JP6338762B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP6338762B2
JP6338762B2 JP2017500189A JP2017500189A JP6338762B2 JP 6338762 B2 JP6338762 B2 JP 6338762B2 JP 2017500189 A JP2017500189 A JP 2017500189A JP 2017500189 A JP2017500189 A JP 2017500189A JP 6338762 B2 JP6338762 B2 JP 6338762B2
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
outdoor heat
fan
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017500189A
Other languages
English (en)
Other versions
JPWO2016132473A1 (ja
Inventor
悟 梁池
悟 梁池
加藤 央平
央平 加藤
浩平 葛西
浩平 葛西
進一 内野
進一 内野
博和 南迫
博和 南迫
美藤 尚文
尚文 美藤
翼 丹田
翼 丹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016132473A1 publication Critical patent/JPWO2016132473A1/ja
Application granted granted Critical
Publication of JP6338762B2 publication Critical patent/JP6338762B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current

Description

本発明は、空気調和装置に関する。
従来、暖房運転時において、室外ファンモータの電流値及び室外ファンの回転数を検出し、室外ファンモータの電流値が基準電流値以上になったり、室外ファンの回転数が所定回転数低下したことで、除霜運転の開始を判定するような空気調和装置があった(特許文献1参照)。
特開2009−58222号公報
しかしながら、特許文献1に記載の空気調和機においては、予め基準電流値を決定するため、室外ファンモータが経年劣化して室外ファンモータの効率が低下した場合には、ファン回転数の低下に伴うファン入力の減少の場合等を考慮して基準電流値を変更することができない。したがって、暖房運転時において適切なタイミングで除霜運転に移行することができないという課題があった。すなわち、除霜効率が悪いという課題があった。
本発明は、上述のような課題を背景としてなされたものであり、従来よりも効率良く除霜運転を行うことができる空気調和装置を提供することを目的としている。
本発明の空気調和装置は、圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器よりも前記圧縮機の吐出側で且つ前記室内熱交換器よりも前記圧縮機の吐出側に設けられる切替手段と、が接続されて構成される空気調和装置であって、前記室外熱交換器に送風するファンと、前記ファンに電力を供給する電源装置と、前記ファンに供給される電力に関連する物理量を検出するファン入力検出手段と、前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、前記制御手段は、前記室外熱交換器を流れる冷媒温度が高い場合における前記基準量が前記室外熱交換器を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整するものである。
本発明の空気調和装置は、前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、前記制御手段は、前記室外熱交換器を流れる冷媒温度が高い場合における前記基準量が前記室外熱交換器を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整する。このため、暖房運転を行っている場合に適切なタイミングで除霜運転を開始することができる。したがって、従来よりも効率良く除霜運転を行うことができる。
本発明の実施の形態1に係る空気調和装置100を示す概略図である。 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電力値の変化を示す図である。 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電流値の変化を示す図である。 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う電力量の変化を示す図である。 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う総電力量の変化を示す図である。 本発明の実施の形態1に係る空気調和装置100の室外熱交換器3に霜が付着した状態を示す概略図である。 本発明の実施の形態1に係る空気調和装置100の相対湿度φと霜密度ρとの関係を示す図である。 本発明の実施の形態1に係る空気調和装置100の冷媒温度と必要除霜熱量との関係を示す図である。 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。 本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。
実施の形態1.
