JP6346911B2 - 半導体基板用集積フォトダイオード - Google Patents

半導体基板用集積フォトダイオード Download PDF

Info

Publication number
JP6346911B2
JP6346911B2 JP2016060064A JP2016060064A JP6346911B2 JP 6346911 B2 JP6346911 B2 JP 6346911B2 JP 2016060064 A JP2016060064 A JP 2016060064A JP 2016060064 A JP2016060064 A JP 2016060064A JP 6346911 B2 JP6346911 B2 JP 6346911B2
Authority
JP
Japan
Prior art keywords
region
type
photodiode
substrate
heavily doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016060064A
Other languages
English (en)
Other versions
JP2016157956A (ja
Inventor
エル スタインブリュック ゲーリー
エル スタインブリュック ゲーリー
ビー ヴィッカーズ ジェイムズ
ビー ヴィッカーズ ジェイムズ
エム ペレラ マリオ
エム ペレラ マリオ
アグハババザデー マジド
アグハババザデー マジド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tau Metrix Inc
Original Assignee
Tau Metrix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tau Metrix Inc filed Critical Tau Metrix Inc
Publication of JP2016157956A publication Critical patent/JP2016157956A/ja
Application granted granted Critical
Publication of JP6346911B2 publication Critical patent/JP6346911B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/1016Devices sensitive to infrared, visible or ultraviolet radiation comprising transparent or semitransparent devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • H01L31/1037Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIVBVI compounds

