JP6808812B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP6808812B2
JP6808812B2 JP2019506922A JP2019506922A JP6808812B2 JP 6808812 B2 JP6808812 B2 JP 6808812B2 JP 2019506922 A JP2019506922 A JP 2019506922A JP 2019506922 A JP2019506922 A JP 2019506922A JP 6808812 B2 JP6808812 B2 JP 6808812B2
Authority
JP
Japan
Prior art keywords
indoor
control unit
indoor expansion
heat exchanger
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019506922A
Other languages
English (en)
Other versions
JPWO2018173297A1 (ja
Inventor
啓 伊内
啓 伊内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Publication of JPWO2018173297A1 publication Critical patent/JPWO2018173297A1/ja
Application granted granted Critical
Publication of JP6808812B2 publication Critical patent/JP6808812B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明の実施形態は、空気調和装置に関する。
室内機と室外機とが冷媒配管(渡り配管)を介して接続されて構成された、いわゆるセパレート型の空気調和装置が知られている(例えば、特許文献1参照)。この種の空気調和装置で暖房運転を行うとき、室内機に搭載される室内熱交換器は比較的高温になり、室外機に搭載される室外熱交換器は比較的低温になる。外気温度が低い場合は、室外熱交換器の温度は0℃以下になる。室外熱交換器の周囲の湿度がある程度高い場合には、外気中の水分が霜となって室外熱交換器に付着する。
したがって、室外熱交換器に霜が付着した後も暖房運転を継続した場合、その霜が成長して室外熱交換器の熱交換能力が低下し、空気調和装置の暖房能力が落ちてしまうという課題がある。
この暖房能力の低下を防ぐために、室外熱交換器に付着した霜がある程度成長したと推定できる場合、空気調和装置の制御部は、付着した霜を融かすための運転(除霜運転)を実施する。この除霜運転時には、配管内の液相の冷媒(以下、液冷媒と言う)が室内機を介して室外機に戻り、液冷媒の状態のまま圧縮機に到達して(以下、液バックと言う)圧縮機に負担を与える可能性がある。
この課題を解決するために、除霜運転中に液冷媒が圧縮機に到達しないように室内膨張弁の開度を予め定めておき、室内膨張弁をこの予め定めた開度に固定するようにした空気調和装置がある。
しかしながら、このような従来の空気調和装置では、室外機に複数の室内機が接続されていると、設置環境や状態等によって、前記複数の室内機に流れる冷媒量が適正になるとは限らない。このため、室内膨張弁を予め定めた開度にしても、空気調和装置が適正な冷媒循環量にならないといった課題があった。
更に、除霜運転中に液バックを避けることを優先するあまり、室内膨張弁の開度を減少させすぎてしまった場合、冷媒循環量が少なくなり過ぎ、霜を融かしきれない。
特開2014−211251号公報
本発明が解決しようとする課題は、除霜運転終了時における室外熱交換器の霜の融け残りを抑制する空気調和装置を提供することである。
実施形態の空気調和装置は、複数の室内機と、室外機と、制御部と、を持つ。前記複数の室内機は、室内熱交換器と、開度を変更可能な室内膨張弁と、を有する。前記室外機は、室外熱交換器と、四方弁と、圧縮機と、前記圧縮機から吐出される冷媒の圧力を検出する吐出圧力センサと、を有する。前記制御部は、前記室内膨張弁、前記四方弁、前記圧縮機を制御する。前記複数の室内機は、前記室外機に対してそれぞれ並列に接続されている。前記制御部は、除霜運転中に、前記吐出圧力センサの検出結果に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度を変化させる。前記制御部は、前記吐出圧力センサが検出した圧力が、予め定められた第1高圧閾値未満であるときに、前記複数の室内膨張弁のうちの少なくとも1つの開度を減少させる。
第1の実施形態の空気調和装置を示す概略構成図。 第1の実施形態の空気調和装置の室内膨張弁を示す断面図。 第1の実施形態の空気調和装置の動作を説明するフローチャート。 第1の実施形態の空気調和装置の動作における第1工程を説明するフローチャート。 第1の実施形態の空気調和装置の動作における第2工程を説明するフローチャート。 第2の実施形態の空気調和装置を示す概略構成図。 第2の実施形態の空気調和装置の動作を説明するフローチャート。 第2の実施形態の空気調和装置における、室内機の台数に対する室内膨張弁の変化量の関係の一例を示す図。 第2の実施形態の空気調和装置における、室内機の台数に対する室内膨張弁の変化量の関係の他の一例を示す図。
以下、実施形態の空気調和装置を、図面を参照して説明する。
(第1の実施形態)
以下、空気調和装置の第1の実施形態を、図1から図5を参照しながら説明する。
図1に示すように、本実施形態の空気調和装置1は、2台の第1室内機(室内機)11A,第2室内機(室内機)11Bと、室外機26と、制御部41と、を備えている。
本実施形態では、第1室内機11Aの構成と第2室内機11Bの構成とは同一である。このため、第1室内機11Aの構成は、数字に英大文字「A」を付加して示す。第2室内機11Bのうち第1室内機11Aと対応する構成は、第1室内機11Aと同一の数字に英大文字「B」を付加して示す。これにより、第2室内機11Bについての重複する説明を省略する。後述する第3室内機11Cも同様である。
例えば、後述する第1室内機11Aの室内熱交換器12Aと第2室内機11Bの室内熱交換器12Bとは、同一の構成である。なお、室内熱交換器12Aと室内熱交換器12Bとは、同一の構成でなくてもよい。後述する室内膨張弁13A,13B、室内配管14A,14B等についても、同様である。
第1室内機11Aは、室内熱交換器12Aと、室内膨張弁13Aと、室内配管14Aと、室内送風機15Aと、を有する。
例えば、室内熱交換器12Aはフィンチューブ式の熱交換器である。
例えば、室内膨張弁13Aは、電子膨張弁(PMV:Pulse Motor Valve)である。図2に示すように、室内膨張弁13Aは、円柱状の貫通孔17aAが形成された本体17Aと、貫通孔17aAに挿入可能なニードル18Aと、を有している。貫通孔17aAには、図示しない冷媒が流れる。ニードル18Aは、円錐状に形成されている。ニードル18Aは、貫通孔17aAの軸線C1に沿って移動可能である。
なお、例えば、冷媒としてはR410AやR32等を用いることができる。
例えば、本体17Aに対してニードル18Aが軸線C1に沿う第1端に移動すると、ニードル18Aが貫通孔17aAの開口を完全に塞ぐ閉塞位置Q1に配置される。一方で、本体17Aに対してニードル18Aが軸線C1に沿う第2端に移動すると、ニードル18Aが貫通孔17aAの開口を全く塞がない開放位置Q2に配置される。