以下、本発明の空気調和装置100について、図面を用いて詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
図1は本発明の実施の形態1に係る空気調和装置100を示す概略図である。図1に示されるように、空気調和装置100は、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5と、を備える。圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁4と、室内熱交換器5と、を例えば順次配管接続することで、冷媒回路90が構成される。
圧縮機1は、吸入された冷媒を圧縮して高温及び高圧の冷媒として吐出する、可変容量の圧縮機である。四方弁2は、例えば暖房運転や冷房運転が実行されることに応じて、圧縮機1から吐出される冷媒の流れる方向を切替可能な切替手段である。四方弁2は、室外熱交換器3よりも圧縮機1の吐出側で且つ室内熱交換器5よりも圧縮機1の吐出側に設けられる。図1は、冷房運転を行うように四方弁2が切り替えられた状態を例に説明する。なお、図1の実線矢印は、冷房運転を行う場合における冷媒の流れを示している。また、図1の破線矢印は、暖房運転を行う場合における冷媒の流れを示している。
室外熱交換器3は、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する熱交換器である。室外側ファン31は、室外熱交換器3に外気を供給し、空気流を形成する送風手段である。室外側ファン31は、例えば、軸流ファンや遠心ファンで構成される。室外側ファン31は、室外側モータ(図示省略)が駆動されることで回転する。室外側ファン31から供給される空気と室外熱交換器3の内部を流れる冷媒との間で熱交換が行われる。室外側ファン31は、電力を供給する電源装置(図示省略)によって駆動される。
膨張弁4は、冷房運転時において室外熱交換器3から流出した冷媒を減圧膨張し、暖房運転時において室内熱交換器5から流出した冷媒を減圧膨張するためのものである。
室内熱交換器5は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する熱交換器である。室内側ファン51は、室内熱交換器5に室内の空気を供給し、空気流を形成する送風手段である。室内側ファン51は、例えば、軸流ファンや遠心ファンで構成される。室内側ファン51は、室内側モータ(図示省略)が駆動されることで回転する。室内側ファン51から供給される空気と室内熱交換器5の内部を流れる冷媒との間で熱交換が行われる。
室外側冷媒温度センサ32は、室外熱交換器3を流れる冷媒の温度を検知する温度検出手段である。室内側冷媒温度センサ52は、室内熱交換器5を流れる冷媒の温度を検知するセンサである。なお、以後の説明において単に「冷媒温度」と説明する場合には、室外熱交換器3の内部を流れる冷媒の温度を指すものとする。
制御手段80は、室外側モータを制御して室外側ファン31の回転数を調整し、室内側モータを制御して室内側ファン51の回転数を調整する。制御手段80は、室外側モータに入力される電圧や電流を変化させて室外側モータを制御する。制御手段80が室外側ファン31の回転数を調整することで、室外熱交換器3を通過する風量を調整することができる。
室外側ファン31の現在の回転数は、室外側ファン31の回転数を検出する回転数検出手段を設けることで検出することもできる。また、室外側ファン31の現在の回転数は、室外側モータに印加される電流、室外側モータに印加される電圧の情報から推定することもできる。以後の説明において単に「ファン入力」と説明する場合には、室外側ファン31(室外側ファン31を回転させる室外側モータ)に供給される電力に関連する物理量を指すものとする。
また、制御手段80は、例えば空気調和装置100の運転を開始すると、室外側ファン31が回転するように室内側モータを制御する。なお、制御手段80は、例えば、この機能を実現する回路デバイスなどのハードウェア、又はマイコン若しくはCPUなどの演算装置上で実行されるソフトウェアで構成される。
制御手段80が四方弁2を冷房側に切り替えることで、冷房運転が実行される。制御手段80が四方弁2を暖房側に切り替えることで、暖房運転が実行される。なお、以下の説明において「除霜運転」とは、制御手段80が、四方弁2を冷房側に切り替えた場合で且つ室外側ファン31を停止した場合における運転を指している。暖房運転が本発明の「第1運転」に相当し、除霜運転が本発明の「第2運転」に相当する。
まず、図1を参照して、本発明の空気調和装置100が冷房運転を実行する場合における冷媒の流れについて説明する。圧縮機1から吐出された冷媒は、室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、室外側ファンが回転して室外熱交換器3に供給された空気と熱交換して室外熱交換器3から流出する。室外熱交換器3から流出した冷媒は、膨張弁4に流入して減圧された後で膨張弁4から流出し、室内熱交換器5に流入する。室内熱交換器5に流入した冷媒は、室内側ファンが回転して室内熱交換器5に供給された空気と熱交換して室内熱交換器5から流出する。室内熱交換器5から流出した冷媒は、圧縮機1に流入する。