Description

本発明は半導体基板用集積フォトダイオードに関するものである。
[関連出願の相互参照]
本出願は、米国仮出願第61/093,292号(2008年8月29日出願)の優先権を主張するものである。
光起電素子や光伝導素子のような半導体素子を用いて光エネルギーを電気エネルギーに変換することが行われている。これ等の素子において電流が生成される物理的過程は同じであるが、光起電素子は、例えば、日光を電力に変換するソーラー・パネルのように、一般に光入力から有用な電力を生成するものであり、光伝導素子は、例えば、光信号を電気信号に変換する光検出器のように光信号の検出に用いられる。何れの素子においても、半導体内部に電子とホールの対を生成するのに充分なエネルギーを有する光学光子を必要とし、その電子は半導体のN型領域に捕捉されると共にホールは対応するP型領域に捕捉される。光起電素子と光伝導素子との動作上の違いは外部から逆バイアスが加えられるか否かである。例えば、光起電素子において、光生成電子とホールとはN型ドープ領域とP型ドープ領域との間に存在する内部電界による空間電荷領域によって自然に分離されるのに対し、光伝導素子においては一般に負のバイアスが加えられ、その電界によって光生成電子とホールとが分離される。その結果、光起電素子は光が照射されると有用な電流及び電圧を生成することができ、それによって電力が生成される一方、光伝導素子は光電流を生成するが、外部電位によって負にバイアスされているため、その生成プロセスにおいて電力が消費される。
任意の半導体材料を用いても光起電素子や光伝導素子を作製できる。しかし、一部の半導体材料の方が他の半導体材料より適している。直接エネルギー・バンドギャップを有しているか、間接エネルギー・バンドギャップを有しているかによって半導体は大きく分けられる。直接ギャップ半導体の方が間接ギャップ半導体より効率的に光エネルギーを電気エネルギーに変換できる。間接ギャップ半導体の例として、製造の容易性及び堅牢性という実用的な理由からデファクト半導体となり現代の殆どの集積回路がその拠所としている第4族元素であるシリコンが挙げられる。直接バンドギャップ半導体の例には、第III族元素(Ga)と同等数の第V族元素(As)とが結合したGaAsのような任意のIII−V族化合物が挙げられる。このようなIII−V素子は優れた光電子特性を有していることからシリコンよりはるかに好ましい。
光通信の分野において、光検出器とシリコン加工電子部品との統合が必要とされている。通信トランシーバ・システムのような、現在において高性能な装置はIII−V光検出器(又は光電子エミッター)とシリコン加工電子部品とを統合している。しかし、全く実用的な理由から、光検出器と集積電子回路とを同じ半導体基板上で一体化することが好ましく、そのためには、特に、バルク・シリコン処理やシリコン・オン・インシュレータ(SOI)処理のようなシリコン加工電子部品と同じ製造工程によって光検出器を製造する必要がある。ウェハーを用いた大量生産技術による製造上の制約を前提として、可能な限り最善の受光器を設計することに多くの研究が集中している。更に、このオプトエレクロニクス分野においては、無バイアスの光起電素子と比較して光応答時間が短いため、逆バイアス光伝導素子に重点が置かれている。標準のシリコン加工電子部品において、光起電力検出器を用いて電力を発生させる比較研究が極めて乏しい。光起電素子に関する殆どの研究は、例えば、変換効率の向上や標準光電池を低廉化する新方法の発見などによりソーラー・パネル用の光電池単体の改善に重点が置かれているが、光起電素子と他の集積電子回路とを組み合せることは研究されていない。
以下、出力、効率、及び安定度の最適化を図った光起電ダイオードの設計及び製造に関連する、標準のシリコン製造・設計手法、及び集積回路形成上の制約及び留意事項に対応した多くの実施の形態について説明する。特に、標準のシリコン製造方法には、バルク・シリコンやSOIの処理及び設計が含まれている。1つ以上の実施の形態によれば、光起電素子を用いて光源から電力が生成され、その電力によって電気回路及び試験構造体が駆動される構造であって、それがシリコン・ウェハー本来の目的によって規定される装置設計及び製造上の制約の範囲内において実現される。
更に、一部の実施の形態によって製造上の制約に対応できる特性及び特質を備えたフォトダイオードが提供される。1つ以上の実施の形態により、設計及び製造上の制約に左右される最適又は改良型光起電素子の製造を目的としたフォトダイオードが提供される。特に、本明細書に述べる実施の形態により、設計及び製造上の制約内で動作するよう構成されると共にそれぞれのアプリケーションに応じて最適化された光起電フォトダイオードが提供される。1つ以上の実施の形態において、アプリケーションの設計及び製造分析、ウェハーの設計製造工程制御、回路性能、製造工程と設計との統合、素子設計製造工程の特徴付け等が行われる。
1つ以上の実施の形態において、(i)ウェハー内に配置又は統合された(組立済又は組立途上の)試験構造体の(光起電素子の飽和及び物理的損傷を考慮した)効率的な起動方法、(ii)光起電素子と集積回路及び光起電素子によって電気的に起動される素子との電気的特性の整合(即ち、インピーダンス整合)、(iii)隣接回路及び素子からの光起電素子の電気的及び光学的分離、(iV)特定用途の要件及び制約を満足するための光起電素子の定寸、及び/又は(V)光起電素子の光アクセスのための設計及び加工が行われる。
一部の実施の形態において、少なくとも部分的に接触素子及び材料を含む基板部が提供される。この基板部は互いに隣接する高濃度にドープされたN型領域と高濃度にドープされたP型領域のドープ領域を有している。光源からの光が基板表面に到達できる光透過領域を有する地勢が基板の外面に設けられている。光透過領域に光を照射すると高濃度にドープされた領域の両端に電位差が生じる。また、基板部は、光透過領域に対する光の照射により生じた電位差による電流を半導体基板上の回路に伝導する1つ以上の電気接点を有することができる。
本明細書に述べる多くの実施の形態において、異なるドープ半導体領域による接合部が提供される。特に、高濃度にドープされたP領域及びN領域をそれぞれ含む“P”型領域と“N”型領域とによってフォトダイオードが形成される。半導体基板のP型ドープ領域は多数キャリアがホールである領域に対応している。同様に、半導体基板のN型ドープ領域は多数キャリアが電子である領域に対応している。
更に、本明細書に述べる実施の形態において、基板の高濃度にドープされた領域によってフォトダイオードが形成される。高濃度にドープされた領域とは同様にドープされた隣接領域よりも多量のドーパントを含んでいることを意味する。具体的には、高濃度にドープされた領域は少なくとも1E18原子/cmのドーパントを有していると見なされる。
本明細書において、“不透明”及び“光透過性”と言う用語は使用する光の波長に対するものである。実施の形態においては、光源として一般にレーザー、具体的には可視レーザーが使用される。従って、かかる状況において、“不透明”及び“光透過性”は可視光に適用されるものであって、不透明材料はシリサイド又は同様の材料から成ることができる。しかし、そのような材料はより波長の短い光に対しては不透明ではない場合がある。
1つ以上の実施の形態による、試験構造体や被試験体のような回路や装置に電力を供給するための集積フォトダイオード構造を備えた基板装置の側断面図。 図1Aに示す領域の上面図。 図1Aの実施の形態による集積フォトダイオードの概略回路図。 別の実施の形態による、集積フォトダイオード構造を備えた基板装置の側断面図。 図2Aの実施の形態に示す構成によって形成されたフォトダイオードの概略回路図。 別の実施の形態による図2Aの実施の形態の変形例を示す図。 別の実施の形態による図2Cの実施の形態の変形例を示す図。 図2Dのレイアウトを示す図。 別の実施の形態による図2Dの実施の形態の変形例を示す図。 図2Fのレイアウトを示す図。 別の実施の形態による図2Eの実施の形態の変形例を示す図。 図2Hのレイアウトを示す図。 1つの実施の形態による、シリコン・オン・インシュレータ(SOI)水平膜フォトダイオードを示す図。 図3に示すような実施の形態の変形例を示す図。 別の実施の形態による、SOI基板上のフォトダイオードの構成を示す図。 別の実施の形態による、埋込酸化物(BOX)層の下部の基板の厚さ内に埋没するよう、光透過領域に形成された集積光起電埋込PN接合を備えた基板を示す図。 別の実施の形態による、基板が埋没又は埋込光起電PN接合を有する図6の実施の形態の変形例を示す図。 別の実施の形態による、基板が埋没又は埋込光起電PN接合を有する図6及び図7の実施の形態の変形例を示す図。 別の実施の形態による、基板が埋没又は埋込光起電PN接合を有する図6〜図8の実施の形態の変形例を示す図。 フォトダイオード(及び対応する試験構造体)に電力を供給するための底部側光照射構成を示す概略図。 1つの実施の形態による、裏面照射をサポートする集積フォトダイオードをウェハーに形成するための詳細図。 1つの実施の形態による、図11の実施の形態の変形例を示す図。 1つ以上の実施の形態による、集積フォトダイオードの適用例を示す図。 1つ以上の実施の形態による、半導体基板に集積フォトダイオードを形成する方法を説明するための図。 特定の実施の形態による、フォトダイオードの設計を最適化する方法を説明するための図。
図1Aは、1つ以上の実施の形態による、試験構造体や被試験体のような回路や装置に電力を供給するための集積フォトダイオード構造を備えた基板装置の側断面図である。多数の実施の形態により説明するように、集積フォトダイオード構造は光起電PN接合である。図1Aの実施の形態において、基板装置110はP型基板内にN型井戸108を有している。前記のように、P型基板110はフォトダイオードが基板上で電力を生成できるようにするための光透過領域を有する地勢によって特徴付けられる。P型基板110は回路形成及びその関連処理が行われる前のドープ半導体ウェハーの一部である。1つの実施の形態において、N型井戸108内に浅いN型領域124が形成され、P型基板のN型井戸の外部に浅いP型領域122が形成される。高濃度にドープされたP型領域122及びN型領域122の各々に金属接点121が形成されている。不透明層を形成するときに使用されるようなシリサイド材料123の上に金属接点121を形成することができる。P型及びN型領域122、124の各々の横方向の長さは、シリサイド123の横方向の長さを越えていてもよい。これにより、例えば前記のように、高濃度にドープされたP型及びN型領域122、124が基板装置110の表面に形成された光透過領域125の符合する部分に照射された光を受信することができる。一般に、光透過領域125はシリサイドのような不透明材料によって塞がれていない基板表面の領域に形成される。例えば、1つの実施の形態において、接点121の成形及び/又は接点121間のシリサイド123の除去(又は堆積防止)によって光透過領域125が形成される。
図示のように、光起電PN接合120が形成される領域の一部と重複する基板110の外面に光透過領域125が形成される。例えば、選択した位置において、(光透過領域125に対応する)露出領域がN型井戸108の上部に形成されるような形状及び寸法で接点121を形成することができる。適切なレーザーを照射すると、(図1の実施の形態において)光透過領域125によりP型基板110及び高濃度にドープされたP型領域122が電子−ホール対を生成するのに充分な量の光を通すことができる。以下に説明する光起電接合効果がもたらされ(即ち、光起電PN接合120が形成され)それによって電流が生成され1つ以上の電気接点121によって回路や装置(例えば、試験構造体、非試験体等)に送られる。