このように、本体17Aに対してニードル18Aが軸線C1に沿って移動することで、室内膨張弁13Aの貫通孔17aAの開口の開き具合(開度)が変化する。
ニードル18Aが閉塞位置Q1から開放位置Q2に近づくに従って、室内膨張弁13Aの開度が増加する。一方で、ニードル18Aが開放位置Q2から閉塞位置Q1に近づくに従って、室内膨張弁13Aの開度が減少する。ニードル18Aが閉塞位置Q1にあると、室内膨張弁13Aは完全に閉じた状態になる。本体17Aに対するニードル18Aの位置が変わらないと、室内膨張弁13Aの開度が維持される。このように、室内膨張弁13Aは、開度を変更可能である。
ニードル18Aには、ステッピングモータ等の駆動部19Aが取付けられている。室内膨張弁13Aの駆動部19Aは、制御部41に接続され、制御部41に制御される。
制御部41が駆動部19Aにパルス信号を送信すると、駆動部19Aはニードル18Aを軸線C1に沿って移動させる。例えば、室内膨張弁13Aは、0パルスのときに完全に閉じて、室内膨張弁13A内を冷媒が流れない状態になる。室内膨張弁13Aは、1000パルスのときに完全に開いて、室内膨張弁13A内を冷媒が最も流れやすい状態になる。
図1に示すように、室内配管14Aは、室内熱交換器12A及び室内膨張弁13Aを接続する。
例えば、室内送風機15Aは遠心式のファンを有している。室内送風機15Aのファンは、室内熱交換器12Aに対向するように配置されている。室内送風機15Aは、制御部41に接続され、制御部41に制御される。
必要に応じて、室内機11A,11Bは、室内配管14A,14B内の冷媒の圧力を検出する圧力センサや、冷媒の温度を検出する温度センサを備えてもよい。
第2室内機11Bは、室内熱交換器12A、室内膨張弁13A、室内配管14A、及び室内送風機15Aと同一に構成された、室内熱交換器12B、室内膨張弁13B、室内配管14B、及び室内送風機15Bを有している。
室外機26は、室外熱交換器27と、四方弁28と、圧縮機29と、室外膨張弁30と、室外配管31と、室外送風機32と、吐出圧力センサ33と、吸入圧力センサ34と、熱交換器温度センサ35と、外気温度センサ36と、を有する。
例えば、室外熱交換器27はフィンチューブ式の熱交換器である。
四方弁28は、空気調和装置1内を流れる冷媒の向きを、後述する暖房運転用の流れの向きと、冷房運転及び除霜運転用の流れの向きと、に切替えることができる。
圧縮機29は、吸入口29aから冷媒を吸入し、圧縮機29内でこの冷媒を圧縮する。圧縮機29は、圧縮した冷媒を吐出口29bから外部に吐出する。
圧縮機29の吸入口29aには、液冷媒を蓄えるためのアキュムレータ38が取付けられている。
室外膨張弁30は、室内膨張弁13Aと同様に構成されていて、室外膨張弁30の開度を変更可能である。
室外配管31は、室外膨張弁30、室外熱交換器27、四方弁28、圧縮機29、及びアキュムレータ38を接続する。
室外配管31には、渡り配管61を介して第1室内機11A、及び第2室内機11Bがそれぞれ並列に接続されている。
室外送風機32は、室内送風機15Aと同様に構成されている。
吐出圧力センサ33は、圧縮機29から吐出される冷媒の圧力を検出する。この例では、吐出圧力センサ33は、圧縮機29の吐出口29bにおける冷媒の圧力を検出する。
吸入圧力センサ34は、圧縮機29に吸入される冷媒の圧力を検出する。この例では、吸入圧力センサ34は、圧縮機29の吸入口29aにおける冷媒の圧力を検出する。
例えば、熱交換器温度センサ35は、室外熱交換器27の配管等に取付けられている。熱交換器温度センサ35は、室外熱交換器27の温度を検出する。
例えば、外気温度センサ36は、室外機26内において室外熱交換器27の輻射熱等の影響を受けにくい場所に配置されている。外気温度センサ36は、室外機26の外気の温度を検出する。
四方弁28、圧縮機29、室外膨張弁30、室外送風機32、吐出圧力センサ33、吸入圧力センサ34、熱交換器温度センサ35、及び外気温度センサ36は、制御部41に接続されている。四方弁28、圧縮機29、室外膨張弁30、及び室外送風機32は、制御部41に制御される。
吐出圧力センサ33及び吸入圧力センサ34は、検出した圧力を表す信号を制御部41に送信する。熱交換器温度センサ35及び外気温度センサ36は、検出した温度を表す信号を制御部41に送信する。
制御部41は、図示はしないが、演算回路、メモリ、及び入出力部等を有している。
演算回路は、CPU(Central Processing Unit)等を備えている。
メモリは、RAM(Random Access Memory)等を備えている。メモリには、演算回路を制御するための制御プログラム、及び、予め定められた第1高圧閾値、第2高圧閾値、低圧閾値等が記憶されている。第1高圧閾値は、低圧閾値よりも大きい。第2高圧閾値は、第1高圧閾値よりも大きい。
例えば、第1高圧閾値は、0.8MPa(メガパスカル)である。なお、以下では、圧力は大気圧を基準としたゲージ圧で示す。すなわち、0MPaは大気圧であることを意味する。
例えば、第2高圧閾値は1.0MPaであり、低圧閾値は0.1MPaである。
入出力部は、演算回路に指示を与えるためのキーボード、ボタン、ディップスイッチ等の入力部と、演算回路が演算した結果等を表示するための液晶ディスプレイ、LEDランプ等の表示部と、を備えている。
次に、以上のように構成された空気調和装置1の動作について説明する。図3から図5は、空気調和装置1の動作を説明するフローチャートである。
まず、使用者は、制御部41の入力部、リモートコントローラ、又は配電盤等を操作して空気調和装置1に電源を投入することで、空気調和装置1を起動させる。
ステップS1で入力部を操作して制御部41に暖房運転開始を指示すると、制御部41は、四方弁28を暖房運転用にし、圧縮機29、室外送風機32、及び室内送風機15A,15Bの運転を開始する。室外膨張弁30、室内膨張弁13A,13Bを所定の開度にする。
圧縮機29で圧縮された高温かつ高圧の冷媒は、吐出口29bから吐出され、四方弁28、室内機11A,11Bの室内熱交換器12A,12B、室内膨張弁13A,13B内を流れる。室内熱交換器12A,12B内で冷媒が凝縮することで、室内熱交換器12A,12Bが凝縮器として機能する。室内送風機15A,15Bから送られた空気が室内熱交換器12A,12Bと熱交換することで、室内機11A,11Bが設置された部屋が暖められる。
冷媒は、室内膨張弁13A,13B内で膨張し、さらに室外膨張弁30内で膨張して、温度及び圧力が下がる。室外膨張弁30内で膨張した冷媒は、室外熱交換器27内を流れる。室外熱交換器27内で冷媒が蒸発することで、室外熱交換器27が蒸発器として機能する。室外送風機32から送られた空気が室外熱交換器27と熱交換することで、室外熱交換器27が外気と熱交換する。
外気の温度や湿度等の条件により、室外熱交換器27に霜が付着する。
室外熱交換器27内で蒸発した冷媒は、四方弁28、アキュムレータ38内を流れ、再び吸入口29aから圧縮機29内に吸入される。
制御部41は、所定の時間間隔ごとに、圧力センサ33,34により圧力を検出し、温度センサ35,36により温度を検出する。