次に、図1を参照して、本発明の空気調和装置100が暖房運転を実行する場合における冷媒の流れについて説明する。圧縮機1から吐出された冷媒は、室内熱交換器5に流入する。室内熱交換器5に流入した冷媒は、室内側ファンが回転して室内熱交換器5に供給された空気と熱交換して室内熱交換器5から流出する。室内熱交換器5から流出した冷媒は、膨張弁4に流入して減圧された後で膨張弁4から流出し、室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、室外側ファンが回転して室外熱交換器3に供給された空気と熱交換して室外熱交換器3から流出する。室外熱交換器3から流出した冷媒は、圧縮機1に流入する。
図2は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電力値の変化を示す図である。図3は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う着霜量及び総電流値の変化を示す図である。
図2の横軸には経過時間[min]を規定し、図2の縦軸には着霜量[g]及び総電力量[W]を規定している。図2において、着霜量は実線で示しており、総電力値は破線で示している。図2に示されるように、時間経過に伴い着霜量は増加し、時間経過に伴い総電力値は増加する。
図3の横軸には経過時間[min]を規定し、図3の縦軸には着霜量[g]及び総電流量[A]を規定している。図3において、着霜量は実線で示しており、総電流値は破線で示している。図3に示されるように、時間経過に伴い着霜量は増加し、時間経過に伴い総電流値は増加する。
図4は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う電力量の変化を示す図である。図5は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う総電力量の変化を示す図である。図4,図5においては、ファン入力として室外ファンモータに印加される電流値及び室外ファンモータに印加される電圧値の積である電力量を用いる場合について説明する。また、図4,図5における処理は、暖房運転時において行われる。
まず、図4に示されるように、制御手段80は、所定時間毎にファン入力を検出してファン入力の変化量を算出する。具体的には、例えば、時刻(t−1)におけるファン入力がW(t−1)であり、時刻tにおけるファン入力であるW(t)であるとき、以下の式(1.1)のように、ファン入力の差であるΔW(t)を算出する。
ΔW(t)=W(t)−W(t−1)・・・式(1.1)
次に、図5に示されるように、制御手段80は、以下の式(1.2)に従い、ΔW(t)を積算していくことで、ΔWtotalを算出する。
ΔWtotal=ΣΔW(t)・・・式(1.2)
そして、制御手段80は、以下の式(1.3)のように、ΔWtotalが閾値α以上になったか否かを判定する。制御手段80は、ΔWtotalが閾値α以上であると判定した場合には、除霜運転を開始するように四方弁2を制御する。また、制御手段80は、ΔWtotalが閾値α未満であると判定した場合には、暖房運転を継続する。
ΔWtotal≧α・・・式(1.3)
ここで、αは冷媒温度に応じて変動する。具体的には例えば、冷媒温度が高い程、室外熱交換器3に付着する霜の密度は大きいと想定されるため、制御手段80はαの値を小さくする。このようにαの値を小さくすることで、ΔWtotalがα以上になるタイミングが早くなり、除霜運転が早く開始される。また例えば、冷媒温度が低い程、室外熱交換器3に付着する霜の密度は小さいと想定されるため、制御手段80はαの値を大きくする。このようにαの値を大きくすることで、ΔWtotalがα以上になるタイミングが遅くなり、除霜運転が遅く開始される。なお、以上の説明においては、ファン入力として電力値を用いる例について説明したが、これに限定されない。例えば、ファン入力として、室外ファンモータに印加される電流値や室外ファンモータに印加される電圧値を用いてもよい。
図6は本発明の実施の形態1に係る空気調和装置100の室外熱交換器3に霜が付着した状態を示す概略図である。図6に示されるように、室外熱交換器3に付着した霜の高さをHf_total[mm]とし、隣接するフィン3b間の距離をFp[mm]とする。そして、フィン3bの長手方向の一端側から他端側に向かって風が吹く場合を想定する。このとき、図6に示されるように、霜が室外熱交換器3に付着しているため、風速uaは減衰して室外熱交換器3における熱交換は、霜が室外熱交換器3に付着していない場合に比べて妨げられることになる。
暖房運転において、霜は、室外熱交換器3を構成する伝熱管3a及びフィン3bに付着し、霜の成長に伴って通風抵抗が増加し、室外側ファン31の入力は増加する。また、伝熱管3a及びフィン3bの温度が低いほど霜の密度は小さくなる。すなわち、冷媒温度が低いほど、霜密度は小さくなる。