大まかに言えば、光起電接合効果は電子−ホール対の生成と(拡散等による)伝搬に対応している。一部の実施の形態において、光起電接合効果は以下のように対応している。入射光が完全に吸収されると、ホールが空乏(空間電荷)領域の内部電界に遭遇するまで電子とホールがN型領域内に拡散する。この時点において、ホールがN型領域を越えて基板に入る一方、電子はN型領域にトラップされたままとなる。これがN型領域に(電子の蓄積によって)負の電位が生じ、隣接P型領域に(ホールの蓄積によって)正の電位が生じる過程である。このような構造によって多種多様なアプリケーション用のフォトダイオードが可能になる。
図示の構成の光起電接合効果における1つの問題は、通常のシリコン製造においてP型基板110に埋め込まれている(拡散されている)N型領域(例えば、高濃度にドープされたN型領域124及びN型井戸108)は入射光の光吸収深さに比べて遥かに浅く、入射光パワーのほんの一部しかN型領域に吸収されず、残りはP型基板に吸収されてしまうということである。図示の例において、電子−ホール対がN型及びP型領域の両方において生成される。前記同様、N型領域内の電子がトラップされ、ホールはP型基板に流出する。同様に、P型基板内で生成されたホールは基板にトラップされるが、電子は(i)PN接合付近まで漂流して空乏領域の電界によってN型領域に一掃されるまで、又は(ii)基板内のホールと再結合するまで拡散する。基板110内の電子は(基板の寸法と比較して)非常に長く拡散するため、光起電PN接合120のN型領域によって収集されない可能性がある。例えば、多数の高濃度にドープされたN型領域120がP型基板110に埋め込まれているが、1つの領域にしか光パワーが照射されないとすると、光パワーによってP型基板内に生成された迷走電子はN型領域の何れによっても収集できる。従って、例えば、1つのN型領域(例えば、高濃度にドープされたN型領域124)に光パワーを照射するとその基板上のすべてのN型領域が負に帯電する。このことは悪影響をもたらす。例えば、この迷走キャリアによる非光起電領域及び素子の帯電は、生産又は試験ウェハー組立工程における非試験素子及び回路の電気的応答及び特性に影響を与えそれらを変化させてしまう可能性が潜在的にある。
従って、光起電接合効果が生じる多くのアプリケーションが非光起電構造体及び素子からの光誘起キャリアを隔離する方法を必要としていることを実施の形態は認識している。本明細書で説明する1つ以上の実施の形態において、クロストーク及び不要な帯電の問題を除去又は軽減するために光起電検出器と素子とが互いに分離される。
図1Bは図1Aに示す領域の上面図である。接点121を介して、透明性(光)によって生成された電力を試験構造体(例えば、リング発振器)のような回路素子に送ることができる。図示のように、数ある可能な構成の1つにおいて、金属接点121の組合せが基板部分140上を延びるドープ領域に形成されている。基板部分140は、例えば、半導体ウェハーの活性領域の一部に対応している。例えば、図1Bにおいて、ドープ領域は同心方形状に形成され上部に金属接点が形成されている。基板(光透過領域)に光を照射することによって生成された電力は接点121を介して試験構造体(例えば、リング発振器)のような回路素子に送られる。
図示のような構成において、極小面積の光透過領域125を基板110上に集積することができる。1つの実施の形態において、光透過領域125の寸法は約10×20マイクロメートルであるが、これより大きいものや小さいものも可能である。例えば、光透過領域125の寸法は100×100マイクロメートル未満とすることができる。光透過領域125の大きさは基板回路素子の機能及び必要電力によって限定される。光透過領域125の面積が小さければ小さいほど、生成される電力は少ない。
各種断面図において、異なる実施の形態がそれぞれ異なるレイアウトを採用することができる。例えば、フォトダイオードを含む構造体又はフォトダイオードに対応する構造体のレイアウトを同心多角形又はボックスリングとすることができる。更には、“ドーナツ構造”とすることもできる。特定のアプリケーションにおいて、ドーナツ構造により接合フォトダイオードの電気抵抗が低下する。
図1Cは図1Aの実施の形態による集積フォトダイオードの概略回路図である。図1Aに示すような実施の形態において、フォトダイオード150は、電流が流れる方向において順にそれぞれP及びNドープ領域に対応する端子152、154を有している。1つ以上のリード線144(N型領域から延びる電気接点であってもよい)がフォトダイオード150に延びるか又は接触することにより、例えば、試験回路や被試験素子に電力が供給される。
図2Aは別の実施の形態による、集積フォトダイオード構造を備えた基板装置の側断面図である。図2Aの実施の形態において、N型領域208(N型井戸)がP型基板210内に形成されている。P型領域222及びN型領域224が、基板に照射される光の影響を受けるようN型井戸領域内の基板表面に設けられている。光透過領域225はP型領域222及びN型領域224の一部を含むN型井戸208の非閉塞領域と一致している。前記例と同様、基板の不透明領域に接点221が設けられている。例えば、シリサイド223又は同様の材料上に接点221を形成することができる。図2Aの実施の形態において、光起電PN接合220が高濃度にドープされたP型領域222と(高濃度にドープされたN型領域を含む)N型井戸との間に形成される。高濃度にドープされたP型領域229(N型井戸208には含まれていない)が接点221の直接下部に位置するよう、表面の厚さ又は表面の厚さに近い厚さでP型基板210に形成されている。
図示の実施の形態において、N型井戸208とP型基板210との間に第2PN接合227が形成されている。接点221を用いて電気的接続を高濃度にドープされたP型領域239に延伸し高濃度にドープされたN型領域224を“短絡”することによって電気的に分離されている。この短絡により、基板210と比較して、光透過領域に光が照射されたとき正の電圧が容易にP型領域222に生成される。この電気接点221がP型基板210に形成された別のP型小領域239(N型井戸の外部)に延伸される。その結果、P型小領域222とN型井戸208との接合部が基板210から分離される。これにより、第2PN接合227の効果が緩和される。
図1Aの実施の形態同様、不透明材料(例えば、電気接点やシリサイド)を指定領域から排除又は除去することにより光透過領域225が形成される。高濃度にドープされたP型領域及びN型領域222、224を光透過領域225に対応するN型井戸の位置に露出するよう配置することができる。光透過領域225に光を照射すると励起されキャリア移動が起こり前記のように光起電接合効果が生じる。具体的には、中央P型小領域222、N型井戸208、及びP型基板210の何れかによって入力パワーが吸収される。その結果P型小領域222に生じたホールの大半はその領域に閉じ込められ、N型井戸に生じた電子の大半はその領域に閉じ込められる。これはそれぞれの層が接触する空乏(空間電荷)層の電界によるものある。中央P型小領域222の生じた電子はN型井戸208に一掃されその大半がそこに閉じ込められる。図示のような実施の形態により中央P型小領域222に生じたキャリア及びN型井戸208に生じたキャリアの約半を数捕捉し、P型基板210に生じたキャリアを捕捉しない光起電素子を提供することができる。このように、この種の光起電素子は感応領域(N型井戸208内のP型小領域222)を除きシリコン・ウェハーに入射した光に対し無反応である。
図2Bは図2Aの実施の形態の構成によるフォトダイオードの概略回路図である。高濃度にドープされたP型領域222とN型井戸208との間にフォトダイオード242(PN接合220に対応)が延びている。別のフォトダイオード243(P型基板210とN型井戸との間のPN接合227に対応)は219によって電気的に短絡されている。
図2Cは別の実施の形態による、図2Aの実施の形態の変形例を示す図である。具体的には、図2Aの実施の形態同様、P型基板280上にN型領域274(N型井戸)が形成されている。高濃度にドープされた小領域がP型基板280上に形成され、その上に接点282が形成されている。N型井戸274は(i)シリサイド295及び対応する電気接点282の下部に位置する高濃度にドープされたP型小領域293(ii)高濃度にドープされたP型小領域293間に延びる拡張P型領域292及び(iii)高濃度にドープされたN型領域298を含む高濃度にドープされた小領域を有している。高濃度にドープされたP型領域292、293により図2Bの構成のPN接合によるフォトダイオードの寄生抵抗を小さくすることができる。
少なくとも一部に光が照射されるよう、光透過領域262(例えば、無シリサイド領域)の浅い部分又は表面に拡張P型小領域292が設けられている。主として拡張P型小領域292及びN型井戸274に対応する光起電PN接合によってフォトダイオードが形成されている。図2Aの実施の形態同様、N型小領域298がN型井戸274領域から延びる電気接点282によって短絡されていることにより、フォトダイオードが実質的に分離されている。図2Cの実施の形態に示すように、例えば、不透明材料又は構造体の形成を阻止するマスク処理により、光のアクセスが拡張P型領域292と実質的に重なる表面に限定されている。例えば、図示の実施の形態において、マスク処理によってシリサイドの形成を阻止することにより集積フォトダイオードの接合部となる拡張P型小領域292の少なくとも一部と重なるレーザー透過領域262を形成することができる。
図2Dは、別の実施の形態による、図2Cの実施の形態の変形例を示す図である。また、図2Eは図2Dの実施の形態のレイアウトを示す図である。図2Cの実施の形態同様、図2D、2EはP型基板280上に形成されたN型領域274(N型井戸)及び上部に接点282が設けられた高濃度にドープされた小領域を示している。N型井戸274は(i)シリサイド295及び対応する電気接点282の下部に位置する高濃度にドープされたP型小領域293(ii)高濃度にドープされたP型小領域293間に延びる拡張P型領域292(iii)高濃度にドープされたN型領域298及び(iV)高濃度にドープされた小領域を分離する浅溝分離(STI)領域290を含む高濃度にドープされた小領域を有している。通常二酸化シリコン分離材料が充填されたSTI領域により、隣接シリコン領域間のほぼ理想とする構造的及び電気的分離が可能となり、分離領域の近接が減り、成形金型の空中(平面図)面積が小さくなる。
図2Fは別の実施の形態による、図2Dの実施の形態の変形例を示す図である。また、図2Gは図2Fの実施の形態のレイアウトを示す図である。具体的には、図2Dの実施の形態同様、N型領域274(N型井戸)及び上部に接点282が設けられた高濃度にドープされた小領域がP型基板280上に形成されている。N型井戸274は(i)シリサイド295及び対応する電気接点282の下部に位置する高濃度にドープされたP型小領域293(ii)高濃度にドープされたP型小領域293間に延びる拡張P型領域292(iii)高濃度にドープされたN型領域298(iV)高濃度にドープされた小領域を分離する浅溝分離(STI)領域290及び(V)レーザー透過領域を規定するSTI領域を含む高濃度にドープされた小領域を有している。レーザー透過領域内のSTI領域により、製造工程においてサリサイドを阻止するマスクが不要となる。これにより製造工程が単純化され製造コストが低減されると共に、サリサイド阻止用マスクのコストが不要になる。
