JP6359254B2 - 光電式エンコーダ - Google Patents

光電式エンコーダ Download PDF

Info

Publication number
JP6359254B2
JP6359254B2 JP2013181784A JP2013181784A JP6359254B2 JP 6359254 B2 JP6359254 B2 JP 6359254B2 JP 2013181784 A JP2013181784 A JP 2013181784A JP 2013181784 A JP2013181784 A JP 2013181784A JP 6359254 B2 JP6359254 B2 JP 6359254B2
Authority
JP
Japan
Prior art keywords
absolute
scale
pattern
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013181784A
Other languages
English (en)
Other versions
JP2015049167A (ja
Inventor
夜久 亨
亨 夜久
慶顕 加藤
慶顕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2013181784A priority Critical patent/JP6359254B2/ja
Priority to EP14183137.0A priority patent/EP2866001B1/en
Priority to US14/474,594 priority patent/US9383231B2/en
Priority to CN201410605327.1A priority patent/CN104422469B/zh
Publication of JP2015049167A publication Critical patent/JP2015049167A/ja
Application granted granted Critical
Publication of JP6359254B2 publication Critical patent/JP6359254B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34784Absolute encoders with analogue or digital scales with only analogue scales or both analogue and incremental scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • G01D5/34723Scale reading or illumination devices involving light-guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders

Description

本発明は、光電式エンコーダに関する。
スケール上に配置された擬似ランダムパターンを検出することにより絶対位置を求める、光電式のアブソリュート型エンコーダが知られている。スケール上に配置された擬似ランダムパターンとして、例えば、M系列符号と呼ばれるパターンを用いることができる(非特許文献1)。特許文献1に記載のアブソリュート型エンコーダは、スケール上の擬似ランダムパターンの像を、レンズを用いて検出器に導くことにより、スケールに対する検出器の位置を検出している。さらに、特許文献2に記載のアブソリュート型エンコーダは、レンズに代えてレンズアレイを用いている。
また、レンズを用いない構成のアブソリュート型エンコーダも知られている。特許文献3に記載のアブソリュート型エンコーダは、スケール上の擬似ランダムパターンを透過した光線を検出素子により直接検出している。
特開平7−286861号公報 特開2004−317503号公報 特開平5−71984号公報
"Absolute position measurement using optical detection of coded patterns", J T M Stevenson et.al, J.Phys, E:Sci. Instrum. 21(1988) 1140-1145
特許文献1に記載のアブソリュート型エンコーダは、レンズを使用している。そのため、装置が大きくなり、かつ、コスト高となるという問題があった。また、特許文献2に記載のアブソリュート型エンコーダは、レンズに代えてレンズアレイを用いている。これにより、装置の小型化は図られるが、コスト高となるという問題は依然として残る。
一方、特許文献3に記載のアブソリュート型エンコーダはレンズを用いていない。ただし、スケールと受光器との間隔が大きくなると、疑似ランダムパターンを透過した光線が発散してしまい、受光器では疑似ランダムパターンを疑似ランダムパターンとして検出できなくなる。あるいは、擬似ランダムパターンを透過した光線が発散しないように、光源として極めて平行度の高い平行光を照射することができるレーザに代表されるコヒーレント光源を用いることがある。しかしながら、平行光を照射したとしても、スケールと受光器との間隔が大きくなると、疑似ランダムパターンと平行光の相互作用により光回折が生じてしまう。そして回折光相互の干渉により、スケール上に配置された疑似ランダムパターンとは異なるパターンが受光器に到達してしまう。
よって、スケールと検出ヘッドとの間のギャップを大きくできない。そのため、スケールと検出ヘッドとの間のギャップを極めて狭くする必要がある。しかし、スケールと検出ヘッドとの間のギャップが小さすぎると、スケールのうねりによりギャップが変動した場合又は金属粉等の異物が混入した場合に、エンコーダの測定が行えなくなるという問題があった。
本発明は、このような問題を解決するためになされたものであり、レンズを用いなくても、スケールと検出ヘッドとの間のギャップを大きくとることができて、かつ、スケール上に配置された疑似ランダムデータを検出することができる光電式エンコーダを提供することを目的とする。
本発明の一態様にかかる光電式エンコーダは、疑似ランダムデータに基づいたアブソリュートパターンが設けられたアブソリュートスケールと、前記アブソリュートスケールの前記アブソリュートパターンに光を照射する光源及び、前記アブソリュートパターンからの光を受光する受光部を有する検出ヘッドと、を具備し、前記アブソリュートスケールに対する前記検出ヘッドの絶対位置を検出する光電式エンコーダであって、前記アブソリュートパターンは格子部と暗部との繰り返しで構成されており、さらに、前記格子部との協働によって干渉縞を発生させる干渉縞発生手段と、前記受光部で受光した干渉縞に基づいて、前記アブソリュートパターンの前記疑似ランダムデータを検出する干渉縞信号処理部と、を備える。
上述の光電式エンコーダにおける干渉縞発生手段が、前記検出ヘッドの、インコヒーレント光を発する前記光源と、前記光源から出射した光線が、前記アブソリュートパターンを介して受光部へと入射する光路上に設けられた補助格子と、を有してもよい。
また、本発明の他の態様にかかる光電式エンコーダにおいては、光源がコヒーレント光を発するものでもよい。
本発明の一態様にかかる光電式エンコーダにおいて、前記光源の放射強度が、前記光源の中心軸上の放射強度の50%になる光源半値角θと、前記アブソリュートパターンのデータピッチPDATAと、前記アブソリュートスケールと前記補助格子との間隔uと、前記補助格子と前記受光部との間隔vとが、条件式(1)を満たすことを特徴としてもよい。
Figure 0006359254
また、本発明の一態様にかかる光電式エンコーダは、インクリメンタルパターンが設けられたインクリメンタルスケールが、前記アブソリュートスケールと並列して設けられていてもよい。
さらに、上述の光電式エンコーダは、前記アブソリュートパターンの前記格子部の格子ピッチと、前記インクリメンタルパターンの格子ピッチとが等しくてもよい。
また、本発明の一態様にかかる光電式エンコーダは、前記インクリメンタルパターンによって生じた干渉縞から得た周期信号に基づいて、前記アブソリュートパターンの疑似ランダムデータを検出してもよい。
さらにまた、本発明の一態様にかかる光電式エンコーダは、前記アブソリュートパターンの格子ピッチと、前記インクリメンタルパターンの格子ピッチとが異なってもよい。
本発明の一態様にかかる絶対位置検出方法は、疑似ランダムデータに基づいたアブソリュートパターンが設けられたアブソリュートスケールと、光源、干渉縞発生手段、及び受光部を有する検出ヘッドと、干渉縞信号処理部と、を具備し、前記アブソリュートスケールに対する前記検出ヘッドの絶対位置を検出する光電式エンコーダを用いた絶対位置検出方法であって、前記光源が、前記アブソリュートパターンに光を照射するステップと、前記干渉縞発生手段が、前記アブソリュートパターンからの光に干渉縞を発生させるステップと、前記受光部が、前記干渉縞を受光するステップと、前記干渉縞信号処理部が、前記干渉縞に基づいて、前記アブソリュートパターンの疑似ランダムデータを検出するステップと、を備える。
本発明により、レンズを用いなくても、スケールと検出ヘッドとの間のギャップを大きくとることができて、かつ、スケール上に配置された疑似ランダムデータを検出することができる光電式エンコーダを提供することができる。