このため、フィン3bが閉塞している状態において、霜密度が異なると室外熱交換器3に付着している霜の量は異なる。すなわち、室外熱交換器3の閉塞状態が同一であり、ファン入力の増加幅が同一であっても、除霜運転に際して必要な除霜熱量は異なる。具体的には、冷媒温度が高い程、室外熱交換器3に付着した霜を融解するために必要となる熱量は増加する。
図7は本発明の実施の形態1に係る空気調和装置100の相対湿度φと霜密度ρとの関係を示す図である。なお、図7の横軸には相対湿度φ[%]を規定し、図7の縦軸には霜密度ρ[kg/m]を規定している。また、図7中には、冷媒温度Ts[℃]が、−30℃、−20℃を示している。
図7に示されるように、相対湿度φが高い程、霜密度ρが低くなっている。また、冷媒温度Tsが−20℃である場合には、冷媒温度Tsが−30℃である場合よりも、霜密度ρが大きくなっている。すなわち、冷媒温度Tsが高い程、霜密度ρは大きくなることが分かる。ここで、霜密度ρが大きくなると除霜時間は長くなり、霜密度ρが大きくなると除霜能力が多く必要となる。したがって、冷媒温度Tsが大きくなると除霜時間は長くなることが分かる。
図8は本発明の実施の形態1に係る空気調和装置100の冷媒温度と必要除霜熱量との関係を示す図である。図8に示されるように、室外熱交換器3の内部の冷媒回路90を流れる冷媒温度と、必要除霜熱量と、の関係は比例関係にある。
図8に示されるように、冷媒温度Tsが大きくなると除霜時間は長くなることが分かる。具体的には例えば、平均冷媒温度が−40℃〜−30℃であるとき、最小除霜時間は1分となる。また例えば、平均冷媒温度が−10℃〜−5℃であるとき、最小除霜時間は3分となる。また例えば、平均冷媒温度が−5℃〜0℃であるとき、最小除霜時間は5分となる。
なお、図8においては、説明の都合上、冷媒温度Tsと、必要除霜熱量と、の関係が比例関係である例を示しているが、このような関係に限定されず、冷媒温度Tsの増加に対する必要除霜熱量の増加幅は一定でなくてもよい。
図9は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。図10は本発明の実施の形態1に係る空気調和装置100の経過時間に伴う圧縮機1の周波数の変化を示す図である。
図9,図10の横軸には経過時間を規定し、図9,図10の縦軸には圧縮機1の周波数を規定している。図9,図10においては、冷媒温度が相対的に高い場合における圧縮機1の周波数の変化を実線で示しており、冷媒温度が相対的に低い場合における圧縮機1の周波数の変化を破線で示している。
ここで、冷媒温度が相対的に低い場合には、冷媒温度が相対的に高い場合に比べて、除霜運転の運転時間を短くすることも考えられる。しかしながら、除霜運転を効率良く行うためには、室外熱交換器3に付着した霜を融解する時間及び融解した霜を室外熱交換器3から落下させるための時間が必要となる。このため、冷媒温度が相対的に低い場合における除霜運転の時間が、冷媒温度が相対的に高い場合における除霜運転の時間よりも短くなると、融解した霜が再度凍結する可能性がある。したがって、本実施の形態1においては、冷媒温度が相対的に低い場合においても、冷媒温度が相対的に高い場合と同一の除霜時間で運転を行い、圧縮機1の周波数を低くする例について説明する。
以下に、図9を用いて、冷媒温度に基づいて除霜運転時における圧縮機1の周波数を変化させる例について説明する。図9中において、暖房運転を実行している区間を区間(a)、除霜運転を実行している区間を区間(b)、除霜運転後に暖房運転を実行している区間を区間(c)とする。
図9に示されるように、区間(a)においては、制御手段80は、四方弁2が暖房側に切り替えられた状態において、圧縮機1が所定周波数となるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数である状態で所定時間運転した後、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(t11)、四方弁2を冷房側に切り替えて除霜運転を開始する。
図9に示されるように、区間(b)においては、冷媒温度が相対的に高い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数fmaxとなるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数fmaxである状態で所定時間運転した後、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t14)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。