ステップS3において、制御部41は、室外熱交換器27に付着した霜を融かす除霜運転の開始条件が成立するか否かを判断する。例えば、除霜運転の開始条件は、熱交換器温度センサ35及び外気温度センサ36が検出した温度に基づいて定められる。
ステップS3で除霜運転の開始条件が成立すると判断した場合(Yes)は、ステップS5に進み、ステップS3で除霜運転の開始条件が成立しないと判断した場合(No)は、暖房運転を継続させた状態でステップS101に進む。
ステップS5では、制御部41は除霜運転を開始する。具体的には、四方弁28を除霜運転(冷房運転)用にし、例えば、室内膨張弁13A,13Bを除霜運転の初期開度である600パルスにそれぞれ設定する。
なお、室内膨張弁13Aの開度と室内膨張弁13Bの開度とは、互いに異なっていてもよい。また、除霜運転開始直後の開度と、その後一定時間経過後の開度と、を異なる値にしてもよい。
空気調和装置1が除霜運転をしていることは、必ずしも室外熱交換器27が霜を融かしていることを意味しない。空気調和装置1が除霜運転をしていることは、空気調和装置1が冷房運転と同一の順で四方弁28等に冷媒を流し、基本的に室外送風機32、及び室内送風機15A,15Bが運転を停止していることを意味する。
制御部41は、除霜運転中に、室外送風機32、及び室内送風機15A,15Bの運転を停止する。
圧縮機29で圧縮された高温かつ高圧の冷媒は、吐出口29bから吐出され、四方弁28、室外熱交換器27内を流れる。室外熱交換器27内で冷媒が凝縮することで、室外熱交換器27が凝縮器として機能する。冷媒が凝縮することで発生した熱により、室外熱交換器27に付着した霜が融ける。
室外熱交換器27で凝縮した冷媒は、室外膨張弁30、室内膨張弁13A,13B内で膨張して、温度及び圧力が低くなる。室内膨張弁13A,13B内で膨張した冷媒は、室内熱交換器12A,12B内を流れる。室内送風機15A,15Bが運転を停止しているため、冷媒が室内熱交換器12A,12B内で行う交換熱量は少ない。
室内熱交換器12A,12B内から流れ出た冷媒は、四方弁28、アキュムレータ38内を流れ、再び吸入口29aから圧縮機29内に吸入される。
ステップS7において、制御部41は、室内熱交換器12Aにおける冷媒の出口に液冷媒がある(室内熱交換器12Aの出口が2相域)か否かを判断する。例えば、室内熱交換器12Aの出口に液冷媒があると判断される条件は、吸入圧力センサ34が検出した圧力、及び熱交換器温度センサ35が検出した温度、又は室内熱交換器12Aにおける冷媒の入口側と出口側との温度差に基づいて定められる。
ステップS7で室内熱交換器12Aの出口に液冷媒があると判断した場合(Yes)は、ステップS11の第1工程に進み、ステップS7で室内熱交換器12Aの出口に液冷媒がない(室内熱交換器12Aの出口が過熱域)と判断した場合(No)は、ステップS61の第2工程に進む。
第1工程S11では、ステップS13において(図4参照)、制御部41は室内膨張弁13AをPA1パルス(例えば、550パルス)に設定し、ステップS15に進む。
ステップS15において、制御部41は、室内熱交換器12Bの出口に液冷媒があるか否かを判断する。ステップS15で室内熱交換器12Bの出口に液冷媒があると判断した場合(Yes)は、ステップS17に進み、ステップS15で室内熱交換器12Bの出口に液冷媒がないと判断した場合(No)は、ステップS19に進む。
ステップS17では、制御部41は室内膨張弁13BをPB1パルス(例えば、500パルス)に設定し、ステップS21に進む。一方で、ステップS19では、制御部41は室内膨張弁13BをPB2パルス(例えば、600パルス)に設定し、ステップS37に進む。
なお、液冷媒が圧縮機29に流れ込まないように(以下、液バックしないようにとも言う)調整するため、PB1パルスよりもPB2パルスの方が大きい。本実施形態では、便宜上PB1パルス及びPB2パルスを固定値としているが、PB1パルス及びPB2パルスの値は、各種のセンサの検出結果に基づいて変化してもよい。
ステップS21において、制御部41は、吸入圧力センサ34が検出した圧力(以下、吸入圧力とも言う)が、例えば0.1MPaである低圧閾値未満か否かを判断する。ステップS21で吸入圧力が低圧閾値未満であると判断した場合(Yes)は、空気調和装置1内を流れる冷媒の循環量(以下、単に冷媒循環量とも言う)が少ない可能性があるため、ステップS23に進む。一方で、ステップS21で吸入圧力が低圧閾値以上であると判断した場合(No)は、ステップS49に進む。
ステップS23において、制御部41は、吐出圧力センサ33が検出した圧力(以下、吐出圧力とも言う)が例えば0.8MPaである第1高圧閾値未満か否かを判断する。ステップS23で吐出圧力が第1高圧閾値未満であると判断した場合(Yes)は、圧縮機29から吐出される冷媒の飽和温度が低くて室外熱交換器27に付着した霜を融かし切れない恐れがあるため、ステップS25に進む。一方で、ステップS23で吐出圧力が第1高圧閾値以上であると判断した場合(No)は、ステップS27に進む。
ステップS25では、制御部41は、室内膨張弁13A,13BをPパルス(例えば、10パルス)ずつ減少させて室内膨張弁13A,13Bの開度を減少させる。Pパルスは、室内膨張弁13A,13Bの開度を一度に減少させる変化量である。室内膨張弁13A,13Bの開度を減少させるのは、吐出圧力を高くするためである。このように、制御部41は、吸入圧力センサ34の検出結果及び吐出圧力センサ33の検出結果に基づいて、室内膨張弁13A,13Bの開度を変化させる。
ステップS25を終了すると、ステップS33に進む。
なお、ステップS21において判断した、吸入圧力が低圧閾値未満か否かに関わらず、ステップS23において吐出圧力が第1高圧閾値未満であれば、制御部41は室内膨張弁13A,13Bの開度を減少させてもよい。
ステップS27では、制御部41は、吐出圧力が、例えば1.0MPaである第2高圧閾値未満か否かを判断する。
ステップS27で吐出圧力が第2高圧閾値未満であると判断した場合(Yes)は、ステップS29に進む。一方で、ステップS27で吐出圧力が第2高圧閾値以上であると判断した場合(No)は、圧縮機29から吐出される冷媒の飽和温度が十分高くて室外熱交換器27に付着した霜を十分に融かし切れると考えられるため、室内膨張弁13A,13Bの開度を維持させて、ステップS33に進む。
なお、ステップS27で吐出圧力が第2高圧閾値以上であると判断した場合は、室内膨張弁13A,13Bの開度を増加させてもよい。
ステップS21において判断した、吸入圧力が低圧閾値未満か否かに関わらず、ステップS27において吐出圧力が第2高圧閾値以上であれば、制御部41は室内膨張弁13A,13Bの開度を維持又は増加させてもよい。
ステップS29において、制御部41は、吸入圧力が低圧閾値未満か否かを判断する。ステップS29で吸入圧力が低圧閾値未満であると判断した場合(Yes)は、冷媒循環量が少なくて室外熱交換器27に付着した霜を融かし切れない恐れがあるため、ステップS31に進む。一方で、ステップS29で吸入圧力が低圧閾値以上であると判断した場合(No)は、冷媒循環量が多くて室外熱交換器27に付着した霜を十分に融かし切れるため、室内膨張弁13A,13Bの開度を維持したままステップS33に進む。
なお、ステップS27において吐出圧力が第2高圧閾値未満であると判断し(Yes)、ステップS29において吸入圧力が低圧閾値以上であると判断した(No)場合には、ステップS21及びステップS23の判断に関わらず、制御部41は室内膨張弁13A,13Bの開度を減少させてもよい。