実施の形態1にかかる光電式エンコーダの構成を示す図である。 実施の形態1にかかるアブソリュートスケールの構成を示す図である。 実施の形態1にかかる受光部の構成を示す図である。 実施の形態1にかかる光電式エンコーダの断面模式図である。 実施の形態1にかかる光電式エンコーダの光源の光放射が50%になる範囲を、光源の光放射指向特性のグラフの上に、模式的に重ねて示した図である。 実施の形態1にかかる光電式エンコーダの光源が、暗部の中心の直上に配置されている状態を示す図である。 実施の形態1にかかる光電式エンコーダにおいて、光源発光部の測長方向の大きさWが、データピッチPDATAよりも小さい場合の干渉縞の生成位置を示す図である。 実施の形態1にかかる光電式エンコーダにおいて、光源発光部の測長方向の大きさWが、データピッチPDATAよりも大きい場合の干渉縞の生成位置を示す図である。 実施の形態1にかかる光電式エンコーダにおいて、光源からの光放射指向特性を鋭くした場合を示す図である。 実施の形態1にかかる光電式エンコーダにおいて、光源からの光放射指向特性を鋭くした場合に、2つの格子部による干渉縞が分離して生成された状態を示す図である。 実施の形態1にかかる光電式エンコーダにおいて、暗部を挟んで設けられた2つの格子部により生成された干渉縞が重ならない条件を示す図である。 実施の形態1にかかる光電式エンコーダにおいて、条件式(1)を満たす場合に、暗部の左右の格子部を通過した光線が互いに交わらないことを示す図である。 実施の形態2にかかる光電式エンコーダの構成を示す図である。 実施の形態2にかかるスケールの構成を示す図である。 実施の形態2にかかる光電式エンコーダのインクリメンタルスケール側の断面模式図である。 実施の形態3にかかる光電式エンコーダの構成を示す図である。 実施の形態3にかかる光電式エンコーダのアブソリュートスケール側の断面模式図である。 実施の形態3にかかる光電式エンコーダのインクリメンタルスケール側の断面模式図である。
[実施の形態1]
以下、図面を参照して本発明の実施の形態について説明する。
図1は、実施の形態1にかかる光電式エンコーダ100の構成を示す図である。光電式エンコーダ100は、アブソリュートスケール110と、検出ヘッド120とを具備している。さらに、検出ヘッド120は、アブソリュートスケール110に沿って測長軸方向に移動することが可能であり、アブソリュートスケール110に対する検出ヘッド120の絶対位置を検出する。また、検出ヘッド120は、インコヒーレント光源121と、受光部122と、干渉縞信号処理部124とを具備する。また、本実施形態にかかる光電式エンコーダ100の検出ヘッド120では、さらに、アブソリュートスケール110と受光部122との間に、アブソリュート補助格子123を備える。
図1に示されたインコヒーレント光源121は、インコヒーレント光を発する。インコヒーレント光源121としては、例えば、LED(Light Emitting Diode:発光ダイオード)、又はハロゲンランプ等を用いる。
インコヒーレント光源121は、アブソリュートスケール110に光を照射する。また、受光部122は、アブソリュートスケール110及びアブソリュート補助格子123を通過して発生する干渉縞を受光して、電気信号へと変換する。
図2は、実施の形態1にかかるアブソリュートスケール110の構成を示す図である。図2に示すように、アブソリュート(ABS)スケール110には、アブソリュート(ABS)パターン200が設けられている。ABSパターン200は、疑似ランダムデータに基づいて繰り返し配列された格子部210と暗部220とで構成されている。格子部210は疑似ランダムデータの“1”に、暗部220は疑似ランダムデータの“0”に対応する領域である。
図2に示すように、ABSスケール110の格子部210に、アブソリュート(ABS)格子211が設けられている。ABSスケール110の格子部210はデータピッチPDATAの幅の光透過部に相当し、さらに、データピッチPDATAの範囲内にピッチPABSのABS格子211が設けられている。暗部220には、光不透過部が配置されている。図2では、不透明であることをハッチングで表現している。格子部210は連続して配置されてもよい。この場合、格子部210はデータピッチPDATAの整数倍の長さになる。
図3は、実施の形態1にかかる受光部122の構成を示す図である。図3に示すように、受光部122上には、光を検出するセンサ301、アナログスイッチ303、およびスイッチ制御ロジック回路304が設けられており、例えば、CCDリニアイメージセンサやCMOSリニアイメージセンサ等の光電変換素子が用いられる。センサ301で変換された電気信号は、受光部122で受光した干渉縞を電気信号として観測できるようにスイッチ制御ロジック回路304によってON/OFFが制御されたアナログスイッチ303と配線302を通って、干渉縞信号処理部124へと送られる。
干渉縞信号処理部124は、受光部122で受光した干渉縞に基づいて、ABSパターン200の疑似ランダムデータを検出する。干渉縞信号処理部124は、検出ヘッド120の内部に設けてもよいし、配線302を検出ヘッド120の外部に引くことにより外部に設けてもよい。
図4は、実施の形態1にかかる光電式エンコーダの断面模式図である。図4に示すように、アブソリュート(ABS)補助格子123は、インコヒーレント光源121から出射した光線が、ABSパターン200を介して受光部122へと入射する光路上に設けられる。図4では、インコヒーレント光源121から受光部122の間にABSスケール110とABS補助格子123とを配置している。インコヒーレント光源121から出射された光は、ABSスケール110上のABSパターン200と、ABS補助格子123とを通過して、受光部122に入射する。
ABSスケール110とABS補助格子123とが間隔uで配置されているとき、ABS補助格子123からの距離がvである平面上に干渉縞401が発生する。
ABS補助格子123の空間周波数がf、ABSスケール110の格子部210に設けられたABS格子211の周波数がfの場合に発生する干渉縞401について説明する。
まず、ABS補助格子123とABS格子211とが回折格子として協働している場合、おのおのの空間周波数の関係は、
/f=2・v/(u+v)
となり、干渉縞401の周波数をFとすると、
/f=2・u/(u+v)
と表せる。
ここで、f=f=Fとしたとき、v=uとなる。
つまり、ABS補助格子123の空間周波数とABSスケール110の格子部210に設けられたABS格子211の空間周波数とを等しくした場合、2つの格子と同じ周波数の干渉縞401が、ABS補助格子123とABSスケール110との間隔と等しい距離だけABS補助格子123から離れた平面上に発生する。
また、ABS補助格子123とABS格子211とが回折格子として協働しないで、主にシャッター効果をもたらすように協働している場合、おのおのの空間周波数の関係は、
/f=v/(u+v)
/f=u/(u+v)
と表せる。
ここで、f=2f=2Fとしたとき、v=uとなる。
つまり、ABS補助格子123の空間周波数を、ABSスケール110の格子部210に設けられたABS格子211の空間周波数の2倍とした場合(ピッチを半分にした場合)、ABS格子211と同じ周波数の干渉縞401が、ABS補助格子123とABSスケール110との間隔と等しい距離だけABS補助格子123から離れた平面上に発生する。
上述では、u=vの条件について検討したが、u=vとは異なる条件についても、ABS補助格子123とABS格子211とが上述の式で適切に算出された空間周波数に設定されれば、干渉縞401が生成される。