図9に示されるように、区間(b)においては、冷媒温度が相対的に低い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数fmaxとなるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数fmaxである状態で所定時間運転した後(時刻t12)、圧縮機1の周波数を低減させて圧縮機1が所定周波数f1となるように圧縮機1を制御する。制御手段80は、圧縮機1が所定周波数f1となった後(時刻t13)、圧縮機1が所定周波数f1である状態で所定時間運転する。制御手段80は、圧縮機1が所定周波数f1である状態で所定時間運転した後(時刻t13)、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t14)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。
図9に示されるように、区間(c)においては、制御手段80は、四方弁2が暖房側に切り替えられた状態において、圧縮機1の周波数が所定周波数になるように圧縮機1を制御する。
以下に、図10を用いて、冷媒温度に基づいて除霜運転時における圧縮機1の周波数を変化させる例について説明する。図10中において、暖房運転を実行している区間を区間(a)、除霜運転を実行している区間を区間(b)、除霜運転後に暖房運転を実行している区間を区間(c)とする。なお、図10において、区間(a)及び区間(c)における時間経過に伴う圧縮機1の周波数の変化は、図9のものと同一であるために説明を省略する。
図10に示されるように、区間(b)においては、冷媒温度が相対的に高い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数fmaxとなるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数fmaxである状態で所定時間運転した後、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t24)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。
図10に示されるように、区間(b)においては、冷媒温度が相対的に低い場合、制御手段80は、四方弁2が冷房側に切り替えられた状態において、圧縮機1が所定周波数f2となるように圧縮機1を制御する。次に、制御手段80は、圧縮機1が所定周波数f2となった状態で(時刻t22)、所定時間運転した後(時刻t23)、圧縮機1の周波数を低減させるように圧縮機1を制御する。そして、制御手段80は、圧縮機1の周波数が0となった場合に(時刻t24)、四方弁2を再び暖房側に切り替えて暖房運転を開始する。
以上のように、本実施の形態1に係る空気調和装置100は、圧縮機1と、室外熱交換器3と、室内熱交換器5と、室外熱交換器3よりも圧縮機1の吐出側で且つ室内熱交換器5よりも圧縮機1の吐出側に設けられる四方弁2と、が接続されて構成される空気調和装置100であって、室外熱交換器3に送風するファン31と、ファン31に電力を供給する電源装置と、ファン31に供給される電力に関連する物理量を検出するファン入力検出手段と、室外熱交換器3を蒸発器として機能させる第1運転と、室外熱交換器3を凝縮器として機能させる第2運転と、を切り替えるように四方弁2を制御する制御手段80と、を備え、ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、制御手段80は、室外熱交換器3を流れる冷媒温度が高い場合における前記基準量が室外熱交換器3を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整する。このため、暖房運転を行っている場合において、適切なタイミングで除霜運転を開始することができる。したがって、従来よりも効率良く除霜運転を行うことができる。
また、本実施の形態1に係る空気調和装置100は、圧縮機1と、室外熱交換器3と、室内熱交換器5と、室外熱交換器3よりも圧縮機1の吐出側で且つ室内熱交換器5よりも圧縮機1の吐出側に設けられる四方弁2と、が接続されて構成される空気調和装置100であって、室外熱交換器3に送風するファン31と、ファン31に電力を供給する電源装置と、ファン31に供給される電力に関連する物理量を検出するファン入力検出手段と、室外熱交換器3を蒸発器として機能させる第1運転と、室外熱交換器3を凝縮器として機能させる第2運転と、を切り替えるように四方弁2を制御する制御手段80と、を備え、ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、制御手段80は、室外熱交換器3を流れる冷媒温度が高い場合における圧縮機1の周波数が室外熱交換器3を流れる冷媒温度が低い場合における圧縮機1の周波数よりも大きくなるように圧縮機1の周波数を制御する。このため、除霜運転を行っている場合において、従来よりも適切な着霜量に応じた除霜運転を行うことができる。したがって、従来よりも効率良く除霜運転を行うことができる。
実施の形態2.
