心に説明する。本実施形態では、ECU50は、内燃機関40の1燃焼サイクル中に複数回の燃料噴射を分割噴射として実施することを可能としている。分割噴射は、2段噴射、3段噴射、4段噴射等の形態で実施される。例えば、分割噴射として3段噴射を実施する場合には、吸気行程で2回の燃料噴射が行われるとともに、圧縮行程で1回の燃料噴射が行われることが考えられる。
 分割噴射を実施する場合には、互いに異なる気筒の燃料噴射弁10において、燃料噴射期間が重複することが考えられる。また、燃料噴射期間と高圧燃料ポンプ30による燃料圧送期間とが重複することが考えられる。そのため、基本算出タイミングの時点で多段噴射の各段の噴射での燃圧を把握(推定)するには、基本算出タイミングでの燃圧からの変化量だけでなく、各噴射で生じる燃圧降下量を加味することが望ましい。
 そこで本実施形態では、ECU50内の記憶処理部55は、上記の基本燃圧差ΔP1を算出してメモリ56に記憶するのに加え、分割噴射の各燃料噴射における前後の燃圧差を噴射前後燃圧差ΔP2として算出してメモリ56に記憶する。また、基本算出部53は、基本算出タイミングで燃圧取得部51により取得された燃圧Paと、メモリ56に記憶されている基本燃圧差ΔP1及び噴射前後燃圧差ΔP2とに基づいて、噴射時間Tiを算出する。
 噴射前後燃圧差ΔP2の算出に関して、記憶処理部55は、分割噴射における各噴射の噴射開始タイミングで燃圧取得部51によって取得された燃圧と、その次の噴射の噴射開始タイミングで燃圧取得部51によって取得された燃圧との差を、噴射前後燃圧差ΔP2として算出するとよい。
 例えば3段の分割噴射を実施する場合、記憶処理部55は、1段目噴射及び2段目噴射について噴射前後燃圧差ΔP21,ΔP22を算出する。すなわち、1段目噴射の噴射開始タイミングで取得した燃圧Pb1と、2段目噴射の噴射開始タイミングで取得した燃圧Pb2との差を、1段目噴射の噴射前後燃圧差ΔP21として算出し、2段目噴射の噴射開始タイミングで取得した燃圧Pb2と、3段目噴射の噴射開始タイミングで取得した燃圧Pb3との差を、2段目噴射の噴射前後燃圧差ΔP22として算出する。
 図5に、本実施形態における燃料噴射制御処理のフローチャートを示す。本処理は、3段の分割噴射を想定し、その3段の分割噴射が実施される場合において、ECU50により所定周期で繰り返し実行される。なお、図5は、上述の図3の一部を変更したものであり、図3と同じ処理については説明を簡略にする。
 図5において、ステップS201~S203では、今現在、基本算出タイミングであることを条件に、燃圧センサ21により検出された燃圧を燃圧Paとして取得するとともに、要求噴射量を算出する(図3のステップS101~S103と同様)。なお、分割噴射では特に、ステップS203において、要求噴射量が分割されて各段の噴射量が算出される。
 続くステップS204では、メモリ56に記憶されている基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22を読み出すか否かを判定する。このとき、メモリ56に基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22が記憶されており、かつそれらが前回の燃焼サイクルで算出されたものであれば、基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22が読み出せるとして、ステップS204を肯定してステップS205に進む。また、メモリ56に基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22が記憶されていないか、又は基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22が記憶されていても、それが前回の燃焼サイクルで算出されたものでなければ、ステップS204を否定してステップS206に進む。上記ステップS204では、同じ燃料噴射弁10について前回の燃焼サイクルで算出した基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22がメモリ56に記憶されているか否かが判定されるとよい。