上述の通り、干渉縞401が生成される条件は、上述の式のパラメータであるu、v、f、fが上述の式を満足することであり、uあるいはvの大きさには制限がない。すなわち、上述の式を満足していれば、ABSスケール110とABS補助格子123との間隔uを大きくしても、干渉縞401が発生する位置はABS補助格子123からvだけ離れたところである。そして、受光部122をABS補助格子123から離れた位置vに配置することにより、干渉縞401を確実に検出することができる。
したがって、レンズを用いなくても、検出ヘッド120とABSスケール110間のギャップを大きくとることができる。
すなわち、実施の形態1では、インコヒーレント光源121とABS補助格子123とによりアブソリュート干渉縞発生手段130が構成されている。
ここで、ABSスケール110上には、ABSパターン200の格子部210が途切れ途切れに設けられている。そのため、干渉縞401は連続的には発生せず、格子部210が配置されている直下の領域にのみ干渉縞401が発生する(図4中の干渉縞401を参照)。
したがって、受光部122上のセンサ301を干渉縞401が発生する平面に配置すると、途切れ途切れの干渉縞401を受光部122が電気信号(干渉縞信号402)へと変換する。その後、干渉縞信号処理部124が、干渉縞信号402の包絡線404からABSパターン200の疑似ランダムデータを検出する。ABSスケール110上の長さPDATAに対応する干渉縞信号402が、疑似ランダムデータの一単位に相当する。
ABSパターン200上には、ABS格子211が設けられた格子部210が、疑似ランダムデータに合わせて配置されている。しかし、光源からの光が発散していると、光線が暗部220の直下に回り込んで干渉縞401を発生させてしまう。この場合、格子部210による干渉縞信号402が、暗部220に対応する0信号領域に混信してしまう。このため、0信号領域を正しく検出できないおそれがある。
そこで、暗部220を挟んで配置されている、二つの格子部210のそれぞれが発生させる干渉縞401が、互いに重なり合わないようにするためには、ABSスケール110とABS補助格子123と受光部122を、一定の条件を満足するように配置する必要がある。以下、図5〜図12を用いて、二つの格子部210のそれぞれが発生させる干渉縞401が、互いに重なり合わない条件について説明する。
図5は、インコヒーレント光源121の光放射が50%になる範囲を、インコヒーレント光源121の光放射指向特性のグラフの上に、模式的に重ねて示した図である。
光放射指向特性のグラフは、インコヒーレント光源121の中心軸上の放射強度を100%としたときに、中心軸に対してθ傾いた方向から見える放射強度の割合を示している。放射強度が、中心軸上の放射強度の50%になる角度を光源半値角θとする。
図6は、図5に示したインコヒーレント光源121が、ひとつの疑似ランダムデータの“0”に対応する、暗部220の中心の直上に配置され、暗部220の両側に、疑似ランダムデータの“1”を示す格子部210R、210Lが配置されている状態を示す。
インコヒーレント光源121の中央部のみから光源半値角θで光が放射されている場合について考える。この場合、左の格子部210Lを通過した光と、右の格子部210Rを通過した光とは互いに交わらず、受光部122上に干渉縞401R、401Lがそれぞれ生成される。
図6においては、インコヒーレント光源121が点光源であるものとして考えている。微小な点からのみ発光する点光源は、理想的な光源である。しかし、光電式エンコーダに用いられる光源においては、光源発光部510は、点発光レーザ光源では数μm、LEDでは数100μm〜数mmの、円形又は長方形である。
図7に、光源発光部510の測長方向の大きさWが、データピッチPDATAよりも小さい場合の干渉縞401の生成位置を示す。光源発光部510のいずれの部分から出射された光であっても、暗部220の図7中左右の格子部210R、210Lを通過すれば、お互いに交わることなく受光部122に到達する。受光部122上には、左右の格子部210R、210Lに対応する干渉縞401R、401Lが、それぞれ分離して生成される。したがって、格子部210R、210Lが表す疑似ランダムデータの“1”をそれぞれ区別して検出することができる。
図8に、光源発光部510がデータピッチPDATAよりも大きい場合の干渉縞の生成位置を示す。紙面の都合上、インコヒーレント光源121は一部のみ図示している(図10〜図12についても同様である)。この場合、左右の格子部210R、210Lを通過した光が、暗部220の直下の受光部122上で重なることがある。このとき、左右の格子部210R、210Lのそれぞれにより生成された干渉縞401R、401Lが同一地点で重なってしまい、両者を区別することができない。すなわち、左右の格子部210R、210Lが表す疑似ランダムデータの“1”をそれぞれ区別して検出することができなくなってしまう。
この問題を解決するために、図9に示すように、光源からの光放射指向特性を鋭くし、光源半値角θを小さくすることが考えられる。光源半値角θが十分に小さい場合、図10に示すように、左右の格子部210R、210Lのそれぞれを通過した光が重ならず、それぞれで生成された干渉縞401R、401Lを区別して検出することができる。
ここで、左右の格子部210R、210Lからの光が重ならないようにするためには、図11に示すように、格子部210Lの右端部Aから進む光線と、格子部210Rの左端部Bから進む光線とが、受光部122上のC点で交差するような光放射指向特性であればよい。すなわち、下記の条件式(1)を満足すればよい。
Figure 0006359254
条件式(1)を満足する配置とすることにより、光線のクロストークを防止して、暗部220を挟んで配置された二つの格子部210が、区別して認識されなくなる不都合が解消される。なお、ABSパターン200を検出する精度を上げるためには、光源半値角θは小さい方がよい。
さらに、図12に示すように、光源半値角θが条件式(1)を満足していれば、光源発光部510の大きさに関わらず、左の格子部210Lを通過した光線は、右の格子部210Rを通過した光線と受光部122上で交わることはない。また、同様に、右の格子部210Rを通過した光線は、左の格子部210Lを通過した光線と受光部122上で交わることはない。したがって、光源発光部510の大きさに、光線のクロストーク防止のための制限を課す必要がなくなり、光源選定の自由度が大きくなる。
ABSスケール110の製造方法について説明する。平板状ガラス素地の表面にクロム等の金属薄膜を形成した後、この金属薄膜表面に感光性樹脂被膜を形成する。次に、その感光性樹脂被膜を露光・現像して、ABSパターン200とABS格子211とを感光性樹脂皮膜上に転写する。感光性樹脂被膜の露光には、例えば、ABSパターン200とABS格子211が設けられた形状のマスクを用いる。最後に、金属薄膜をエッチングして、ABSパターン200とABS格子211とをABSスケール110上に形成する。
以上、説明したように、本実施形態にかかる光電式エンコーダ100により、レンズを用いなくても、スケールと検出ヘッドとの間のギャップを大きくとることができて、かつ、スケール上に配置された疑似ランダムデータを検出することができる光電式エンコーダを提供することができる。