本実施の形態2においては、実施の形態1とは異なり、着霜量Mfに基づいて除霜運転の実行タイミングを決定し、着霜量Mfに基づいて除霜運転における圧縮機1の周波数を決定するものである。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
着霜量mf(t)は、表面積A0[m]、霜密度ρf[kg/m]、及び霜高さHf(t)に基づいて以下の式(2.1)のように示される。
mf(t)=A0×ρf(t)×Hf(t)・・・式(2.1)
なお、以下の式(2.1)は、霜が室外熱交換器3に対して均一に付着することを想定している。表面積はA0[m]は、室外熱交換器3の熱交換表面積である。また、霜密度ρf[kg/m]は室外熱交換器3に付着する霜の密度であり、冷却面温度や相対湿度の影響を受ける。また、霜高さHf(t)は、室外熱交換器3に付着する霜の高さである。
着霜量Mfは、着霜量mf(t)に基づいて以下の式(2.2)のように示される。
Mf=Σm(t)・・・式(2.2)
除霜熱量Qf[kJ]は、着霜量Mf[kg]及び潜熱ΔH[kJ/kg]に基づいて式(2.3)のように示される。
Qf=Mf×ΔH・・・式(2.3)
除霜時間Tf[sec]は、除霜熱量Qf[kJ]及び除霜能力P[kW]に基づいて以下の式(2.4)のように示される。
Tf=Qf/P・・・式(2.4)
以上のように、本実施の形態2に係る空気調和装置100は、制御手段80が、着霜量に応じて除霜時間を決定する。このため、従来よりも効率良く除霜運転を行うことができる。
なお、室外側ファン31が本発明の「ファン」に相当する。
1 圧縮機、2 四方弁、3 室外熱交換器、3a 伝熱管、3b フィン、4 膨張弁、5 室内熱交換器、31 室外側ファン、32 室外側冷媒温度センサ、51 室内側ファン、52 室内側冷媒温度センサ、80 制御手段、90 冷媒回路、100 空気調和装置、A0 表面積、f1,f2,fmax 所定周波数、Hf 霜高さ、Mf 着霜量、mf 着霜量、P 除霜能力、Qf 除霜熱量、t11,t12,t13,t14,t21,t22,t23,t24 時刻、Tf 除霜時間、Ts 表面温度、ua 風速、ΔH 潜熱、α 閾値、ρ 霜密度、ρf 霜密度、φ 相対湿度。

Claims (3)

  1. 圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器よりも前記圧縮機の吐出側で且つ前記室内熱交換器よりも前記圧縮機の吐出側に設けられる切替手段と、が接続されて構成される空気調和装置であって、
    前記室外熱交換器に送風するファンと、
    前記ファンに電力を供給する電源装置と、
    前記ファンに供給される電力に関連する物理量を検出するファン入力検出手段と、
    前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、
    前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、
    前記制御手段は、
    前記室外熱交換器を流れる冷媒温度が高い場合における前記基準量が前記室外熱交換器を流れる冷媒温度が低い場合における前記基準量よりも小さくなるように前記基準量を調整する
    空気調和装置。
  2. 圧縮機と、室外熱交換器と、室内熱交換器と、前記室外熱交換器よりも前記圧縮機の吐出側で且つ前記室内熱交換器よりも前記圧縮機の吐出側に設けられる切替手段と、が接続されて構成される空気調和装置であって、
    前記室外熱交換器に送風するファンと、
    前記ファンに電力を供給する電源装置と、
    前記ファンに供給される電力に関連する物理量を検出するファン入力検出手段と、
    前記室外熱交換器を蒸発器として機能させる第1運転と、前記室外熱交換器を凝縮器として機能させる第2運転と、を切り替えるように前記切替手段を制御する制御手段と、を備え、
    前記ファン入力検出手段が検出した物理量が基準量以上である場合に、前記第1運転は前記第2運転に切り替えられ、
    前記制御手段は、
    前記第2運転時に前記室外熱交換器を流れる冷媒の温度が高いか低いかを判定し、前記第2運転時において、前記室外熱交換器を流れる冷媒温度が高い場合における前記圧縮機の周波数が前記室外熱交換器を流れる冷媒温度が低い場合における前記圧縮機の周波数よりも大きくなるように前記圧縮機を制御する
    空気調和装置。
  3. 前記ファン入力検出手段は、
    前記ファンを駆動する室外側モータに印加される電流値、電圧値又は該電流値及び該電圧値に基づく電力値を検出する
    請求項1又は請求項2に記載の空気調和装置。
JP2017500189A 2015-02-18 2015-02-18 空気調和装置 Active JP6338762B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054402 WO2016132473A1 (ja) 2015-02-18 2015-02-18 空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2016132473A1 JPWO2016132473A1 (ja) 2017-09-07
JP6338762B2 true JP6338762B2 (ja) 2018-06-06

Family

ID=56689320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017500189A Active JP6338762B2 (ja) 2015-02-18 2015-02-18 空気調和装置

Country Status (5)

Country Link