図2Hは別の実施の形態による、図2Fの実施の形態の変形例を示す図である。また、図2Iは図2Hのレイアウトを示している。具体的には、接合接触領域をSTIレーザー透過領域の一方の側の小方形領域に限定することにより、フォトダイオードの空中面積を最小にすることができる。これにより、成形金型の有効利用と接合領域の抵抗増とのバランスを取ることができる。
SOIにおける光起電力生成
図3は1つの実施の形態によるシリコン・オン・インシュレータ(SOI)水平膜フォトダイオードを示す図である。接合部が縦方向であるバルク素子(図1、2A及び2B)とは対照的に、SOI素子は一般に分離層(主として酸化物)320の上部に配された単結晶シリコンの非常に薄い層310(例えば、1000オングストローム未満)の上部に水平に形成されている。SOI素子の場合、通常N型及びP型領域は分離層320に達するように薄いシリコン層310に埋め込まれている。その結果、光起電PN接合325は垂直ではなく水平に形成され、光起電力生成用素子はすべてこのことを考慮に入れておく必要がある。
1つ以上の実施の形態によれば、SOI基板装置上における光起電力生成は以下の特徴及び考慮事項の一部又は全部を有することができる。1つの実施の形態において、N型領域312とP型領域314の細長片が交互に配されるよう一連の指状の(互いに組み合せられた)ドープ領域が形成され、P型領域314が光起電アノードを形成し、N型領域312が光起電カソードを形成するよう電気的に接続されている。一般に、標準製造工程においてはポリシリコン316又はその他の層によって自己整合される拡散又は埋め込みは、別の方法として、重ね合せ誤差を考慮したマスクのみで行ってもよい。図3の実施の形態において、シリサイド303と電気接点321との間隔を除き、シリサイド阻止領域が設けられていない。PN接合325は水平である、即ち、高濃度にドープされたP型領域314(細長片)から隣接するN型領域312及びN型井戸318に延びている。
図4は図3に示すような実施の形態の変形例を示す図である。図4において、光起電半導体素子は(i)光起電アノードを形成するよう電気的に接続されたP型領域412と光起電カソードを形成するよう電気的に接続されたN型領域428の細長片が交互に配されるよう形成された一連のドープ領域及び(ii)P型井戸と一体化され(光の照射による)電子−ホール対を収集するための大きな収集領域を成す浅いP型拡張領域420を有している。フォトダイオード405は水平に形成されている、即ち、P型領域412の細長片から隣接するN型領域428の細長片に延びている。図示の例において、浅いP型拡張領域420は高濃度にドープされていると共にP型井戸と一体化されている。レーザー透過領域430が(i)拡張領域420の上部及び(ii)フォトダイオード405アノードを構成する隣接P型領域412の一部の上部に形成されている。P型領域412の大半の部分は接点421及び/又はシリサイド403によって光が遮断されている。別の金属接点421が(シリサイド403上に)蒸着され高濃度にドープされたP型及びN型領域412、428それぞれの終端部を構成している。他の実施の形態同様、例えば、N型領域428の上部に延びる電気接点421を別のP型領域(図示せず)に延伸することにより電気的分離を行うことができる。
図4の実施の形態に示すように、P型拡張領域420端部近傍にP型領域412及びN型領域428をミラー配置することにより、それぞれ反対方向にフォトダイオード405を形成することができる。
図4の実施の形態の変形例において、標準製造工程ではポリシリコン416又はその他の層によって自己整合される拡散又は埋め込みが、重ね合せ誤差を考慮したマスクのみで規定される。
図3及び4の実施の形態はもとより、他の実施の形態においても、フォトダイオード405の出力インピーダンスが向上又は最適化されるようP型領域412及びN型領域428の寸法が選定される。出力インピーダンスの向上/最適化においては(i)拡散層の抵抗率(ii)収集効率(iii)キャリア拡散及び(iV)空乏領域特性が考慮される。更に、実施の形態において、P型領域412及びN型領域428に多数の金属接点を形成して高導電性金属層を設けることにより、実効インピーダンスが低下することを確認している。このような金属層により、比較的抵抗が高いドープシリコンを流れる遠方電荷が減少する。光の照射によって生成されたキャリアの収集効率を向上する例として、少数キャリアが拡散する距離を小さくて逆帯電したキャリアの数を減らすことにより、好ましくない電子とホールとの再結合を低減することができる(例えば、P型埋設井戸427のドーパント濃度を下げる)。
更に、1つ以上の実施の形態において、隣接するP型及びN型“指”の数制御又は隣接するP型及びN型領域における不純物添加制御によって、PN接合のキャパシタンスを制御することができる。例えば、低濃度ドープのPN水平接合は高濃度ドープのPN水平接合より空乏層の幅が広くなり、従って高濃度ドープの構造体のキャパシタンスの方が大きくなる。このような実施の形態を用いてAC出力インピーダンスの制御が可能であり、AC電気試験構造体に対し最適な電力供給を行うことができる。
更に、1つ以上の実施の形態において、製造する製品によって規定される標準工程が非標準的又は特殊な方法で使用される。
図5は別の実施の形態によるSOI基板上におけるフォトダイオードの構成を示す図である。図5の実施の形態において、光起電PN接合505は、図3及び4に示すような略水平ではなく、縦に構成部品が配されている。図示の実施の形態において、SOI基板510は高濃度にドープされたP型及びN型指領域512、514を有するN型井戸508を備えている。SOI構造体の厚さは約500〜1000オングストロームである。N型井戸508及びP型表面拡張部522がP型指領域512に接している。P型指512及びN型指514はそれぞれ(シリサイドのような材料の上に形成された)接点521を備えている。
1つの実施の形態によれば、P型表面拡張部522は基板上部に形成されたレーザー透過領域532の1つに対し実質的に位置を合わせて形成されている。P型指領域512とP型表面拡張部522との組合せによりフォトダイオード(光起電PN接合)505の1つのノードとなる隅部要素が形成される。このように、フォトダイオード505は垂直及び水平要素を備えている。光の照射により、P型指領域512とP型表面拡張部522との組合せにより形成された隅部要素からN型井戸508に対し水平及び垂直方向に電流が流れる。
P型指512とN型指514とは、図示の実施の形態においては任意として自己整合構造体550によって分割されている開放領域540によって分離されている。1つの実施の形態において、自己整合構造体550はポリシリコン552、シリサイド554、及びゲート酸化物556の層を有している。シリサイド554は構造体の伝導度を低下させるために用いることができる。前記の組合せにより、リソグラフィ工程の場合を上回る限界寸法記入を可能にするダミー構造体が得られる。従って、構造体550によるダミー領域がない場合、リソグラフィによってその領域を規定する必要があり、自己整合構造体550を使用した場合より限界寸法が大きくなる。
N型指領域514に延びる高濃度にドープされたN型拡張部526の上部に第2レーザー透過領域535を形成することにより、光の照射によって電気キャリアが生成される追加的な領域を露出させることができる。高濃度にドープされたN型領域の組合せにより、光の照射によって生成された電流を収集するためのカソード端子が得られる。
図6は別の実施の形態による、埋込酸化物(BOX)層614下部の基板の厚さ内に埋没するよう、光透過領域に形成された集積光起電埋込PN接合を備えた基板610を示す図である。図示のように、基板610はシリコン結晶層(SOI又はSTI膜)612及びBOX層614を含む幾つかの層を有している。電気接点621が少なくとも部分的にシリサイド623(又はその他の適切な材料)上に形成されている。シリサイド623は少なくともレーザーに対し不透明であり、シリコン結晶層612及びBOX層614は透明である。基板610はP型基板606上に形成されたN型井戸608を有している。
高濃度にドープされたP型及びN型領域622、624によってPN接合620が形成されている。基板のP型領域622とN型領域624と間に光(即ち、レーザー)透過領域625を形成することができる。光透過領域625は高濃度にドープされたP型及びN型領域622、624及びN型井戸の一部の他に、シリコン結晶層612及びBOX層に614に一致している。高濃度にドープされたP型及びN型領域622、624の各々は対応するシリサイド623によって部分的に遮光されている。図2Aの実施の形態において説明したように、適切な光を照射することにより高濃度にドープされたP型領域622、N型井戸、及び高濃度にドープされたN型領域624によって形成されたPN接合から電子とホールの生成が開始される。PN接合は実質的に垂直要素によって構成され、回路(例えば、図13)に電力を供給するフォトダイオードが得られる。任意として、別の実施の形態において説明したように、高濃度にドープされたN型領域から別の高濃度にドープされたP型領域に対して電気接点621を延伸することにより、光照射時においてPN接合を電気的に分離することができる。
引き続き図6の実施の形態において、シリコン結晶層の一部として形成された特殊な構造体は、特にその形状及び寸法が変化してもよい。しかし、図示のように、シリサイド623や電気接点621のような不透明材料を故意に使用しないようにすることにより適切なレーザー透過領域を設けることができる。基板610の具体的な厚さ及び/又は地勢は試験構造体のような回路素子に電力を供給するフォトダイオードの設計上の制約として扱うことができる。
図7は別の実施の形態による、基板710が埋没又は埋込光起電PN接合を有する図6の実施の形態の変形例を示す図である。基板710はシリコン結晶層(SOI又はSTI膜)712及びBOX層714を含む幾つかの層を有している。電気接点721が少なくとも部分的にシリサイド723(又はその他の適切な材料)上に形成されている。シリサイド723は少なくともレーザーに対し不透明であり、シリコン結晶層712及びBOX層714は透明である。基板710はP型である。
図6の実施の形態とは対照的にN型井戸708は上部に電気接点が延びる高濃度にドープされたN型領域724を備えている。高濃度にドープされたP型領域はN型井戸の外部に設けられている。1つ以上の高濃度にドープされたP型領域722はシリサイド723又は電気接点721によって一部が遮光されない位置に配されている。このようにして、少なくとも1つ以上の高濃度にドープされたP型領域722の特定の部分と一致する基板710の上部に1つ以上の光透過領域が設けられている。1つの実施の形態において、少なくとも2つの高濃度にドープされたP型領域が光透過領域と部分的に一致するようにして形成されている。光によって電子とホールの生成が開始されると、電子−ホール対がN型井戸708の境界を越えて移動する。この移動がPN接合720に相当する。このようなPN接合はN型井戸708の略全体に及んでいる。