本実施形態にかかる光電式エンコーダ100は、レンズを用いない構成なので、鏡筒の容積分の小型化が可能である。
また、本実施形態にかかる光電式エンコーダ100は、レンズ及びレンズアレイを用いない構成なので、部品点数が削減され、低コストとなる。
さらに、本実施形態にかかる光電式エンコーダ100は、検出ヘッドとスケール間のギャップを大きくしても、疑似ランダムデータの検出が可能である。よって、検出ヘッドとスケール間のギャップへの異物の侵入に強い。
[実施の形態2]
図13は、本発明の実施の形態2にかかる光電式エンコーダ700の構成を示す図である。光電式エンコーダ700は、アブソリュート(ABS)スケール110と、インクリメンタル(INC)スケール714と、検出ヘッド720とを具備している。光電式エンコーダ700は、ABSスケール110に対する検出ヘッド720の絶対位置を検出するとともに、INCスケール714に対する検出ヘッド720の相対移動量を検出する。検出ヘッド720は、インコヒーレント光源121と、受光部122と、干渉縞信号処理部124とを具備する。また、本実施形態にかかる光電式エンコーダ700は、さらに、ABSスケール110及びINCスケール714と受光部122との間に、アブソリュート(ABS)補助格子123及びインクリメンタル(INC)補助格子726を備える。
図14は、実施の形態2にかかるスケールの構成を示す図である。図14に示すように、本発明の実施の形態2にかかる光電式エンコーダ700においては、インクリメンタル(INC)スケール714とアブソリュート(ABS)スケール110とが、並列して一体的に設けられている。INCスケール714とABSスケール110とは、別々に設けてもよい。
図14に示すように、ABSスケール110には、アブソリュート(ABS)パターン200が設けられている。ABSスケール110は、実施の形態1と同様の構成である。ABSパターン200には、疑似ランダムデータに基づいた格子部210と暗部220とが、配置されている。格子部210は疑似ランダムデータの“1”に、暗部220は疑似ランダムデータの“0”に対応する領域である。
INCスケール714には、インクリメンタル(INC)パターン800が設けられている。INCパターン800には、測長軸方向にピッチPINCのインクリメンタル(INC)格子801が連続的に配置されている。
本実施形態にかかる光電式エンコーダ700においては、INCスケール714とABSスケール110とが、並列して一体的に設けられている。この構成を用いることにより、検出ヘッド720のスケールに対する絶対位置と相対移動量とを同時に検出することができる。
なお、検出ヘッド720のスケールに対する絶対位置と相対移動量とを同時に検出する場合には、受光部122として、リニアイメージセンサを2本用いるか、2次元イメージセンサを用いる。これにより、INCスケール714及びABSスケール110から生じる2本の干渉縞を同時に検出できる。
さらに、本実施形態にかかる光電式エンコーダ700においては、ABSスケール110を用いて粗い位置検出をしたうえに、さらに、INCスケール714を用いた精細な位置の検出を組み合わせることができる。これにより、素早く高精度な位置検出が可能となる。
本実施形態にかかる光電式エンコーダ700においては、ABSパターン200の格子部210の格子ピッチPABSと、INCパターン800の格子ピッチPINCとが等しくてもよい。
格子ピッチを等しくすることにより、1種類のマスクを用いて、アブソリュート及びインクリメンタルの2種類のパターンを作製できる。この場合、パターンの作製に用いるマスクは、1種のみ製造すればよい。マスクは高価な部材であるから、スケールの製造コストが低減できる。
図15は、本発明の実施の形態2にかかる光電式エンコーダ700のインクリメンタルスケール側の断面模式図である。図13における、INCスケール714側の断面を示す。図15を用いて、本実施形態にかかる光電式エンコーダ700の相対位置検出方法を説明する。図15に示すように、INC補助格子726は、インコヒーレント光源121から出射した光線が、INCスケール714を介して受光部122へと入射する光路上に設けられる。
すなわち、図15では、インコヒーレント光源121から受光部122の間にINCスケール714とINC補助格子726とを配置している。インコヒーレント光源121から出射した光は、INCスケール714上のINCパターン800と、INC補助格子726とを通過して、受光部122に入射する。
ABSスケール110の場合と同様に、INCスケール714とINC補助格子726とが間隔uで配置されているとき、INC補助格子726からの距離がvである平面上に干渉縞901が発生する。
INC補助格子726の空間周波数がf、INCスケール714上のINCパターン800のINC格子801の周波数がfの場合に発生する干渉縞901について説明する。
まず、INC補助格子726とINC格子801とが回折格子として協働している場合、おのおのの空間周波数の関係は、
/f=2・v/(u+v)
となり、干渉縞901の周波数をFとすると、
/f=2・u/(u+v)
と表せる。
ここで、f=f=Fとしたとき、v=uとなる。
つまり、INC補助格子726の空間周波数とINC格子801の空間周波数とを等しくした場合、すなわち両者のピッチを同じくした場合、2つの格子と同じ周波数の干渉縞901が、INCスケール714とINC補助格子726との間隔と等しい距離だけINC補助格子726から離れた平面上に発生する。
また、INC補助格子726とINC格子801とが回折格子として協働しないで、主にシャッター効果をもたらすように協働している場合、おのおのの空間周波数の関係は、
/f=v/(u+v)
/f=u/(u+v)
と表せる。
ここで、f=2f=2Fとしたとき、v=uとなる。
つまり、INC補助格子726の空間周波数を、INC格子801の空間周波数の2倍とした場合、すなわち、INC補助格子726のピッチをINC格子801のピッチの半分にした場合、INC格子801と同じ周波数の干渉縞901が、INCスケール714とINC補助格子726との間隔と等しい距離だけINC補助格子726から離れた平面上に発生する。
上述では、u=vの条件について検討したが、u=vとは異なる条件についても、INC補助格子726とINC格子801とが上述の式で適切に算出された空間周波数に設定されれば、干渉縞901が生成される。
上述の通り、干渉縞901を生成される条件は、上述の式のパラメータであるu、v、f、fが上述の式を満足することであり、uあるいはvの大きさには制限がない。すなわち、上述の式を満足していれば、INCスケール714とINC補助格子726との間隔uを大きくしても、干渉縞901が発生する位置はINC補助格子726からvだけ離すことができる。そして、受光部122がINC補助格子726から離れた位置vに配置されても、干渉縞901の光の強度が大きい個所は確実に検出することができる。
したがって、レンズを用いなくても、検出ヘッド120とINCスケール714間のギャップを大きくとることができる。