US (1) US20170363332A1 (ja)
EP (1) EP3260790B1 (ja)
JP (1) JP6338762B2 (ja)
CN (1) CN107250679B (ja)
WO (1) WO2016132473A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6808812B2 (ja) * 2017-03-24 2021-01-06 東芝キヤリア株式会社 空気調和装置
US10914503B2 (en) * 2018-02-01 2021-02-09 Johnson Controls Technology Company Coil heating systems for heat pump systems
JP6704552B1 (ja) * 2019-10-23 2020-06-03 日立ジョンソンコントロールズ空調株式会社 空気調和機、空気調和機の制御方法およびプログラム
JP7278496B1 (ja) 2022-05-18 2023-05-19 三菱電機株式会社 冷凍サイクル状態予測装置、冷凍サイクル制御装置、及び冷凍サイクル装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930980B2 (ja) * 1981-01-27 1984-07-30 三菱電機株式会社 着霜検出装置
JPH01107056A (ja) * 1987-10-21 1989-04-24 Toshiba Corp 空気調和機
JP2831838B2 (ja) * 1990-11-06 1998-12-02 株式会社東芝 空気調和機
JP3034781B2 (ja) * 1995-06-07 2000-04-17 シャープ株式会社 冷蔵庫
KR100225640B1 (ko) * 1997-06-27 1999-10-15 윤종용 공기조화기의 제상제어방법
CN1888671A (zh) * 2005-06-30 2007-01-03 乐金电子(天津)电器有限公司 空调器的除霜运转控制装置及其运作方法
JP2009058222A (ja) * 2006-03-31 2009-03-19 Daikin Ind Ltd 室外機
JP2010032107A (ja) * 2008-07-29 2010-02-12 Hitachi Appliances Inc 空気調和機
JP2010091118A (ja) * 2008-10-03 2010-04-22 Panasonic Corp 空気調和機
JP2010210223A (ja) * 2009-03-12 2010-09-24 Mitsubishi Heavy Ind Ltd 空気調和機
CN102449408B (zh) * 2009-05-29 2014-07-30 大金工业株式会社 空调装置
JP4836212B2 (ja) * 2009-07-22 2011-12-14 シャープ株式会社 空気調和機
JP6071648B2 (ja) * 2013-03-01 2017-02-01 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
CN107250679B (zh) 2019-11-26
WO2016132473A1 (ja) 2016-08-25
JPWO2016132473A1 (ja) 2017-09-07
EP3260790A4 (en) 2018-10-24
EP3260790B1 (en) 2020-03-25
US20170363332A1 (en) 2017-12-21
EP3260790A1 (en) 2017-12-27
CN107250679A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP6071648B2 (ja) 空気調和装置
JP6768546B2 (ja) 空気調和機
US10371407B2 (en) Air conditioning apparatus
JPWO2015145714A1 (ja) 空気調和機
JP5634071B2 (ja) 空気調和機および空気調和機の除霜運転方法
JP6338762B2 (ja) 空気調和装置
JP2017044447A (ja) 空調機
JP2010223494A (ja) 空気調和機
JP6827540B2 (ja) 空気調和装置
JP6032330B2 (ja) 空調機
JP6084297B2 (ja) 空気調和機
JP2013200085A (ja) 空気調和機
JP6425826B2 (ja) 空気調和装置
WO2019073514A1 (ja) 冷凍サイクル装置
WO2014103620A1 (ja) 冷凍装置
JP2013133977A (ja) 空気調和機
JP6350485B2 (ja) 空気調和機
JP2004225929A (ja) 空気調和装置及び空気調和装置の制御方法
WO2019111405A1 (ja) 空気調和機
JP6559332B2 (ja) 冷凍サイクル装置
JP2015068608A (ja) 空気調和装置
WO2016084796A1 (ja) 空調機
JP6271011B2 (ja) 冷凍空調装置
JPWO2019012628A1 (ja) 空気調和機および空気調和機の制御方法
JP7315059B1 (ja) 空気調和機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180508

R150 Certificate of patent or registration of utility model

Ref document number: 6338762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250