 ステップS205では、要求噴射量を時間換算した結果と、燃圧Paと、基本燃圧差ΔP1と、噴射前後燃圧ΔP21,ΔP22とに基づいて、各噴射の噴射時間Ti1,Ti2,Ti3を算出する。このとき、1段目噴射の噴射時間Ti1は、燃圧Pa及び基本燃圧差ΔP1の加算値(Pa+ΔP1)として算出される。2段目噴射の噴射時間Ti2は、燃圧Pa、基本燃圧差ΔP1及び噴射前後燃圧差ΔP21の加算値(Pa+ΔP1+ΔP21)として算出される。3段目噴射の噴射時間Ti3は、燃圧Pa、基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22の加算値(Pa+ΔP1+ΔP21+ΔP22)として算出される。ステップS206では、要求噴射量を時間換算した結果と、燃圧Paとに基づいて噴射時間Tiを算出する(図3のステップS106と同様)。
 その後、ステップS207,S208では、噴射開始タイミングを算出するとともに、噴射パルスを出力回路にセットする(図3のステップS107,S108と同様)。
 また、ステップS209では、今現在、多段噴射における各噴射のいずれかの噴射開始タイミングであるか否かを判定する。いずれかの噴射開始タイミングであれば、ステップS210に進み、どの噴射開始タイミングでなければ、本処理を一旦終了する。
 ステップS210では、噴射ごとに、燃圧センサ21により検出された燃圧を燃圧Pbとして取得する。このとき、1段目噴射の場合に燃圧Pb1を取得し、2段目噴射の場合に燃圧Pb2を取得し、3段目噴射の場合に燃圧Pb3を取得する。また、ステップS211では、噴射前後燃圧差ΔP2を差算出する。このとき、「Pb2-Pb1」により、1段目噴射の噴射前後燃圧差ΔP21を算出し、「Pb3-Pb2」により、2段目噴射の噴射前後燃圧差ΔP22を算出する。
 続くステップS212では、今回の噴射について、燃圧Pbに基づく噴射時間Tiの補正が可能であるか否かを判定する。補正が可能である場合には、ステップS213に進み、補正が不可能である場合には、ステップS213を読み飛ばしてステップS214に進む。なお、ステップS111と同様に、ステップS212を省略することも可能である。
 ステップS213では、燃圧Pbに基づいて噴射時間Tiの補正を実施する。このとき、1段目噴射については、燃圧Pb1に基づいて噴射時間Ti1を補正し、2段目噴射については、燃圧Pb2に基づいて噴射時間Ti2を補正し、3段目噴射については、燃圧Pb3に基づいて噴射時間Ti3を補正する。なお、ステップS112と同様に、燃圧Pbに基づいて算出した噴射時間Tiに置き換える補正を行ってもよいし、基本燃圧差ΔP1等に基づいて算出した噴射時間Tiの変化量を用いて補正してもよい。
 その後、ステップS214では、基本燃圧差ΔP1と噴射前後燃圧差ΔP2とをメモリ56に記憶し、その後本処理を終了する。
 次に、図6のタイムチャートを用いて、分割噴射を行う場合の噴射時間Tiの補正をより具体的に説明する。図6には、クランク角番号に合わせて、高圧燃料ポンプ30の吐出期間と各気筒の燃料噴射弁10の燃料噴射期間とが示されている。