ステップS31では、制御部41は、室内膨張弁13A,13BをPパルス(例えば、20パルス)ずつ増加させて室内膨張弁13A,13Bの開度を増加させる。Pパルスは、室内膨張弁13A,13Bの開度を一度に増加させる変化量である。ステップS31を終了すると、ステップS33に進む。
なお、ステップS21において吸入圧力が低圧閾値未満であると判断し(Yes)、ステップS23において吐出圧力が第1高圧閾値以上であると判断した(No)場合には、ステップS27及びステップS29の判断に関わらず、制御部41は室内膨張弁13A,13Bの開度を増加させてもよい。
ステップS33において、制御部41は、室外熱交換器27の霜が完全に融けたと考えられる除霜運転の終了条件が成立するか否かを判断する。例えば、除霜運転の終了条件は、熱交換器温度センサ35が検出した温度及び吐出圧力センサ33が検出した圧力に基づいて定められる。
ステップS33で除霜運転の終了条件が成立すると判断した場合(Yes)は、第1工程S11を終了するとともに除霜運転を終了して、ステップS101に進む(図3参照)。一方で、ステップS33で除霜運転の終了条件が成立しないと判断した場合(No)は、ステップS23に進んで除霜運転を継続する。
このように、ステップS33で除霜運転の終了条件が成立すると判断されるまで、制御部41は、ステップS23からステップS31までの工程を一定の周期で繰り返す。これにより、空気調和装置1は室外熱交換器27に付着した霜を融かすのに十分な吐出圧力を維持しつつ、冷媒循環量を確保することができる。
なお、ステップS33で除霜運転の終了条件が成立しないと判断した場合に、ステップS7でなくステップS23に進むのは、以下の理由による。すなわち、空気調和装置1が備える室内機11A,11Bの台数が2台であり、比較的少ない。このため、室内機11A,11Bの全台数に対する室内機1台の影響度が大きくなり、例えば、第1室内機11Aの室内膨張弁13Aの開度を一度減少させた状態から開度を急激に増加させたときに、アキュムレータ38内に液冷媒が溜まり、冷媒循環量が減少するのを防止するためである。
ステップS19から進んだステップS37において、制御部41は吸入圧力が低圧閾値未満か否かを判断する。ステップS37で吸入圧力が低圧閾値未満であると判断した場合(Yes)は、冷媒循環量が少ない可能性があるため、ステップS39に進む。一方で、ステップS37で吸入圧力が低圧閾値以上であると判断した場合(No)は、ステップS49に進む。
ステップS39において、制御部41は吐出圧力が第1高圧閾値未満か否かを判断する。ステップS39で吐出圧力が第1高圧閾値未満であると判断した場合(Yes)は、圧縮機29から吐出される冷媒の飽和温度が低くて室外熱交換器27に付着した霜を融かし切れない恐れがあるため、ステップS41に進む。一方で、ステップS39で吐出圧力が第1高圧閾値以上であると判断した場合(No)は、ステップS43に進む。
ステップS41では、制御部41は、室内膨張弁13AをPパルス減少させて室内膨張弁13Aの開度を減少させる。室内膨張弁13Aの開度を減少させるのは、吐出圧力を高くするためである。ステップS41を終了すると、ステップS49に進む。
ステップS43では、制御部41は吐出圧力が第2高圧閾値未満か否かを判断する。
ステップS43で吐出圧力が第2高圧閾値未満であると判断した場合(Yes)は、ステップS45に進む。一方で、ステップS43で吐出圧力が第2高圧閾値以上であると判断した場合(No)は、圧縮機29から吐出される冷媒の飽和温度が十分高くて室外熱交換器27に付着した霜を十分に融かし切れると考えられるため、室内膨張弁13A,13Bの開度を維持させて、ステップS49に進む。
なお、ステップS43で吐出圧力が第2高圧閾値以上であると判断した場合は、室内膨張弁13A,13Bの開度を増加させてもよい。
ステップS45において、制御部41は、吸入圧力が低圧閾値未満か否かを判断する。ステップS45で吸入圧力が低圧閾値未満であると判断した場合(Yes)は、冷媒循環量が少なくて室外熱交換器27に付着した霜を融かし切れない恐れがあるため、ステップS47に進む。一方で、ステップS45で吸入圧力が低圧閾値以上であると判断した場合(No)は、冷媒循環量が多くて室外熱交換器27に付着した霜を十分に融かし切れるため、室内膨張弁13Aの開度を維持したままステップS49に進む。
ステップS47では、制御部41は、室内膨張弁13AをPパルス増加させて室内膨張弁13Aの開度を増加させて、ステップS49に進む。
ステップS49において、制御部41は除霜運転の終了条件が成立するか否かを判断する。ステップS49で除霜運転の終了条件が成立すると判断した場合(Yes)は、第1工程S11を終了するとともに除霜運転を終了して、ステップS101に進む。一方で、ステップS49で除霜運転の終了条件が成立しないと判断した場合(No)は、第1工程S11を終了するとともに除霜運転は継続して、ステップS7に進む。
このように、ステップS49で除霜運転の終了条件が成立すると判断されるまで、ステップS7からステップS47までの工程を一定の周期で繰り返す。これにより、室外熱交換器27に付着した霜を融かすのに十分な吐出圧力を維持しつつ、冷媒循環量を確保することができる。
ステップS7から進んだ第2工程S61では、ステップS63において(図5参照)、制御部41は室内膨張弁13AをPA2パルス(例えば、650パルス)に設定し、ステップS65に進む。
なお、液バックしないように調整するため、PA1パルスよりもPA2パルスの方が大きい。本実施形態では、便宜上PA1パルス及びPA2パルスを固定値としているが、PA1パルス及びPA2パルスの値は、各種のセンサの検出結果に基づいて変化してもよい。
制御部41は、ステップS65において、室内熱交換器12Bの出口に液冷媒がある(室内熱交換器12Bの出口が2相域)か否かを判断する。ステップS65で室内熱交換器12Bの出口に液冷媒があると判断した場合(Yes)は、ステップS67に進み、ステップS65で室内熱交換器12Bの出口に液冷媒がない(室内熱交換器12Bの出口が過熱域)と判断した場合(No)は、ステップS69に進む。
ステップS67では、制御部41は室内膨張弁13BをPB1パルスに設定し、ステップS71に進む。ステップS69では、制御部41は室内膨張弁13BをPB2パルスに設定し、ステップS93に進む。
ステップS71において、制御部41は吸入圧力が低圧閾値未満か否かを判断する。ステップS71で吸入圧力が低圧閾値未満であると判断した場合(Yes)は、冷媒循環量が少ない可能性があるため、ステップS73に進む。一方で、ステップS71で吸入圧力が低圧閾値以上であると判断した場合(No)は、ステップS49に進む。
ステップS73において、制御部41は吐出圧力が第1高圧閾値未満か否かを判断する。ステップS73で吐出圧力が第1高圧閾値未満であると判断した場合(Yes)は、圧縮機29から吐出される冷媒の飽和温度が低くて室外熱交換器27に付着した霜を融かし切れない恐れがあるため、ステップS75に進む。一方で、ステップS73で吐出圧力が第1高圧閾値以上であると判断した場合(No)は、ステップS77に進む。
ステップS75では、制御部41は、室内膨張弁13BをPパルス減少させて室内膨張弁13Aの開度を減少させ、ステップS83に進む。