図8は別の実施の形態による、基板810が埋没又は埋込光起電PN接合を有する図6及び図7の実施の形態の変形例を示す図である。基板810はシリコン結晶層(SOI又はSTI膜)812及びBOX層814を有している。電気接点821が少なくとも部分的にシリサイド823(又はその他の適切な材料)上に形成されている。シリサイド823は少なくともレーザーに対し不透明であり、シリコン結晶層812及びBOX層814は透明である。基板810はP型基板806上にN型井戸808を有している。図7の実施の形態とは対照的に、N型井戸808は高濃度にドープされたP型領域822を有している。また、N型井戸808は高濃度にドープされたN型領域824も有している。別の実施の形態において説明したように、高濃度にドープされたP型及びN型領域は、それぞれの領域の一部が露出するようシリサイド823によって部分的に覆われていてもよい。このようにして、少なくとも1つの光透過領域825が(図示の構成において)2つの高濃度にドープされたP型領域822と重複する基板の上部に設けられている。
2つの高濃度にドープされたP型領域822とN型井戸808とによってフォトダイオード接合が得られる。図示のような実施の形態により、例えば高濃度にドープされた1つのP型領域を用いる場合と比較して生成された電子−ホール対の収集効率が向上する。電子−ホール対を生成する領域を囲む高濃度にドープされたN型領域824により抵抗性効果が低減されると共に一定の電気的遮蔽効果がもたらされる。
図9は別の実施の形態による基板910が埋没又は埋込光起電PN接合を有する図6〜図8の実施の形態の更に別の変形例を示す図である。基板910はシリコン結晶層(SOI又はSTI膜)912及びBOX層914を有している。電気接点921が少なくとも部分的にシリサイド923(又はその他の適切な材料)上に形成されている。シリサイド923は少なくともレーザーに対し不透明であり、シリコン結晶層912及びBOX層914は透明である。基板910はP型である。図7の実施の形態とは対照的に、N型井戸908は高濃度にドープされたP型領域922を有している。図8の実施の形態の変形として、P型領域922が対応する光透過領域925略一致する長さのP型拡張領域926を有している。N型井戸908内における高濃度にドープされたP型領域922と926との組合せによりPN接合が形成される。例えば、図2Bの実施の形態において説明したように、高濃度にドープされたP型領域926を拡張することにより生成された電子−ホール対の収集効率が向上する。図8で説明したように、高濃度にドープされたN型領域924をN型井戸908に含めることにより生成領域を分離することができる。
別の実施の形態において説明したように、高濃度にドープされたP型及びN型領域(拡張領域926を除く)はそれぞれの領域の一部が露出するようシリサイド923によって部分的に覆われていてもよい。(図示の構成において)2つの高濃度にドープされたP型領域922と部分的に重複すると共にP型拡張部926と略重複する基板910の上部に光透過領域925を設けることができる。P型拡張部926を用いることにより、特に抵抗率の改善及び収集効率の向上が得られる。また、P型拡張部926によりPN接合920を大きくすることができその結果フォトダイオードの効率が更に向上する。
別の実施の形態において説明したように、フォトダイオードの収集領域を構成する高濃度にドープされたN型領域924を高濃度にドープされたP型領域928に延びる電気接点921によって“短絡”することができる。前記のように、そのような短絡によってフォトダイオードを分離することができる。
フォトダイオードの基板底部側からの光照射
本明細書で説明した多くの実施の形態によれば、上面側から光を照射するフォトダイオードが提供される。前記のように、少なくとも一部の実施の形態においては、構造体や不透明材料(例えば、シリサイド)が存在しない基板装置又は半導体の設計領域に対応するレーザー透過領域が用いられている。
かかる実施の形態に代わるものとして、1つ以上の実施の形態において底部側から光を照射するものが提供される。図10はフォトダイオード(及び対応する試験構造体)に電力を供給するための底部側光照射構成を示す概略図である。ウェハー1000は能動回路が形成される上面1001及び上面1001に対向し能動回路を有しない底面1003を有している。試験構造体又は非試験素子1010が上面1001に用意される。
シリコンにおいては、例えば、光によって生成されたキャリアが最終的に基板の厚さを横断して対向側又は基板の厚さの略ドープ領域において収集されることを実施の形態において確認している。従って、1つの実施の形態において、ウェハー1000の裏面側1003からレーザーが照射される。
より詳細な実施の形態において、ウェハーは厚さ(表面1001と1003との間)が約750マイクロメートルのP型低濃度ドープの単結晶シリコンである。例えば、ウェハー1000の裏面側のフォトダイオードを含むN型埋込井戸の下部から光1004が照射される。光が照射されると、電子及びホール両方のキャリアが生成される。生成されたキャリアはウェハーの厚さを通して移動することができ、上面1001の近傍の拡散材によって捕捉される。
図11は1つの実施の形態による、裏面照射をサポートする集積フォトダイオードをウェハーに形成するための詳細図である。1つの実施の形態において、高濃度にドープされたN型領域1011及び高濃度にドープされたP型領域1021を低濃度にドープされたP型基板であるウェハーに埋め込むことによりフォトダイオード1010が形成される。光パワー1014によって生成された電子がN型領域1011に拡散することにより基板に対する電位が低下する。設計が適切であり且つ光キャリアが充分である場合、N型領域1011の電位が約−0.7ボルトまで低下し、この電位を利用して能動回路1012に電力を供給することができる。
このような実施の形態はP型をドープした基板1000にN+を埋め込むことによって達成でき、この場合基板1000に対するN型領域の電圧は負電位(約−0.7V)となる。また、このような実施の形態はN型をドープした基板1000にP型を埋め込むことによっても達成でき、この場合基板1000に対する高濃度にドープされたP型領域の電圧は正電位(約+0.7V)となる。
図12はSOI基板装置1110に実装した図11の実施の形態の変形例を示す図である。1つの実施の形態において、高濃度にドープされたN型材料(N型領域1124)の小領域がP型をドープした基板1122の埋込酸化物(BOX)層1121の下部に形成される。N型領域1124との接触は基板接触ビア1123により、BOX層を通して行われる。また、P型をドープした基板1122との接触はP型埋込1126及び第2接触ビア1125によりBOX層を通して行われる。裏面照射1114により基板1122内に生じた電子は高濃度にドープされたN型領域1124に捕捉されるまで基板1122内をドリフトする。P型接点1125/1126とN型接点1123/1124との間に約+0.7Vの電位差が得られ、この電位差によってシリコン・オン・インシュレータ(SOI)材料1120上に形成された能動回路を働かせることができる。
シリコンの厚さが約750マイクロメートルであるため、キャリアが再結合する前に比較的長い距離を拡散する必要がある。従って、比較的長い波長の光1114を用いて光キャリアが基板1122内の深部(吸収領域1124にできるだけ近い場所)で生成されることが好ましい。比較的長い波長ではあるが、シリコン・バンドギャップ波長より短いものが適切な波長である。シリコンに対する適切な波長の例として、シリコンにおいて比較的長い吸収距離が得られる1064nmがあげられる。これに反し、前記構成において300nmの光を用いると底面1102においてほぼ即座に吸収される。
本明細書において説明する実施の形態は回路やその他の構成要素、特に半導体基板がまだ製造途上にあるときの試験構造体又は回路に電力を供給するための集積フォトダイオードを備えた半導体基板(即ち、ウェハーのセクション又は部分から成っている)を有している。(ここに引用することによりそっくりそのまま本明細書に組み込まれたものとする)米国特許第7,220,990号明細書、米国特許第7,339,388号明細書、及び米国特許第7,423,288号明細書はそれぞれ、半導体基板が製造途上にあるとき、非接触非破壊試験信号生成(及びその後の分析)を行うためにチップ上で電力が供給される試験構造体又は回路について記載している。本明細書の多くの実施の形態は、光(例えば、レーザー)の照射によってそのような回路及び構造に電力を供給することができる集積フォトダイオードの形成に関するものである。
図13は1つ以上の実施の形態による、集積フォトダイオードの適用例を示す図である。図13において、機能強化集積フォトダイオード1310を用いて半導体基板装置1330上の1つ以上の試験構造体1320に電力が供給される。フォトダイオード1310は前記実施の形態の何れかによって形成することができる。従って、フォトダイオード1310は光透過領域と一致する基板装置1330上の位置に設けられた(高濃度に)ドープされた隣接するP型及びN型領域の構成に対応している。
基板装置1330は一部の実施の形態におけるもの(例えば、バルク・シリコン、SOI等)と同種のものである。アプリケーションに応じ、基板装置1330は半完成状態又は完成状態であってよい。1つの実施の形態において、基板装置1330は半完成状態の半導体ウェハーの一部である。かかる実施の形態において、フォトダイオードによって1つ以上の試験構造体及び試験回路又は素子に電力を供給することができる。1つ以上の機能強化フォトダイオードを用いて試験構造体に電力を供給するための多くの配置及び構成が考えられる。その中には、(i)1つの集積フォトダイオード1310により多数の試験構造体1320に電力を供給する(ii)フォトダイオード及び/又は試験構造体1320を半導体基板(例えば、チップ上)の活性領域1332に配置するか、スクライブ又は活性領域外に配置する(iii)フォトダイオード1310と試験構造体1320との近接度を変えることが含まれる。
有効な集積フォトダイオード1310を形成するための考慮事項として(i)フォトダイオードの電力供給能力(ii)フォトダイオードの効率及び(iii)標準の製造及び設計慣習、集積回路製造上の制約及び考慮事項に適応した安定度があげられる。かかる標準のシリコン製造には、取り分け、バルク・シリコン及びシリコン・オン・インシュレータ(SOI)工程及び設計が含まれる。
1つ以上の実施の形態によれば(i)光源(例えば、レーザー)を電力に変換する能力及び(ii)照射された光1326(例えば、レーザー)から電力を供給して電気回路及び試験構造体を動作させる能力を有するフォトダイオード1310が半導体基板1330上に形成される。フォトダイオード1310から電力供給を受ける予定の試験構造体1320及び/又は他の構造体/素子に対し1つ以上のリード線1344(即ち、接触素子)を延伸することができる。少なくとも一部の実施の形態において、半導体基板(例えば、シリコン・ウェハー)の本来の目的によって規定される素子設計製造上の制約の範囲内において、集積フォトダイオード1310が半導体基板1330の一部として形成される。