 多段噴射が実施される場合には、初段の燃料噴射から終段の燃料噴射までの期間において燃料噴射が分散して実施されるため、ポンプ吐出期間との重複や、他気筒の燃料噴射との重複が生じ易くなっている。例えば、クランク角番号=4では、ポンプ吐出と第4気筒の燃料噴射とが重複し、クランク角番号=10では、ポンプ吐出と第2気筒の燃料噴射とが重複している。また、クランク角番号=2では、第3気筒の燃料噴射と第4気筒の燃料噴射とが重複し、クランク角番号=8では、第4気筒の燃料噴射と第2気筒の燃料噴射とが重複している。このため、燃圧変化が複雑化する。つまり、自気筒の燃料噴射以外の要因で燃圧変化が生じることが考えられる。
 また、図6では、第1気筒の分割噴射として、1段目噴射及び2段目噴射である2回の吸気行程噴射(図6に示す噴射1,2)を行い、3段目噴射である1回の圧縮行程噴射(図6に示す噴射3)を行うこととしている。
 図6では、時刻t10が基本噴射タイミングであり、その時刻t10では、燃圧Paが取得されるとともに、要求噴射量や各段の噴射量、各段の噴射時間Tiが算出される。また、吸気行程においてクランク角番号=14,16に相当するタイミングが、1段目噴射、2段目噴射の噴射開始タイミングとして算出され、圧縮行程においてクランク角番号=20に相当するタイミングが、3段目噴射の噴射開始タイミングとして算出される。
 その後、1段目噴射の噴射開始タイミングである時刻t11では、燃圧Pb1が取得されるとともに、その燃圧Pb1(噴射時間Tiの変化量を用いる場合には、基本燃圧差ΔP1)に基づいて1段目噴射の噴射時間Ti1が補正される。また、時刻t11では、基本燃圧差ΔP1がメモリ56に記憶される。
 その後、2段目噴射の噴射開始タイミングである時刻t12では、燃圧Pb2が取得されるとともに、その燃圧Pb2(噴射時間Tiの変化量を用いる場合には、基本燃圧差ΔP1、噴射前後燃圧差ΔP21)に基づいて2段目噴射の噴射時間Ti2が補正される。また、時刻t12では、1段目噴射の噴射前後燃圧差ΔP21がメモリ56に記憶される。
 さらに、3段目噴射の噴射開始タイミングである時刻t13では、燃圧Pb3が取得されるとともに、その燃圧Pb3(噴射時間Tiの変化量を用いる場合には、基本燃圧差ΔP1、噴射前後燃圧ΔP21,ΔP22)に基づいて3目噴射の噴射時間Ti3が補正される。また、時刻t13では、2段目噴射の噴射前後燃圧差ΔP22がメモリ56に記憶される。
 ここで、各噴射での噴射時間Ti1~Ti3が比較的短い場合には、燃圧Pb1~Pb3に基づく補正が完了しないことが考えられる。そのため、噴射開始タイミングである時刻t11~t13では、基本燃圧差ΔP1や噴射前後燃圧ΔP21,ΔP22がメモリ56に記憶され、次回の基本噴射タイミング(時刻t10相当)では、燃圧Pa、基本燃圧差ΔP1及び噴射前後燃圧差ΔP21,ΔP22に基づいて各噴射の噴射時間Ti1~Ti3が算出される。これにより、仮にその後における各噴射の噴射開始後において燃圧Pb1~Pb3に基づくTi補正が実施できなくても、その補正を見込みで実施できることとなる。
 1段目噴射及び2段目噴射での噴射前後燃圧ΔP21,ΔP22を以下の手法で算出することも可能である。この場合、記憶処理部55は、分割噴射における各噴射の噴射開始タイミングで燃圧取得部51によって取得された燃圧Pb1,Pb2と、噴射終了タイミングで燃圧取得部51によって取得された燃圧Pc1,Pc2との差を、噴射前後燃圧差ΔP21,ΔP22として算出し記憶する。かかる場合における動作を図7に示す。
 図7は、図6の一部を変更したタイムチャートであり、その相違部分は、噴射前後燃圧ΔP21,ΔP22の算出に関する部分のみである。すなわち、図7では、1段目噴射の開始時及び終了時においてそれぞれ燃圧がPb1,Pc1として取得され、その差として噴射前後燃圧差ΔP21が算出される(ΔP21=Pc1-Pb1)。また、2段目噴射の開始時及び終了時においてそれぞれ燃圧がPb2,Pc2として取得され、その差として噴射前後燃圧差ΔP22が算出される(ΔP22=Pc2-Pb2)。