ステップS77では、制御部41は吐出圧力が第2高圧閾値未満か否かを判断する。ステップS77で吐出圧力が第2高圧閾値未満であると判断した場合(Yes)は、ステップS79に進む。一方で、ステップS77で吐出圧力が第2高圧閾値以上であると判断した場合(No)は、圧縮機29から吐出される冷媒の飽和温度が十分高くて室外熱交換器27に付着した霜を十分に融かし切れると考えられるため、室内膨張弁13Bの開度を維持させて、ステップS83に進む。
ステップS79において、制御部41は、吸入圧力が低圧閾値未満か否かを判断する。ステップS79で吸入圧力が低圧閾値未満であると判断した場合(Yes)は、冷媒循環量が少なくて室外熱交換器27に付着した霜を融かし切れない恐れがあるため、ステップS81に進む。一方で、ステップS79で吸入圧力が低圧閾値以上であると判断した場合(No)は、冷媒循環量が多くて室外熱交換器27に付着した霜を十分に融かし切れるため、室内膨張弁13Bの開度を維持したままステップS83に進む。
ステップS81では、制御部41は、室内膨張弁13BをPパルス増加させて室内膨張弁13Bの開度を増加させて、ステップS83に進む。
ステップS83において、制御部41は除霜運転の終了条件が成立するか否かを判断する。ステップS83で除霜運転の終了条件が成立すると判断した場合(Yes)は、第2工程S61を終了するとともに除霜運転を終了して、ステップS101に進む。一方で、ステップS83で除霜運転の終了条件が成立しないと判断した場合(No)は、除霜運転は継続してステップS85に進む。
ステップS85において、制御部41は、室内熱交換器12Aにおける冷媒の出口に液冷媒があるか否かを判断する。ステップS85で室内熱交換器12Aの出口に液冷媒があると判断した場合(Yes)は、ステップS87に進み、ステップS85で室内熱交換器12Aの出口に液冷媒がないと判断した場合(No)は、ステップS89に進む。
ステップS87では、制御部41は室内膨張弁13AをPA1パルスに設定し、ステップS21に進む。一方で、ステップS89では、制御部41は室内膨張弁13AをPA2パルスに設定し、ステップS73に進む。
ステップS69から進んだステップS93では、制御部41は除霜運転の終了条件が成立するか否かを判断する。ステップS93で除霜運転の終了条件が成立すると判断した場合(Yes)は、第2工程S61を終了するとともに除霜運転を終了して、ステップS101に進む。一方で、ステップS93で除霜運転の終了条件が成立しないと判断した場合(No)は、第2工程S61を終了するとともに除霜運転は継続して、ステップS7に進む。
第1工程S11及び第2工程S61から進んだステップS101において(図3参照)、制御部41は暖房運転の停止の指示が出されたか否かを判断する。ステップS101で暖房運転の停止の指示が出されたと判断した場合(Yes)は、空気調和装置1の暖房運転及び除霜運転の工程を終了する。この場合、制御部41は圧縮機29の運転を停止する。
一方で、ステップS101で暖房運転の停止の指示が出されていないと判断した場合(No)は、ステップS3に進む。
以上説明したように、本実施形態の空気調和装置1によれば、制御部41は、除霜運転中に、吐出圧力センサ33の検出結果である吐出圧力に基づいて室内膨張弁13A,13Bの開度を変化させる。吐出圧力が高くなるのに従って圧縮機29から吐出される冷媒の飽和温度が高くなり、室外熱交換器27を加熱する熱量が増加する。したがって、除霜運転終了時における室外熱交換器27の霜の融け残りを抑制することができる。
室内膨張弁13A,13Bの開度を増加させると、液バックする恐れがある。吐出圧力に基づいて室内膨張弁13A,13Bの開度を変化させることで、液バックするのを抑制することができる。
制御部41は、吐出圧力が第1高圧閾値未満であるときに、室内膨張弁13A,13Bの開度を減少させる。除霜運転を開始して室外熱交換器27に付着した霜を融かし切るには吐出圧力が少し低いと考えられる場合に、室内膨張弁13A,13Bの開度を減少させて吐出圧力を高くし、除霜運転終了時における室外熱交換器27の霜の融け残りをより確実に抑制することができる。
制御部41は、吐出圧力が第2高圧閾値以上であるときに、室内膨張弁13A,13Bの開度を増加させるか開度を維持させる。吐出圧力が第2高圧閾値以上であることで、室外熱交換器27に付着した霜を十分に融かし切れると考えられる。このときに、室内膨張弁13A,13Bの開度を増加させて冷媒循環量を増やすことで、室外熱交換器27の霜の融け残りをより確実に抑制することができる。
また、室内膨張弁13A,13Bの開度を維持させることで、液バックを抑制することができる。
制御部41は、除霜運転中に吸入圧力に基づいて室内膨張弁13A,13Bの開度を変化させる。吸入圧力が高くなるのに従って冷媒循環量が多くなり、除霜運転中に室外熱交換器27を加熱する熱量が増加する。このため、除霜運転終了時における室外熱交換器27の霜の融け残りをより確実に抑制することができる。
制御部41は、吐出圧力が第1高圧閾値以上であり、かつ、吸入圧力が低圧閾値未満であるときに、室内膨張弁13A,13Bの開度を増加させる。吐出圧力が第1高圧閾値以上で圧縮機29から吐出される冷媒の飽和温度がある程度高いときに、室内膨張弁13A,13Bの開度を増加させて冷媒循環量を多くすることで、室外熱交換器27の霜の融け残りをより確実に抑制することができる。
制御部41は、吐出圧力が第2高圧閾値未満であり、かつ、吸入圧力が低圧閾値以上であるときに、室内膨張弁13A,13Bの開度を減少させる。吸入圧力が低圧閾値以上で冷媒循環量が比較的多いときに、室内膨張弁13A,13Bの開度を減少させることで、吐出圧力を高くして、室外熱交換器27の霜の融け残りをより確実に抑制することができる。
なお、本実施形態では、空気調和装置1は、2台の室内機11A,11Bを備えるとした。しかし、空気調和装置1が備える室内機の台数は2台に限定されず、1台でもよいし、3台以上でもよい。
(第2の実施形態)
以下、空気調和装置の第2の実施形態を、図1、図6から図9を参照しながら説明する。
図1及び図6に示すように、本実施形態の空気調和装置の制御部(制御装置)51は、例えば、2台の室内機11A,11Bを備えて空気調和装置2を構成するとともに、3台の室内機11A,11B,11Cを備えて空気調和装置3を構成する。
空気調和装置2は、第1の実施形態の空気調和装置1に対して、制御部41のみが異なる。空気調和装置3は、空気調和装置2に対してさらに第3室内機(室内機)11Cを備えたものである。
例えば、制御部51のメモリには、空気調和装置2,3が備える室内機の台数が記憶されている。室内機の台数は、空気調和装置2,3を建築物に設置する作業者等が入力部から入力した値である。空気調和装置2は、2台の室内機11A,11Bを備えている。作業者は、空気調和装置2を建築物に設置した場合には、入力部から空気調和装置2が備える室内機の台数である「2」を入力する。同様に、作業者は、空気調和装置3を建築物に設置した場合には、入力部から空気調和装置3が備える室内機の台数である「3」を入力する。
なお、作業者が入力部から空気調和装置2,3が備える室内機の台数を入力するのに代えて、空気調和装置2,3を建築物に設置したときに、空気調和装置2,3が備える室内機の台数を自動的に制御部51が認識するように構成してもよい。