すなわち、実施の形態2では、インコヒーレント光源121とINC補助格子726とにより、インクリメンタル干渉縞発生手段730が構成されている。
次に、発生した干渉縞901を受光部122で受光して、電気信号(干渉縞信号)に変換する。干渉縞901から生じた干渉縞信号は、INCパターン800に対応するピッチPINCの波形を有する信号である。干渉縞信号処理部124は、起点から移動する際に通過した干渉縞901のピークの数を計測する。本実施形態にかかる光電式エンコーダ700は、干渉縞901のピッチPINCと通過したピークの数から、INCスケール714に対する検出ヘッド720の移動量を検出する。
本実施形態にかかる光電式エンコーダ700の絶対位置検出方法は、本発明の実施の形態1の絶対位置検出方法と同様である(図4を参照)。
まず、インコヒーレント光源121が、ABSスケール110に光を照射する。ABSスケール110上のABSパターン200の格子部210を通過した光は、ABS補助格子123を通過して、受光部122が配置されている面に干渉縞401が発生する。
発生した干渉縞401を受光部122で受光して、電気信号(干渉縞信号402)に変換する。干渉縞401から生じた干渉縞信号402の包絡線404から、ABSパターン200の疑似ランダムデータを検出する。
また、光電式エンコーダ700では、INCパターン800によって生じた干渉縞901から得た周期信号も検出している。
そこで、アブソリュートの干渉縞信号402から包絡線404を同期検波で検出するための同期信号波形を、インクリメンタルの干渉縞901から得た周期信号に基づいてつくることができる。この同期信号波形を用いて、ABSパターン200によって生じた干渉縞401の信号を検出することにより、ノイズ等の外乱に強くなる。
光電式エンコーダ700においては、ABSパターン200の格子ピッチと、INCパターン800の格子ピッチとが異なってもよい。例えば、ABSパターン200の格子ピッチが7μmで、INCパターン800の格子ピッチを4μmとしてもよい。
INCパターン800による干渉縞が、ABSパターン200側の受光部122に入射したとしても、アブソリュートとインクリメンタルとで干渉縞信号のピッチが異なるので、両者の信号を混信した状態から分離できる。
[実施の形態3]
図16は、本発明の実施の形態3にかかる光電式エンコーダ1000の構成を示す図である。図16に示すように、本発明の実施の形態3にかかる光電式エンコーダ1000は、アブソリュート(ABS)スケール110と、インクリメンタル(INC)スケール714と、検出ヘッド1020とを具備する。検出ヘッド1020は、コヒーレント光源1021と、受光部122と、干渉縞信号処理部124とを具備する。
本実施形態にかかる光電式エンコーダ1000は、ABSスケール110に対する検出ヘッド1020の絶対位置を検出するとともに、INCスケール714に対する検出ヘッド1020の相対移動量を検出する。
コヒーレント光源1021は、コヒーレント光を発する。コヒーレント光源1021としては、例えば、半導体レーザを用いる。
図17は、本実施形態にかかる光電式エンコーダ1000のABSスケール側の断面模式図である。図17を用いて、本実施形態にかかる光電式エンコーダ1000の絶対位置検出方法を説明する。
まず、コヒーレント光源1021が、ABSスケール110に光を照射する。ABSスケール110に入射した光はコヒーレント光なので、ABSスケール110からの距離vの平面上にタルボット(Talbot)効果による自己干渉縞1101が発生する。ここで、コヒーレント光の光波長をλ、ABSスケール110上のABSパターン200の格子部210の格子ピッチがPABS、とすると、v=PABS ÷λを満足する平面上に発生する自己干渉縞1101のピッチはPABSとなる。
次に、発生した自己干渉縞1101を受光部122で受光して、電気信号(干渉縞信号1102)に変換する。その後、自己干渉縞1101から生じた干渉縞信号1102の包絡線1104から、ABSパターン200の疑似ランダムデータを検出する。これにより、本実施形態にかかる光電式エンコーダ1000は、ABSスケール110に対する検出ヘッド1020の絶対位置を検出する。
図18は、本実施形態にかかる光電式エンコーダ1000のインクリメンタルスケール側の断面模式図である。図18を用いて、本実施形態にかかる光電式エンコーダ1000の相対位置検出方法を説明する。
まず、コヒーレント光源1021が、INCスケール714に光を照射する。INCスケール714に入射した光はコヒーレント光なので、INCスケール714からの距離vの平面上にタルボット効果による自己干渉縞1201が発生する。ここで、コヒーレント光の光波長をλ、INCスケール714上のINCパターン800の格子ピッチがPINCとすると、v=PINC ÷λを満足する平面上に発生する自己干渉縞1201のピッチはPINCとなる。
次に、発生した自己干渉縞1201を受光部122で受光して、電気信号(干渉縞信号)に変換する。自己干渉縞1201から生じた干渉縞信号は、INCパターン800に対応するピッチPINCの波形を有する信号である。干渉縞信号処理部124は、起点から移動する際に通過した自己干渉縞1201から生じた干渉縞信号のピークの数を計測する。本実施形態にかかる光電式エンコーダ1000は、自己干渉縞1201のピッチPINCから生じた干渉縞信号と通過したピークの数から、INCスケール714に対する検出ヘッド1020の移動量を検出する。
すなわち、実施の形態3では、コヒーレント光源1021が干渉縞発生手段となる。実施の形態1あるいは実施の形態2のようなABS補助格子123やINC補助格子726を設けなくとも、コヒーレント光がABSスケール110やINCパターン800を透過すると、所定の平面上に自己干渉縞が発生する。
本実施形態にかかる光電式エンコーダ1000は、実施の形態1及び2のような補助格子を設けていない。部品点数の削減により、構造の簡素化が図れる。また、スケールと補助格子との位置調整工程が不要となるので、製造コストを削減できる。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、透過型リニアエンコーダに限定されず、反射型リニアエンコーダであってもよい。
また、上記実施の形態ではリニアエンコーダを用いて本発明を説明したが、本発明をロータリーエンコーダに適用することを妨げるものではない。
110 アブソリュートスケール
120、720、1020 検出ヘッド
121 インコヒーレント光源
122 受光部
123 アブソリュート補助格子
130 アブソリュート干渉縞発生手段
124 干渉縞信号処理部
200 アブソリュートパターン
210 格子部
211 アブソリュート格子
220 暗部
401、901 干渉縞
1101、1201 自己干渉縞
402、1102 干渉縞信号
404、1104 包絡線
714 インクリメンタルスケール
730 インクリメンタル干渉縞発生手段
800 インクリメンタルパターン
801 インクリメンタル格子
1021 コヒーレント光源

Claims (7)

  1. 疑似ランダムデータに基づいたアブソリュートパターンが設けられたアブソリュートスケールと、
    前記アブソリュートスケールの前記アブソリュートパターンに光を照射する光源及び、
    前記アブソリュートパターンからの光を受光する受光部を有する検出ヘッドと、を具備し、前記アブソリュートスケールに対する前記検出ヘッドの絶対位置を検出する光電式エンコーダであって、
    前記アブソリュートパターンは格子部と暗部との繰り返しで構成されており、
    さらに、前記格子部との協働によって干渉縞を発生させる干渉縞発生手段と、
    前記受光部で受光した干渉縞に基づいて、前記アブソリュートパターンの前記疑似ランダムデータを検出する干渉縞信号処理部と、を備え、
    前記干渉縞発生手段が、
    前記光源から出射した光線が前記アブソリュートパターンを介して受光部へと入射する光路上に設けられた補助格子
    を有し、
    前記光源の放射強度が、前記光源の中心軸上の放射強度の50%になる光源半値角θと、前記アブソリュートパターンのデータピッチPDATAと、前記アブソリュートスケールと前記補助格子との間隔uと、前記補助格子と前記受光部との間隔vとが、条件式(1)
    Figure 0006359254
    を満たす、光電式エンコーダ。
  2. 前記光源がインコヒーレント光を発する、請求項1に記載の光電式エンコーダ。
  3. インクリメンタルパターンが設けられたインクリメンタルスケールが、前記アブソリュートスケールと並列して設けられている、請求項1又は2に記載の光電式エンコーダ。
  4. 前記アブソリュートパターンの前記格子部の格子ピッチと、前記インクリメンタルパターンの格子ピッチとが等しいことを特徴とする、請求項に記載の光電式エンコーダ。
  5. 前記インクリメンタルパターンによって生じた干渉縞から得た周期信号に基づいて、前記アブソリュートパターンの疑似ランダムデータを検出する、請求項に記載の光電式エンコーダ。
  6. 前記アブソリュートパターンの格子ピッチと、前記インクリメンタルパターンの格子ピッチとが異なることを特徴とする、請求項に記載の光電式エンコーダ。
  7. 疑似ランダムデータに基づいたアブソリュートパターンが設けられたアブソリュートスケールと、
    光源、干渉縞発生手段、及び受光部を有する検出ヘッドと、
    干渉縞信号処理部と、を具備し、前記アブソリュートスケールに対する前記検出ヘッドの絶対位置を検出する光電式エンコーダを用いた絶対位置検出方法であって、
    前記光源が、前記アブソリュートパターンに光を照射するステップと、
    前記干渉縞発生手段が、前記アブソリュートパターンからの光に干渉縞を発生させるステップと、
    前記受光部が、前記干渉縞を受光するステップと、
    前記干渉縞信号処理部が、前記干渉縞に基づいて、前記アブソリュートパターンの前記疑似ランダムデータを検出するステップと、
    を備え、
    前記干渉縞発生手段が、
    前記光源から出射した光線が前記アブソリュートパターンを介して受光部へと入射する光路上に設けられた補助格子
    を有し、
    前記光源の放射強度が、前記光源の中心軸上の放射強度の50%になる光源半値角θと、前記アブソリュートパターンのデータピッチPDATAと、前記アブソリュートスケールと前記補助格子との間隔uと、前記補助格子と前記受光部との間隔vとが、条件式(1)
    Figure 0006359254
    を満たす、絶対位置検出方法。
JP2013181784A 2013-09-03 2013-09-03 光電式エンコーダ Active JP6359254B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013181784A JP6359254B2 (ja) 2013-09-03 2013-09-03 光電式エンコーダ
EP14183137.0A EP2866001B1 (en) 2013-09-03 2014-09-02 Photoelectric encoder
US14/474,594 US9383231B2 (en) 2013-09-03 2014-09-02 Photoelectric encoder having an interference pattern signal processing unit detects the pseudo-random data of the absolute pattern of an absolute scale
CN201410605327.1A CN104422469B (zh) 2013-09-03 2014-09-03 光电编码器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181784A JP6359254B2 (ja) 2013-09-03 2013-09-03 光電式エンコーダ

Publications (2)

Publication Number Publication Date
JP2015049167A JP2015049167A (ja) 2015-03-16
JP6359254B2 true JP6359254B2 (ja) 2018-07-18

Family

ID=51429165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181784A Active JP6359254B2 (ja) 2013-09-03 2013-09-03 光電式エンコーダ

Country Status (4)

Country Link
US (1) US9383231B2 (ja)
EP (1) EP2866001B1 (ja)
JP (1) JP6359254B2 (ja)
CN (1) CN104422469B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359340B2 (ja) * 2014-05-27 2018-07-18 株式会社ミツトヨ スケール及び光学式エンコーダ
JP6664155B2 (ja) * 2015-06-11 2020-03-13 株式会社ミツトヨ 光学式エンコーダ
DE102015216268A1 (de) * 2015-08-26 2017-03-02 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
JP6634249B2 (ja) * 2015-09-14 2020-01-22 株式会社ミツトヨ 絶対位置検出型光電式エンコーダ
JP6732366B2 (ja) 2015-12-21 2020-07-29 株式会社ミツトヨ 光電式エンコーダおよび測定器
JP6664211B2 (ja) * 2015-12-22 2020-03-13 株式会社ミツトヨ エンコーダ
JP6705649B2 (ja) * 2015-12-22 2020-06-03 株式会社ミツトヨ エンコーダ
TWI585372B (zh) * 2016-02-05 2017-06-01 曾信得 光學掃描式導光編碼器
TWI633282B (zh) * 2016-04-15 2018-08-21 曾信得 正向對焦掃描式導光編碼器
JP7058935B2 (ja) * 2016-09-12 2022-04-25 株式会社ミツトヨ 光電式エンコーダ
US10303270B2 (en) * 2016-09-12 2019-05-28 Microsoft Technology Licensing, Llc Linear encoder force transducer
DE102017201257A1 (de) * 2017-01-26 2018-07-26 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
US10295648B2 (en) * 2017-06-29 2019-05-21 Mitutoyo Corporation Contamination and defect resistant optical encoder configuration including a normal of readhead plane at a non-zero pitch angle relative to measuring axis for providing displacement signals
DE102019214895A1 (de) * 2018-09-28 2020-04-02 Mitutoyo Corporation Verschmutzungs- und defektbeständige optische Drehgeberkonfiguration zum Liefern von Verschiebungssignalen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009377A (en) * 1975-11-07 1977-02-22 Ronald Duane Elms Positioning determining method and apparatus
CH669457A5 (ja) 1986-02-18 1989-03-15 Mettler Instrumente Ag
JPH04143618A (ja) * 1990-10-05 1992-05-18 Matsushita Electric Ind Co Ltd 位置検出装置
US5279044A (en) 1991-03-12 1994-01-18 U.S. Philips Corporation Measuring device for determining an absolute position of a movable element and scale graduation element suitable for use in such a measuring device
JPH04307329A (ja) * 1991-04-03 1992-10-29 Copal Co Ltd 光学式変位検出装置
JPH04351918A (ja) * 1991-05-30 1992-12-07 Nippondenso Co Ltd エンコーダ
JPH0540046A (ja) * 1991-08-07 1993-02-19 Nikon Corp アブソリユ−ト・エンコ−ダ用照明装置
CH690971A5 (de) 1994-02-25 2001-03-15 Hera Rotterdam Bv Verfahren zur Messung und Verwertung einer Verschiebung eines Abtastkopfes gegenüber einer Massverkörperung und optischer Messgeber zur Durchführung dieses Verfahrens.
DE10317736A1 (de) 2003-04-11 2004-10-28 Dr. Johannes Heidenhain Gmbh Abtasteinheit für eine Positionsmesseinrichtung zum optischen Abtasten einer Maßverkörperung
JP4418278B2 (ja) * 2004-03-30 2010-02-17 オリンパス株式会社 光学式エンコーダ及びその製造方法
US7566863B2 (en) * 2006-10-16 2009-07-28 Chang Christopher C Optical encoder with diffractive encoder member
JP5286584B2 (ja) 2007-06-19 2013-09-11 株式会社ミツトヨ 絶対位置測長型エンコーダ
WO2011034910A2 (en) 2009-09-18 2011-03-24 Illinois Tool Works Inc. Remote displacement sensor, including an optical strain gauge, an assembly and system therewith
JP5562076B2 (ja) * 2010-03-10 2014-07-30 キヤノン株式会社 光学式エンコーダおよび変位計測装置
JP5765968B2 (ja) * 2011-02-28 2015-08-19 キヤノン株式会社 光学式エンコーダ
US8723103B2 (en) * 2011-11-08 2014-05-13 Mitutoyo Corporation Optical encoder readhead configured to block stray light with dummy vias

Also Published As

Publication number Publication date
EP2866001A1 (en) 2015-04-29
US9383231B2 (en) 2016-07-05
CN104422469A (zh) 2015-03-18
CN104422469B (zh) 2018-02-13
EP2866001B1 (en) 2016-08-17
US20150060653A1 (en) 2015-03-05
JP2015049167A (ja) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6359254B2 (ja) 光電式エンコーダ
US9752901B2 (en) Scale and optical encoder
JP6312505B2 (ja) 光学式エンコーダおよびこれを備えた装置
JP6465950B2 (ja) 光学式エンコーダ
US9557193B2 (en) Optical encoder
JP6563813B2 (ja) 光学要素
JP2011013083A5 (ja)
JP5460352B2 (ja) 変位測定装置および速度測定装置
JP2017044700A (ja) 光学式位置測定装置
JP7391527B2 (ja) 光電式エンコーダ
US20130272501A1 (en) X-ray imaging apparatus
US10190893B2 (en) Encoder
KR101434925B1 (ko) 정점 검출 장치 및 변위 측정 장치
JP2017093496A (ja) 撮像装置
JP2016008965A (ja) エンコーダ
JP5069364B2 (ja) 光電式インクリメンタル型エンコーダ
EP3850310B1 (en) Measurement device
JP2011043438A (ja) 反射型光電式エンコーダ
JP2011127990A (ja) 速度検出装置
JP2017053672A (ja) エンコーダ
KR101486272B1 (ko) 투명 기판 모니터링 장치 및 투명 기판 측정 방법
JP2007183115A (ja) 光学式エンコーダ
CN108731715B (zh) 光学编码器
JP2021193354A (ja) 光学式エンコーダ及び制御装置
JP2018132408A (ja) 光電式エンコーダ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180620

R150 Certificate of patent or registration of utility model

Ref document number: 6359254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250