 1燃焼サイクル中に複数回の燃料噴射を実施する分割噴射では、初段の燃料噴射から終段の燃料噴射までの期間において燃料噴射が分散して実施されるため、その間の燃圧変動が生じ易く、かつ他の気筒での燃料噴射との絡み等から、複雑な燃圧変動が生じることが考えられる。この点、基本算出タイミングでの燃圧Paを基準とする基本燃圧差ΔP1に加え、各燃料噴射の前後の燃圧差、すなわち噴射前後燃圧差ΔP2を用いて、噴射時間Tiを補正する構成にしたため、多段噴射の実施時においても適正な燃料噴射を実現できる。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 ・内燃機関40の各気筒の燃料噴射弁10のうち高圧燃料ポンプ30の燃料吐出に対する燃料噴射の時期的な関係が同じになる燃料噴射弁10では、高圧燃料ポンプ30の燃料吐出による燃圧増加と燃料噴射弁10の燃料噴射による燃圧低下とによる燃圧変動の傾向が同じになる。そのため、燃料吐出に対する燃料噴射の期間的な関係が同じになる燃料噴射弁10のうち、噴射順序が直前となる燃料噴射弁10での燃料噴射時に算出された基本燃圧差ΔP1を用いて、噴射期間を算出することが可能となる。この場合、同じ気筒での燃料噴射どうしで基本燃圧差ΔP1を用いる場合よりも、異なる気筒での燃料噴射どうしで基本燃圧差ΔP1を用いる方が、より近いタイミングでの基本燃圧差ΔP1を用いることができ、過渡的な燃圧変化に対して、適切な燃料噴射を実施できる。
 具体的には、基本算出部53は、燃焼順序が前後に連続する気筒どうしで、前の燃料噴射で算出された基本燃圧差ΔP1を用いて、後の燃料噴射での噴射時間Tiを算出する。図8にその概要を示す。図8では、第1気筒での燃料噴射に際し、その基本算出タイミングにおいて、燃圧Paと、直前気筒である第2気筒で算出された基本燃圧差ΔP1(#2ΔP1)とを用いて、第1気筒の噴射時間Tiが算出される。
 ここで、上記実施形態で記載したように、高圧燃料ポンプ30の燃料吐出の周期と、各気筒における燃料噴射弁10の燃料噴射の周期とが同じ(いずれも180°CA周期)であれば、直前気筒の基本燃圧差ΔP1を用いることが可能である。
 ただし、高圧燃料ポンプ30の燃料吐出の周期と、各気筒における燃料噴射弁10の燃料噴射の周期とが異なる場合も想定される。例えば、高圧燃料ポンプ30の燃料吐出の周期が360°CA周期、各気筒における燃料噴射弁10の燃料噴射の周期が180°CA周期となる場合である。この場合、燃焼順序が#1→#3→#4→#2であれば、#1及び#4の燃料噴射弁10と、#3及び#2の燃料噴射弁10とは、それぞれ高圧燃料ポンプ30による燃料吐出に対する燃料噴射の時期的な関係が同じになる燃料噴射弁10となる。したがって、基本算出部53は、例えば#1についての基本算出タイミングでは、#4における直前の基本燃圧差ΔP1を用いて噴射時間Tiを算出する。
 ・高圧燃料ポンプ30による燃料吐出に対する燃料噴射の時期的な関係が同じになる燃料噴射弁10について噴射順序が直前となる燃料噴射弁10での基本燃圧差ΔP1を用いる場合に、基本算出部53は、直前の基本燃圧差ΔP1を含む過去n回分(n>2)の基本燃圧差ΔP1を用いて噴射時間Tiを算出してもよい。図9にその概要を示す。図9では、例えばn回分の基本燃圧差ΔP1の平均値を算出し、その平均値を用いて噴射時間Tiが算出される。
 ・本開示の燃料噴射制御装置は、ガソリンエンジン以外にディーゼルエンジンにおいても適用可能である。すなわち、直噴式ディーゼルエンジンの燃料噴射弁を制御する燃料噴射制御装置への適用が可能となっている。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (7)