具体的に、空気調和装置2の場合について説明する。各室内機11A,11Bは、補助制御部をそれぞれ備える。補助制御部は、制御部51と電気的に接続されることで、制御部51との間で信号の送受信を行う。建築物の各部屋に室内機11A,11Bを設置した後で、室内機11A,11Bの補助制御部と制御部51とを配線等により電気的に接続する。制御部51は、配線を介して補助制御部と信号の送受信を行うことで、2台の補助制御部と接続されたことを認識する。これにより、制御部51は2台の室内機11A,11Bと接続されたことを認識し、メモリに、室内機の台数である「2」を記憶する。
制御部51は、制御部41とは演算回路を制御するための制御プログラムが異なる。
空気調和装置3の各構成、及び、暖房運転、除霜運転時における冷媒の流れは空気調和装置1と同様なので、説明を省略する。
次に、以上のように構成された空気調和装置2,3の動作について説明する。図7は、空気調和装置2,3の動作を説明するフローチャートである。
ステップS109で、制御部51は、空気調和装置が備える室内機の台数が3台以上か否かを判断する。制御部51は、空気調和装置2,3のいずれかが備える制御部51である。
ステップS109で空気調和装置が備える室内機の台数が3台以上であると判断した場合(Yes)は、ステップS121の多台数工程に進む。一方で、ステップS109で空気調和装置が備える室内機の台数が3台以上でないと判断した場合(No)は、ステップS111の少台数工程に進む。なお、少台数工程S111は、第1の実施形態における空気調和装置1と同一の工程なので説明を省略する。
多台数工程S121に進んだ工程では、制御部51は空気調和装置3を構成していて、空気調和装置3は室内機の台数が3台である。
多台数工程S121において、ステップS122で使用者が制御部51に暖房運転開始を指示すると、制御部51は、前述のステップS1のように制御する。このとき、外気の温度や湿度等の条件により、室外熱交換器27に霜が付着する。
ステップS123において、制御部51は除霜運転の開始条件が成立するか否かを判断する。ステップS123で除霜運転の開始条件が成立すると判断した場合(Yes)は、ステップS125に進み、ステップS123で除霜運転の開始条件が成立しないと判断した場合(No)は、暖房運転を継続させた状態でステップS151に進む。
ステップS125では、制御部51は除霜運転を開始する。例えば、室内膨張弁13A,13B,13Cを除霜運転の初期開度である300パルスにそれぞれ設定し、ステップS127に進む。なお、空気調和装置2の場合には、室内膨張弁13A,13Bを除霜運転の初期開度は、それぞれ600パルスである。このように、制御部は、除霜運転中に、室内機の台数に基づいて、室内膨張弁の開度の変化方法を変える。
なお、室内膨張弁13A,13B,13Cの除霜運転の初期開度は、第1の実施形態の除霜運転の初期開度である600パルス等でもよい。室内膨張弁13A,13B,13Cの除霜運転の初期開度は、互いに異なっていてもよい。また、除霜運転開始直後の開度と、その後一定時間経過後の開度と、を異なる値にしてもよい。
ステップS127において、制御部51は、室内熱交換器12Aの出口に液冷媒があるか否かを判断する。ステップS127で室内熱交換器12Aの出口に液冷媒があると判断した場合(Yes)は、ステップS129に進み、ステップS127で室内熱交換器12Aの出口に液冷媒がないと判断した場合(No)は、ステップS131に進む。
ステップS129では、制御部51は室内膨張弁13AをPA3パルス(例えば、250パルス)に設定し、ステップS133に進む。一方で、ステップS131では、制御部51は室内膨張弁13AをPA4パルス(例えば、450パルス)に設定し、ステップS133に進む。
なお、液バックしないように調整するため、PA3パルスよりもPA4パルスの方が大きい。本実施形態では、便宜上PA3パルス及びPA4パルスを固定値としているが、PA3パルス及びPA4パルスの値は、各種のセンサの検出結果に基づいて変化してもよい。
ステップS133において、制御部51は、室内熱交換器12Bの出口に液冷媒があるか否かを判断する。ステップS133で室内熱交換器12Bの出口に液冷媒があると判断した場合(Yes)は、ステップS135に進み、ステップS133で室内熱交換器12Bの出口に液冷媒がないと判断した場合(No)は、ステップS137に進む。
ステップS135では、制御部51は室内膨張弁13BをPB3パルス(例えば、200パルス)に設定し、ステップS139に進む。一方で、ステップS137では、制御部51は室内膨張弁13BをPB4パルス(例えば、400パルス)に設定し、ステップS139に進む。
なお、液バックしないように調整するため、PB3パルスよりもPB4パルスの方が大きい。PB3パルスとPA3パルスとは等しくてもよいし、PB3パルスはPA3パルスよりも大きくてもよい。PA4パルス及びPB4パルスについても同様である。
ステップS139において、制御部51は、室内熱交換器12Cの出口に液冷媒があるか否かを判断する。ステップS139で室内熱交換器12Cの出口に液冷媒があると判断した場合(Yes)は、ステップS141に進み、ステップS139で室内熱交換器12Cの出口に液冷媒がないと判断した場合(No)は、ステップS143に進む。
ステップS141では、制御部51は室内膨張弁13CをPC3パルス(例えば、150パルス)に設定し、ステップS145に進む。一方で、ステップS143では、制御部51は室内膨張弁13CをPC4パルス(例えば、350パルス)に設定し、ステップS145に進む。
なお、液バックしないように調整するため、PC3パルスよりもPC4パルスの方が大きい。
ステップS145において、制御部51は除霜運転の終了条件が成立するか否かを判断する。ステップS145で除霜運転の終了条件が成立すると判断した場合(Yes)は、除霜運転を終了してステップS151に進む。一方で、ステップS145で除霜運転の終了条件が成立しないと判断した場合(No)は、除霜運転は継続してステップS127に進む。
このように、ステップS145で除霜運転の終了条件が成立すると判断されるまで、ステップS127からステップS143までの工程を一定の周期で繰り返す。これにより、液バックすることなく冷媒循環量を確保した状態で、室外熱交換器27に付着した霜を融かすことができる。
ステップS151では、制御部51は暖房運転の停止の指示が出されたか否かを判断する。ステップS151で暖房運転の停止の指示が出されたと判断した場合(Yes)は、空気調和装置3の暖房運転及び除霜運転の工程を終了する。
一方で、ステップS151で暖房運転の停止の指示が出されていない判断した場合(No)は、ステップS123に進む。
なお、制御部51は、吐出圧力が第1高圧閾値未満であると判断した場合に、室内膨張弁13A,13B,13CをPパルス(例えば、15パルス)ずつ減少させて室内膨張弁13A,13B,13Cの開度を減少させてもよい。吐出圧力が第1高圧閾値以上であると判断した場合に、室内膨張弁13A,13B,13CをPパルス(例えば、25パルス)ずつ増加させて室内膨張弁13A,13B,13Cの開度を増加させてもよい。
空気調和装置の室内機の台数に対する室内膨張弁の開度を一度に変化させる変化量(以下、単に室内膨張弁の変化量とも言う)の関係の一例を、図8に示す。図8において、横軸は空気調和装置が備える室内機の台数を表し、縦軸は室内膨張弁の変化量を表す。図8には、室内機の台数が1台、4台の場合も併せて示している。点線で示した線L1は、吐出圧力が第1高圧閾値未満であると判断した場合であり、実線で示した線L2は、吐出圧力が第1高圧閾値以上であると判断した場合である。