更に、1つ以上の実施の形態により、ウェハー製造工程上の制約に適応する特性を有するフォトダイオード1310が提供される。1つ以上の実施の形態により、半導体基板の設計製造工程のパラメータ及び考慮事項を最適化した(又は少なくともその範囲に収まる)フォトダイオード1310が提供される。具体的には、本明細書に記載の一部の実施の形態は設計及び製造上の制約の範囲内で動作し当該アプリケーションに対し最適化された光起電フォトダイオードを有している。1つ以上の実施の形態のアプリケーションには設計製造分析、ウェハー製造設計工程の制御、回路性能、製造と設計との統合、及び素子製造設計の特性評価が含まれる。
集積フォトダイオードを備えた半導体基板の製造/設計
図14は1つ以上の実施の形態による、半導体基板に集積フォトダイオードを形成する方法を説明するための図である。このような方法により、図1〜9に示す集積フォトダイオード構造の一部又は全部を形成することができる。
工程1410において、フォトダイオードを構成する要素(例えば、高濃度にドープされたP型領域、N型領域等)の寸法の他に、光透過領域の寸法が決定される。そのようの寸法は少なくとも部分的に電力の生成及び製造上の制約を含む考慮事項に基づいて決定することができる。フォトダイオードによって生成される電力量(例えば、稼動予定の試験回路の数及び種類)、使用する光源(例えば、レーザーの種類)、及び製造上の制約又は基板特有の制約(例えば、アクセス可能スペース)がフォトダイオードの寸法を決定する要因になる。フォトダイオードのアプリケーション又は用途によって更に寸法要件が影響を受ける。
寸法が決定されると、工程1420において、光起電素子が光アクセスできるようにするための設計及び処理工程が実施される。このように、半導体基板の製造工程によりフォトダイオード及び試験回路の両方が形成される。フォトダイオード1310の有効利用を図るため、一部の実施の形態において、半導体基板の製造工程における変化又は別のパラメータに対応できるようにフォトダイオード1310(及び試験構造体1320)を形成することの利点を見出している。特に、一部の実施の形態において、半導体製造に関連する標準工程変化の影響を略等しく受けるようフォトダイオード1310及び駆動される電気試験構造体1320が協調設計される。1つの実施の形態において、光起電力源の変動に加え電気試験構造体に対する供給電流の変動により光起電電圧出力が設計上の制限を越えないようフォトダイオード1310及び試験構造体1320が協調設計される。例えば、試験構造体1320が半導体基板1330上に形成され、製造変動の結果ウェハーを横断して10%の変動があると予想される場合、一部の実施の形態において、試験構造体の電流引き込みに変動があることを条件に、標準からの出力電圧の変動が一定量未満となるようフォトダイオード1310が設計される。
工程1430において、必要に応じて電気的及び光学的分離が行われることによりフォトダイオードの効率及び性能が向上する。例えば、図2A又は図9の実施の形態において、電気的分離は生成された電子及びホールが収集されるN+領域から延伸される電気的短絡の形態を成している。
基板上にフォトダイオードが形成されると、1つ以上の実施の形態において、試験構造体を始動して集積フォトダイオードの飽和又は物理的損傷の有無が確認される。フォトダイオードによる試験回路の始動は基板装置完成時又は半完成時に行うことができる。多数の機能強化及び最適化を任意行うことによって、試験構造体をより効率的に始動することができる。そのような機能強化及び最適化には以下のものが含まれる。
1つの実施の形態において、応答が飽和せずに非常に明るい光を受容するようフォトダイオードを設計することができる。このことは一般に弱い光信号を受信するよう最適化される従来の光伝導検出素子とは対照的である。
更に別の実施の形態において、制御され一定で安定した出力電圧下で光電流を生成するようフォトダイオードを構成することができる。このことは外部から供給される負の固定バイアスの下で弱い光信号に比例して光電流を生成する従来の光伝導検出素子とは対照的である。
更に、別の実施の形態において、出力リード線1344(図13)又は集積フォトダイオードの回路素子インピーダンスが駆動される電気試験構造体の回路入力インピーダンスに略一致するよう設計される。
更に、一部の実施の形態において、試験構造体1320の動作周波数において、出力インピーダンスが設計限界を越えないようにフォトダイオードを設計することにより、フォトダイオードの形成及び利用が最適化される。例えば、試験構造体1320が1GHzで動作するリング発振器の場合、かかる高周波数に対しフォトダイオード1310がAC短絡回路のように振舞い、全く実用的な目的からリング発振器を駆動する生成された光起電出力電圧が経時的に一定であるように見えることが有益である。これはフォトダイオード1310の静電容量を大きくすると共に/又は抵抗を小さくすることによって達成することができる。即ち(a)適切な電力の取得に必要な面積を越えた(水平及び又は垂直方向の)PN接合の面積の増大、及び/又は(垂直方向に)深い基板の使用、及び/又は垂直構造の使用(b)ポリ−井戸コンデンサ、ポリ−基板コンデンサ、金属−金属コンデンサ、金属−基板コンデンサ等の薄酸化膜コンデンサの利用(c)適切な水平又は垂直方向の形状の採用、直列又は並列接続の変化、又は光学的に能動領域近傍又は能動領域内における低インピーダンス接続のための追加層の形成による抵抗の低減(d)フォトダイオードと一体となった(b)に列挙した形態のコンデンサの形成(e)電気試験構造体のクリティカル・ノードにおける(b)に列挙した形態の局部バイパス・コンデンサを供給することによって達成できる。
更に、別の機能強化策により特定のシリコン(バルク及び/又はSOI)製造工程の制約に依存するフォトダイオード1310光収集効率が向上する。かかる実施の形態において、例えば、ある場合にはP型/N型接合が最適であるが、P型及びN型領域が製造工程においてシリサイドのような光学的に不透明な材料によって変えられてしまうような特定のアプリケーションに対しては実用的でないことを見出している。従って、制約により光がプール収集されることを条件に光収集効率が最大化されるようフォトダイオード1310を構成することができる。
フォトダイオード1310の形成に関わる追加又は代替機能強化策として、照射された光パワーを反射する必要な金属接点の存在下又は入射光パワーを減衰させるシリサイド・ブロックの処理工程の存在下において充分な電圧制御及び電流生成能力を有するようフォトダイオードを設計(最適化)することができる。更に、光パワー源の感光性領域に対するビーム配置に対し所定の範囲内において反応しないようフォトダイオード1310を構成することができる。前記所定の範囲は可変である(例えば、10%、5%、3%、1%等とすることができる)。
別の実施の形態において、フォトダイオード1310の動作が電気試験構造体に悪影響を及ぼさないよう設計される。光起電素子が、例えばウェハーに実装されたとき、素子と導体との間の電気的及び光学的クロストークが防止される。
別の実施の形態において、充分な光効率を得るため、光生成少数キャリアが素早く流出できるようフォトダイオード1310のN型領域及びP型領域が充分小さく設計される。設計制約としては、単位体積当たりの少数キャリアの数が対応する多数キャリアの10%未満、1%未満、あるいは0.1%未満である。例えば、少数光キャリアが一定の割合(単位体積単位時間当たりの電子又はホール)で生じている場合、この割合に少数キャリアが少数キャリア領域から拡散する平均時間を乗じたものが同一領域の多数キャリア濃度に0.1、0.01、あるいは0.001(実装方法又は構成に依存する)を乗じたものより小さくなければならない。
別の実施の形態により高濃度にドープされた高導電性ポリシリコン領域を用いたPN光起電素子の製造方法が提供される。例えば、P型ポリシリコン領域とN型ポリシリコン領域との境界も光起電発電を可能にする。他の変形にはP型ポリシリコン層とそのシリコンのN型領域との接合やN型ポリシリコン層とそのシリコンのP型領域との接合が含まれる。
更に別の実施の形態によりウェハーの裏面側からのレーザー照射が可能となる。標準的なウェハーは厚さ約750マイクロメートルのP型をドープした単結晶シリコンである。フォトダイオード真下のウェハー裏面に光が照射されると、電子及びホールのキャリアが生成される。これ等のキャリアはシリコン・ウェハー内を自由に拡散しウェハー上面側に設けられた拡散材によって捕捉される。
図15は特定の実施の形態による、フォトダイオードの設計を最適化する方法を説明するための図である。工程1510において、集積回路に電力を供給するためのフォトダイオードの属性が決定される。特に(i)レイアウト効率と必要とするダイオード両端の電とのバランスを考慮した設置面積(ii)外来寄生抵抗の最小化(iii)光照射に対する開放度(金属/シリサイドの回避)(iV)良好なダイオードの理想的作用(例えば、低漏洩、低欠陥レベル)(V)固有接合に対するキャリア生成領域の近接性(Vi)N型井戸基板領域に短絡して陽極基準を設ける能力(P−N接合の場合N型井戸によって分離)の属性値が決定される。
工程1520において、フォトダイオードの寸法及びレイアウトが決定される。急峻な負荷線領域で動作させることにより電圧変動に対する回路の感度を最小化できる。
工程1530において、電圧変動に対する感度が低い状態で集積回路を動作させるのに充分な電力が供給できる最小のダイオードが決定される。
重畳フォトダイオード
図12に示すようなこれまでの実施の形態を参照しながら、1つのフォトダイオード構造体から成る電源を評価するため、2つのフォトダイオードを直列に重畳したところ、1つのフォトダイオードの2倍の電圧が得られた。3つのフォトダイオードを直列に重畳することにより、電源容量がさらに増加し、これにより、レーザ光が照射されると、1つのフォトダイオードの3倍の電圧が得られるであろう。重畳された2つのフォトダイオードの構成の回路接続図も得られる。集積されたフォトダイオード装置構造の実施の形態の断面は、所定の回路に適切に電力を供給するための接続部を有する。重畳されたフォトダイオードの構成の隔離は、接続部で電位を損なうかもしれない望ましくない寄生的漏電成分を抑制するために重要である。重畳された2つのフォトダイオードの間に加えられたSTI絶縁領域およびP型ドープ領域は、寄生的NPNのBETAおよび輸送電流を低下させることによって、望ましくない漏電成分を緩和するか除外する。また、2つのフォトダイオードの間の間隔を意図的に調節することによって、寄生的NPNの漏電成分をさらに緩和する。
本明細書において説明した実施の形態に対する変形形態は、光起電素子が構築された基板がバルク・シリコン基板かSOI基板かによって異なる。SOI上の素子構造体は、絶縁体上に構築されていること及び領域を絶縁壁内部に密閉できることから、本質的に1つの領域が別の独立した領域に影響を及ぼすことはない。バルク・シリコンの場合には、1つの共通の基板が同一ウェハー上に構築された回路に接続している。従って、1つの領域における電気光学作用が別の領域の作用に影響を及ぼす可能性が潜在的にある。
108 N型井戸
110 P型基板
113 シリサイド
120 PN接合
121 金属接点(端末接触子)
122 P型領域
124 N型領域
144 リード線