  1.  高圧燃料を蓄圧保持する蓄圧容器(20)と、前記蓄圧容器に対して燃料を圧送する燃料ポンプ(30)と、前記蓄圧容器内に蓄圧保持された高圧燃料を内燃機関(40)の気筒内に噴射する燃料噴射弁(11)と、前記蓄圧容器内の燃圧を検出する燃圧センサ(21)と、を備える燃料噴射システム(1)に適用される燃料噴射制御装置(50)であって、
     前記燃圧センサにより検出された燃圧を取得する燃圧取得部(51)と、
     前記燃料噴射弁による燃料噴射を制御する噴射制御部(52)と、を備え、
     前記噴射制御部は、
     前記内燃機関の1燃焼サイクルごとに設定された所定の基本算出タイミングで、前記内燃機関の運転状態に基づいて要求噴射量と噴射開始タイミングとを算出するとともに、前記基本算出タイミングで前記燃圧取得部により取得された燃圧に基づいて噴射時間を算出する基本算出部(53)と、
     前記噴射開始タイミングで前記燃圧取得部により取得された燃圧に基づいて、前記噴射時間を補正する補正部(54)と、
    を備える燃料噴射制御装置。
  2.  前記基本算出タイミングで前記燃圧取得部により取得された燃圧と、前記噴射開始タイミングで前記燃圧取得部により取得された燃圧との差を基本燃圧差として算出し、その基本燃圧差を記憶部(56)に記憶する記憶処理部(55)を備え、
     前記基本算出部は、前記基本算出タイミングで前記燃圧取得部により取得された燃圧と、前記記憶部に記憶されている前記基本燃圧差とに基づいて、前記噴射時間を算出する請求項1に記載の燃料噴射制御装置。
  3.  前記基本算出部は、前記記憶部に記憶されている前記基本燃圧差として、同じ燃料噴射弁の前回の燃焼サイクルで算出した基本燃圧差を用いて、前記噴射時間を算出する請求項2に記載の燃料噴射制御装置。
  4.  前記内燃機関は多気筒内燃機関であり、気筒ごとの前記燃料噴射弁が所定順序で燃料を噴射する燃料噴射システムに適用され、
     前記気筒ごとの燃料噴射弁には、前記燃料ポンプによる燃料吐出に対する燃料噴射の時期的な関係が同じになる燃料噴射弁が含まれており、
     前記基本算出部は、前記燃料吐出に対する前記燃料噴射の時期的な関係が同じになる燃料噴射弁のうち、噴射順序が直前となる燃料噴射弁での燃料噴射時に算出された前記基本燃圧差を用いて、前記噴射時間を算出する請求項2に記載の燃料噴射制御装置。
  5.  前記噴射制御部は、前記内燃機関の1燃焼サイクル中に複数回の燃料噴射を分割噴射として実施するものであり、
     前記記憶処理部は、前記分割噴射の各燃料噴射における前後の燃圧差を噴射前後燃圧差として算出して前記記憶部に記憶し、
     前記基本算出部は、前記基本算出タイミングで前記燃圧取得部により取得された燃圧と、前記記憶部に記憶されている前記基本燃圧差及び前記噴射前後燃圧差とに基づいて、前記噴射時間を算出する請求項2乃至4のいずれか1項に記載の燃料噴射制御装置。
  6.  前記記憶処理部は、前記分割噴射における各噴射の噴射開始タイミングで前記燃圧取得部によって取得された燃圧と、その次の噴射の噴射開始タイミングで前記燃圧取得部によって取得された燃圧との差を、前記噴射前後燃圧差として算出し記憶する請求項5に記載の燃料噴射制御装置。
  7.  前記記憶処理部は、前記分割噴射における各噴射の噴射開始タイミングで前記燃圧取得部によって取得された燃圧と、噴射終了タイミングで前記燃圧取得部によって取得された燃圧との差を、前記噴射前後燃圧差として算出し記憶する請求項5に記載の燃料噴射制御装置。
PCT/JP2018/040564 2017-11-02 2018-10-31 燃料噴射制御装置 WO2019088188A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18873169.9A EP3705709A4 (en) 2017-11-02 2018-10-31 FUEL INJECTION CONTROL DEVICE
US16/855,104 US11193445B2 (en) 2017-11-02 2020-04-22 Fuel injection control device and method for controlling fuel injection valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017212611A JP6863236B2 (ja) 2017-11-02 2017-11-02 燃料噴射制御装置
JP2017-212611 2017-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/855,104 Continuation US11193445B2 (en) 2017-11-02 2020-04-22 Fuel injection control device and method for controlling fuel injection valve