図8に示す例では、吐出圧力と第1高圧閾値との大小関係によらず、室内機の台数が1台及び2台のときと、3台以上のときとで、室内膨張弁の変化量はそれぞれ一定である。すなわち、予め定められた台数閾値を3台として制御部51は、室内膨張弁の変化量を、台数が台数閾値未満(1台及び2台)であるときに、台数が台数閾値以上(3台以上)であるときよりも減少させる。
空気調和装置が備える室内機の台数が少ないほど、室内機の全台数に対する室内機1台の影響度が大きくなる。このため、制御部51は、台数が台数閾値以上の場合よりも台数が台数閾値未満の場合に室内膨張弁の変化量を減少させて、室内膨張弁をより細かく制御している。
なお、図9に示す例のように制御してもよい。図9の横軸及び縦軸は、図8と同様である。点線で示した線L3は、吐出圧力が第1高圧閾値未満であると判断した場合であり、実線で示した線L4は、吐出圧力が第1高圧閾値以上であると判断した場合である。この例では、制御部51は、吐出圧力と第1高圧閾値との大小関係によらず、室内膨張弁の変化量を、台数が少ないほど減少させる。
以上説明したように、本実施形態の空気調和装置2,3によれば、除霜運転終了時における室外熱交換器27の霜の融け残りを抑制することができる。
さらに、制御部51は、除霜運転中に、室内機の台数に基づいて室内膨張弁の開度の変化方法を変える。したがって、室内機の台数に応じたきめ細やかな制御を行うことができる。
制御部51は、室内膨張弁の変化量を、台数が台数閾値未満であるときに、台数が台数閾値以上であるときよりも減少させる。これにより、室内機の全台数に対する室内機1台の影響度が大きくなる場合に、室内膨張弁をより細かく制御することができる。
制御部51は、室内膨張弁の変化量を、台数が少ないほど減少させる。このため、室内機の台数に応じて室内膨張弁の変化量をより細かく変化させ、さらにきめ細やかな制御を行うことができる。
なお、制御部51は、吐出圧力だけでなく吸入圧力に基づいて、室内膨張弁の開度の変化方法を変えてもよい。このように制御することで、室内機の台数、圧縮機29から吐出される冷媒の飽和温度、及び冷媒循環量を考慮したきめ細やかな制御を行うことができる。
制御部51は、前述の室内膨張弁の変化量を、吐出圧力及び吸入圧力の少なくとも一方に基づいて変えてもよい。
第1の実施形態及び第2の実施形態では、空気調和装置は、室外膨張弁30、吸入圧力センサ34、及びアキュムレータ38を備えなくてもよい。
以上説明した少なくともひとつの実施形態によれば、制御部が除霜運転中に吐出圧力に基づいて室内膨張弁の開度を変化させることにより、除霜運転終了時における室外熱交換器の霜の融け残りを抑制することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
本実施形態における、制御部が除霜運転中に吐出圧力に基づいて室内膨張弁の開度を変化させることは、室内膨張弁を有する室内機を複数備える空気調和装置に好適に用いることができる。
1,2,3…空気調和装置、11A,11B,11C…第1室内機(室内機)、12A,12B,12C…室内熱交換器、13A,13B,13C…室内膨張弁、26…室外機、27…室外熱交換器、28…四方弁、29…圧縮機、33…吐出圧力センサ、34…吸入圧力センサ、41,51…制御部

Claims (10)

  1. 室内熱交換器と、開度を変更可能な室内膨張弁と、を有する複数の室内機と、
    室外熱交換器と、四方弁と、圧縮機と、前記圧縮機から吐出される冷媒の圧力を検出する吐出圧力センサと、を有する室外機と、
    前記室内膨張弁、前記四方弁、前記圧縮機を制御する制御部と、
    を備え、
    前記複数の室内機は、前記室外機に対してそれぞれ並列に接続され、
    前記制御部は、除霜運転中に、前記吐出圧力センサの検出結果に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度を変化させ
    前記制御部は、前記吐出圧力センサが検出した圧力が、予め定められた第1高圧閾値未満であるときに、前記複数の室内膨張弁のうちの少なくとも1つの開度を減少させる
    空気調和装置。
  2. 前記制御部は、前記吐出圧力センサが検出した圧力が、前記第1高圧閾値よりも大きい予め定められた第2高圧閾値以上であるときに、前記複数の室内膨張弁のうちの少なくとも1つの開度を増加させるか、前記複数の室内膨張弁のうちの少なくとも1つの開度を維持させる
    請求項1に記載の空気調和装置。
  3. 室内熱交換器と、開度を変更可能な室内膨張弁と、を有する複数の室内機と、
    室外熱交換器と、四方弁と、圧縮機と、前記圧縮機から吐出される冷媒の圧力を検出する吐出圧力センサと、を有する室外機と、
    前記室内膨張弁、前記四方弁、前記圧縮機を制御する制御部と、
    を備え、
    前記複数の室内機は、前記室外機に対してそれぞれ並列に接続され、
    前記制御部は、除霜運転中に、前記吐出圧力センサの検出結果に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度を変化させ
    前記室外機は、前記圧縮機に吸入される前記冷媒の圧力を検出する吸入圧力センサを有し、
    前記制御部は、前記除霜運転中に、前記吸入圧力センサの検出結果に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度を変化させる
    空気調和装置。
  4. 前記制御部は、前記吐出圧力センサが検出した圧力が、予め定められた第1高圧閾値以上であり、かつ、前記吸入圧力センサが検出した圧力が、予め定められた低圧閾値未満であるときに、前記複数の室内膨張弁のうちの少なくとも1つの開度を増加させる
    請求項3に記載の空気調和装置。
  5. 前記制御部は、前記吐出圧力センサが検出した圧力が、前記第1高圧閾値よりも大きい予め定められた第2高圧閾値未満であり、かつ、前記吸入圧力センサが検出した圧力が、予め定められた低圧閾値以上であるときに、前記複数の室内膨張弁のうちの少なくとも1つの開度を減少させる
    請求項4に記載の空気調和装置。
  6. 室内熱交換器と、開度を変更可能な室内膨張弁と、を有する複数の室内機と、
    室外熱交換器と、四方弁と、圧縮機と、前記圧縮機から吐出される冷媒の圧力を検出する吐出圧力センサと、を有する室外機と、
    前記室内膨張弁、前記四方弁、前記圧縮機を制御する制御部と、
    を備え、
    前記複数の室内機は、前記室外機に対してそれぞれ並列に接続され、
    前記制御部は、除霜運転中に、前記吐出圧力センサの検出結果に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度を変化させ
    前記制御部は、前記除霜運転中に、前記複数の室内機の台数に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度の変化方法を変える
    空気調和装置。
  7. 前記室外機は、前記圧縮機に吸入される前記冷媒の圧力を検出する吸入圧力センサを有し、
    前記制御部は、前記吐出圧力センサの検出結果、及び前記吸入圧力センサの検出結果に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度の変化方法を変える
    請求項6に記載の空気調和装置。