Claims (6)

  1. シリコン・オン・インシュレータ(SOI)基板であって、
    シリコン基板と、
    前記シリコン基板上の埋込酸化物層と、
    前記埋込酸化物層上のシリコン層と、
    当該SOI基板上に形成された回路と、
    入射する光を透過する光透過領域であり、前記埋込酸化物層及び前記シリコン層の一部を含む光透過領域と、
    前記光透過領域に一致する前記シリコン基板の表面に一体的に形成され、前記回路に電力を供給するフォトダイオードであって、複数のドープされた領域の組合せにより電気的及び光学的に隣接回路及び素子から分離されるように形成され、前記光透過領域を通しての光の照射により光起電圧を発生する少なくとも2つの逆ドープされた領域を含むフォトダイオードと、
    を有し、
    前記フォトダイオードが、前記回路中の第1及び第2の素子と共に集積され、前記入射する光に応答して前記第1及び第2の素子を駆動する電力を供給する、
    SOI基板。
  2. 前記第1の素子が、リング発振器を有する、請求項1記載のSOI基板。
  3. 前記フォトダイオードのキャリア生成領域が、前記フォトダイオードの固有接合に近接している、請求項1記載のSOI基板。
  4. 入射光が、前記光透過領域を通った後においてのみ前記フォトダイオードに達する、請求項1記載のSOI基板。
  5. 前記フォトダイオードのN型井戸領域が、第1の高濃度にドープされたP型領域、高濃度にドープされたN型領域、および、前記第1の高濃度にドープされたP型領域と前記高濃度にドープされたN型領域との間のPN接合を含み、前記高濃度にドープされたN型領域が、前記N型井戸領域の外にある第2の高濃度にドープされたP型領域とショートされることにより、入射光に応答して前記第2のP型領域において生成される前記シリコン基板に対して正の電圧の生成を促進し、前記シリコン基板に対して前記PN接合の分離を提供する、請求項1記載のSOI基板。
  6. 直列スタックにて共に接続され、且つ前記第1の素子と集積された複数のフォトダイオードであり、入射光に応答して、前記第1の素子を駆動する電力を供給するようにされた複数のフォトダイオード、を形成するよう1つ以上の更なるフォトダイオードを有し、
    前記直列スタックの構成が、前記第1の素子に供給される電力を、前記複数のフォトダイオードのうちの単一のフォトダイオードによって前記第1の素子に供給されるであろう電力よりも増大させる、
    請求項1に記載のSOI基板。
JP2016060064A 2008-08-29 2016-03-24 半導体基板用集積フォトダイオード Expired - Fee Related JP6346911B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9329208P 2008-08-29 2008-08-29
US61/093,292 2008-08-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014075479A Division JP2014140065A (ja) 2008-08-29 2014-04-01 半導体基板用集積フォトダイオード