Publications (1)

Publication Number Publication Date
WO2019088188A1 true WO2019088188A1 (ja) 2019-05-09

Family

ID=66331987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040564 WO2019088188A1 (ja) 2017-11-02 2018-10-31 燃料噴射制御装置

Country Status (4)

Country Link
US (1) US11193445B2 (ja)
EP (1) EP3705709A4 (ja)
JP (1) JP6863236B2 (ja)
WO (1) WO2019088188A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214920A1 (en) * 2019-04-18 2020-10-22 Cummins Inc. Apparatus, system, and method for thermal management by deploying engine fueling on demand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136935A (ja) 1997-07-24 1999-02-09 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JP2006329013A (ja) * 2005-05-24 2006-12-07 Denso Corp 筒内噴射式の内燃機関の制御装置
JP2010043614A (ja) * 2008-08-14 2010-02-25 Hitachi Ltd エンジンの制御装置
JP2016089722A (ja) * 2014-11-05 2016-05-23 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2017212611A (ja) 2016-05-25 2017-11-30 株式会社Nexpoint 監視カメラシステムによる監視方法及び動画分割装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991574B2 (ja) * 1992-09-14 1999-12-20 株式会社デンソー 内燃機関の蓄圧式燃料噴射制御装置
DE4306252C1 (de) * 1993-03-01 1994-05-19 Daimler Benz Ag Verfahren zum Betreiben einer luftverdichtenden mehrzylindrigen Einspritzbrennkraftmaschine
DE19726757B4 (de) * 1997-06-24 2005-04-14 Robert Bosch Gmbh Verfahren zur Steuerung und/oder Regelung einer mit mehreren Brennräumen versehenen Brennkraftmaschine
US6488012B1 (en) * 2000-08-29 2002-12-03 Ford Global Technologies, Inc. Method and apparatus for determining fuel pressure
DE10342130A1 (de) * 2003-09-12 2005-04-07 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4428427B2 (ja) * 2007-08-31 2010-03-10 株式会社デンソー 燃料噴射特性検出装置及び燃料噴射指令補正装置
JP4678397B2 (ja) * 2007-10-15 2011-04-27 株式会社デンソー 燃料噴射状態検出装置
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
DE102010054997B4 (de) * 2010-12-17 2012-09-13 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Erkennung von irregulären Verbrennungsvorgängen bei einer Verbrennungskraftmaschine
JP6658592B2 (ja) 2017-02-13 2020-03-04 トヨタ自動車株式会社 燃料噴射制御装置
JP6922713B2 (ja) * 2017-12-13 2021-08-18 トヨタ自動車株式会社 燃料ポンプの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136935A (ja) 1997-07-24 1999-02-09 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JP2006329013A (ja) * 2005-05-24 2006-12-07 Denso Corp 筒内噴射式の内燃機関の制御装置
JP2010043614A (ja) * 2008-08-14 2010-02-25 Hitachi Ltd エンジンの制御装置
JP2016089722A (ja) * 2014-11-05 2016-05-23 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2017212611A (ja) 2016-05-25 2017-11-30 株式会社Nexpoint 監視カメラシステムによる監視方法及び動画分割装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705709A4 *

Also Published As

Publication number Publication date
EP3705709A1 (en) 2020-09-09
EP3705709A4 (en) 2020-12-09
US11193445B2 (en) 2021-12-07
JP2019085892A (ja) 2019-06-06
US20200248644A1 (en) 2020-08-06
JP6863236B2 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
JP4424395B2 (ja) 内燃機関の燃料噴射制御装置
JP5212501B2 (ja) 燃料噴射装置
US6722345B2 (en) Fuel injection system for internal combustion engine
JP4582191B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP5141723B2 (ja) 内燃機関の燃料噴射制御装置
JP4609524B2 (ja) 燃圧制御装置、及び燃圧制御システム
US10012172B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
KR100612784B1 (ko) 축압식 연료 분사 시스템
WO2019088188A1 (ja) 燃料噴射制御装置
JP5370348B2 (ja) 内燃機関の燃料噴射制御装置
JP5126296B2 (ja) 燃料噴射状態検出装置
JP5565435B2 (ja) 燃料噴射制御装置
JP4470975B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP5182337B2 (ja) 燃圧センサの検出ずれ判定装置
JP4470976B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP2008280851A (ja) 燃料噴射特性検出装置及びエンジン制御システム
JP4407620B2 (ja) 燃料噴射制御装置
US10760515B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP4753078B2 (ja) 内燃機関の制御装置
JP4788700B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP4232426B2 (ja) 内燃機関用噴射量制御装置
JP2003227394A (ja) 蓄圧式燃料噴射装置
JP5633422B2 (ja) 蓄圧式燃料噴射装置
JP2000303891A (ja) 内燃機関の燃料噴射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018873169

Country of ref document: EP

Effective date: 20200602