  8. 前記制御部は、前記複数の室内膨張弁のうちの少なくとも1つの開度を一度に変化させる変化量を、前記台数が予め定められた台数閾値未満であるときに、前記台数が前記台数閾値以上であるときよりも減少させる
    請求項6又は7に記載の空気調和装置。
  9. 前記制御部は、前記複数の室内膨張弁のうちの少なくとも1つの開度を一度に変化させる変化量を、前記台数が少ないほど減少させる
    請求項6又は7に記載の空気調和装置。
  10. 前記制御部は、前記吐出圧力センサの検出結果に基づいて、前記複数の室内膨張弁のうちの少なくとも1つの開度を一度に変化させる変化量を変える
    請求項6から9のいずれか一項に記載の空気調和装置。
JP2019506922A 2017-03-24 2017-03-24 空気調和装置 Active JP6808812B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012176 WO2018173297A1 (ja) 2017-03-24 2017-03-24 空気調和装置

Publications (2)

Publication Number Publication Date
JPWO2018173297A1 JPWO2018173297A1 (ja) 2019-11-07
JP6808812B2 true JP6808812B2 (ja) 2021-01-06

Family

ID=63585354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506922A Active JP6808812B2 (ja) 2017-03-24 2017-03-24 空気調和装置

Country Status (3)

Country Link
JP (1) JP6808812B2 (ja)
CN (1) CN110268203B (ja)
WO (1) WO2018173297A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023455B (zh) * 2019-12-26 2021-08-03 Tcl空调器(中山)有限公司 除霜控制方法、除霜控制装置、空调器及可读存储介质
CN111425990B (zh) * 2020-03-04 2023-02-24 青岛海尔空调电子有限公司 多联机系统的除霜控制方法
CN111678224B (zh) * 2020-06-18 2022-02-08 青岛海信日立空调系统有限公司 一种空气源热泵
JPWO2023170743A1 (ja) * 2022-03-07 2023-09-14
WO2024134852A1 (ja) * 2022-12-23 2024-06-27 三菱電機株式会社 空気調和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274893A (ja) * 1999-03-23 2000-10-06 Sanyo Electric Co Ltd 空気調和装置
JP2001272144A (ja) * 2000-03-29 2001-10-05 Daikin Ind Ltd 空気調和装置
JP2008039335A (ja) * 2006-08-09 2008-02-21 Itomic Kankyou System Co Ltd ヒートポンプ用デフロスト回路およびヒートポンプ式給湯機並びにヒートポンプ式給湯機におけるデフロスト方法
KR20100036786A (ko) * 2008-09-30 2010-04-08 엘지전자 주식회사 공기조화기 및 그 운전 방법
JP2010101570A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 空気調和機
JP5310101B2 (ja) * 2009-03-03 2013-10-09 ダイキン工業株式会社 空気調和装置
JP2013178046A (ja) * 2012-02-29 2013-09-09 Hitachi Appliances Inc 空気調和装置
EP2863153B1 (en) * 2012-10-18 2018-03-07 Daikin Industries, Ltd. Air conditioner
JP6180165B2 (ja) * 2013-04-17 2017-08-16 三菱電機株式会社 空気調和装置
CN103438547B (zh) * 2013-09-23 2016-04-20 深圳麦克维尔空调有限公司 一种电子膨胀阀控制方法
JP6138711B2 (ja) * 2014-02-13 2017-05-31 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和装置
WO2016132473A1 (ja) * 2015-02-18 2016-08-25 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
WO2018173297A1 (ja) 2018-09-27
JPWO2018173297A1 (ja) 2019-11-07
CN110268203B (zh) 2021-11-30
CN110268203A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
JP6808812B2 (ja) 空気調和装置
CN106958958B (zh) 空气调节装置
CN110291339B (zh) 空气调节装置
JP6803282B2 (ja) 空気調和装置
US10371407B2 (en) Air conditioning apparatus
JP6312830B2 (ja) 空気調和装置
JP6138711B2 (ja) 空気調和装置
JP6277005B2 (ja) 冷凍装置
JP2007218532A (ja) 空気調和装置
CN114364933B (zh) 空调机
JP6834561B2 (ja) 空気調和装置
AU2015267776B2 (en) Refrigeration apparatus
JP2019039599A (ja) 空気調和装置
JP7000902B2 (ja) 空気調和装置
JP7009808B2 (ja) 空気調和装置
JP2018048752A (ja) 空気調和機
US11852367B2 (en) Control device for air conditioning apparatus, air conditioning system, control method for air conditioning apparatus, and program
JP6930127B2 (ja) 空気調和装置
JP2018048753A (ja) 空気調和装置
JPH10267358A (ja) 集合ダクト型空気調和システム
WO2022163624A1 (ja) 暖房装置
KR102207235B1 (ko) 공기조화기 및 그 제어 방법
US11965665B2 (en) Air conditioning system
JP7336458B2 (ja) 冷凍システムの接続関係判定装置、冷凍システムおよびプログラム
JP6737053B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150