Publications (2)

Publication Number Publication Date
JP2016157956A JP2016157956A (ja) 2016-09-01
JP6346911B2 true JP6346911B2 (ja) 2018-06-20

Family

ID=41722320

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011525243A Expired - Fee Related JP5734854B2 (ja) 2008-08-29 2009-08-28 半導体基板用集積フォトダイオード
JP2014075479A Pending JP2014140065A (ja) 2008-08-29 2014-04-01 半導体基板用集積フォトダイオード
JP2016060064A Expired - Fee Related JP6346911B2 (ja) 2008-08-29 2016-03-24 半導体基板用集積フォトダイオード

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2011525243A Expired - Fee Related JP5734854B2 (ja) 2008-08-29 2009-08-28 半導体基板用集積フォトダイオード
JP2014075479A Pending JP2014140065A (ja) 2008-08-29 2014-04-01 半導体基板用集積フォトダイオード

Country Status (5)

Country Link
US (3) US8410568B2 (ja)
JP (3) JP5734854B2 (ja)
KR (2) KR101619206B1 (ja)
TW (1) TW201013953A (ja)
WO (1) WO2010025391A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410568B2 (en) 2008-08-29 2013-04-02 Tau-Metrix, Inc. Integrated photodiode for semiconductor substrates
JP5387212B2 (ja) * 2009-07-31 2014-01-15 富士通セミコンダクター株式会社 半導体装置及びその製造方法
WO2011022690A2 (en) * 2009-08-21 2011-02-24 California Institute Of Technology Systems and methods for optically powering transducers and related transducers
US8586403B2 (en) * 2011-02-15 2013-11-19 Sunpower Corporation Process and structures for fabrication of solar cells with laser ablation steps to form contact holes
US8486746B2 (en) * 2011-03-29 2013-07-16 Sunpower Corporation Thin silicon solar cell and method of manufacture
US8586397B2 (en) 2011-09-30 2013-11-19 Sunpower Corporation Method for forming diffusion regions in a silicon substrate
US9559228B2 (en) * 2011-09-30 2017-01-31 Sunpower Corporation Solar cell with doped groove regions separated by ridges
US8992803B2 (en) 2011-09-30 2015-03-31 Sunpower Corporation Dopant ink composition and method of fabricating a solar cell there from
TWI427783B (zh) * 2011-10-28 2014-02-21 Ti Shiue Biotech Inc 應用於分子檢測與鑑別的多接面結構之光二極體及其製造方法
US9031102B2 (en) 2012-03-01 2015-05-12 California Institute Of Technology Methods of modulating microlasers at ultralow power levels, and systems thereof
CN105408740A (zh) 2012-07-25 2016-03-16 加州理工学院 具有功能化栅电极和基电极的纳米柱场效应和结型晶体管
US9252234B2 (en) * 2012-09-06 2016-02-02 International Business Machines Corporation Partially-blocked well implant to improve diode ideality with SiGe anode
US8883645B2 (en) 2012-11-09 2014-11-11 California Institute Of Technology Nanopillar field-effect and junction transistors
US11837669B2 (en) * 2013-03-15 2023-12-05 ActLight SA Photo detector systems and methods of operating same
DE102014218772A1 (de) * 2014-09-18 2016-03-24 Technische Universität Dresden Photovoltaisches Element
FR3029373B1 (fr) * 2014-12-02 2018-01-12 Sunpartner Technologies Dispositif electronique associe a un module photovoltaique pour optimiser le debit d'une transmission bidirectionnelle de type vlc
US11105974B2 (en) * 2015-06-30 2021-08-31 Massachusetts Institute Of Technology Waveguide-coupled silicon-germanium photodetectors and fabrication methods for same
CN110931578A (zh) * 2018-09-20 2020-03-27 台湾积体电路制造股份有限公司 光电探测器
JP7178496B2 (ja) 2019-01-30 2022-11-25 長江存儲科技有限責任公司 垂直拡散プレートを有するコンデンサ構造
US10892373B2 (en) * 2019-02-07 2021-01-12 Newport Fab, Llc Germanium photodiode with silicon cap
US11251217B2 (en) * 2019-04-17 2022-02-15 ActLight SA Photodetector sensor arrays

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181586A (ja) * 1975-01-13 1976-07-16 Nippon Electric Co
JPS5526661A (en) * 1978-08-15 1980-02-26 Sharp Corp Photo-semiconductor device
JPS57100761A (en) * 1980-12-16 1982-06-23 Fujitsu Ltd Semiconductor light sensitive device
JPS6355980A (ja) * 1986-08-26 1988-03-10 Matsushita Electric Works Ltd フオトダイオ−ドアレイの製法
JPS6481522A (en) * 1987-09-24 1989-03-27 Agency Ind Science Techn Optical control circuit and semiconductor device constituting said circuit
JP3029497B2 (ja) * 1991-12-20 2000-04-04 ローム株式会社 フォトダイオードアレイおよびその製造法
JPH06268247A (ja) * 1993-03-15 1994-09-22 Matsushita Electric Works Ltd 光結合型半導体リレー
US5360987A (en) * 1993-11-17 1994-11-01 At&T Bell Laboratories Semiconductor photodiode device with isolation region
JPH09260501A (ja) * 1996-03-25 1997-10-03 Sanyo Electric Co Ltd ホトダイオード内蔵半導体集積回路
JPH09260715A (ja) * 1996-03-25 1997-10-03 Sanyo Electric Co Ltd ホトダイオード内蔵半導体集積回路
JPH1051017A (ja) * 1996-08-02 1998-02-20 Sanyo Electric Co Ltd 半導体装置
JP2970580B2 (ja) * 1997-03-21 1999-11-02 日本電気株式会社 半導体チップ、光受信モジュールおよび光受信モジュールの製造方法
US6529018B1 (en) * 1998-08-28 2003-03-04 International Business Machines Corporation Method for monitoring defects in polysilicon gates in semiconductor devices responsive to illumination by incident light
JP2001077400A (ja) * 1999-08-31 2001-03-23 Tokai Rika Co Ltd 半導体フォトデバイス
TW419834B (en) 1999-09-01 2001-01-21 Opto Tech Corp Photovoltaic generator
JP2001135849A (ja) * 1999-11-05 2001-05-18 Matsushita Electronics Industry Corp 受光装置
JP2003007975A (ja) * 2001-06-27 2003-01-10 Sony Corp 半導体装置およびその製造方法
US20030015705A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices with an energy source
JP3859480B2 (ja) 2001-10-17 2006-12-20 株式会社ルネサステクノロジ 検査方法
JP2004006778A (ja) * 2002-04-04 2004-01-08 Toshiba Corp Mosfet、その製造方法及びそれを用いた光半導体リレー装置
GB0216075D0 (en) 2002-07-11 2002-08-21 Qinetiq Ltd Photodetector circuits
KR20040057238A (ko) 2002-12-26 2004-07-02 삼성전기주식회사 포토다이오드, 이를 구비한 광전자 집적회로장치 및 그제조방법
JP2005086063A (ja) * 2003-09-10 2005-03-31 Keio Gijuku フォトダイオード及び集積化光受信器
JP2005158834A (ja) 2003-11-21 2005-06-16 Sanyo Electric Co Ltd 光半導体装置
TWI226137B (en) 2004-01-09 2005-01-01 Integrated Crystal Technology Structure of dual-pad high speed photodiode
US7535089B2 (en) 2005-11-01 2009-05-19 Massachusetts Institute Of Technology Monolithically integrated light emitting devices
US7928317B2 (en) * 2006-06-05 2011-04-19 Translucent, Inc. Thin film solar cell
US8410568B2 (en) 2008-08-29 2013-04-02 Tau-Metrix, Inc. Integrated photodiode for semiconductor substrates

Also Published As

Publication number Publication date
JP2016157956A (ja) 2016-09-01
KR101619206B1 (ko) 2016-05-18
KR20110084876A (ko) 2011-07-26
WO2010025391A3 (en) 2010-04-22
US20100084729A1 (en) 2010-04-08
KR101627684B1 (ko) 2016-06-07
US8872297B2 (en) 2014-10-28
US20130334644A1 (en) 2013-12-19
TW201013953A (en) 2010-04-01
JP2014140065A (ja) 2014-07-31
JP5734854B2 (ja) 2015-06-17
US20160104812A1 (en) 2016-04-14
US8410568B2 (en) 2013-04-02
JP2012501554A (ja) 2012-01-19
WO2010025391A2 (en) 2010-03-04
KR20140127916A (ko) 2014-11-04

Similar Documents

Publication Publication Date Title
JP6346911B2 (ja) 半導体基板用集積フォトダイオード
JP6090060B2 (ja) シングルフォトンアバランシェダイオード
US6482671B2 (en) Integrated optoelectronic device with an avalanche photodetector and method of making the same using commercial CMOS processes
US4926231A (en) Integrated pin photo-detector
JP2017005276A (ja) シングルフォトンアバランシェダイオード
US20150103349A1 (en) Photodetector with Controllable Spectral Response
US20230178677A1 (en) Single-photon avalanche photodiode
US8994138B2 (en) Hardened photodiode image sensor
US6281428B1 (en) Photovoltaic generator
US20210296377A1 (en) Spad pixel circuits and methods thereof for direct time of flight sensors
US20090261441A1 (en) Optical semiconductor device
US9202829B2 (en) Light sensors with infrared photocurrent suppression
US8120078B2 (en) Photodiode structure
US20030087466A1 (en) Phototransistor device
US20240097052A1 (en) Systems and methods for stacked sensors with electrical insulation
CN111630355A (zh) 光检测装置
US20230369378A1 (en) Photodiode and manufacturing method thereof
Atef et al. Integrated photodiodes in nanometer CMOS technologies
CN116845121A (zh) 光电转换器件、装置及其制造方法
JP5723135B2 (ja) 半導体装置の製造方法
JP2004039695A (ja) 光起電力装置およびそれを用いた半導体スイッチ
EP2216815A1 (en) Integrated circuit comprising a PIN diode and method of production
JP2003023142A (ja) 半導体装置およびその製造方法
JP2011138942A (ja) 半導体素子及び半導体素子の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6346911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees